【0001】
【発明の属する技術分野】
本発明は、2次電池を用いた充電式電気掃除機に関するもので、特に電動送風機の制御に関するものである。
【0002】
【従来の技術】
従来の充電式電気掃除機の電動送風機の制御構成は、吸引通路内の一部に対向して設けられた受発光素子を用いたゴミセンサによって、ゴミが検出されなかったときは所定の弱い吸込み力で電動送風機を運転し、ゴミが検出されたときは大きな吸込み力で電動送風機を運転する制御を行うことで使用時間を長くするようにしていた(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−61739号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の構成においては、ゴミセンサを吸引経路内の一部に設けなくてはいけないためコストがかかってしまう。また強い吸込み力で常時使用していると2次電池の温度が高くなるため、放電直後に充電を行うと充放電のサイクル寿命が悪くなり、さらには電動送風機の制御を行うスイッチング素子が発熱するため、高価なスイッチング素子が必要となりコストがかかってしまう課題があった。
【0005】
本発明は、前記従来の課題を解決するもので、使用時間を長くすることができ、さらには2次電池温度や電動送風機の温度も低減することができ、使用性および耐久性に優れた充電式電気掃除機を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は、吸引風を発する電動送風機と、前記電動送風機を駆動する駆動手段と、前記電動送風機の電源である2次電池と、前記電動送風機の負荷状態を検出する負荷検出手段とを備え、前記検出値に基づいて前記電動送風機の消費電力または電流を制御するもので、電動送風機の負荷状態によって電流を抑制することができるため、使用時間を長くすることができ、さらには2次電池温度や電動送風機の温度も低減することができ、使用性および耐久性に優れた充電式電気掃除機を提供できる。
【0007】
【発明の実施の形態】
本発明の請求項1記載の発明は、吸引風を発する電動送風機と、前記電動送風機を駆動する駆動手段と、前記電動送風機の電源である2次電池と、前記電動送風機の負荷状態を検出する負荷検出手段とを備え、前記検出値に基づいて前記電動送風機の消費電力または電流を制御するもので、電動送風機の負荷状態によって電流を抑制することができるため、使用時間を長くすることができ、さらには2次電池温度や電動送風機の温度も低減することができ、使用性および耐久性に優れた充電式電気掃除機を提供できる。
【0008】
本発明の請求項2記載の発明は、電動送風機の消費電力または電流の上限値を予め設定し、負荷検出手段の検出値が前記電動送風機の消費電力または電流を前記上限値より高い値に設定する情報であっても、前記電動送風機の消費電力または電流を、前記上限値と同等かもしくはそれより低い値にするもので、電動送風機の最大電流を軽減できるため、使用時間を長くすることができる。また、2次電池温度や電動送風機の発熱が小さくなるだけでなく、駆動手段も電流定格の小さいものを使用できコストを安価にできるものである。
【0009】
本発明の請求項3記載の発明は、電動送風機の最大消費電力または最大電流を略一定とするもので、電動送風機の最大電流を軽減できるため、使用時間を長くすることができるだけでなく、安定した使用時間を実現できる。また、2次電池温度や電動送風機の発熱が小さくなるだけでなく、駆動手段も電流定格の小さいものを使用できコストを安価にできるものである。
【0010】
本発明の請求項4記載の発明は、電動送風機の消費電力または電流の上限値を予め設定し、負荷検出手段の検出値が、吸込仕事率が最大時の風量を含む予め設定した所定範囲内のときには、前記電動送風機の消費電力または電流を前記上限値と同等かもしくはそれより低い値にするとともに、前記電動送風機の最大消費電力または最大電流を略一定とし、その後、前記負荷検出手段の検出値が、前記所定範囲を越えたときには、前記電動送風機の消費電力または電流を低下させるもので、電動送風機の最大電流を軽減できるため、使用時間を長くすることができるだけでなく、安定した使用時間を実現できる。また、2次電池温度や電動送風機の発熱が小さくなるだけでなく、駆動手段も電流定格の小さいものを使用できコストを安価にできるものである。
【0011】
本発明の請求項5記載の発明は、吸込仕事率が最大時の風量Qpより大きい風量Q1のときには、電動送風機の電流又は消費電力が前記吸込仕事率が最大時の風量Qpのときと略同一となるように前記電動送風機の電流又は消費電力を下げ、前記Q1からQpに変化するときには、前記電動送風機の電流又は消費電力を上昇させるもので、電動送風機の最大電流を軽減できるため、使用時間を長くすることができ、さらには、2次電池温度や電動送風機の温度も低減することができるものである。
【0012】
本発明の請求項6記載の発明は、電動送風機の電流または消費電力を変更する風量の設定値を、吸込仕事率が最大時の風量Qpに対してQp<Q1の1点とし、風量QがQ>Q1の場合に、前記電動送風機の電流又は消費電力を低下させるもので、電動送風機の最大電流を軽減できるため、使用時間が延びかつ2次電池温度や電動送風機温度も低減することができる。
【0013】
本発明の請求項7記載の発明は、電動送風機の電流または消費電力を変更する風量の設定値を、吸込仕事率が最大時の風量Qpに対してQ2<Qpの1点とし、風量QがQ<Q2の場合に、前記電動送風機の電流又は消費電力を低下させるもので、密閉時など電動送風機の冷却風が少ないときに電動送風機の発熱を抑えることができる。
【0014】
本発明の請求項8記載の発明は、吸引風を発する電動送風機と、前記電動送風機を駆動する駆動手段と、前記電動送風機の電源である2次電池と、前記電動送風機の回転数又は回転数変化を検出する回転数検出手段と、前記回転数検出手段からの信号によって前記駆動手段の1周期あたりのデューティー比を決定する信号処理部とを備え、前記デューティー比の最大時に、予め設定した電動送風機の最大電流になるように、前記デューティー比毎に予め回転数を設定し、前記電動送風機の回転数が前記設定した回転数を下回る場合は、前記デューティー比のONを小さくするもので、回転数検出手段のみで電動送風機の最大電流を軽減できるため、使用時間を長くすることができる。また、2次電池温度や電動送風機温度も低減することができ、駆動手段も電流定格の小さいものが使用可能なためコストを安価にできるものである。
【0015】
本発明の請求項9記載の発明は、デューティー比のONが小さくなっても、予め設定した電動送風機の最大電流が略一定となるように、デューティー比毎に予め回転数を設定するもので、回転数検出手段のみで電動送風機の最大電流を軽減できるため、使用時間を長くすることができるだけでなく安定した使用時間を実現できる。また、2次電池温度や電動送風機温度も低減することができ、駆動手段も電流定格の小さいものが使用可能なためコストを安価にできるものである。
【0016】
本発明の請求項10記載の発明は、デューティー比のONが小さくなったとき、予め設定した電動送風機の最大電流から、前記電動送風機の電流を低下させていくように、デューティー比毎に予め回転数を設定するもので、風量が大きい開放状態に近い状態では電流を小さくすることができるため、ゴミ取れ性能を損なわずに使用時間をより延ばすことができる。また、より2次電池温度や電動送風機温度も低減することもできる。
【0017】
本発明の請求項11記載の発明は、2次電池の電池電圧を検出する電池電圧検出手段を備え、駆動手段の1周期あたりのデューティー比毎の回転数の設定を、前記電池電圧検出手段からの信号に基づいて補正するもので、2次電池の電圧のばらつきや、放電して電圧が下降してきたときも最大電流、風量−電流特性が同条件とすることができ、使用時間を延ばしつつ安定した吸込み力を実現できるものである。
【0018】
本発明の請求項12記載の発明は、電動送風機の回転数又は回転数変化を検出する回転数検出手段と、前記回転数検出手段からの信号を記憶する記憶手段とを備え、設定した風量時または固定したデューティー比における風量時の回転数を検出することで電動送風機のばらつきを判断し、前記検出した回転数を前記記憶手段に記憶させ、記憶された回転数に基づいて、デューティー比毎の回転数設定を補正するもので、製品に使用する複数の電動送風機の特性にばらつきがあっても、最大電流、風量−電流特性が同特性とすることができ、使用時間を延ばしつつ安定した吸込み力を実現できるものである。
【0019】
本発明の請求項13記載の発明は、2次電池の電圧を検出する電池電圧検出手段と、電動送風機の電流又は電流変化を間接的に検出する電流検出手段と、前記電流検出手段からの信号によって駆動手段のデューティー比を決定する信号処理部とを備え、前記電池電圧検出手段の検出値が低下してきたら、電動送風機の電流を増加させることで、前記電動送風機の消費電力を一定に保つようデューティー比を変化させるもので、満充電電池から放電終了まで安定した吸込み力を実現できるものである。
【0020】
本発明の請求項14記載の発明は、負荷検出手段を、電動送風機の回転数、電流、真空度、風量の少なくともいずれか一つを直接的または間接的に検出する手段とするもので、より確実に最大電流を設定できるだけでなく、電動送風機のばらつきも調整なしで判断することができ、風量−電流特性精度が向上できるものである。
【0021】
本発明の請求項15記載の発明は、吸引風を発する電動送風機と、前記電動送風機を駆動する駆動手段と、床面の塵埃を吸引する吸込み具と、前記吸込み具の離床状態を判断する床面離床検出手段と、前記床面離床検出手段からの信号によって前記駆動手段のデューティー比を決定する信号処理部と、前記電動送風機の電源である2次電池とを備え、前記吸込み具が床面から離れている場合には、前記吸込み具が床面に接している場合よりも、前記駆動手段のデューティー比のONを小さくするもので、2次電池の電力消費を抑え、使用時間を長くすることにより、一回の充電で掃除できる面積を大きくすることができるものである。
【0022】
本発明の請求項16記載の発明は、吸引風を発する電動送風機と、前記電動送風機を駆動する駆動手段と、床面の状態を判断する床面識別手段と、前記床面識別手段からの信号に基づいて前記駆動手段のデューティー比を決定する信号処理部と、前記電動送風機の電源である2次電池とを備え、前記床面識別手段からの信号に基づいて、前記駆動手段のデューティー比のON比を変更して、前記電動送風機の吸引力を制御するもので、2次電池の電力消費を抑え、使用時間を長くすることにより、ゴミが集塵しやすい木床やたたみでは、吸い込み力を下げることができ、一回の充電で掃除できる面積を大きくすることができるものである。
【0023】
本発明の請求項17記載の発明は、電動送風機をブラシレスモータとするもので、DC整流子モータよりも効率がよいため、同吸込み力を少ない電流で実現できるため使用時間を延ばすことができる。また、電池の温度や電動送風機の温度も低減することができるものである。
【0024】
【実施例】
以下、本発明の実施例を図面に基づき説明する。なお、各実施例において同一機能を有するものについては同一符号をつけて説明を省略する。
【0025】
(実施例1)
図1は本発明の第1の実施例の充電式電気掃除機の回路ブロック図、図2は同充電式電気掃除機の斜視図、図3、図4、図5は同充電式電気掃除機のI−Q特性図である。
【0026】
図1から図3において、充電式電気掃除機の本体接続部1aにホース2、延長管3および床面の塵埃を吸引する吸込み具4が接続され、ホース2の先端部には手元操作部2aを設け、手元操作部2aで操作することで、本体1内に配設した吸引風を発するブラシレスのインバータモータである電動送風機5が運転開始する。また、前記本体1内には、充電可能な2次電池6が配設されており、前記電動送風機5は前記2次電池6を電源としている。8は負荷検出手段のひとつである回転数検知手段でインバータモータの内設されている。
【0027】
図1は回路ブロック図で、2次電池6は、電動送風機5を介して駆動手段7に接続されているとともに、制御回路の電源でもある。8は回転数検出手段で電動送風機5の回転数を信号処理部9に伝達している。10はすべての電源である2次電池6の電圧を検知する電池電圧検出手段で信号処理部9に接続されている。11は手元操作部2aからの信号を受けて制御回路に電源を供給する電源供給手段で、掃除動作が行なわれていないときは、2次電池6の放電を抑えるために供給を止める。12は電源供給手段11からの電圧を信号処理しやすい電圧に変換する電圧変圧手段で5Vを出力するようになっている。信号処理部9は、手元操作部2aと回転数検出手段8と電池電圧検出手段10からの信号を処理して電動送風機5を回転させる電動送風機駆動手段8に出力するものであり、一周期を例えば15.6kHzとし、その周波数内のON−OFFデューティー比を変えることで電動送風機5を制御する構成となっている。またデューティー比毎に回転数が予めきめられており、この予め決められたデューティー比−回転数の関係を2次電池6の電圧によって補正する構成となっている。
【0028】
上記構成において、手元操作部2aで操作を行なうことで、信号処理部9に電源が供給され信号処理部9は手元操作部2aの複数あるポジションを認識し、電動送風機5を回転させる。最初に動作させる場合のデューティー比は回転数検出手段8からの信号がないため、予め決められたデューティー比で動作させる。回転数が安定するまで一定時間待った後、回転数検出手段8からの信号をえてデューティー比を変えるわけであるが、本実施例は説明が分かりやすいように吸込み具4の吸着による風量変化を無視して説明する。例えば、本体1内の集塵室(図示せず)にゴミがない風量状態(以下開放風量という)での電動送風機5の回転数が、デューティー比80:20のときに40000rpmとする。
【0029】
予め決められていた設定値がデューティー比80:20のときの電動送風機5の回転数が39800から40200rpmであれば範囲内に回転数があるため開放状態で安定する。ごみが集塵室に蓄積されて風量が小さくなると、デューティー比80:20で動作させたときの回転数は空気負荷が少なくなるため、回転数が大きくなり、例えば41000に変化する。40200以上の回転数と範囲以上になったため、デューティー比は81:19に切り替わる。予めデューティー比が、81:19のときに40800から41200rpmに設定されていればその風量で安定するが、40300から40700rpmが予め決まっている値であれば、さらに40700rpmも越えているため、デューティー比は82:18に変化するように動作する。風量が大きくなるほうも同様に徐々にON比が小さくなるように動作する。回転数−風量特性は、図6で示すように略比例関係になっているため、電動送風機5の回転数を検出することで風量が算出できる。
【0030】
また、電流−風量特性も図5で分かるように略比例になっているため、回転数と電流は一対一に対応している。つまり回転数を検出することで電流値が算出できる。よって、デューティー比が固定しているときの回転数を検出することで風量と電流値の算出ができる。そのため、風量が変化しても一定電流に制御するためには、各風量時の電流が一定となるデューティー比とそのデューティー比のときの回転数をもとめることで実現できる。また、風量が小さくなってきたら徐々に電流を大きくするためには、各風量時の上昇させたい電流値を決めその電流値になるデューティー比とそのデューティー比のときの回転数をもとめることで実現できる。
【0031】
つまり、電流の上昇傾きやある風量領域のみ傾きを変えることは、この設定によって自在に行える。また、ある風量で電流を段階的に大きくするためには、各デューティー比のときに決められた風量になる回転数をもとめることで実現できる。風量が変化しても電流一定にするためには、各風量のときに14Aにするためのデューティー比は、電動送風機5で決まりそのデューティー比での回転数も決まる。そのデューティー比毎に回転数の範囲を決めれば一定電流は実現できる。
【0032】
図3に電流−風量特性示す。風量変化に応じて徐々に電流を上げるためには、例えば開放風量のときに10A、仕事率最大ポイントのときに14Aに徐々に上げたい場合も同様で、開放風量時に10Aにするためのデューティー比は電動送風機5で決まり、そのデューティー比での回転数も決まる。その間の風量で12Aするのも決まり、それを細かい風量での電流値設定をしてデューティー比を決め、そのデューティー比毎に回転数の範囲を決めれば実現できる。また、この双方によって開放風量から電流を段階的に上昇させ、吸込み仕事率が最大時の風量近傍では電流一定にすることもできる。また、開放風量時の電流値の設定を電動送風機特性よりも小さくすれば(例えば電動送風機特性が開放風量時に16Aであれば、開放風量時の電流設定を15Aにする)同様の効果は得られる。
【0033】
図4、図5に電流−風量特性を示す。吸込み仕事率風量Qpよりも開放状態である風量Q1で電流を段階的に大きするためにはデューティー比毎に風量Q1になる回転数は電動送風機5によって決まり、そのデューティー比毎に回転数の範囲を決めれば実現できる。また、回転数を検知しているため吸込み仕事率風量Qpよりも密閉状態にあるQ2近傍では電流値を下げるように制御することも容易に行える。
【0034】
次に電池電圧補正について説明する。電源が2次電池であるため、電圧は放電特性である図7のように動作すると、電圧は徐々に小さくなるように変化する。電池電圧が小さくなると同じデューティー比でも回転数は小さくなる。よって補正をしない状態では、ONデューティー比は小さくなるように動作してしまうため電圧に応じてデューティー比毎に回転数の範囲を補正する必要がある。例えば、電池電圧が28.8Vのときにデューティー比80:20のときの回転数が39800から40200rpmの関係とすると、電圧が28.8V時には40000rpmで安定していたものが電圧降下して28Vになると、同じデューティー比80:20では500回転下がってしまう。そのため、補正をしない状態では39800rpmを下回るため、開放風量に近づいたと判断しデューティー比を79:21に切り替わってしまう。よって、電圧が28.8Vから28Vに変動した時にデューティー比が変化しないように500rpmを補正し、デューティー比80:20のときの回転数が39300から39800rpmの関係に全部のデューティー比に補正をする。この電圧を電動送風機5が停止する電圧まで行なう。
【0035】
次に電動送風機5ばらつき調整について説明する。電動送風機5のばらつきを抑えるために、デューティー比を一定にしてかつ風量も一定にしたときの回転数を検出して補正をするための調整を行なう。予め設定してある基準の電動送風機5よりどの程度回転数が高いかで電動送風機5のばらつきを判断し、補正値を記憶手段13に記憶し補正を行なうことで、電動送風機5のばらつきを抑えることができる。例えば、基準となっている電動送風機5でのデューティー比100:0である風量時に45000rpmであったとし、ある電動送風機5はこの条件で46000rpmであったとすると1000rpm高いため、1000rpmさげるようにデューティー比を補正する。
【0036】
本実施例はブラシレスモータにより回転数での説明であるが、圧力変化も圧力−風量特性は略比例であることから、デューティー比−圧力設定を行なえば、同様の制御を行なえることは言うまでもない。また、電流変化も電流−風量特性は略比例であることから、デューティー比−電流設定を行なえば同様の制御を行なえることも言うまでもない。風量変化も風量によって予めデューティー比−風量設定を行なえば同様の制御を行なえることは言うまでもない。つまり、電動送風機5の回転数、電流、真空度、風量のいずれかを検出することで、上記特性のように制御することができる。本実施例は電動送風機の電流を制御対象に説明したが、電圧も検出しているため電力を制御対象とできることも言うまでもない。
【0037】
図3、図4、図5のようなI−Q特性にすることで、吸込み具4が床面から浮いた状態での電動送風機5の無駄な消費電流を軽減できるため、使用時間を長くすることができる。また、最大電流が小さくなるため2次電池温度6や電動送風機5の発熱が小さくなり、駆動手段も電流定格の小さいものを使用できコストを安価にできる。
【0038】
(実施例2)
図8は本発明の第2の実施例の回路ブロック図であり、14は吸込み具4が床面からはなれている状態であるか検出する床面離床検出手段で、信号処理部9に接続されている。信号処理部9との接続は吸込み具4にセンサを備えているため送受信手段を備えて無線で伝達してもよい。床面離床検出手段14は、吸込み具4に床面に接しているときのみ動作する安全スイッチのON/OFFの検知や吸込み具に内蔵された電動機の電流検知によって検出するのが一般的であり、構成、動作の説明については省略する。
【0039】
上記構成において、手元操作部2aで操作を行なうことで、電動送風機5を回転させる。しかしながら床面離床検出手段14により吸込み具4が床面より一定時間離れていることを検出すると、信号処理部9は電動送風機5の吸込み力を小さくするように動作する。この動作によって吸込み具4が床面から離れたり吸込み具4の動作を停止させたりして床面の掃除をしない場合は、電動送風機5の吸込み力を小さくあるいは停止させるので、無駄な消費電流が低減でき、使用時間を長くすることができるため、一回の充電で掃除できる面積が増える。
【0040】
(実施例3)
図9は本発明の第3の実施例の回路ブロック図であり、15は床面の種類を検出する床面識別手段で信号処理部9に接続されている。床面識別手段15は吸込み具4に赤外センサの受発光素子備え、受光される大きさやパルスの出方で検出するのが一般的であり、構成、動作の説明については省略する。
【0041】
上記構成において、手元操作部2aで操作を行なうことで電動送風機5を回転させる。木床等を掃除しているときは床面識別手段15により一定の信号が信号処理部9に入力され、信号処理部9は木床等と判断し電動送風機5の吸込み力を小さくするように動作する。絨毯上を掃除すると絨毯の目によってパルスが発生しこの信号を受けて、信号処理部9は絨毯と判断し電動送風機5の吸込み力を大きくするように動作する。この動作によって床面に応じた吸い込み力で掃除を行なうことで、無駄な消費電流が低減でき、使用時間を長くすることができるため、一回の充電で掃除できる面積が増える。
【0042】
【発明の効果】
以上のように本発明によれば、使用時間を長くすることができ、さらには2次電池温度や電動送風機の温度も低減することができ、使用性および耐久性に優れた充電式電気掃除機を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の充電式電気掃除機の回路ブロック図
【図2】同充電式電気掃除機の斜視図
【図3】同充電式電気掃除機のI−Q特性図
【図4】同充電式電気掃除機のI−Q特性図
【図5】同充電式電気掃除機のI−Q特性図
【図6】同充電式電気掃除機の回転数−風量特性図
【図7】同充電式電気掃除機の電圧の放電特性図
【図8】本発明の第2の実施例の充電式電気掃除機の回路ブロック図
【図9】本発明の第3の実施例の充電式電気掃除機の回路ブロック図
【符号の説明】
5 電動送風機
6 2次電池
7 駆動手段
8 負荷検出手段
9 信号処理部
10 電池電圧検出手段
13 記憶手段
14 床面離床検出手段
15 床面識別手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rechargeable vacuum cleaner using a secondary battery, and more particularly to control of an electric blower.
[0002]
[Prior art]
The control configuration of the electric blower of the conventional rechargeable vacuum cleaner has a predetermined weak suction force when no dust is detected by a dust sensor using a light emitting and receiving element provided facing a part of the suction passage. When the electric blower is operated and dust is detected, the operation time is extended by controlling the electric blower with a large suction force (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2001-61739
[Problems to be solved by the invention]
However, in the conventional configuration, since the dust sensor must be provided in a part of the suction path, the cost increases. In addition, if the battery is constantly used with a strong suction force, the temperature of the secondary battery becomes high. Therefore, if charging is performed immediately after discharging, the cycle life of charging / discharging deteriorates, and further, the switching element for controlling the electric blower generates heat. Therefore, there is a problem that an expensive switching element is required and costs are increased.
[0005]
The present invention solves the above-described conventional problems, can extend the use time, and can also reduce the temperature of the secondary battery and the electric blower, and is excellent in usability and durability. An object is to provide a vacuum cleaner.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention detects an electric blower that generates suction air, a drive unit that drives the electric blower, a secondary battery that is a power source of the electric blower, and a load state of the electric blower. Load detecting means for controlling the power consumption or current of the electric blower based on the detected value, and the current can be suppressed depending on the load state of the electric blower. Furthermore, the temperature of the secondary battery and the temperature of the electric blower can be reduced, and a rechargeable vacuum cleaner excellent in usability and durability can be provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention detects an electric blower that generates suction air, a drive unit that drives the electric blower, a secondary battery that is a power source of the electric blower, and a load state of the electric blower. Load detecting means for controlling the power consumption or current of the electric blower based on the detected value, and the current can be suppressed depending on the load state of the electric blower. Furthermore, the temperature of the secondary battery and the temperature of the electric blower can be reduced, and a rechargeable vacuum cleaner excellent in usability and durability can be provided.
[0008]
According to a second aspect of the present invention, an upper limit value of power consumption or current of the electric blower is set in advance, and a detection value of the load detection means sets the power consumption or current of the electric blower to a value higher than the upper limit value. Even if it is information to be used, the power consumption or current of the electric blower is set to a value equal to or lower than the upper limit value, and the maximum current of the electric blower can be reduced, so that the use time can be lengthened. it can. Further, not only the secondary battery temperature and the heat generation of the electric blower become small, but also the driving means having a small current rating can be used, and the cost can be reduced.
[0009]
The invention according to claim 3 of the present invention makes the maximum power consumption or the maximum current of the electric blower substantially constant, and can reduce the maximum current of the electric blower. Use time can be realized. Further, not only the secondary battery temperature and the heat generation of the electric blower become small, but also the driving means having a small current rating can be used, and the cost can be reduced.
[0010]
According to the fourth aspect of the present invention, the upper limit value of the power consumption or current of the electric blower is set in advance, and the detection value of the load detecting means is within a predetermined range including the air volume when the suction work rate is maximum. In this case, the power consumption or current of the electric blower is set to a value equal to or lower than the upper limit value, the maximum power consumption or maximum current of the electric blower is set to be substantially constant, and then the load detection means detects When the value exceeds the predetermined range, the power consumption or current of the electric blower is reduced, and the maximum current of the electric blower can be reduced, so that not only the use time can be lengthened but also the stable use time Can be realized. Further, not only the secondary battery temperature and the heat generation of the electric blower become small, but also the driving means having a small current rating can be used, and the cost can be reduced.
[0011]
According to the fifth aspect of the present invention, when the air flow Q1 is larger than the maximum air volume Qp, the current or power consumption of the electric blower is substantially the same as that when the air intake capacity Qp is the maximum. When the current or power consumption of the electric blower is lowered to change from Q1 to Qp, the current or power consumption of the electric blower is increased and the maximum current of the electric blower can be reduced. In addition, the temperature of the secondary battery and the temperature of the electric blower can be reduced.
[0012]
In the invention according to claim 6 of the present invention, the setting value of the air volume for changing the electric current or power consumption of the electric blower is set to one point of Qp <Q1 with respect to the air volume Qp when the suction work rate is maximum, and the air volume Q is When Q> Q1, the current or power consumption of the electric blower is reduced, and the maximum current of the electric blower can be reduced. Therefore, the use time can be extended and the secondary battery temperature and the electric blower temperature can also be reduced. .
[0013]
In the invention according to claim 7 of the present invention, the setting value of the air volume for changing the electric current or power consumption of the electric blower is set to one point of Q2 <Qp with respect to the air volume Qp when the suction work rate is maximum, and the air volume Q is When Q <Q2, the current or power consumption of the electric blower is reduced, and heat generation of the electric blower can be suppressed when the cooling air of the electric blower is small, such as when it is sealed.
[0014]
According to an eighth aspect of the present invention, there is provided an electric blower that emits suction air, a drive unit that drives the electric blower, a secondary battery that is a power source of the electric blower, and the rotational speed or rotational speed of the electric blower. A rotation speed detection means for detecting a change, and a signal processing section for determining a duty ratio per cycle of the drive means based on a signal from the rotation speed detection means, and the electric motor set in advance at the maximum duty ratio In order to obtain the maximum current of the blower, the number of revolutions is set in advance for each duty ratio, and when the number of revolutions of the electric blower is lower than the set number of revolutions, the duty ratio is turned on to reduce the rotation. Since the maximum current of the electric blower can be reduced only by the number detecting means, the usage time can be extended. Further, the secondary battery temperature and the electric blower temperature can be reduced, and the driving means having a small current rating can be used, so that the cost can be reduced.
[0015]
The invention according to claim 9 of the present invention is to set the rotation speed in advance for each duty ratio so that the preset maximum current of the electric blower becomes substantially constant even when the duty ratio ON becomes small. Since the maximum current of the electric blower can be reduced only by the rotation speed detection means, it is possible not only to extend the usage time but also to realize a stable usage time. Further, the secondary battery temperature and the electric blower temperature can be reduced, and the driving means having a small current rating can be used, so that the cost can be reduced.
[0016]
The invention according to claim 10 of the present invention rotates in advance for each duty ratio so that the current of the electric blower is reduced from the preset maximum current of the electric blower when the ON of the duty ratio becomes small. Since the current can be reduced in a state close to an open state where the air volume is large, the usage time can be further extended without impairing the dust collection performance. Further, the secondary battery temperature and the electric blower temperature can also be reduced.
[0017]
The invention according to claim 11 of the present invention is provided with battery voltage detecting means for detecting the battery voltage of the secondary battery, and the setting of the number of revolutions per duty ratio per cycle of the driving means is performed from the battery voltage detecting means. The maximum current and airflow-current characteristics can be set to the same conditions even when the voltage of the secondary battery varies or when the voltage drops as a result of discharge, while extending the operating time. A stable suction force can be realized.
[0018]
The invention according to claim 12 of the present invention comprises a rotation speed detection means for detecting the rotation speed of the electric blower or a change in the rotation speed, and a storage means for storing a signal from the rotation speed detection means. Alternatively, the variation of the electric blower is determined by detecting the rotational speed at the air flow rate at a fixed duty ratio, and the detected rotational speed is stored in the storage means, and the duty ratio is determined for each duty ratio based on the stored rotational speed. Corrects the rotational speed setting. Even if there are variations in the characteristics of multiple electric blowers used in the product, the maximum current and airflow-current characteristics can be made the same, and stable suction is achieved while extending the use time. The power can be realized.
[0019]
A thirteenth aspect of the present invention is a battery voltage detecting means for detecting the voltage of the secondary battery, a current detecting means for indirectly detecting a current or current change of the electric blower, and a signal from the current detecting means. And a signal processing unit for determining the duty ratio of the driving means, and when the detected value of the battery voltage detecting means decreases, the current of the electric blower is increased so as to keep the power consumption of the electric blower constant. The duty ratio is changed, and a stable suction force can be realized from a fully charged battery to the end of discharge.
[0020]
In the invention described in claim 14 of the present invention, the load detecting means is a means for directly or indirectly detecting at least one of the rotational speed, current, vacuum degree, and air volume of the electric blower. Not only can the maximum current be set reliably, but also variations in the electric blower can be determined without adjustment, and the air flow-current characteristic accuracy can be improved.
[0021]
According to a fifteenth aspect of the present invention, there is provided an electric blower for generating suction air, a driving means for driving the electric blower, a suction tool for sucking dust on the floor, and a floor for determining a floor leaving state of the suction tool. A floor leaving detection unit; a signal processing unit that determines a duty ratio of the driving unit based on a signal from the floor leaving detection unit; and a secondary battery that is a power source of the electric blower. In the case where the suction tool is away from the floor, the ON ratio of the drive means is made smaller than in the case where the suction tool is in contact with the floor surface, thereby suppressing the power consumption of the secondary battery and extending the usage time. By this, the area which can be cleaned by one charge can be enlarged.
[0022]
According to a sixteenth aspect of the present invention, there is provided an electric blower that generates suction air, a drive unit that drives the electric blower, a floor surface identification unit that determines a state of a floor surface, and a signal from the floor surface identification unit. And a secondary battery that is a power source of the electric blower, and based on a signal from the floor surface identification means, a duty ratio of the drive means is determined. By changing the ON ratio and controlling the suction force of the electric blower, the power consumption of the secondary battery is reduced, and the use time is lengthened, so that the suction force is increased for wooden floors and tatami mats where dust is likely to be collected. The area that can be cleaned with a single charge can be increased.
[0023]
According to the seventeenth aspect of the present invention, since the electric blower is a brushless motor and is more efficient than the DC commutator motor, the suction force can be realized with a small current, so that the usage time can be extended. Moreover, the temperature of a battery and the temperature of an electric blower can also be reduced.
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each Example, what has the same function attaches | subjects the same code | symbol, and abbreviate | omits description.
[0025]
(Example 1)
1 is a circuit block diagram of a rechargeable vacuum cleaner according to a first embodiment of the present invention, FIG. 2 is a perspective view of the rechargeable vacuum cleaner, and FIGS. 3, 4, and 5 are the rechargeable vacuum cleaner. It is an IQ characteristic figure of.
[0026]
1 to 3, a hose 2, an extension pipe 3, and a suction tool 4 for sucking dust on the floor surface are connected to a main body connection portion 1 a of the rechargeable vacuum cleaner, and a hand operation portion 2 a is connected to a tip portion of the hose 2. And the electric blower 5 that is a brushless inverter motor that emits suction air disposed in the main body 1 starts to operate. Further, a rechargeable secondary battery 6 is disposed in the main body 1, and the electric blower 5 uses the secondary battery 6 as a power source. Reference numeral 8 denotes a rotation speed detection means which is one of the load detection means and is provided in the inverter motor.
[0027]
FIG. 1 is a circuit block diagram, and the secondary battery 6 is connected to the driving means 7 via the electric blower 5 and is also a power source for the control circuit. Reference numeral 8 denotes a rotational speed detection means for transmitting the rotational speed of the electric blower 5 to the signal processing unit 9. Reference numeral 10 denotes battery voltage detection means for detecting the voltage of the secondary battery 6 as all power supplies, and is connected to the signal processing unit 9. Reference numeral 11 denotes power supply means for receiving a signal from the hand operating section 2a and supplying power to the control circuit. When the cleaning operation is not being performed, the supply is stopped in order to suppress discharge of the secondary battery 6. Reference numeral 12 denotes voltage transforming means for converting the voltage from the power supply means 11 into a voltage that is easy to perform signal processing, and outputs 5V. The signal processing unit 9 processes signals from the hand operating unit 2a, the rotation speed detection unit 8, and the battery voltage detection unit 10 and outputs the processed signals to the electric blower driving unit 8 that rotates the electric blower 5, and the signal processing unit 9 outputs one cycle. For example, the electric blower 5 is controlled by changing the ON-OFF duty ratio within the frequency to 15.6 kHz. Further, the number of revolutions is determined in advance for each duty ratio, and the predetermined duty ratio-number of revolutions relationship is corrected by the voltage of the secondary battery 6.
[0028]
In the above configuration, by operating the hand operating unit 2a, power is supplied to the signal processing unit 9, and the signal processing unit 9 recognizes a plurality of positions of the hand operating unit 2a and rotates the electric blower 5. Since there is no signal from the rotation speed detecting means 8 as the duty ratio for the first operation, the operation is performed at a predetermined duty ratio. After waiting for a certain period of time until the rotational speed is stabilized, the duty ratio is changed by receiving a signal from the rotational speed detection means 8, but this embodiment ignores the change in the air volume due to the suction of the suction tool 4 for easy understanding. To explain. For example, the rotational speed of the electric blower 5 in an air volume state (hereinafter referred to as an open air volume) where there is no dust in a dust collection chamber (not shown) in the main body 1 is set to 40000 rpm when the duty ratio is 80:20.
[0029]
If the rotational speed of the electric blower 5 is 39800 to 40200 rpm when the predetermined setting value is a duty ratio of 80:20, the rotational speed is within the range, so that it is stable in the open state. When dust is accumulated in the dust collection chamber and the air volume is reduced, the rotational speed when operating at a duty ratio of 80:20 is reduced because the air load is reduced, and the rotational speed increases, for example, changes to 41000. Since the rotation speed is 40200 or more and the range is exceeded, the duty ratio is switched to 81:19. If the duty ratio is set to 40800 to 41200 rpm when the duty ratio is 81:19 in advance, the air flow is stabilized. However, if 40300 to 40700 rpm is a predetermined value, it further exceeds 40700 rpm. Operates to change to 82:18. Similarly, the air flow rate increases so that the ON ratio gradually decreases. Since the rotational speed-air volume characteristic is substantially proportional as shown in FIG. 6, the air volume can be calculated by detecting the rotational speed of the electric blower 5.
[0030]
Further, since the current-air volume characteristic is substantially proportional as shown in FIG. 5, the rotation speed and the current correspond one-to-one. That is, the current value can be calculated by detecting the rotation speed. Therefore, the air volume and the current value can be calculated by detecting the rotation speed when the duty ratio is fixed. Therefore, in order to control to a constant current even if the air volume changes, it can be realized by determining the duty ratio at which the current at each air volume is constant and the rotation speed at that duty ratio. Also, in order to gradually increase the current when the air volume decreases, the current value to be increased at each air volume is determined, and the duty ratio that becomes the current value and the rotational speed at that duty ratio are obtained. it can.
[0031]
In other words, it is possible to freely change the slope of the current rise or only the air volume region by this setting. Further, in order to increase the current step by step with a certain air volume, it can be realized by determining the rotation speed at which the air volume is determined at each duty ratio. In order to keep the current constant even when the air volume changes, the duty ratio for setting 14A at each air volume is determined by the electric blower 5, and the rotational speed at that duty ratio is also determined. A constant current can be realized by determining the range of the rotational speed for each duty ratio.
[0032]
FIG. 3 shows the current-air flow characteristics. In order to gradually increase the current according to the change in the air volume, the same applies to the case where it is desired to gradually increase the current to 10 A when the air volume is open, and 14 A when the maximum power point is reached. Is determined by the electric blower 5, and the rotational speed at the duty ratio is also determined. It is also determined that the air flow is 12A in the meantime, and this can be realized by determining the duty ratio by setting the current value with a fine air flow and determining the rotation speed range for each duty ratio. In addition, by both of these, the current can be increased stepwise from the open air volume, and the current can be kept constant in the vicinity of the air volume when the suction work rate is maximum. Further, if the current value setting at the time of the open air flow is made smaller than the electric blower characteristic (for example, if the electric blower characteristic is 16 A at the time of the open air flow, the current setting at the time of the open air flow is set to 15 A), the same effect can be obtained. .
[0033]
4 and 5 show the current-air flow characteristics. In order to increase the current step by step with the air volume Q1 that is in an open state rather than the suction work rate air volume Qp, the number of rotations at which the air volume Q1 is set for each duty ratio is determined by the electric blower 5, and the range of the rotation speed for each duty ratio This can be achieved. In addition, since the rotational speed is detected, it is possible to easily control the current value to decrease in the vicinity of Q2 which is in a hermetically sealed state rather than the suction work rate air volume Qp.
[0034]
Next, battery voltage correction will be described. Since the power source is a secondary battery, when the voltage operates as shown in FIG. 7, which is a discharge characteristic, the voltage changes so as to gradually decrease. As the battery voltage decreases, the rotational speed decreases even at the same duty ratio. Therefore, when the correction is not performed, the ON duty ratio operates so as to be small. Therefore, it is necessary to correct the rotation speed range for each duty ratio according to the voltage. For example, when the battery voltage is 28.8V and the duty ratio is 80:20, the rotational speed is 39800 to 40200 rpm, and when the voltage is 28.8V, the stable voltage at 40000 rpm drops to 28V. Then, at the same duty ratio of 80:20, the rotation is reduced by 500 revolutions. Therefore, since it is below 39800 rpm in a state where no correction is made, it is determined that the open air volume is approached, and the duty ratio is switched to 79:21. Therefore, when the voltage fluctuates from 28.8 V to 28 V, 500 rpm is corrected so that the duty ratio does not change, and the rotational speed when the duty ratio is 80:20 is corrected to all duty ratios in a relationship of 39300 to 39800 rpm. . This voltage is applied up to the voltage at which the electric blower 5 stops.
[0035]
Next, the electric fan 5 variation adjustment will be described. In order to suppress variations in the electric blower 5, adjustment is performed to detect and correct the rotational speed when the duty ratio is constant and the air volume is also constant. The variation of the electric blower 5 is determined based on how much the rotational speed is higher than the preset standard electric blower 5, and the variation of the electric blower 5 is suppressed by storing the correction value in the storage means 13 and performing the correction. be able to. For example, it is assumed that the electric blower 5 is 45000 rpm when the air flow rate is 100: 0, and that the electric blower 5 is 46000 rpm under this condition. Therefore, the duty ratio is reduced by 1000 rpm. Correct.
[0036]
In this embodiment, the description is based on the number of rotations by a brushless motor. However, since the pressure change and the pressure-air volume characteristic are substantially proportional, it is needless to say that the same control can be performed by setting the duty ratio-pressure. . In addition, since the current-air flow characteristic is substantially proportional to the current change, it goes without saying that the same control can be performed by setting the duty ratio-current. It goes without saying that the same control can be performed for the change in the air volume if the duty ratio-air volume is set in advance according to the air volume. That is, by detecting any one of the rotation speed, current, degree of vacuum, and air volume of the electric blower 5, it is possible to control as described above. In the present embodiment, the current of the electric blower has been described as a control target. However, since the voltage is also detected, it is needless to say that the power can be controlled.
[0037]
By using the IQ characteristics as shown in FIGS. 3, 4, and 5, useless current consumption of the electric blower 5 in a state where the suction tool 4 is lifted from the floor surface can be reduced, so that the use time is lengthened. be able to. Further, since the maximum current is reduced, the secondary battery temperature 6 and the heat generation of the electric blower 5 are reduced, and the drive means having a small current rating can be used, and the cost can be reduced.
[0038]
(Example 2)
FIG. 8 is a circuit block diagram of the second embodiment of the present invention, and 14 is a floor leaving detection means for detecting whether the suction tool 4 is separated from the floor, which is connected to the signal processor 9. ing. Since the connection with the signal processing unit 9 includes the sensor in the suction tool 4, it may be transmitted wirelessly with a transmission / reception means. In general, the floor leaving detection means 14 detects by detecting ON / OFF of a safety switch that operates only when the suction tool 4 is in contact with the floor or by detecting the current of an electric motor built in the suction tool. The description of the configuration and operation will be omitted.
[0039]
In the above configuration, the electric blower 5 is rotated by performing an operation with the hand operation unit 2a. However, when the floor leaving detection means 14 detects that the suction tool 4 is away from the floor for a certain time, the signal processing unit 9 operates to reduce the suction force of the electric blower 5. When the suction tool 4 leaves the floor surface by this operation or the operation of the suction tool 4 is stopped and the floor surface is not cleaned, the suction force of the electric blower 5 is reduced or stopped. Since it can be reduced and the usage time can be extended, the area that can be cleaned by one charge increases.
[0040]
Example 3
FIG. 9 is a circuit block diagram of a third embodiment of the present invention. Reference numeral 15 denotes a floor surface identification means for detecting the type of the floor surface, which is connected to the signal processing unit 9. The floor identification means 15 is generally provided with a light receiving / emitting element of an infrared sensor in the suction tool 4 and is detected based on the magnitude of received light and the way of emitting pulses, and the description of the configuration and operation is omitted.
[0041]
In the above configuration, the electric blower 5 is rotated by operating the hand operating unit 2a. When a wooden floor or the like is being cleaned, a certain signal is input to the signal processing unit 9 by the floor surface identification unit 15, and the signal processing unit 9 determines that the wooden floor or the like and reduces the suction force of the electric blower 5. Operate. When the carpet is cleaned, a pulse is generated by the carpet eyes, and when this signal is received, the signal processing unit 9 determines that the carpet is a carpet and operates to increase the suction force of the electric blower 5. By performing the cleaning with the suction force corresponding to the floor surface by this operation, wasteful current consumption can be reduced and the use time can be extended, so that the area that can be cleaned by one charge increases.
[0042]
【The invention's effect】
As described above, according to the present invention, the use time can be extended, and further, the temperature of the secondary battery and the electric blower can be reduced, and the rechargeable vacuum cleaner excellent in usability and durability. Can provide.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram of a rechargeable vacuum cleaner according to a first embodiment of the present invention. FIG. 2 is a perspective view of the rechargeable vacuum cleaner. FIG. 3 is an IQ characteristic of the rechargeable vacuum cleaner. [Fig. 4] IQ characteristic diagram of the rechargeable vacuum cleaner. [Fig. 5] IQ characteristic diagram of the rechargeable vacuum cleaner. [Fig. FIG. 7 is a voltage discharge characteristic diagram of the rechargeable vacuum cleaner. FIG. 8 is a circuit block diagram of a rechargeable vacuum cleaner according to a second embodiment of the present invention. FIG. 9 is a third embodiment of the present invention. Block diagram of rechargeable electric vacuum cleaner [Explanation of symbols]
DESCRIPTION OF SYMBOLS 5 Electric blower 6 Secondary battery 7 Drive means 8 Load detection means 9 Signal processing part 10 Battery voltage detection means 13 Storage means 14 Floor surface leaving detection means 15 Floor surface identification means