[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005009363A - Cylinder deactivation switching control device for internal combustion engine with cylinder deactivation switching mechanism - Google Patents

Cylinder deactivation switching control device for internal combustion engine with cylinder deactivation switching mechanism Download PDF

Info

Publication number
JP2005009363A
JP2005009363A JP2003172690A JP2003172690A JP2005009363A JP 2005009363 A JP2005009363 A JP 2005009363A JP 2003172690 A JP2003172690 A JP 2003172690A JP 2003172690 A JP2003172690 A JP 2003172690A JP 2005009363 A JP2005009363 A JP 2005009363A
Authority
JP
Japan
Prior art keywords
switching
cylinder
cylinder deactivation
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003172690A
Other languages
Japanese (ja)
Inventor
Mikio Fujiwara
幹夫 藤原
Jiro Takagi
治郎 高木
Makoto Segawa
誠 瀬川
Yoshiaki Fukusako
誉顕 福迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003172690A priority Critical patent/JP2005009363A/en
Publication of JP2005009363A publication Critical patent/JP2005009363A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism switching the cylinder deactivation switching mechanism by using engine water temperature without providing a new sensor and securing smooth cylinder deactivation switching by estimating oil pressure at low cost. <P>SOLUTION: The cylinder deactivation switching control device for a multi-cylinder internal combustion engine provided with a cylinder deactivation switching mechanism 20 switching a movable state and a deactivation state of opening and closing of an intake and an exhaust valves of part of cylinders by hydraulic is provided with an engine water temperature detection means 43 detecting temperature of cooling water cooling the internal combustion engine, a deactivation switching permission zone storing means storing the upper limit of engine water temperature permitting cylinder deactivation switching, and a switching permission means permitting switching the movable state and the deactivation state of the intake and the exhaust valves by the cylinder deactivation switching mechanism 20 only when engine water temperature detected by the engine water temperature detection means 43 is in a deactivation switching permission zone below the upper limit stored by the deactivation switching permission zone storing means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一部気筒の吸・排気弁開閉の可動状態と休止状態とを油圧により切換える気筒休止切換機構を備えた多気筒内燃機関の気筒休止切換制御装置に関する。
【0002】
【従来の技術】
内燃機関の運転状態に応じて気筒休止を行うことで、燃料消費量の低減を図ることができる。
よって、このような気筒休止切換機構を備えた多気筒内燃機関の気筒休止切換制御装置において、内燃機関を冷却する冷却水の温度(機関水温)が所定温度以上を1つの条件として一部気筒を休止させる制御を行う例がある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−227369号公報
【0004】
【発明が解決しようとする課題】
特許文献1で機関水温が所定温度以上を条件としたのは、触媒の活性温度を問題にしたためであるが、機関水温が高いときは気筒の吸・排気弁開閉の可動状態と休止状態とを切換える油圧の油温も高く油の粘性が低下していて発生油圧が低下している。
【0005】
気筒休止切換機構において油圧が十分でない状態で切換えを行おうとすると、円滑に作動せず切換指令があってから実際に作動して切換えが実行されるまでに時間遅れが生じ、速やかな切換制御が期待できなくなる。
【0006】
そこで油圧センサあるいは油温センサを別途用意して油圧なり油温をもとに切換制御を行うことも考えられるが、新たにセンサを設ける必要がありコスト高となる。
【0007】
本発明は、かかる点に鑑みなされたもので、その目的とする処は、新たなセンサを設けることなく機関水温を利用して気筒休止切換機構を切換える油圧を推量し円滑な気筒休止切換えを担保する気筒休止切換機構付き内燃機関の気筒休止切換制御装置を安価に供する点にある。
【0008】
【課題を解決するための手段及び作用効果】
上記目的を達成するために、本請求項1記載の発明は、一部気筒の吸・排気弁開閉の可動状態と休止状態とを油圧により切換える気筒休止切換機構を備えた多気筒内燃機関の気筒休止切換制御装置において、内燃機関を冷却する冷却水の温度を検出する機関水温検出手段と、気筒休止切換えを許容する機関水温の上限を記憶する休止切換許容領域記憶手段と、前記機関水温検出手段により検出された機関水温が前記休止切換許容領域記憶手段の記憶する上限以下の休止切換許容領域内にあるときにのみ前記気筒休止切換機構による吸・排気弁開閉の可動状態と休止状態との切換えを許容する切換許容手段とを備えた気筒休止切換機構付き内燃機関の気筒休止切換制御装置とした。
【0009】
内燃機関の運転状態を検知するため通常設けられている機関水温検出手段を利用して、油圧を確認して気筒休止切換えを許容する機関水温の上限を予め決めておき、検出した機関水温がこの上限以下の休止切換許容領域内にあるときにのみ切換えを許容することで、時間遅れのない円滑な気筒休止切換えを担保することができる。
【0010】
請求項2記載の発明は、一部気筒の吸・排気弁開閉の可動状態と休止状態とを油圧により切換える気筒休止切換機構を備えた多気筒内燃機関の気筒休止切換制御装置において、内燃機関を冷却する冷却水の温度を検出する機関水温検出手段と、内燃機関の機関回転数を検出する機関回転数検出手段と、機関水温と機関回転数における予め設定した気筒の休止切換許容領域を記憶する休止切換許容領域記憶手段と、前記機関水温検出手段により検出された機関水温と前記機関回転数検出手段により検出された機関回転数が前記休止切換許容領域記憶手段の記憶する休止切換許容領域内にあるときにのみ前記気筒休止切換機構による吸・排気弁開閉の可動状態と休止状態との切換えを許容する切換許容手段とを備えた気筒休止切換機構付き内燃機関の気筒休止切換制御装置である。
【0011】
内燃機関の運転状態を検知するため通常設けられている機関水温検出手段と機関回転数検出手段を利用して、機関水温と機関回転数における気筒休止切換えを許容する休止切換許容領域を油圧を推量して予め決めておき、検出した機関水温と機関回転数がこの休止切換許容領域内にあるときにのみ切換えを許容することで、時間遅れのない円滑な気筒休止切換えを担保することができる。
【0012】
請求項3記載の発明は、請求項1または請求項2記載の気筒休止切換機構付き内燃機関の気筒休止切換制御装置において、内燃機関の始動後所定時間は前記休止切換許容領域記憶手段が記憶する気筒の休止切換許容領域を縮小して設定する休止切換許容領域変更手段を備えたことを特徴とする。
【0013】
始動直後は気筒休止切換えを行う油圧が上昇し始めたところであり、切換えを円滑に行う油圧に達していないので、始動後所定時間は気筒の休止切換許容領域を縮小して切換えが安易に行われないようにし、所定時間後は通常休止切換許容領域とすることで、通常の休止切換許容領域を大きく確保することができる。
【0014】
請求項4記載の発明は、請求項2または請求項3記載の気筒休止切換機構付き内燃機関の気筒休止切換制御装置において、前記切換許容手段は、機関水温および機関回転数が休止切換許容領域外から休止切換許容領域内に移行しするときは移行時から所定時間経過後に切換えを許容することを特徴とする。
【0015】
機関水温および機関回転数が休止切換許容領域外から休止切換許容領域内に移行した直後は、再度休止切換許容領域外に戻ることがあり、休止切換許容領域内に移行した直後に切換えが実行されてしまうと、その後休止切換許容領域外となり切換えできなくなり、好ましい気筒運転状態が変更されてしまうので、休止切換許容領域内に移行したときは移行時から所定時間経過後に切換えを許容することで、かかる不具合を回避することができる。
【0016】
請求項5記載の発明は、請求項4記載の気筒休止切換機構付き内燃機関の気筒休止切換制御装置において、前記所定時間は、機関回転数に応じて小さく設定されることを特徴とする。
【0017】
機関回転数が高い方がより安定した運転状態にあり、休止切換許容領域内に移行した直後に再度休止切換許容領域外に戻ることが少なく、気筒休止の切換え待ち時間である所定時間を機関回転数に応じて小さく設定することが可能で、できるだけ不要な待ち時間を減らして早期に気筒休止の切換えを実行することができる。
【0018】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図5に基づき説明する。
図示されない自動二輪車に搭載されるOHC式4ストロークサイクル内燃機関1は、図1に図示されるように、クランク軸(図示されず)が車幅方向に指向して、車体前方の3気筒のシリンダ列(前側バンクBf)と車体後方の3気筒のシリンダ列(後側バンクBr)とが前後に略60度の夾角をなした6気筒前後V型内燃機関であり、このようなOHC式4ストロークサイクル内燃機関1の本体は、シリンダブロック2と、該シリンダブロック2の下面に一体に装着されるクランクケース3と、該シリンダブロック2の車体前方のシリンダ列および車体後方のシリンダ列の頂端にそれぞれ一体に装着されるシリンダヘッド4,4と、該シリンダヘッド4,4の頂部をそれぞれ覆うヘッドカバー5,5とから構成されている。
【0019】
OHC式4ストロークサイクル内燃機関1の前後バンクBf,Br間の空間に図示されない燃料噴射弁器、吸気チャンバなどの吸気装置が配置されるとともに、前後バンクBf,Brのシリンダヘッド4,4の前後外側に図示されない排気管が接続される。
【0020】
この前後バンクBf,Brのうち後側バンクBrの動弁装置10に油圧により作動する気筒休止切換機構20が組み込まれており、図2は同気筒休止切換機構10の吸気側の一部をシリンダヘッド4の上方からシリンダの中心軸線方向に見たものを示し、その一部が断面で示されている。
【0021】
該動弁装置10は、シリンダブロック2の上端に結合されるシリンダヘッド4と、該シリンダヘッド4の上端に結合されるヘッドカバー5とにより形成される動弁室11内に配置される。
【0022】
前記シリンダブロック2に形成される各シリンダに摺動自在に嵌合されるピストンとシリンダヘッド4との間には燃焼室が形成され、シリンダヘッド4には、前記各燃焼室に連通する吸気ポートおよび排気ポートが形成され、さらに前記ピストンにより駆動されるクランク軸の1/2の回転数で回転駆動されるカム軸12が、カム軸12の回転軸線の方向に間隔をおいてシリンダヘッド4に一体成形される複数のカムホルダの挿通孔に挿通されて、そのジャーナル部にて回転自在に支持される。
【0023】
前記燃焼室毎に、シリンダヘッド1に摺動自在に支持される1対の吸気弁および1対の排気弁は、カム軸12、該カム軸12に設けられるカム13,14,15、ロッカ軸16、該ロッカ軸16に揺動自在に支持されるロッカアーム17,18,19、および気筒休止切換機構20を備える動弁装置10により作動され、それぞれ所定のタイミングで前記吸気ポートの燃焼室側の1対の開口および前記排気ポートの燃焼室側の1対の開口を開閉する。
【0024】
前記内燃機関1の一部後側バンクBrの気筒は、低負荷運転時等の燃費重視の運転時に休止され、そのために、後側バンクBrの動弁装置10には、気筒休止運転時に前記吸気弁および前記排気弁を閉弁状態に保つための気筒休止切換機構20が設けられる。
【0025】
以下、図2を参照して、主として、前記吸気弁側に設けられる気筒休止切換機構20について説明する。
カム軸12には、前記燃焼室毎に、吸気カム13と、吸気カム13を挟んで両側に位置する1対の休止カム14と、さらに吸気カム13および両休止カム14を挟んで両側に位置する1対の排気カム15とが設けられる。
【0026】
吸気カム13および排気カム15は、ベース円部と所定のリフト量および作動角を有するノーズ部とからなるカムプロフィルを有し、休止カム14は、吸気カム13および排気カム15のベース円部と同一半径のベース円部のみからなるカムプロフィルを有し、部分気筒休止運転時に、前記吸気弁および前記排気弁を閉弁状態に維持する。
【0027】
シリンダヘッド4にボルトにより締結される複数のロッカ軸ホルダの挿通孔に挿通されるロッカ軸16には、前記各燃焼室に対応して、1対の駆動ロッカアーム17,18と、両者の間に配置される自由ロッカアーム19とが揺動自在に支持される。
【0028】
各駆動ロッカアーム17,18の一端部には、休止カム14に滑り接触するスリッパ17a,18aが形成され、その他端部には、前記吸気弁に当接するタペットねじ17b,18bが設けられる。
【0029】
一方、自由ロッカアーム19の一端部には、吸気カム13に転がり接触するローラ19aが回転自在に支持され、該自由ロッカアーム19は、シリンダヘッド4に支持されるロストモーション機構のばねにより吸気カム13に向けて付勢される。
【0030】
そして、駆動ロッカアーム17,18と自由ロッカアーム19との間に跨って、駆動ロッカアーム17,18と自由ロッカアーム19との連結および連結解除を切換可能とする気筒休止切換機構20が設けられる。
【0031】
気筒休止切換機構20は、駆動ロッカアーム17と自由ロッカアーム19とを連結可能な連結ピストン21と、駆動ロッカアーム9と自由ロッカアーム10とを連結可能な連結ピン22と、連結ピン22の移動を規制すると共に駆動ロッカアーム17,18と自由ロッカアーム19とを連結解除状態にする解除ピストン23と、連結ピストン21に連結ピン22を当接させかつ連結ピン22に解除ピストン23を当接させる戻しばね24と、駆動ロッカアーム17に形成されて連結ピストン21を移動させる作動油が給排され、かつ戻しばね24が収容される第1油圧室25と、駆動ロッカアーム18に形成されて解除ピストン23を移動させる作動油が給排され第2油圧室26とを備える。
【0032】
円筒状の各ロッカ軸16の中空部には、該中空部に挿入されたパイプ27により、パイプ27とロッカ軸16との間に形成される第1作動油路28およびパイプ27の中空部により形成される第2作動油路29が区画形成される。
【0033】
前記第1油圧室25は、駆動ロッカアーム17に形成された連通路30を介して第1作動油路28に常時連通し、第2油圧室26は、駆動ロッカアーム18およびパイプ27に形成された連通路31を介して第2作動油路29に常時連通する。
【0034】
第1,第2作動油路28,29は、シリンダヘッド4に形成される2つの第1,第2油路32,33をそれぞれ介してシリンダヘッド4に取り付けられる油圧制御弁装置42(図3参照)に連通される。
内燃機関1の駆動により作動するオイルポンプを油圧源としている。
【0035】
一方、排気側においてはロッカ軸25に揺動自在に支持される1対の駆動ロッカアーム36と1対の自由ロッカアーム37との間に跨って設けられる前記排気弁側の弁作動特性変更機構は、駆動ロッカアーム36と自由ロッカアーム37とを連結可能な連結ピストンと、該連結ピストンの移動を規制すると共に駆動ロッカアーム36と自由ロッカアーム37とを連結解除状態にする解除ピストンとを備え、それらピストンが、吸気側の弁作動特性変更機構Tと同様に、第1,第2作動油路28,29の作動油の油圧により作動される。
【0036】
そして、全気筒運転時には、車両の運転状態に応じて制御される油圧制御弁装置42により、第1作動油路28は第1油路32を介して高圧油路に連通されて、その作動油が高油圧となる一方、第2作動油路29は第2油路33を介してドレン油路に連通されて、その作動油が低油圧となる。
【0037】
その結果、第1,第2油圧室25,26の油圧の差圧により連結ピストン21が、連結ピン22および解除ピストン23を押圧し、連結ピストン21と連結ピン22との当接面を自由ロッカアーム19内に位置させ、かつ連結ピン22と解除ピストン23との当接面を駆動ロッカアーム18に位置させて、駆動ロッカアーム17,18と自由ロッカアーム19とが連結状態になる。これによって、駆動ロッカアーム17,18の揺動が吸気カム13のカムプロフィルにより規定されて、前記吸気弁が所定の開閉時期およびリフト量で開閉され、同様にして、前記排気弁が所定の開閉時期およびリフト量で開閉される。
【0038】
また、部分気筒休止運転時には、油圧制御弁装置42により、第1作動油路28は第1油路32を介してドレン油路に連通されて、その作動油が低油圧となる一方、第2作動油路29は第2油路33を介して前記高圧油路に連通されて、その作動油が高油圧となる。
【0039】
その結果、第1油圧室25は低油圧となり、第2油圧室26は高油圧となって、図2に示される状態から、第1,第2油圧室25,26の油圧の差圧により解除ピストン23が、連結ピストン21および連結ピン22を押圧し、連結ピストン21と連結ピン22との当接面を、駆動ロッカアーム17と自由ロッカアーム19との間に位置させ、連結ピン22と解除ピストン23との当接面を、駆動ロッカアーム17と自由ロッカアーム19との間に位置させて、駆動ロッカアーム17と自由ロッカアーム19と、および駆動ロッカアーム18と自由ロッカアーム19が連結解除状態になる。
【0040】
これによって、駆動ロッカアーム17,18の揺動が、休止カム14のカムプロフィルによりそれぞれ規定されて、前記吸気弁が閉弁状態になり、同様にして前記排気弁も閉弁状態になって、当該気筒は休止状態になる。
【0041】
以上のような気筒休止切換機構20において、作動油圧が低い状態にあると、油圧制御弁装置42の作動で全気筒運転時(図2に示す状態)から気筒休止運転に切換えるとき、第2油圧室26へ導入される油圧が低く解除ピストン23を摺動させる力が弱いため、自由ロッカアーム19と駆動ロッカアーム17,18の連結状態の解除が何サイクルか遅れてしまうことがある。
【0042】
同様のことが、気筒休止運転から全気筒運転に切換えるときにも生じて、切換え指令があって油圧制御弁装置42が作動したとしても実際に切換えが実行されるのに遅れが生じて応答性のよい円滑な切換制御ができない。
【0043】
そこで、本実施の形態に係る気筒休止切換制御装置40は、電子制御ユニットECU41により内燃機関1を冷却する冷却水の温度(機関水温)およびクランク軸の回転数(機関回転数)から油圧を推量して油圧制御弁装置42を制御している。
【0044】
図3に気筒休止切換制御装置40の概略ブロック図を示す。
ECU41には、機関水温センサ43および機関回転数センサ44その他内燃機関1の運転状態を示す種々のセンサからの入力があり、種々の運転制御がなされ、その1つに気筒休止切換制御があり、油圧制御弁装置42に切換制御信号が出力される。
油圧制御弁装置42により気筒休止切換機構20が駆動制御される。
【0045】
この気筒休止切換制御において油圧に関し切換えを許容するか否かを判定する制御手順を図4に示し説明する。
まず機関水温センサ43が検出した機関水温Twおよび機関回転数センサ44が検出した機関回転数Neを入力する(ステップ1)。
【0046】
そして始動後所定時間経過したか否かを判別し(ステップ2)、所定時間経過していないときはステップ3に進んで予め記憶されたTw−Neマップを変更し、所定時間経過したときはステップ4に進んでTw−Neマップを通常マップに戻す。
【0047】
ここにTw−Neマップは、図5に示すように横軸を機関水温Tw、縦軸を機関回転数Neとした直角座標において閾線Lにより座標空間を切換許容領域と切換禁止領域とに区分けしたものである。
【0048】
閾線Lは、折れ線で、機関水温Twがtまでは機関回転数Neが一定回転数nである閾線lであり、機関水温Twがt以上では機関回転数Neが一定回転数nである閾線lであり、t<Tw<tでは閾線lと閾線lの端部を結んだ斜めの閾線lである。
【0049】
この閾線Lの上方が切換許容領域であり、下方が切換禁止領域である。
検出された機関水温Twと機関回転数Neの組(点座標(Tw,Ne))がこのTw−Neマップのどの位置にあるかでどちらの領域にあるかを決定することができる。
【0050】
このTw−Neマップの閾線Lは、予め実験により決定したもので、機関水温Twと機関回転数Neの組が切換許容領域にあれば気筒休止切換機構20を速やかに作動(連結ピストン21,連結ピン22,解除ピストン23を摺動)させるに十分な油圧があると判断できる切換許容領域を区切るものである。
【0051】
そして図5のTw−Neマップにおいて実線で示す閾線Lが通常の運転状態のときの領域を示すもので、始動後所定時間経過するまでは閾線lが上方へ移動して切換許容領域を縮小する閾線l´(破線で示す)に変更して使用する(ステップ3)
【0052】
すなわち始動直後は気筒休止切換えを行う油圧が上昇し始めたところであり、切換えを円滑に行う油圧に達していないので、始動後所定時間は気筒の切換許容領域を縮小して切換えが安易に行われないようにし、所定時間後は通常の切換許容領域とすることで、通常の切換許容領域を大きく確保することができるようにしている。
【0053】
前記ステップ3またはステップ4からステップ5に進むと、ステップ1で入力した機関水温Twと機関回転数NeをもとにTw−Neマップから領域を決定する。
すなわち機関水温Twと機関回転数Neの組がTw−Neマップにおいて切換許容領域にあるか切換禁止領域にあるかを決定する。
【0054】
そして次のステップ6で切換許容領域内にあるか否かを判別して切換許容領域内にあればステップ9に進み、切換許容領域外すなわち切換禁止領域にあればステップ7に進みダウンタイマtをセットしスタートさせ、ステップ8で切換許容フラグFを「0」として切換えを禁止(気筒休止切換機構20の作動を禁止)する。
【0055】
機関水温Twと機関回転数Neの組がTw−Neマップにおいて切換許容領域と判別してステップ9に進んだときは、前記ダウンタイマtがタイムアップ(t=0)したか否かを判別し、タイムアップするまではステップ8に進み切換えを禁止とする。
【0056】
そして機関水温Twと機関回転数Neの組が切換許容領域にある状態がダウンタイマがタイムアップするまで継続したとき、はじめてステップ10に進み切換許容フラグFに「1」を立て切換えを許容(気筒休止切換機構20の作動を許容)する。
【0057】
実際に気筒休止の切換えを実行する場合は、その他の運転状態から判断されるが、少なくとも切換許容フラグFに「1」が立っていない限り切換えすなわち気筒休止切換機構20は作動されない。
【0058】
切換許容フラグF=1ならば気筒休止切換機構20を作動する油圧が十分であると推量されるので、実際にECU41から切換えの指令が油圧制御弁装置42に出力されると十分な作動油圧により速やかに気筒休止切換機構20の作動(連結ピストン21,連結ピン22,解除ピストン23を摺動)し、時間遅れのない円滑な気筒休止切換えを担保することができる。
【0059】
内燃機関1の運転状態を検知するため通常設けられている機関水温センサ43と機関回転数センサ44を利用して、作動油圧を推量しているので、別途油圧センサや油温センサを設ける必要はなくコストの低減を図ることができる。
【0060】
また本実施の形態では、図4のフローチャートのステップ9で機関水温Twと機関回転数Neの組が切換禁止領域から切換許容領域内に移行したときはすぐに切換を許容するのではなく、ダウンタイマがタイムアップするまで待つようにしている。
【0061】
すなわち機関水温Twと機関回転数Neの組が切換禁止領域から切換許容領域内に移行した直後は、再度切換禁止領域に戻ることがあり、切換許容領域に移行した直後に切換えが実行されてしまうと、その後切換禁止領域となり切換えできなくなり、好ましい気筒運転状態が一時的な運転状態変化で変更されてしまうので、切換許容領域内に移行しするときは移行時からダウンタイマがタイムアップするまでの時間経過後に切換えを許容することで、かかる不具合を回避するようにしている。
【0062】
ここでステップ7でダウンタイマtにセットする時間は、一定時間としたが、これを機関回転数Neに応じた時間にセットされるようにしてもよい。
図6は、予め用意した機関回転数Neに対するダウンタイマのセット時間tの関係を示すグラフである。
【0063】
機関回転数が高い方がより安定した運転状態にあり、休止切換許容領域内に移行した直後に再度休止切換許容領域外へ戻ることが少ないので、セット時間tは、図6に示すように機関回転数Neに応じて小さい値(短い時間)に設定することができる。
【0064】
セット時間tは気筒休止の切換え待ち時間であるので、このセット時間tを機関回転数Neが高いほど短く設定することで、できるだけ不要な待ち時間を減らして早期に気筒休止の切換えを実行することができる。
【0065】
なお機関水温だけでも作動油圧の推量は精度は良くないが可能であり、油圧を確認して気筒休止切換えを許容する機関水温の上限を予め決めておき、検出した機関水温がこの上限以下の休止切換許容領域内にあるときにのみ切換えを許容することで、時間遅れのない円滑な気筒休止切換えを担保することができる。
【図面の簡単な説明】
【図1】本発明に係るOHC式4ストロークサイクル内燃機関の全体側面図である。
【図2】気筒休止切換機構の吸気側の一部をシリンダの中心軸線方向に見た断面図である。
【図3】気筒休止切換制御装置の概略ブロック図である。
【図4】同気筒休止切換制御装置における切換許容判定の制御手順を示すフローチャートである。
【図5】Tw−Neマップを示す図である。
【図6】機関回転数に対するタイマのセット時間の関係を示すグラフである。
【符号の説明】
1…4ストロークサイクル内燃機関、2…シリンダブロック、3…クランクケース、4…シリンダヘッド、5…ヘッドカバー、
10…動弁装置、11…動弁室、12…カム軸、13…吸気カム、14…休止カム、15…排気カム、16…ロッカ軸、17,18…駆動ロッカアーム、19…自由ロッカアーム、 20…気筒休止切換機構、21…連結ピストン、22…連結ピン、23…解除ピストン、24…戻しばね、25…第1油圧室、26…第2油圧室、27…パイプ、28…第1作動油路、29…第2作動油路、30…連通路、31…連通路、32…第1油路、33…第2油路、36…駆動ロッカアーム、37…自由ロッカアーム、
40…気筒休止切換制御装置、41…ECU、42…油圧制御弁装置、43…機関水温センサ、44…機関回転数センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylinder deactivation switching control device for a multi-cylinder internal combustion engine having a cylinder deactivation switching mechanism that switches hydraulically between a movable state and an inactive state of intake and exhaust valve opening / closing of some cylinders.
[0002]
[Prior art]
By performing cylinder deactivation according to the operating state of the internal combustion engine, fuel consumption can be reduced.
Therefore, in the cylinder deactivation switching control device of a multi-cylinder internal combustion engine having such a cylinder deactivation switching mechanism, the temperature of the cooling water for cooling the internal combustion engine (engine water temperature) is set to a predetermined temperature or more as one condition. There is an example in which control for stopping is performed (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-227369
[Problems to be solved by the invention]
The reason why the engine water temperature is a predetermined temperature or more in Patent Document 1 is that the activation temperature of the catalyst is a problem, but when the engine water temperature is high, the cylinder intake / exhaust valve open / closed movable state and inactive state are determined. The oil pressure of the oil pressure to be switched is high, and the viscosity of the oil is lowered, and the generated oil pressure is lowered.
[0005]
If the cylinder deactivation switching mechanism tries to perform switching in a state where the hydraulic pressure is not sufficient, it does not operate smoothly and there is a time delay from when the switching command is issued until it is actually operated and switching is performed, and prompt switching control is performed. You can't expect.
[0006]
Therefore, it is conceivable to separately prepare a hydraulic pressure sensor or an oil temperature sensor and perform the switching control based on the oil pressure and the oil temperature. However, it is necessary to provide a new sensor, which increases the cost.
[0007]
The present invention has been made in view of the above points, and the object of the present invention is to estimate the hydraulic pressure for switching the cylinder deactivation switching mechanism using the engine water temperature without providing a new sensor, thereby ensuring smooth cylinder deactivation switching. Therefore, the cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism is provided at a low cost.
[0008]
[Means for solving the problems and effects]
In order to achieve the above object, according to the first aspect of the present invention, a cylinder of a multi-cylinder internal combustion engine provided with a cylinder deactivation switching mechanism that hydraulically switches between a movable state and an inactive state of intake and exhaust valve opening / closing of some cylinders. In the deactivation switching control device, an engine water temperature detecting means for detecting the temperature of the cooling water for cooling the internal combustion engine, a deactivation switching allowable area storing means for storing an upper limit of the engine water temperature for permitting cylinder deactivation switching, and the engine water temperature detecting means The intake / exhaust valve opening / closing movable state and the idle state are switched by the cylinder deactivation switching mechanism only when the engine water temperature detected by the engine is within the deactivation switching allowable region below the upper limit stored in the deactivation switching allowable region storage means. A cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism provided with a switching allowance means for allowing
[0009]
The engine water temperature detecting means that is normally provided for detecting the operating state of the internal combustion engine is used to determine the upper limit of the engine water temperature that allows the cylinder deactivation switching by checking the oil pressure. By permitting switching only when the engine is within the allowable switching limit range below the upper limit, smooth switching can be ensured without time delay.
[0010]
According to a second aspect of the present invention, there is provided a cylinder deactivation switching control apparatus for a multi-cylinder internal combustion engine having a cylinder deactivation switching mechanism that switches hydraulically between a movable state and an inactive state of intake / exhaust valve opening / closing of some cylinders. The engine water temperature detecting means for detecting the temperature of the cooling water to be cooled, the engine speed detecting means for detecting the engine speed of the internal combustion engine, and a preset cylinder deactivation switching allowable region at the engine water temperature and the engine speed are stored. The engine switching temperature detected by the engine switching water temperature detecting means, the engine water temperature detected by the engine water temperature detecting means, and the engine speed detected by the engine speed detecting means are within the engine switching switching allowable area stored in the engine switching switching allowable area storage means. An internal combustion engine with a cylinder deactivation switching mechanism provided with switching permission means for permitting switching between the movable state and deactivation state of the intake / exhaust valve opening / closing by the cylinder deactivation switching mechanism only at certain times A cylinder deactivation switching controller.
[0011]
Using the engine water temperature detection means and the engine speed detection means that are normally provided to detect the operating state of the internal combustion engine, the oil pressure is estimated in the stop switching allowable region that allows the cylinder stop switching at the engine water temperature and the engine speed. Thus, by allowing the switching only when the detected engine water temperature and the engine speed are within the permissible switching allowable range, smooth cylinder switching without time delay can be ensured.
[0012]
According to a third aspect of the present invention, in the cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism according to the first or second aspect of the present invention, the deactivation switching allowable area storage means stores a predetermined time after the start of the internal combustion engine. The present invention is characterized in that it includes a deactivation switching allowable area changing means for reducing and setting a deactivation switching allowable area of the cylinder.
[0013]
Immediately after start-up, the oil pressure for cylinder deactivation switching has begun to rise, and since it has not reached the oil pressure for smooth switching, the deactivation allowance area of the cylinder is reduced for a predetermined time after the start-up so that the switching is easily performed. By setting the normal stop switching allowable area after a predetermined time, a large normal stop switching allowable area can be secured.
[0014]
According to a fourth aspect of the present invention, in the cylinder deactivation switching control apparatus for an internal combustion engine with a cylinder deactivation switching mechanism according to the second or third aspect of the present invention, the switching permission means is configured such that the engine water temperature and the engine speed are outside the deactivation switching allowable range. When shifting from the transition to the rest switching allowable region, switching is permitted after a predetermined time has elapsed since the transition.
[0015]
Immediately after the engine water temperature and the engine speed have shifted from outside the stop switching allowable region to within the stop switching allowable region, the engine water temperature and the engine speed may return to outside the stop switching allowable region again. If this happens, it will be outside the permissible switching range and will not be able to be switched, and the preferred cylinder operating state will be changed, so when transitioning to the permissible switching range, allowing switching after a predetermined time from the transition, Such a problem can be avoided.
[0016]
According to a fifth aspect of the present invention, in the cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism according to the fourth aspect of the present invention, the predetermined time is set to be small according to the engine speed.
[0017]
The higher the engine speed is, the more stable the engine is operating, and it is less likely to return to the outside of the stop switching allowable range immediately after shifting to the stop switching allowable range. It is possible to set a small value in accordance with the number, and it is possible to perform cylinder deactivation switching at an early stage while reducing unnecessary waiting time as much as possible.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS.
As shown in FIG. 1, an OHC type four-stroke cycle internal combustion engine 1 mounted on a motorcycle (not shown) has a three-cylinder cylinder in front of the vehicle body with a crankshaft (not shown) oriented in the vehicle width direction. A 6-cylinder front / rear V-type internal combustion engine in which a row (front bank Bf) and a 3-cylinder cylinder row (rear bank Br) at the rear of the vehicle body form a depression angle of approximately 60 degrees in the front-rear direction, such an OHC 4-stroke The main body of the cycle internal combustion engine 1 includes a cylinder block 2, a crankcase 3 that is integrally attached to the lower surface of the cylinder block 2, and a cylinder row at the front of the vehicle body and a top end of the cylinder row at the rear of the vehicle body. The cylinder heads 4 and 4 are mounted integrally, and the head covers 5 and 5 cover the tops of the cylinder heads 4 and 4, respectively.
[0019]
Intake devices such as fuel injectors and intake chambers (not shown) are arranged in the space between the front and rear banks Bf and Br of the OHC type four-stroke cycle internal combustion engine 1 and the front and rear of the cylinder heads 4 and 4 of the front and rear banks Bf and Br. An exhaust pipe (not shown) is connected to the outside.
[0020]
Among the front and rear banks Bf and Br, the valve operating device 10 of the rear bank Br incorporates a cylinder deactivation switching mechanism 20 that is actuated by hydraulic pressure. FIG. 2 shows a part of the cylinder deactivation switching mechanism 10 on the intake side as a cylinder. A portion viewed from above the head 4 in the direction of the central axis of the cylinder is shown, and a part thereof is shown in cross section.
[0021]
The valve operating apparatus 10 is disposed in a valve operating chamber 11 formed by a cylinder head 4 coupled to the upper end of the cylinder block 2 and a head cover 5 coupled to the upper end of the cylinder head 4.
[0022]
A combustion chamber is formed between a piston slidably fitted to each cylinder formed in the cylinder block 2 and the cylinder head 4, and the cylinder head 4 has an intake port communicating with each combustion chamber. And an exhaust port is formed, and the camshaft 12 that is driven to rotate at half the rotational speed of the crankshaft driven by the piston is connected to the cylinder head 4 at intervals in the direction of the rotation axis of the camshaft 12. It is inserted through insertion holes of a plurality of cam holders that are integrally molded, and is rotatably supported by the journal portion.
[0023]
For each combustion chamber, a pair of intake valves and a pair of exhaust valves that are slidably supported by the cylinder head 1 include a cam shaft 12, cams 13, 14, 15 provided on the cam shaft 12, and a rocker shaft. 16, is operated by a valve gear 10 including rocker arms 17, 18, 19 supported on the rocker shaft 16 so as to be swingable, and a cylinder deactivation switching mechanism 20, and each of the intake ports is disposed on the combustion chamber side at a predetermined timing. A pair of openings and a pair of openings on the combustion chamber side of the exhaust port are opened and closed.
[0024]
The cylinders in a part of the rear bank Br of the internal combustion engine 1 are deactivated during fuel-intensive operation such as during low-load operation. For this reason, the valve train 10 of the rear bank Br includes the intake air during cylinder deactivation operation. A cylinder deactivation switching mechanism 20 is provided for keeping the valve and the exhaust valve closed.
[0025]
Hereinafter, the cylinder deactivation switching mechanism 20 provided on the intake valve side will be mainly described with reference to FIG.
The camshaft 12 has an intake cam 13, a pair of pause cams 14 located on both sides of the intake cam 13, and an intake cam 13 and both pause cams 14. A pair of exhaust cams 15 is provided.
[0026]
The intake cam 13 and the exhaust cam 15 have a cam profile including a base circle portion and a nose portion having a predetermined lift amount and operating angle, and the pause cam 14 includes a base circle portion of the intake cam 13 and the exhaust cam 15. A cam profile having only a base circle portion having the same radius is provided, and the intake valve and the exhaust valve are kept closed during partial cylinder deactivation.
[0027]
The rocker shaft 16 inserted through the insertion holes of the plurality of rocker shaft holders fastened by bolts to the cylinder head 4 has a pair of drive rocker arms 17 and 18 corresponding to each combustion chamber, and between them. The free rocker arm 19 to be arranged is supported so as to be swingable.
[0028]
Slippers 17a and 18a are formed at one end of each drive rocker arm 17 and 18 so as to be in sliding contact with the rest cam 14, and tappet screws 17b and 18b are provided at the other end to abut against the intake valve.
[0029]
On the other hand, a roller 19a that is in rolling contact with the intake cam 13 is rotatably supported at one end of the free rocker arm 19, and the free rocker arm 19 is attached to the intake cam 13 by a spring of a lost motion mechanism supported by the cylinder head 4. It is energized towards.
[0030]
In addition, a cylinder deactivation switching mechanism 20 is provided between the drive rocker arms 17 and 18 and the free rocker arm 19 so as to be able to switch the connection and release of the drive rocker arms 17 and 18 and the free rocker arm 19.
[0031]
The cylinder deactivation switching mechanism 20 regulates movement of the coupling pin 22, a coupling piston 21 that can couple the drive rocker arm 17 and the free rocker arm 19, a coupling pin 22 that can couple the driving rocker arm 9 and the free rocker arm 10, and the like. A release piston 23 for releasing the connection between the drive rocker arms 17 and 18 and the free rocker arm 19, a return spring 24 for bringing the connection pin 22 into contact with the connection piston 21 and bringing the release piston 23 into contact with the connection pin 22; The hydraulic oil which is formed on the rocker arm 17 and moves the connecting piston 21 is supplied and discharged and the return spring 24 is accommodated, and the hydraulic oil which is formed on the drive rocker arm 18 and moves the release piston 23. A second hydraulic chamber 26 is supplied and discharged.
[0032]
A hollow portion of each cylindrical rocker shaft 16 is formed by a first hydraulic oil passage 28 formed between the pipe 27 and the rocker shaft 16 and a hollow portion of the pipe 27 by a pipe 27 inserted into the hollow portion. The formed second hydraulic oil passage 29 is partitioned.
[0033]
The first hydraulic chamber 25 is always in communication with the first hydraulic fluid passage 28 via a communication passage 30 formed in the drive rocker arm 17, and the second hydraulic chamber 26 is in communication with the drive rocker arm 18 and the pipe 27. It always communicates with the second hydraulic oil passage 29 via the passage 31.
[0034]
The first and second hydraulic oil passages 28 and 29 are hydraulic control valve devices 42 (FIG. 3) attached to the cylinder head 4 through two first and second oil passages 32 and 33 formed in the cylinder head 4, respectively. Communication).
An oil pump that operates by driving the internal combustion engine 1 is used as a hydraulic pressure source.
[0035]
On the other hand, on the exhaust side, the valve operating characteristic changing mechanism on the exhaust valve side provided straddling between a pair of drive rocker arms 36 and a pair of free rocker arms 37 supported swingably on the rocker shaft 25, A connecting piston capable of connecting the drive rocker arm 36 and the free rocker arm 37, and a release piston for restricting the movement of the connecting piston and releasing the connection between the drive rocker arm 36 and the free rocker arm 37 are provided. Similarly to the valve operating characteristic changing mechanism T on the side, it is operated by the hydraulic pressure of the hydraulic oil in the first and second hydraulic oil passages 28 and 29.
[0036]
During all-cylinder operation, the first hydraulic fluid passage 28 is communicated with the high-pressure fluid passage via the first oil passage 32 by the hydraulic control valve device 42 that is controlled according to the driving state of the vehicle. Becomes the high hydraulic pressure, while the second hydraulic oil passage 29 is communicated with the drain oil passage via the second oil passage 33, and the hydraulic oil becomes the low hydraulic pressure.
[0037]
As a result, the connecting piston 21 presses the connecting pin 22 and the release piston 23 due to the differential pressure between the first and second hydraulic chambers 25 and 26, and the contact surface between the connecting piston 21 and the connecting pin 22 is free rocker arm. The drive rocker arms 17 and 18 and the free rocker arm 19 are connected to each other with the contact surface between the connection pin 22 and the release piston 23 positioned on the drive rocker arm 18. As a result, the swing of the drive rocker arms 17 and 18 is defined by the cam profile of the intake cam 13, and the intake valve is opened and closed with a predetermined opening / closing timing and lift amount. Similarly, the exhaust valve is opened and closed with a predetermined opening / closing timing. And opened and closed by lift amount.
[0038]
In the partial cylinder deactivation operation, the hydraulic control valve device 42 causes the first hydraulic oil passage 28 to communicate with the drain oil passage through the first oil passage 32, and the hydraulic oil has a low hydraulic pressure. The hydraulic oil passage 29 is communicated with the high-pressure oil passage through the second oil passage 33, and the hydraulic oil becomes a high hydraulic pressure.
[0039]
As a result, the first hydraulic chamber 25 has a low hydraulic pressure, the second hydraulic chamber 26 has a high hydraulic pressure, and is released from the state shown in FIG. 2 by the differential pressure between the first and second hydraulic chambers 25 and 26. The piston 23 presses the connecting piston 21 and the connecting pin 22, and the contact surface between the connecting piston 21 and the connecting pin 22 is positioned between the drive rocker arm 17 and the free rocker arm 19. Is placed between the drive rocker arm 17 and the free rocker arm 19, so that the drive rocker arm 17 and the free rocker arm 19, and the drive rocker arm 18 and the free rocker arm 19 are disconnected.
[0040]
As a result, the swinging of the drive rocker arms 17 and 18 is respectively defined by the cam profile of the stop cam 14, the intake valve is closed, and the exhaust valve is closed as well. The cylinder enters a resting state.
[0041]
In the cylinder deactivation switching mechanism 20 as described above, when the operating hydraulic pressure is in a low state, the second hydraulic pressure is changed when the hydraulic control valve device 42 is operated to switch from the full cylinder operation (the state shown in FIG. 2) to the cylinder deactivation operation. Since the hydraulic pressure introduced into the chamber 26 is low and the force for sliding the release piston 23 is weak, the release of the connection state between the free rocker arm 19 and the drive rocker arms 17 and 18 may be delayed for several cycles.
[0042]
The same occurs when switching from the cylinder deactivation operation to the all cylinder operation, and even if there is a switching command and the hydraulic control valve device 42 is activated, a delay occurs in actually performing the switching and the responsiveness. Smooth and smooth switching control is not possible.
[0043]
Therefore, the cylinder deactivation switching control device 40 according to the present embodiment estimates the hydraulic pressure from the temperature of the cooling water (engine water temperature) for cooling the internal combustion engine 1 by the electronic control unit ECU 41 and the rotation speed of the crankshaft (engine rotation speed). Thus, the hydraulic control valve device 42 is controlled.
[0044]
FIG. 3 shows a schematic block diagram of the cylinder deactivation switching control device 40.
The ECU 41 has inputs from the engine water temperature sensor 43, the engine speed sensor 44, and other various sensors that indicate the operating state of the internal combustion engine 1, and performs various operation controls, one of which is cylinder deactivation switching control. A switching control signal is output to the hydraulic control valve device 42.
The cylinder deactivation switching mechanism 20 is driven and controlled by the hydraulic control valve device 42.
[0045]
In this cylinder deactivation switching control, a control procedure for determining whether or not to allow switching regarding hydraulic pressure will be described with reference to FIG.
First, the engine water temperature Tw detected by the engine water temperature sensor 43 and the engine speed Ne detected by the engine speed sensor 44 are input (step 1).
[0046]
Then, it is determined whether or not a predetermined time has elapsed after starting (step 2). If the predetermined time has not elapsed, the process proceeds to step 3 to change the Tw-Ne map stored in advance, and if the predetermined time has elapsed, step Go to 4 to return the Tw-Ne map to the normal map.
[0047]
Here, as shown in FIG. 5, the Tw-Ne map divides the coordinate space into a switching allowable area and a switching prohibited area by a threshold line L in a rectangular coordinate having the horizontal axis as the engine water temperature Tw and the vertical axis as the engine speed Ne. It is a thing.
[0048]
Threshold line L is a line, the engine coolant temperature Tw until t 1 is threshold line l 1 is constant rotational speed n 1 is the engine rotational speed Ne, a predetermined rotation the engine speed Ne is the engine coolant temperature Tw is t 2 or more The threshold line l 3 is the number n 2 , and when t 1 <Tw <t 2 , the threshold line l 2 is an oblique threshold line l 2 connecting the end portions of the threshold line l 1 and the threshold line l 3 .
[0049]
The upper side of the threshold line L is a switching allowable region, and the lower side is a switching prohibited region.
It is possible to determine in which region the set (point coordinates (Tw, Ne)) of the detected engine water temperature Tw and the engine speed Ne (point coordinates (Tw, Ne)) is located.
[0050]
The threshold line L of this Tw-Ne map is determined in advance by experiments. If the set of the engine water temperature Tw and the engine speed Ne is within the switching allowable range, the cylinder deactivation switching mechanism 20 is quickly activated (the connected piston 21, This is to delimit a switching allowable region where it can be determined that there is sufficient hydraulic pressure to slide the connecting pin 22 and the release piston 23.
[0051]
And shows a region when threshold line L shown by a solid line in Tw-Ne map of FIG 5 is in the normal operating state, the switching allowable area to move threshold line l 1 is upward until a predetermined time elapses after start Is changed to a threshold line l 1 ′ (represented by a broken line) for reduction (step 3).
[0052]
In other words, immediately after starting, the hydraulic pressure for cylinder deactivation switching has started to rise, and since the hydraulic pressure for smooth switching has not been reached, switching is easily performed by reducing the cylinder switching allowable area for a predetermined time after starting. The normal switching allowable area is set after a predetermined time so that a large normal switching allowable area can be secured.
[0053]
When the process proceeds from step 3 or step 4 to step 5, the region is determined from the Tw-Ne map based on the engine water temperature Tw and the engine speed Ne input in step 1.
That is, it is determined whether the set of the engine water temperature Tw and the engine speed Ne is in the switching allowable region or the switching prohibition region in the Tw-Ne map.
[0054]
Then, in the next step 6, it is determined whether or not it is within the switching allowable area, and if it is within the switching allowable area, the process proceeds to step 9; In step 8, the switching permission flag F is set to “0” to prohibit the switching (operation of the cylinder deactivation switching mechanism 20 is prohibited).
[0055]
When the set of the engine water temperature Tw and the engine speed Ne is determined as the switching allowable region in the Tw-Ne map and the process proceeds to step 9, it is determined whether or not the down timer t has timed up (t = 0). Until the time is up, the process proceeds to step 8 and switching is prohibited.
[0056]
Then, when the state where the set of the engine water temperature Tw and the engine speed Ne is in the switching allowable region continues until the down timer expires, the process proceeds to step 10 for the first time and the switching allowable flag F is set to “1” to allow switching (cylinder). The operation of the pause switching mechanism 20 is permitted).
[0057]
When actually performing switching of cylinder deactivation, it is determined from other operating states. However, at least unless the switching permission flag F is set to “1”, the switching, that is, the cylinder deactivation switching mechanism 20 is not operated.
[0058]
If the switching allowance flag F = 1, it is estimated that the hydraulic pressure for operating the cylinder deactivation switching mechanism 20 is sufficient. Therefore, when a switching command is actually output from the ECU 41 to the hydraulic control valve device 42, the hydraulic pressure is sufficiently increased. The cylinder deactivation switching mechanism 20 can be actuated promptly (sliding the coupling piston 21, the coupling pin 22, and the release piston 23) to ensure smooth cylinder deactivation switching without time delay.
[0059]
Since the operating oil pressure is estimated using the engine water temperature sensor 43 and the engine speed sensor 44 that are normally provided to detect the operating state of the internal combustion engine 1, it is necessary to provide a separate oil pressure sensor and oil temperature sensor. The cost can be reduced.
[0060]
Further, in the present embodiment, when the set of the engine water temperature Tw and the engine speed Ne is shifted from the switching prohibition region to the switching allowable region in Step 9 of the flowchart of FIG. Wait until the timer expires.
[0061]
That is, immediately after the set of the engine water temperature Tw and the engine speed Ne shifts from the switching prohibition region to the switching allowable region, the engine water temperature Tw may return to the switching prohibition region again, and switching is executed immediately after the transition to the switching allowable region. Then, it becomes a switching prohibition region and cannot be switched, and the preferable cylinder operation state is changed by a temporary change of the operation state, so when shifting to the switching allowable region, the time from the transition until the down timer expires By allowing switching after the elapse of time, such a problem is avoided.
[0062]
Here, the time set in the down timer t in step 7 is a fixed time, but it may be set to a time corresponding to the engine speed Ne.
FIG. 6 is a graph showing the relationship of the set time t of the down timer to the engine speed Ne prepared in advance.
[0063]
The higher the engine speed is, the more stable the operation state is, and there is little return to the outside of the stop switching allowable region immediately after the transition to the stop switching allowable region. Therefore, the set time t is as shown in FIG. A small value (short time) can be set according to the rotational speed Ne.
[0064]
Since the set time t is a cylinder deactivation switching waiting time, the cylinder deactivation switching is executed early by reducing the unnecessary waiting time as much as possible by setting the set time t shorter as the engine speed Ne is higher. Can do.
[0065]
It is possible to estimate the operating oil pressure only with the engine water temperature, but it is possible to determine the upper limit of the engine water temperature that allows the cylinder deactivation switching by checking the oil pressure, and the detected engine water temperature is less than this upper limit. By allowing the switching only when it is within the switching allowable region, it is possible to ensure smooth cylinder deactivation switching without time delay.
[Brief description of the drawings]
FIG. 1 is an overall side view of an OHC type 4-stroke cycle internal combustion engine according to the present invention.
FIG. 2 is a cross-sectional view of a part of the intake side of the cylinder deactivation switching mechanism as viewed in the direction of the central axis of the cylinder.
FIG. 3 is a schematic block diagram of a cylinder deactivation switching control device.
FIG. 4 is a flowchart showing a control procedure for switching permission determination in the cylinder deactivation switching control device;
FIG. 5 is a diagram showing a Tw-Ne map.
FIG. 6 is a graph showing the relationship of the set time of the timer to the engine speed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 4 stroke cycle internal combustion engine, 2 ... Cylinder block, 3 ... Crankcase, 4 ... Cylinder head, 5 ... Head cover,
DESCRIPTION OF SYMBOLS 10 ... Valve operating apparatus, 11 ... Valve operating chamber, 12 ... Cam shaft, 13 ... Intake cam, 14 ... Pause cam, 15 ... Exhaust cam, 16 ... Rocker shaft, 17, 18 ... Drive rocker arm, 19 ... Free rocker arm, 20 DESCRIPTION OF SYMBOLS Cylinder deactivation switching mechanism, 21 ... Connection piston, 22 ... Connection pin, 23 ... Release piston, 24 ... Return spring, 25 ... 1st hydraulic chamber, 26 ... 2nd hydraulic chamber, 27 ... Pipe, 28 ... 1st hydraulic oil 29, second hydraulic oil path, 30 ... communication path, 31 ... communication path, 32 ... first oil path, 33 ... second oil path, 36 ... drive rocker arm, 37 ... free rocker arm,
DESCRIPTION OF SYMBOLS 40 ... Cylinder deactivation switching control apparatus, 41 ... ECU, 42 ... Hydraulic control valve apparatus, 43 ... Engine water temperature sensor, 44 ... Engine speed sensor.

Claims (5)

一部気筒の吸・排気弁開閉の可動状態と休止状態とを油圧により切換える気筒休止切換機構を備えた多気筒内燃機関の気筒休止切換制御装置において、
内燃機関を冷却する冷却水の温度を検出する機関水温検出手段と、
気筒休止切換えを許容する機関水温の上限を記憶する休止切換許容領域記憶手段と、
前記機関水温検出手段により検出された機関水温が前記休止切換許容領域記憶手段の記憶する上限以下の休止切換許容領域内にあるときにのみ前記気筒休止切換機構による吸・排気弁開閉の可動状態と休止状態との切換えを許容する切換許容手段とを備えたことを特徴とする気筒休止切換機構付き内燃機関の気筒休止切換制御装置。
In a cylinder deactivation switching control device of a multi-cylinder internal combustion engine having a cylinder deactivation switching mechanism that switches hydraulically between a movable state and an inactive state of intake and exhaust valve opening / closing of some cylinders,
Engine water temperature detecting means for detecting the temperature of cooling water for cooling the internal combustion engine;
A deactivation switching allowable region storage means for storing an upper limit of the engine water temperature that allows the deactivation of the cylinder;
Only when the engine water temperature detected by the engine water temperature detecting means is within a stop switching allowable area below the upper limit stored in the stop switching allowable area storage means, the intake / exhaust valve opening / closing movable state by the cylinder stop switching mechanism A cylinder deactivation switching control apparatus for an internal combustion engine with a cylinder deactivation switching mechanism, comprising switching permission means for permitting switching to a deactivation state.
一部気筒の吸・排気弁開閉の可動状態と休止状態とを油圧により切換える気筒休止切換機構を備えた多気筒内燃機関の気筒休止切換制御装置において、
内燃機関を冷却する冷却水の温度を検出する機関水温検出手段と、
内燃機関の機関回転数を検出する機関回転数検出手段と、
機関水温と機関回転数における予め設定した気筒の休止切換許容領域を記憶する休止切換許容領域記憶手段と、
前記機関水温検出手段により検出された機関水温と前記機関回転数検出手段により検出された機関回転数が前記休止切換許容領域記憶手段の記憶する休止切換許容領域内にあるときにのみ前記気筒休止切換機構による吸・排気弁開閉の可動状態と休止状態との切換えを許容する切換許容手段とを備えたことを特徴とする気筒休止切換機構付き内燃機関の気筒休止切換制御装置。
In a cylinder deactivation switching control device of a multi-cylinder internal combustion engine having a cylinder deactivation switching mechanism that switches hydraulically between a movable state and an inactive state of intake and exhaust valve opening / closing of some cylinders,
Engine water temperature detecting means for detecting the temperature of cooling water for cooling the internal combustion engine;
Engine speed detecting means for detecting the engine speed of the internal combustion engine;
A deactivation switching allowable area storage means for storing a predetermined deactivation switching allowable area of the cylinder at the engine water temperature and the engine speed;
Only when the engine water temperature detected by the engine water temperature detecting means and the engine speed detected by the engine speed detecting means are within the stop switching allowable area stored in the stop switching allowable area storing means, the cylinder stop switching is performed. A cylinder deactivation switching control apparatus for an internal combustion engine with a cylinder deactivation switching mechanism, comprising switching permission means for permitting switching between a movable state and a deactivation state of intake / exhaust valve opening / closing by the mechanism.
内燃機関の始動後所定時間は前記休止切換許容領域記憶手段が記憶する気筒の休止切換許容領域を縮小して設定する休止切換許容領域変更手段を備えたことを特徴とする請求項1または請求項2記載の気筒休止切換機構付き内燃機関の気筒休止切換制御装置。2. A stop switching permissible region changing means for reducing and setting a stop switching permissible region of a cylinder stored in the rest switching permissible region storage means for a predetermined time after starting the internal combustion engine. 3. A cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism according to 2. 前記切換許容手段は、機関水温および機関回転数が休止切換許容領域外から休止切換許容領域内に移行しするときは移行時から所定時間経過後に切換えを許容することを特徴とする請求項2または請求項3記載の気筒休止切換機構付き内燃機関の気筒休止切換制御装置。3. The switching permission means, when the engine water temperature and the engine speed shift from outside the stop switching allowable region to within the stop switching allowable region, permit switching after a predetermined time from the transition. A cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism according to claim 3. 前記所定時間は、機関回転数に応じて小さく設定されることを特徴とする請求項4記載の気筒休止切換機構付き内燃機関の気筒休止切換制御装置。5. The cylinder deactivation switching control device for an internal combustion engine with a cylinder deactivation switching mechanism according to claim 4, wherein the predetermined time is set to be small according to the engine speed.
JP2003172690A 2003-06-17 2003-06-17 Cylinder deactivation switching control device for internal combustion engine with cylinder deactivation switching mechanism Pending JP2005009363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172690A JP2005009363A (en) 2003-06-17 2003-06-17 Cylinder deactivation switching control device for internal combustion engine with cylinder deactivation switching mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172690A JP2005009363A (en) 2003-06-17 2003-06-17 Cylinder deactivation switching control device for internal combustion engine with cylinder deactivation switching mechanism

Publications (1)

Publication Number Publication Date
JP2005009363A true JP2005009363A (en) 2005-01-13

Family

ID=34096730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172690A Pending JP2005009363A (en) 2003-06-17 2003-06-17 Cylinder deactivation switching control device for internal combustion engine with cylinder deactivation switching mechanism

Country Status (1)

Country Link
JP (1) JP2005009363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283578A (en) * 2005-03-31 2006-10-19 Honda Motor Co Ltd Internal combustion engine
JP2009138694A (en) * 2007-12-10 2009-06-25 Hitachi Ltd Control device for internal combustion engine
CN114135403A (en) * 2021-11-25 2022-03-04 中国第一汽车股份有限公司 Control method and device for engine cylinder deactivation and engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283578A (en) * 2005-03-31 2006-10-19 Honda Motor Co Ltd Internal combustion engine
JP4626994B2 (en) * 2005-03-31 2011-02-09 本田技研工業株式会社 Internal combustion engine
JP2009138694A (en) * 2007-12-10 2009-06-25 Hitachi Ltd Control device for internal combustion engine
US8015960B2 (en) 2007-12-10 2011-09-13 Hitachi, Ltd. Vibration-damping control apparatus and method for internal combustion engine
CN114135403A (en) * 2021-11-25 2022-03-04 中国第一汽车股份有限公司 Control method and device for engine cylinder deactivation and engine

Similar Documents

Publication Publication Date Title
JP5384413B2 (en) Internal combustion engine with valve deactivation mechanism
TW200821459A (en) Multicylinder internal combustion engine
CN101263289B (en) Control apparatus and control method for internal combustion engine
JP2015194131A (en) Engine control device
JP6123726B2 (en) Engine control device
US20150330265A1 (en) Control device of internal combustion engine and variable valve device of internal combustion engine
JP3715041B2 (en) Control device for cylinder deactivation engine
JP2005009363A (en) Cylinder deactivation switching control device for internal combustion engine with cylinder deactivation switching mechanism
JPH08170551A (en) Diesel engine
JP2008286080A (en) Internal combustion engine
JP6146341B2 (en) Engine valve timing control device
JP2000170559A (en) 6-cycle internal combustion engine
JP5563867B2 (en) Multi-cylinder internal combustion engine with cylinder deactivation mechanism
JP2637643B2 (en) Variable valve operating characteristics controller
JP5474699B2 (en) Internal combustion engine having a variable valve mechanism
JP5571997B2 (en) Internal combustion engine having a variable valve mechanism
JP5528886B2 (en) Multi-cylinder internal combustion engine with cylinder deactivation mechanism
JP2008138519A (en) Valve timing control device for engine
JP4365304B2 (en) Variable cycle device for internal combustion engine
JP6149761B2 (en) Engine valve timing control device
JP2979862B2 (en) Variable valve train for internal combustion engine
JP2000179366A (en) Cylinder cutting-off engine controller
JP6551439B2 (en) Engine valve gear
JP2010106772A (en) Cam phase variable type internal combustion engine
WO2020189546A1 (en) Variable valve device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708