[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005005385A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2005005385A
JP2005005385A JP2003165150A JP2003165150A JP2005005385A JP 2005005385 A JP2005005385 A JP 2005005385A JP 2003165150 A JP2003165150 A JP 2003165150A JP 2003165150 A JP2003165150 A JP 2003165150A JP 2005005385 A JP2005005385 A JP 2005005385A
Authority
JP
Japan
Prior art keywords
region
semiconductor
resistance
semiconductor region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165150A
Other languages
Japanese (ja)
Inventor
Makoto Mizukami
誠 水上
Takashi Shinohe
孝 四戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003165150A priority Critical patent/JP2005005385A/en
Publication of JP2005005385A publication Critical patent/JP2005005385A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1058Channel region of field-effect devices of field-effect transistors with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • H01L29/7392Gated diode structures with PN junction gate, e.g. field controlled thyristors (FCTh), static induction thyristors (SITh)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that can simultaneously achieve a low on-resistance and a high breakdown voltage. <P>SOLUTION: This semiconductor device is provided with a first-conductivity high-resistance semiconductor layer formed on the first principal surface of a semiconductor substrate, a second-conductivity first semiconductor region provided on the surface of the high-resistance semiconductor layer in a state where the region is faced to the substrate, and first-conductivity second semiconductor regions formed on the surface of the high-resistance semiconductor layer to hold the first semiconductor region in between and having shallower depths than the first semiconductor region has. This device is also provided with a second-conductivity embedded region having an embedded section provided with a notched section in a region held between the first semiconductor region and semiconductor substrate, and a contact section led out to the surface of the high-resistance semiconductor layer in the high-resistance semiconductor layer provided between the first and second semiconductor regions and semiconductor substrate. The current path between the second semiconductor region and semiconductor substrate is formed in the high-resistance semiconductor layer through the notched section of the embedded region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に係わり、特にゲート負荷が軽減された静電誘導トランジスタ等に関する。
【0002】
【従来の技術】
従来スイッチング素子として、静電誘導トランジスタ(Static Induction Transistor、以下SITと略称する)や接合型電界効果トランジスタ(Junction Field Effect Transistor、以下JFETと略称する)が知られている。
【0003】
この種の静電誘導半導体装置は、n型の半導体基板の一方の表面部分にn型のソース領域とp型のゲート領域が形成され、ソース領域をゲート領域が挟む形で構成されている。一般的にソース領域よりもゲート領域が深く形成され、ゲート領域で挟まれたn型領域をチャネル領域と呼ぶ。また、n型半導体基板の他方の表面部分にはn型のドレイン領域が有り、ドレイン領域とゲート領域の間がn型ドリフト領域となる。そして、ソース領域にはソース電極が、ゲート領域にはゲート電極が、ドレイン領域にはドレイン電極がそれぞれコンタクトするように備えられている。
【0004】
この静電誘導半導体装置はゲート電極へ印加する電圧信号でチャネル領域を空乏化させ、導通・遮断させるようにしている。しかし、この静電誘導半導体装置の主接合は一般的にゲート層とドレイン層のpn接合でなされており、スイッチングの際にはドレイン−ゲート間の空乏層に電荷の充放電が起こる。そのため、例えばターンオフの時にはドレインに流れる電荷と同じ量の電荷がゲート回路に流れゲート駆動電力が大きくなると言う欠点があった。
【0005】
これに対し、n型のソース領域とp型のカソード領域を同一のカソード電極でコンタクトさせ、スイッチングの際にpn接合で行われる電荷の充放電のうち、p型領域から吐き出される電荷の一部をカソード電極に負担させる事で、ゲート駆動電力を軽減させる方法が提案されている(例えば、特許文献1参照。)。
【0006】
しかし、SITやJFETなどのユニポーラ静電誘導半導体装置の場合、この構造におけるp型カソード領域はゲート駆動電力軽減以外には無用なデッドスペースとなる。p型カソード領域の面積を大きくすると、ゲート回路への負荷はその分軽減するが、チャネル幅が狭くなるのでオン抵抗が増大してしまう。逆に、p型カソード領域の面積を小さくすると、オン抵抗が低減するが、ゲート回路への負荷はその分大きくなってしまうと言う欠点がある。
【0007】
これに対し、p型カソード領域をp型ゲート領域よりも深く設け、スイッチングの際にpn接合で行われる電荷の充放電のうち、p型領域から吐き出される電荷を選択的にカソード領域から吐き出させ、ゲート駆動電力を軽減させる方法も提案されている(例えば、特許文献2参照。)。
【0008】
しかし、同じp型導電性を持つゲート領域とカソード領域が半導体基板内部で凹凸になっている事により、カソード領域の深い端部で電界集中が起こり耐圧が損なわれてしまう問題がある。
【0009】
また、深く設けられたカソード領域が表面から底部方向に垂直に深く設けられている事で、スイッチング性能およびオン抵抗を決める距離(ゲート領域−カソード領域間隔)と耐圧を決める距離(カソード領域−カソード領域間隔)を別々に最適に設計する事が出来ず、設計の自由度が低いと言う問題もある。
【0010】
耐圧とソース領域より深く形成されたゲート領域間の距離の関係に付いて解析した結果も報告されている(例えば、非特許文献1参照。)。これは図30(a)に示すような構成において、ゲート間距離と耐圧の関係を調査したもので、図30(b)にその結果を簡略化して示す。この解析の場合は理想的な耐圧は5kVであるが、ゲート間距離が大きくなるにつれて耐圧が低下することが分かる。
【0011】
カソード領域を設けた場合、カソード領域はゲート領域より深く形成されるので、図30(a)のゲート間距離はカソード間距離に置きかえることができる。これより、オン抵抗を下げるために、カソード間距離を大きくすると耐圧が下がることが理解できる。
【0012】
【特許文献1】
特開平4−338678号公報
【0013】
【特許文献2】
特開平5−75143号公報
【0014】
【非特許文献1】
Kenichi Ogura et al., ISPSD’95, p.256
【0015】
【発明が解決しようとする課題】
一般にゲート領域−カソード領域間隔が広ければ広いほどオン抵抗は下がり、カソード領域−カソード領域間隔が狭ければ狭いほど耐圧は上がる。従来は、低抵抗で高耐圧と言った要求に対し、どちらかを犠牲にせざるを得ず、背反する二つの要求とそれらの最適値を同時に満たす事は非常に困難であった。
【0016】
本発明は上記事情に鑑みて為されたもので、低いオン抵抗と高耐圧の両方を同時に達成できる半導体装置を提供するものである。
【0017】
【課題を解決するための手段】
上記課題を解決する為に、本発明の半導体装置の第1は、第1と第2の主面を有する半導体基板と、前記半導体基板の第1の主面に形成された第1導電型の高抵抗半導体層と、前記第1導電型の高抵抗半導体層の表面に設けられた第2導電型の第1の半導体領域と、前記第1導電型の高抵抗半導体層の前記表面に前記第1の半導体領域を挟むように形成され、前記第1の半導体領域よりも浅く形成された第1導電型の第2の半導体領域と、前記第1及び第2の半導体領域と前記半導体基板との間の前記高抵抗半導体層中に、前記第1及び第2の半導体領域と離隔して埋め込まれた埋め込み部分と、前記埋め込み部分に接続され前記高抵抗半導体層の表面に導出された前記埋め込み部分より幅が狭いコンタクト部分とを有する第2導電型の埋め込み領域とを具備し、前記第1の半導体領域と前記半導体基板とに挟まれた領域を通じて、前記高抵抗層中に前記第2の半導体領域と前記半導体基板間の電流路が形成されることを特徴とする。
【0018】
さらに、本発明の半導体装置の第2は、半導体基板と、前記半導体基板の上面に形成された第1導電型の高抵抗半導体層と、前記高抵抗半導体層の上面に形成された第2導電型の第1の半導体領域と、前記第1の半導体領域を挟むように前記高抵抗半導体層の上面に形成され、前記第1の半導体領域より浅く形成された第1導電型の第2の半導体領域と、前記第1の半導体領域とこれを挟む前記第2の半導体領域をさらにその外側から挟む部分を有し、前記第1の半導体領域より深い位置で、前記第1の半導体領域下方に向かう水平方向の張り出し部を有する縦断面が逆T字型若しくは台形型の第2導電型の埋め込み領域と、前記埋め込み領域の前記水平張り出し部と前記半導体基板に挟まれ、前記高抵抗半導体層中に形成された第1導電型のドリフト領域と、前記第1の半導体領域と前記埋め込み領域に挟まれて前記高抵抗半導体層中に形成され、前記ドリフト領域に通じるチャネル領域と、前記第1の半導体領域上に形成された第1の電極と、前記第2の半導体領域と前記第2の半導体領域をさらにその外側から挟む前記埋め込み領域の部分に接続するように形成された第2の電極と、前記半導体基板の前記下面に形成された第3の電極とを具備することを特徴とする。
【0019】
さらに、本発明の半導体装置の第3は、半導体基板と、前記半導体基板の上面に形成された高抵抗半導体層と、前記高抵抗半導体層の上面に形成された第1導電型の第2の半導体領域と、前記第2の半導体領域を挟むように前記高抵抗半導体層の上面に形成され、前記第2の半導体領域より深く形成された第2導電型の第1の半導体領域と、前記第1の半導体領域より深い位置の前記高抵抗半導体層中に、前記半導体基板と対峙して形成され、前記第1の半導体領域と前記半導体基板に挟まれた領域に開口部を有するように形成された埋め込み部分と、前記高抵抗半導体層の上面に露呈するコンタクト部分を有する第2導電型の埋め込み領域と、前記埋め込み領域と前記半導体基板に挟まれた前記高抵抗層中に形成された第1導電型のドリフト領域と、前記第1の半導体領域に挟まれ、前記埋め込み領域の前記開口部を通じて前記ドリフト領域に通じるチャネル領域と、前記第1の半導体領域上に形成された第1の電極と、前記第2の半導体領域と前記埋め込み領域の前記コンタクト部分に接続するように形成された第2の電極と、前記半導体基板の下面に形成された第3の電極とを具備することを特徴とする。
【0020】
さらに、本発明の半導体装置の第4は、第1導電型の高抵抗半導体層と、前記高抵抗半導体層の表面に形成された平面形状がストライプ状の第3の半導体領域と、前記高抵抗半導体層の前記表面において、ストライプ状の前記第3の半導体領域の側面に対向して設けられた第2導電型の第1の半導体領域と、前記第1の半導体領域を挟むように前記高抵抗半導体層の前記表面に形成され、前記第3の半導体領域との距離が、前記第1の半導体領域と前記第3の半導体領域との距離より大となるように設けられた第1導電型の第2の半導体領域と、前記第1の半導体領域とこれを挟む前記第2の半導体領域をさらにその外側から挟む部分を有し、この部分よりも幅の広い張り出し部を有する平面形状がT字型若しくは台形型の第2導電型の介在領域と、前記介在領域の前記張り出し部と前記第3の半導体領域に挟まれ、前記高抵抗半導体層中に形成された第1導電型のドリフト領域と、前記第1の半導体領域と前記介在領域に挟まれて前記高抵抗半導体層中に形成され、前記ドリフト領域に通じるチャネル領域と、前記第1の半導体領域上に形成された第1の電極と、前記第2の半導体領域と前記介在領域上に接続するように形成された第2の電極と、前記第3の半導体領域上に形成された第3の電極とを具備することを特徴とする。
【0021】
さらに、本発明の半導体装置の第5は、第1導電型の高抵抗半導体層と、前記高抵抗半導体層の表面に形成された平面形状がストライプ状の第3の半導体領域と、前記高抵抗半導体層の前記表面において、ストライプ状の前記第3の半導体領域の側面に対向して設けられた第1導電型の第2の半導体領域と、前記第2の半導体領域を挟むように前記高抵抗半導体層の前記表面に形成され、前記第3の半導体領域との距離が、前記第2の半導体領域と前記第3の半導体層の距離よりも、小さくなるように形成された第2導電型の第1の半導体領域と、前記第1及び第2の半導体領域と第3の半導体領域の間の前記高抵抗半導体層の前記表面に、前記第3の半導体領域に対向するように形成され、前記第1の半導体領域と前記第3の半導体領域を対向させる連通口を有する介在部分と、前記介在部分に接続され前記第2の半導体領域の方向に延在する延在部分とを有する第2導電型の介在領域と、前記介在領域の前記介在部分と前記第3の半導体領域に挟まれた前記高抵抗半導体層中に形成された第1導電型のドリフト領域と、前記第1および第2の半導体領域と前記介在領域に3方を囲まれ、前記連通口を通じて前記ドリフト領域に通じるチャネル領域と、前記第1の半導体領域上に形成された第1の電極と、前記第2の半導体領域と前記介在領域に接続するように形成された第2の電極と、前記第3の半導体領域上に形成された第3の電極とを具備することを特徴とする。
【0022】
上記の半導体装置において、半導体基板あるいは第3の半導体領域が第1導電型の場合は、第1、第2、第3の半導体領域を夫々ゲート、ソース、ドレインとする静電誘導型トランジスタである。
【0023】
また、上記の半導体装置において、半導体基板あるいは第3の半導体領域が第2導電型の場合は、第1、第2、第3の半導体領域を夫々ゲート、エミッタ、コレクタとする静電誘導型サイリスタである。
【0024】
本発明の半導体装置では、ゲート領域と同じ導電性を持ち、ソース電極と接する埋め込み(介在)領域が、ゲート領域よりもドレイン領域に近くなるように設けてあり、介在領域のソース電極に接する部分の幅よりも、ドレイン領域に対向する部分の幅の方を広く形成している。このため、ターンオフによるドリフト領域の空乏化時に埋め込み(介在)領域端部での電界集中を抑制し、耐圧を向上させる。
【0025】
本発明の半導体装置は、ゲート電極へ印加する電圧信号でチャネル領域を空乏化させ、導通・遮断を行っている。スイッチングの際にはドリフト層の空乏化による電荷の吐き出しが起こるが、ゲート領域よりもドレイン領域に近い介在領域がドリフト層からの電荷の吐き出しを行う事により、ゲート回路の負荷を大幅に軽減させる事が出来、さらに、ゲート領域と介在領域の間隔、及び、介在領域同士の間隔を自由に設定する事により、低オン抵抗、高耐圧の両方を達成する事ができる。
【0026】
【発明の実施の形態】
以下、図面を参照しつつ、本発明の実施の形態を説明する。
【0027】
(実施形態1)
図1は実施形態1に係る静電誘導半導体装置の要部構成を示す断面図である。図2はチップ全体の上面図で、電極の構成を示す。図2のA−A′線に沿った断面図が図1に相当する。
【0028】
本実施形態の静電誘導半導体装置は、n型半導体基板1の一方の表面部分にp型ゲート領域(第1の半導体領域)2とn型ソース領域(第2の半導体領域)3とp型埋め込み領域4とを備える。ソース領域3はゲート領域2と埋め込み域4の表面部との間に挟まれる形で形成されていて、ソース領域3よりもゲート領域2が深く、ゲート領域2よりも埋め込み領域4が深く設けられている。ゲート領域2とp型埋め込み領域4の間のn型領域が、ドレイン−ソース間電流が流れるチャネル領域7となる。
【0029】
一方、半導体基板1の他方の面にはn型ドレイン領域(第3の半導体領域)5を備えている。埋め込み領域4とドレイン領域5の間はn型ドリフト層6となっている。また、p型埋め込み領域4は逆T字型の断面形状を有しており、基板表面側よりもn型ドレイン領域5に対向する部分の方が幅が広くなっている。隣接する埋め込み領域4先端部の間の空隔は、ゲート領域とドレイン領域を垂直に結ぶ線を含む位置に設定されている。また、埋め込み領域4の水平延在部は、ソース領域3とドレイン領域5を垂直に結ぶ少なくとも一部の線を遮るように配置されている。
【0030】
型ドリフト層6の不純物濃度は1015cm−3〜1017cm−3であり、他のn型やp型の高不純物濃度領域での不純物濃度は1020cm−3〜1021cm−3程度である。ドリフト層6の濃度と厚みは、耐圧、オン電圧といった電気特性の設計値から決められるが、SiC基板を用いる場合、1000V級で約10μm程度である。
【0031】
また、この静電誘導半導体装置の上面電極は、図2に示す通り、櫛型のソース電極11とゲート電極12が対向して組み合わされている。ソース電極11はn型ソース領域3とp型埋め込み領域4に接続され、ゲート電極12はp型ゲート領域2に接続されている。半導体基板1の裏面側には、n型ドレイン領域5に接続するドレイン電極13が設けられている。
【0032】
次に、上記の半導体装置の動作を説明する。例えば、ドレイン電極13に正電位、ソース電極11に接地電位、ゲート電極12に0または正の所定の電位が与えられたとき、半導体装置はオン状態となり、n型ドレイン領域5からn型ソース領域3に電流が流れる。
【0033】
型ドレイン領域5からn型ソース領域3への電流をブロックする時は、p型ゲート領域2とn型チャネル領域7間のpn接合に逆バイアス(ゲート電位がソース電位に対して負)を加えると、p型ゲート領域2からn型チャネル領域7へ空乏層が伸び、n型チャネル領域7をピンチオフさせる。
【0034】
その結果、ドレイン−ソース間電圧が電源電圧まで回復するが、この時、n型ドレイン領域5とこれに対向するp型埋め込み領域4に逆バイアスがかかり、p型埋め込み領域4からn型ドリフト領域に空乏層が延びて正電荷がp型埋め込み領域4からソース電極11に吐き出される。
【0035】
即ち、p型ゲート領域2よりもn型ドレイン領域5に近いp型埋め込み領域4が主として正電荷の吐き出しを行う事により、ゲート回路の負荷を大幅に軽減させる事が出来る。
【0036】
ここではターンオフの時の動作を説明したが、ターンオンの際にはゲート電極12に正電位が与えられ、正電荷はp型ゲート領域2及びp型埋め込み領域4から空乏層に充電される方向に流れる。
【0037】
本実施形態では、p型埋め込み領域が逆T字型をしていて、n型ドレイン領域に近い部分の面積が大きく形成されているので、上記の吐き出しまたは充電電流の分担をより有効に実行することができる。また、ターンオフによるドリフト領域の空乏化時に埋め込み(介在)領域端部での電界集中を抑制し、耐圧を向上させる。
【0038】
また、オン抵抗を決めるp型ゲート領域とp型埋め込み領域の間隔、及び耐圧を決めるp型埋め込み領域同士の間隔は、独立に決定することができる。即ち、p型ゲート領域とp型埋め込み領域の間隔を決めた後、p型埋め込み領域同士の間隔を逆T字型の水平部分の長さを調節することにより自由に決定することができる。このように上記2つの間隔を自由に設定する事により、低オン抵抗、高耐圧の両方を同時に達成する事ができる。
【0039】
次に、本実施形態の半導体装置の製造方法を、図3、図4を参照して説明する。図3、図4では、図1において点線で囲ったUC1部分、即ちゲート領域2を中心とした1ピッチ分のユニットセルの製造段階を図解することにより説明する。
【0040】
先ず、図3(a)に示すように、厚さ10μmのn型SiC層21(不純物濃度1×1015〜1×1017cm−3)が表面にあるn型SiC基板(基板厚としては400μm程度)を準備し、洗浄後幅4μmのイオン注入用のマスク22を形成する。なお、この例では、1ユニットセルのピッチは16μmである。
【0041】
イオン注入用マスクは注入されるイオンを阻止する事ができれば良く、酸化膜マスク、レジストマスク、メタルマスクなどが候補に挙げられる。また、パターニングは公知のフォトリソグラフィー技術などを使用すれば良い。
【0042】
次に、このマスク22を用いて、SiC層21の上面にp型不純物(AlまたはB)を数keV〜数MeVの加速電圧で深さ2μmまで注入して、不純物濃度1×1020〜1×1021cm−3を有するp型領域23を形成する。p型不純物はSiCにp型の導電性を付与するものであればよい。
【0043】
次に、図3(c)に示すように、マスク層22を除去した後、SiC層21上に、n型SiC層25(不純物濃度1×1015〜1×1017cm−3)を厚さ4μmエピタキシャル成長させる。n型不純物はN,P等を使う事ができるが、SiCに対しn型の導電性を付与するものであれば良い。なお、このSiC層25は、SiC層21と一体化するので、以降は参照番号21で表示する。
【0044】
次に、図3(d)に示すように、幅14μmのイオン注入用マスク27を形成して、単位領域の両端に1μmの露出部を設ける。
【0045】
次に、図3(e)に示すように、マスク27を用いて、p型不純物(AlまたはB)を数keV〜数MeVの加速電圧で深さ4μmイオン注入して、p型領域23に接続するp型領域28(不純物濃度1×1020〜1×1021cm−3)を形成する。なお、このp型領域28は、p型領域23と一体化するので、以降は参照番号23で表示する。p型領域23が図1の埋め込み領域4となる。
【0046】
なお、p型領域28の形成については、図3(c)のn型SiC層25のエピタキシャル成長から図3(e)のp型領域28のイオン注入までの工程を総膜厚4μmになるまで複数回繰り返して行なってもよい。
【0047】
次に、図3(f)に示すように、マスク27を除去した後、新たなイオン注入用マスク29を形成する。マスク29は、両端各3μmをマスクし、中央部に10μm幅の開口を有する。
【0048】
次に、図4(a)に示すように、マスク29を用いて、p型不純物(AlまたはB)を数keV〜数MeVの加速電圧で深さ2μmイオン注入して、p型領域31(不純物濃度1×1020〜1×1021cm−3)を形成する。このp型領域31が図1のゲート領域2となる。
【0049】
次に、図4(b)に示すように、p型領域23、31を覆うようにイオン注入用マスク33を形成し、続いて図4(c)に示すように、n型不純物(NまたはP)を数keV〜数100keVの加速電圧でイオン注入し、n型領域35(不純物濃度1×1020〜1×1021cm−3)を形成する。このn型領域35が図1のソース領域3になる。
【0050】
次に、図4(d)に示すように、n型領域35とp型領域31の境界上に幅4μmの絶縁膜37が間隔3μmで形成され、続いて図4(e)に示すように、Ni,Co、Al、Ti等の金属により、ソース電極11、ゲート電極12を形成する。絶縁膜37はソース電極11、ゲート電極12が短絡しないように設けられるもので、図1においては見易いように省略されていた。また、ソース電極11は、p型領域23にオーバーラップするように設けられている。
【0051】
以上により、SiC基板上面側の素子が形成される。SiC基板裏面側については、n型SiC基板1の裏面側からn型不純物をイオン注入、拡散させるなどの方法でn型ドレイン領域5を形成し、Ni,Co、Al、Ti等の金属によりドレイン電極13を形成する。ソース電極11、ゲート電極12、ドレイン電極13の形成後には、熱処理を加えて電極のコンタクト抵抗を下げることが望ましい。n型SiC基板1のn型不純物濃度が高い場合には、このn型不純物領域の形成は必要に応じて省略可能である。
【0052】
なお、実施形態1ではSiC基板裏面側にn型ドレイン領域5を形成して静電誘導型トランジスタとしたが、n型領域を表面に有するp型基板を用いて、静電誘導型サイリスタとすることもできる。
【0053】
(実施形態2)
実施形態2は、実施形態1の変形例であり、実装密度をより向上させた実施形態を提供する。図5は実施形態2の斜視図で、図6はチップ上面図である。図6のチップ上面図は図2と同様であるが、ソース電極下の構造が実施形態1(図2)の場合と異なる。図6のB−B´線に沿った断面が、図5の斜視図として示されている。
【0054】
図6から明らかなように、実施形態1と同様に、n型ソース領域3、p型ゲート領域2、n型ソース領域3の両脇を逆T字型のp型埋め込み領域4が挟む形状になっており、埋め込み領域4に挟まれた部分がn型チャネル領域7になる。チャネル領域7は紙面奥方向に延びてゲート電極12の櫛歯の部分と直行する。図5においては、チャネル領域は隣接する櫛歯を橋絡する形になっている。即ち、ゲート領域2、ソース領域3、埋め込み領域4の配列方向が、実施形態1と90度異なっている。
【0055】
ソース電極11はn型ソース領域3とp型埋め込み領域4とはコンタクトするが、ゲート領域2とは絶縁膜8を介す事により絶縁が保たれる。ゲート領域2へはチャネル領域7の延在方向と垂直に配置されたゲート電極12(櫛歯)の不図示の部分から信号を送る。
【0056】
実施形態1では、チャネル領域7はゲート電極12の櫛歯1本に付き1つ形成されている。さらに、ゲート電極12の隣接する櫛歯の間隔は、ソース電極11との隙間確保を考慮する必要があり、その間隔を狭めるのに限界がある。
【0057】
これに対し実施形態2では、電極間の隙間確保を考慮することなく、ゲート領域2、ソース領域3、埋め込み領域4を繰り返し配置ずることができるので、チャネル領域7を高密度に配置する事ができ、オン抵抗を実施形態1よりも更に下げる事ができる。実施形態2においても、実施形態1で述べた効果を同様に奏することができることは云うまでもない。
【0058】
ユニットセルの構成は実施形態1と同じであるから、製造方法は実質的に実施例1と同様な方法を採ることができる。但し、各ユニットセル間でソース電極とゲート電極の短絡を考慮しないで済むので、セルピッチは10μmとすることができる。従って、図3(a)においてセル幅は10μmになるが、イオン注入用マスク22の幅は4μmのままとする。また、ゲート領域31とソース領域35は、異なる断面で夫々の電極に接続するので、図4(d)、(e)の工程が異なってくる。図7(a)、(b)はソース電極の接続部の絶縁膜37及びソース電極11の形成工程を示す。図8(a)、(b)はゲート電極の接続部の絶縁膜37及びゲート電極12の形成工程を示す。
【0059】
なお、実施形態2においても、n型領域を表面に有するp型基板を用いて、静電誘導型サイリスタとすることができる。
【0060】
(実施形態3)
実施形態3は、実施形態1における埋め込み領域4の断面形状を変えたものである。埋め込み領域4は、ソース電極11とコンタクトしている部分の幅よりもドレイン領域5に対向している側の幅が広い構造なら良く、例えば図9のような側面が斜めに形成されたものであってもでも良い。この斜めの形状の埋め込み領域4はp型不純物の斜めイオン注入などの方法を用いる事で形成する事ができる。この場合、ソース領域3の側面も図9に示すように、斜めにすることが望ましい。例えば、ゲート領域2の上面の幅は10μm、ソース領域3の幅は2μm、埋込み層4の深さは8μm、隣接する埋込み層4の最も接近する部分の間隔は4μmとする。
【0061】
本実施形態においては、p型埋め込み領域の断面が台形状に形成されていて、n型ドレイン領域に近い部分の面積が大きく形成されているので、スイッチング時の電荷の吐き出しまたは充電の分担をより有効に実行することができる。また、ターンオフによるドリフト領域の空乏化時に埋め込み(介在)領域端部での電界集中を抑制し、耐圧を向上させる。
【0062】
また、オン抵抗を決めるp型ゲート領域とp型埋め込み領域の間隔、及び耐圧を決めるp型埋め込み領域同士の間隔は、独立に決定することができる。即ち、p型ゲート領域とp型埋め込み領域の間隔を決めた後、p型埋め込み領域同士の間隔を台形の底辺部分の長さを調節することにより自由に決定することができる。このように上記2つの間隔を自由に設定する事により、低オン抵抗、高耐圧の両方を同時に達成する事ができる。
【0063】
(実施形態4)
実施形態4も、実施形態1における埋め込み領域4の構成を変えたものである。実施形態4の要部断面図を図10に示すが、埋め込み領域4とソース電極11がコンタクトする部分にトレンチ9を設け、これにポリシリコンとメタルの少なくとも一方の導電性充電物10で埋め込む事により、埋め込み領域4からソース電極11に正電荷を吐き出す際の抵抗を下げることが可能となり、スイッチング速度をより高速化させる事ができる。
【0064】
実施形態4の半導体装置の製造方法は、実施形態1の製造方法と図4(c)までは同様に実施する。図4(c)の工程終了後、マスク33を除去した後、ユニットセル両側のp+型領域23の中心部を開口するマスクを形成し、このマスクを用いてRIE等でトレンチを形成し、これにポリシリコンを埋め込む。その後、図4(d)以降の工程を行なえば、図10の半導体装置を得ることができる。
【0065】
このような構造であれば、実施形態1で述べた効果を同様に奏することができる上、さらにさらにスイッチング速度を向上させることができる。
【0066】
(実施形態5)
図11は、実施形態5に関わる静電誘導半導体装置の斜視図である。理解を容易にするために、実施形態1〜4と同一部分には同一番号を付す。実施形態5の静電誘導半導体装置はn型半導体基板1の上部表面部分にp型埋め込み領域4とp型ゲート領域(第1の半導体領域)2とn型ソース領域(第2の半導体領域)3とを備える。ソース領域3はゲート領域2に挟まれる形で配置されており、ソース領域3よりもゲート領域2が深く設けられており、ゲート領域2よりもp型埋め込み領域4が深く設けられている。
【0067】
一方、半導体基板1の下部にはn型ドレイン領域(第3の半導体領域)5を備えており、p型埋め込み領域4とドレイン領域5の間はn型のドリフト層6となっている。
【0068】
型埋め込み領域4の少なくとも一部はソース電極11と接続していて、ソース電極11と接続する部分よりも、ドレイン領域5に対向する部分の方が幅が広くなっている。また、p型埋め込み領域4のドレイン領域5に対向する部分の少なくとも一部は開口しており(p型ではないn型やi型の領域が設けられており)、ソース電極11からの電子がドリフト層6へ流れるようになっている。
【0069】
図12は電極構造を示す上面図で、実施形態1〜4と同様となっている。図11あるいは図12のC−C′線に沿った断面図が図13に、D−D′線に沿った断面図が図14に示されている。
【0070】
また、図13または図14から明らかなように、n型ソース領域、n型チャネル領域7の両側をp型ゲート領域2が挟む形状になっており、p型ゲート領域2よりも深い位置でp型埋め込み領域が水平に延在しており、n型ソース領域とp型埋め込み領域の一部はソース電極11とコンタクトしている。p型ゲート領域2上にはゲート電極12が形成されている。
【0071】
実施例5においては、p型埋め込み領域4をゲート領域2より深い位置に水平埋込み層として設けており、ソース電極11とのコンタクトは、少なくとも1個所で行えば良い。従って、実施形態1よりも半導体装置内の実装密度を向上させることが可能になり、より小型化ができる。
【0072】
また、p型埋め込み領域4の埋込み層部分には、ゲート領域2とドレイン領域5とを垂直に結ぶ線を含むように開口部を設けているので、チャネル領域7をドリフト領域6に確実に繋げることができる。
【0073】
実施形態5の動作は、実施形態1と同様であり、実施形態1と同様な効果を奏することができる。また、実施例4と同様に、埋め込み領域4とソース電極11がコンタクトする部分にトレンチを設け、このトレンチにポリシリコン、メタル等の導電性充填物で埋め込むようにしてもよい。このようにすることにより、埋め込み領域4から正電荷を吐き出す際の抵抗を下げることが可能となり、スイッチングをより高速化させる事ができる。
【0074】
次に、実施形態5の半導体装置の製造方法を説明する。図11において埋め込み領域4のソース電極11へのコンタクト部を含むユニットセル(UC2で表示される)を例として段階的に説明する。
【0075】
最初に、D−D´線に沿った断面部の製造方法について述べる。先ず、図15(a)に示すように、厚さ10μmのn型SiC層21(不純物濃度1×1015〜1×1017cm−3)が表面に形成されたn型SiC基板を準備し、洗浄後幅4μmのイオン注入用のマスク22を形成する。このマスク22を用いて、SiC層21の上面にp型不純物(AlまたはB)を数keV〜数MeVの加速電圧で深さ2μmまで注入して、不純物濃度1×1020〜1×1021cm−3を有するp型領域23を形成する。p型領域23の幅は、コンタクト領域で7μm(但し片側部分のみ表示しているので、全体として14μm)、コンタクト領域以外では8μmとする。
【0076】
次に、図15(b)に示すように、マスク層22を除去した後、SiC層21上に、n型SiC層25(不純物濃度1×1015〜1×1017cm−3)を厚さ4μmエピタキシャル成長させる。n型不純物はN,P等を使用する。なお、このSiC層25は、SiC層21と一体化するので、以降は参照番号21で表示する。
【0077】
次に、図15(c)に示すように、イオン注入用マスク27を形成して、埋込み層4のコンタクトを形成する部分に2μmの露出部を設ける。図では、コンタクトの半分しか図示していないので、コンタクトの幅としては4μmである。
【0078】
次に、図15(c)に示すように、マスク27を用いて、p型不純物(AlまたはB)を数keV〜数MeVの加速電圧で深さ4μmイオン注入して、p型領域23に接続するp型領域28(不純物濃度1×1020〜1×1021cm−3)を形成する。なお、このp型領域28は、p型領域23と一体化するので、以降は参照番号23で表示する。p型領域23が図1の埋込み領域4となる。
【0079】
次に、図15(d)に示すように、マスク27を除去した後、新たなイオン注入用マスク29を形成する。マスク29は、ゲート領域形成用の幅10μmの開口を有する。このマスク29を用いて、p型不純物(AlまたはB)を数keV〜数MeVの加速電圧で深さ2μmイオン注入して、p型領域31(不純物濃度1×1020〜1×1021cm−3)を形成する。このp型領域31が図11のゲート領域2となる。
【0080】
次に、図16(a)に示すように、p型領域23、31を覆うようにイオン注入用マスク33を形成し、n型不純物(NまたはP)を数keV〜数100keVの加速電圧でイオン注入し、n型領域35(不純物濃度1×1020〜1×1021cm−3)を形成する。このn型領域35が図11のソース領域3になる。
【0081】
次に、図16(b)に示すように、n型領域35とp型領域31の境界上に幅4μmの絶縁膜37を設け、Ni,Co、Al、Ti等の金属によりソース電極11、ゲート電極12を形成する。絶縁膜37はソース電極11、ゲート電極12が短絡しないように設けられる。また、ソース電極11は、p型領域23にオーバーラップするように設けられる。ソース電極11、ゲート電極12を形成後、接触抵抗を下げるために、熱処理を実施する。
【0082】
次に、図11のC−C´線に沿った断面部の形成方法について図17を用いて説明する。図17(a)は図15(a)に相当する工程であるが、p型領域23が連続的に形成され点が異なる。その後は図15(b)〜図16(a)と同じ工程が実施され、最終的には図17(b)の形が完成する。断面C−C´部と断面D−D´部のプロセスが同時に進行することは云うまでも無い。
【0083】
実施形態5においても、n型層を表面に有するp型半導体基板を使用することにより、静電誘導型サイリスタとすることもできる。
【0084】
(実施形態6)
実施形態6は、実施形態5の変形例で、ゲート領域2とソース領域3の配列方向に関し、実施形態2の形態(ゲート領域2とソース領域3の配列方向を実施形態1と90度変える)を組み合わせたものである。図18は、実施形態6に係る半導体装置の斜視図である。図19は電極構造を示す上面図で、実施形態1〜5と同様となっている。図18あるいは図19のE−E′線に沿った断面図が図20に、F−F′線に沿った断面図が図21に示されている。本実施形態の半導体装置の製造方法は、実施形態5の図15〜17と同様に実施すれば良いので、説明を省略する。
【0085】
上記のごとく構成することにより、実施形態5と同様な効果を奏するとともに、実施形態5よりも更なる小型化を実現することができる。また、実施形態4と同様に、埋め込み領域4がソース電極11とコンタクトする部分にトレンチを設け、このトレンチにポリシリコン、メタル等の導電性充填物で埋め込むようにしてもよい。このようにすることにより、埋め込み領域4から正電荷を吐き出す際の抵抗が下がり、スイッチングをより高速化させる事ができる。
【0086】
(実施形態7)
実施形態7は、これまで述べた静電誘導半導体装置の構成を横形に構成した実施形態で、図22はその要部構成を示す上面図である。本実施形態の静電誘導半導体装置はn型の高抵抗半導体層の上面部分に並置されたp型のゲート領域(第1の半導体領域)2とn型のソース領域(第2の半導体領域)3とp型の介在領域4とn型のドレイン領域(第3の半導体領域)5を備えている。
【0087】
ソース領域3は介在領域4とゲート領域2の間に挟まれる形で形成されていて、ソース領域3よりもゲート領域2がドレイン領域5に近く、ゲート領域2よりも介在領域4がさらにドレイン領域5の近くに設けてある。
【0088】
また、介在領域4は略T字型の形状をしており、ソース領域極3とコンタクトする部分よりも、ドレイン領域5に近い部分の方が幅が広くなっている。介在領域4とドレイン領域5の間はn型ドリフト層となっている。
【0089】
隣接する介在領域4先端部(ドレイン領域5との対向部)の間の空隔は、ゲート領域2とドレイン領域5を垂直に結ぶ線を含む位置に設定されている。また、介在領域4がドレイン領域5に平行に延在する部分は、ソース領域3とドレイン領域5を垂直に結ぶ少なくとも一部の線を遮るように配置されている。
【0090】
また、介在領域4においては、ソース領域3とコンタクトしている部分よりもドレイン領域5側の方が幅が広い構造なら良く、上記のT字形の他に、例えば図23のように、介在領域を台形状に形成してもよい。この場合、ソース領域3は3角形にするなどが望ましい。
【0091】
図24は、図22あるいは図23のG−G′線に沿った断面図であるが、p型半導体基板1の上面にp型のゲート領域2、n型のソース領域3、p型の介在領域が形成されている。p型のゲート領域2の底部にはn型層15を設けてp型のゲート領域4との間を電気的に分離している。
【0092】
本実施形態の半導体装置の製造方法は、例えばp型基板上にn型層をエピタキシャル成長させた後に、イオン注入等で、各領域を形成すればよい。エピタキシャル成長と各領域作成の工程(イオン注入)を複数回繰り返すことにより、垂直方向に厚みを持った素子を形成することができる。あるいは、表面部に形成する上記の各領域を絶縁膜上の半導体層(例えばSOI層)に形成するようにしてもよい。
【0093】
本実施形態の半導体装置では、例えば、ソース領域3の幅を2μmとしたとき、隣接する介在領域4の最も接近する距離を4μmとすればよい(図22,23参照)。その他の素子領域の寸法は、実施形態1の断面図における寸法を、平面図に置き換えたものとすればよく、例えばゲート領域2の幅は10μm、介在領域4のドレイン領域5との対向部分の幅は12μm等とすればよい。
【0094】
なお、図22、23ではソース電極、ゲート電極、ドレイン電極は示していないが、図24に示すように、ソース電極11はソース領域3及び介在領域4と、ゲート電極12はゲート領域2と、ドレイン電極(不図示)はドレイン領域5と夫々コンタクトするように、かつ各々は絶縁が保たれるように形成すればよい。
【0095】
ソース電極11、ゲート電極12の平面的な配置例(1ユニットセル分)を図25に示す。図25では絶縁膜の図示が省略されているが、各電極間には絶縁膜を介在させるものとする。第1、第2、第5、第6の実施例では、埋め込み領域4の全ての表面領域にソース電極11を形成する例を示したが、図25のように、埋め込み領域(介在領域)4がソース領域3に接する部分にのみ、ソース電極11を形成してもよい。
【0096】
上記の横形構成によっても、実施形態1で述べ効果を同様に奏することが可能である。即ち、p型介在領域がT字型あるいは台形型をしていて、n型ドレイン領域に近い部分の面積が大きく形成されているので、上記の吐き出しまたは充電電流の分担をより有効に実行することができる。また、ターンオフによるドリフト領域の空乏化時に介在領域端部での電界集中を抑制し、耐圧を向上させる。
【0097】
また、オン抵抗を決めるp型ゲート領域とp型介在領域の間隔、及び耐圧を決めるp型介在領域同士の間隔は、独立に決定することができる。即ち、p型ゲート領域とp型介在領域の間隔を決めた後、p型介在領域同士の間隔をT字型の水平部分の長さあるいは台形の長辺の長さを調節することにより自由に決定することができる。このように上記2つの間隔を自由に設定する事により、低オン抵抗、高耐圧の両方を同時に達成する事ができる。
【0098】
実施形態7においても、n型のドレイン領域5をp型領域に変えることにより静電誘導型サイリスタとすることができる。
【0099】
(実施形態8)
図26は、実施形態8に係る半導体装置の模式的な斜視図(一部透視図)である。本実施形態も静電誘導半導体装置を横形に形成した例であるが、実施例7と異なり、基板1′上に絶縁膜16を介して設けられたn型高抵抗半導体層に、p型ゲート領域(第1の半導体領域)2とn型ソース領域(第2の半導体領域)3とn型ドレイン領域(第3の半導体領域)5を備え、T字型のp型介在領域4がゲート領域2とドレイン領域5の間に備えられている。介在領域4とドレイン層5の間がドリフト層6となる。この構成は、第2の実施形態の構成を横形にしたものと略同じである。
【0100】
上記の構成においても、n型ソース領域3がp型ゲート領域2に挟まれる形で配置されており、n型ソース領域3よりもn型ゲート領域2がn型ドレイン領域5に近くに設けてあり、p型ゲート領域2よりもp型介在領域4のT字型の横棒部分がn型ドレイン領域5に近くなるように設けてある。
【0101】
T字型介在領域の縦棒部分の少なくとも一部はn型ソース領域3と接していて、ソース領域3とコンタクトする部分よりも、ドレイン領域5に対向する部分の方が幅が広くなっている。また、T時型の横棒部分の埋め込み層の少なくとも一部は開口しており(p型ではない領域が設けられており)、ソース電極3からの電子がドリフト層6へ流れるようになっている。
【0102】
上記の開口部は、ゲート領域2とドレイン領域5を垂直に結ぶ線を含む位置に設定されている。また、介在領域4のT字型横棒部分で開口部が設けられていない部分は、ソース領域3とドレイン領域5を垂直に結ぶ少なくとも一部の線を遮るように配置されている。
【0103】
なお、図26ではソース電極、ゲート電極、ドレイン電極は示していないが、図27の上面図に示すように、ソース電極11はソース領域3と介在領域4とコンタクトしており、ゲート電極12はゲート領域2と、ドレイン電極13はドレイン領域5と夫々コンタクトしており、各々は絶縁膜(不図示)により絶縁が保たれている。
【0104】
なお、本実施形態では、素子を形成する各領域を絶縁層16上に設けたが、実施形態7と同様に、p型半導体基板の上面に上記の各領域を形成し、p型ゲート領域の下部にn型層を挿入して、p型領域間との電気的分離を行なうようにしてもよい。なお、素子形成領域の半導体層にSiCを用いた場合には、実施形態3(図11)の断面形状の寸法を平面図の寸法に置き換えることができる。
【0105】
上記の構成においても、実施形態3で述べた効果を同様に奏することができる。即ち、p型介在領域がT字型をしていて、n型ドレイン領域に近い部分の面積が大きく形成されているので、上記の吐き出しまたは充電電流の分担をより有効に実行することができる。また、介在領域が連続的形成されているので、ターンオフによるドリフト領域の空乏化時に介在領域端部での電界集中が発生することなく、耐圧を向上させる。
【0106】
また、オン抵抗を決めるp型ゲート領域とp型介在領域の間隔を、耐圧を考慮することなく独立に決定することができるので、低オン抵抗、高耐圧の両方を同時に達成する事ができる。
【0107】
実施形態8においても、n型のドレイン領域5をp型領域に変えることにより静電誘導型サイリスタとすることができる。
【0108】
以上、実施形態1〜8を通じて、オン抵抗を上げること無く、所望の耐圧を実現する構造を説明したが、実際的なモデルを通じてその効果を説明する。図28は、半導体基板101上面にゲート領域102、ソース領域103とともにカソード領域100を有する従来技術の静電誘導半導体装置である。ソース領域103の幅を2μm、ゲート領域の幅を4μ(ゲート電極幅2μmにあわせ余裕左右に1μm)としたとき、カソード間距離は8μmとなる。これを先に説明した図30(b)のグラフに当てはめると、耐圧は約3.9kVになる。
【0109】
一方、本発明の代表例として、図29に示すモデルを考えた場合、チャネル領域の最小幅を図示のように2μmとすれば、埋め込み領域4間の距離は、左右のチャネル幅を加えた分以上あれば良いと考えられるので、4μmあればよい。これを図30のグラフに当てはめると、耐圧は約4.6kVに向上できることが分かる。
【0110】
(応用例)
一般に、インバータ回路は1つのスイッチング素子と1つの整流素子を並列に繋いで回路を組む。しかし、本発明によるスイッチング素子はドレイン領域の導電性と逆の導電性をもつ領域がソース電極とコンタクトしている事により、ゲートをターンオフさせた状態でソース電位をドレイン電位より上げるとソースからドレインに電流が流れる。しかし、ゲートをターンオフさせた状態でソース電位をドレイン電位より下げると電流は流れなくなる。この性質を利用することにより、図31に示すように、本発明の半導体装置20をスイッチング素子として用いるだけで、整流素子を新たに用意する事無く、インバータ回路を組む事が出来る。素子の数を半分に減らす事が出来、インバータ回路の小型化、高信頼性、低価格を実現する事ができる。
【0111】
なおこの発明は上記した実施形態に限るものではない。例えばp型とn型が逆になったものが他の実施例として考えられる。基板も上記実施形態ではSiCを例に挙げたが、Siなどその他の半導体を用いることができる。その際の不純物濃度、及び各領域の寸法は、耐圧とオン抵抗などの電気的特性を考えて決定される値となる。
【0112】
また、上記実施形態ではユニポーラの静電誘導半導体を例に挙げたが、前述のように、ドレイン領域と逆の導電性領域をドリフト層のドレイン領域側に設ける事によりバイポーラの静電誘導半導体とすることができる。
【0113】
また、p型領域、n型領域はイオン注入やエピタキシャル成長などの組み合わせにより作る事が出来、その手段は選ばない。
【0114】
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々な発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。
【0115】
【発明の効果】
本発明の半導体装置は、基板の表面にドレイン領域(第3の半導体領域)と、これと対向してゲート領域(第1の半導体領域)、ソース領域(第2の半導体領域)、ゲート領域と同一導電型を有しソース領域と電気的に接続される埋め込み(介在)領域を有する。この埋め込み(介在)領域は、ソース領域とコンタクトする側よりも、ドレイン領域に対向する側の方が大きい幅を有する。このため、ターンオフによるドリフト領域の空乏化時に埋め込み(介在)領域端部での電界集中を抑制し、耐圧を向上させる。同時に、ドリフト領域の空乏化時の正電荷のソース電極への吐き出しをこの埋め込み(介在)領域が分担するので、ゲート駆動電力を減少させることができる。
【0116】
ターンオン時のオン抵抗を決めるゲート領域−埋め込み(介在)領域間の距離と、ターンオフ時の耐圧を決める埋め込み(介在)領域間の距離を、各々独立に決定することができるので、最適条件決定の自由度が増大する。
【図面の簡単な説明】
【図1】第1の実施形態に係る半導体装置の断面図。
【図2】第1の実施形態に係る半導体装置の上面。
【図3】第1の実施形態に係る半導体装置の製造工程を説明する断面図。
【図4】図3に続く工程を説明する半導体装置の断面図。
【図5】第2の実施形態に係る半導体装置の斜視図。
【図6】第2の実施形態に係る半導体装置の上面図。
【図7】第2の実施形態の半導体装置の製造工程を説明する断面図。
【図8】第2の実施形態の半導体装置の製造工程を説明する断面図。
【図9】第3の実施形態に係る半導体装置の断面図。
【図10】第4の実施形態に係る半導体装置の斜視図。
【図11】第5の実施形態に係る半導体装置の斜視図。
【図12】第5の実施形態に係る半導体装置の上面図。
【図13】第5の実施形態に係る半導体装置の断面図。
【図14】第5の実施形態に係る半導体装置の他の断面図。
【図15】第5の実施形態の半導体装置の製造工程を説明する断面図。
【図16】図15に続く工程を説明する半導体装置の断面図。
【図17】第5の実施形態の半導体装置の製造工程を説明する他の断面図。
【図18】第6の実施形態に係る半導体装置の斜視図。
【図19】第6の実施形態に係る半導体装置の上面図。
【図20】第6の実施形態に係る半導体装置の断面図。
【図21】第6の実施形態に係る半導体装置の他の断面図。
【図22】第7の実施形態に係る半導体装置の平面図。
【図23】第7の実施形態の変形例に係る半導体装置の平面図。
【図24】第7の実施形態に係る半導体装置の断面図。
【図25】第7の実施形態に係る半導体装置の電極構成を示す部分的な上面図。
【図26】第8の実施形態に係る半導体装置の斜視図。
【図27】第8の実施形態に係る半導体装置の上面図。
【図28】従来の静電誘導半導体装置の断面図。
【図29】本発明の半導体装置を代表するモデルを説明する断面図。
【図30】非特許文献2から引用したゲート間距離と耐圧の関係を説明する図。
【図31】本発明の半導体装置の応用例を示す回路図。
【符号の説明】
1…半導体基板
2…ゲート領域
3…ソース領域
4…埋め込み領域、介在領域
5…ドレイン領域
6…ドリフト領域
7…チャネル領域
8…絶縁膜
11…ソース電極
12…ゲート電極
13…ドレイン電極
15…n型半導体層
16…絶縁膜
20…半導体装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly, to an electrostatic induction transistor with a reduced gate load.
[0002]
[Prior art]
As a conventional switching element, an electrostatic induction transistor (Static Induction Transistor, hereinafter abbreviated as SIT) and a junction field effect transistor (hereinafter, abbreviated as JFET) are known.
[0003]
This type of electrostatic induction semiconductor device is n N on one surface portion of the type semiconductor substrate + Type source region and p + A type gate region is formed, and the source region is sandwiched between the gate regions. In general, the gate region is formed deeper than the source region, and n sandwiched between the gate regions The mold region is called a channel region. N N on the other surface portion of the type semiconductor substrate + Type drain region, n between the drain region and the gate region It becomes a type drift region. A source electrode is provided in the source region, a gate electrode is provided in the gate region, and a drain electrode is provided in contact with the drain region.
[0004]
In this electrostatic induction semiconductor device, a channel region is depleted by a voltage signal applied to a gate electrode, and is made conductive / interrupted. However, the main junction of this electrostatic induction semiconductor device is generally formed by a pn junction of a gate layer and a drain layer, and charge / discharge occurs in the depletion layer between the drain and gate during switching. For this reason, for example, at the time of turn-off, the same amount of charge as that flowing to the drain flows into the gate circuit, and the gate driving power is increased.
[0005]
In contrast, n + Type source region and p + Type cathode region is contacted by the same cathode electrode, and the gate drive is performed by burdening the cathode electrode with a part of the charge discharged from the p-type region among the charge and discharge of the charge performed at the pn junction at the time of switching. A method for reducing electric power has been proposed (see, for example, Patent Document 1).
[0006]
However, in the case of unipolar static induction semiconductor devices such as SIT and JFET, p in this structure + The type cathode region becomes an unnecessary dead space other than the reduction of the gate driving power. p + When the area of the type cathode region is increased, the load on the gate circuit is reduced correspondingly, but the on-resistance is increased because the channel width is reduced. Conversely, p + If the area of the type cathode region is reduced, the on-resistance is reduced, but the load on the gate circuit is increased accordingly.
[0007]
In contrast, p + P type cathode region + Proposed a method to reduce the gate drive power by providing deeper than the gate region and selectively discharging the charge discharged from the p-type region from the cathode region out of the charge and discharge performed at the pn junction during switching. (For example, see Patent Document 2).
[0008]
However, since the gate region and the cathode region having the same p-type conductivity are uneven in the semiconductor substrate, there is a problem that electric field concentration occurs at the deep end of the cathode region and the breakdown voltage is impaired.
[0009]
Further, since the deeply provided cathode region is deeply provided perpendicular to the bottom direction from the surface, the distance that determines the switching performance and the on-resistance (gate region-cathode region interval) and the distance that determines the breakdown voltage (cathode region-cathode) There is also a problem that the degree of freedom in design is low because it is not possible to optimally design (space intervals) separately.
[0010]
An analysis result of the relationship between the breakdown voltage and the distance between the gate regions formed deeper than the source region has also been reported (see, for example, Non-Patent Document 1). This is an investigation of the relationship between the gate-to-gate distance and the breakdown voltage in the configuration as shown in FIG. 30A. FIG. 30B shows the result in a simplified manner. In this analysis, the ideal breakdown voltage is 5 kV, but it can be seen that the breakdown voltage decreases as the distance between the gates increases.
[0011]
When the cathode region is provided, since the cathode region is formed deeper than the gate region, the inter-gate distance in FIG. 30A can be replaced with the inter-cathode distance. From this, it can be understood that the withstand voltage decreases when the distance between the cathodes is increased in order to reduce the on-resistance.
[0012]
[Patent Document 1]
JP-A-4-338678
[0013]
[Patent Document 2]
JP-A-5-75143
[0014]
[Non-Patent Document 1]
Kenichi Ogura et al. ISPSD '95, p. 256
[0015]
[Problems to be solved by the invention]
In general, the wider the distance between the gate region and the cathode region, the lower the on-resistance, and the smaller the distance between the cathode region and the cathode region, the higher the breakdown voltage. Conventionally, either of the requirements of low resistance and high breakdown voltage must be sacrificed, and it has been very difficult to satisfy two contradictory requirements and their optimum values at the same time.
[0016]
The present invention has been made in view of the above circumstances, and provides a semiconductor device that can simultaneously achieve both low on-resistance and high breakdown voltage.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, a first semiconductor device of the present invention includes a semiconductor substrate having first and second main surfaces, and a first conductivity type formed on the first main surface of the semiconductor substrate. A high-resistance semiconductor layer; a second-conductivity-type first semiconductor region provided on a surface of the first-conductivity-type high-resistance semiconductor layer; and the first-conductivity-type high-resistance semiconductor layer on the surface. A first conductivity type second semiconductor region formed so as to sandwich one semiconductor region and shallower than the first semiconductor region, and the first and second semiconductor regions and the semiconductor substrate. A buried portion embedded in the high-resistance semiconductor layer between the first and second semiconductor regions, and the buried portion connected to the buried portion and led to the surface of the high-resistance semiconductor layer A second conductivity type fill having a narrower contact portion A current path between the second semiconductor region and the semiconductor substrate is formed in the high resistance layer through a region sandwiched between the first semiconductor region and the semiconductor substrate. It is characterized by.
[0018]
Furthermore, a second semiconductor device of the present invention is a semiconductor substrate, a first conductivity type high-resistance semiconductor layer formed on the upper surface of the semiconductor substrate, and a second conductivity formed on the upper surface of the high-resistance semiconductor layer. A first semiconductor region of a first type and a second semiconductor of a first conductivity type formed on the upper surface of the high resistance semiconductor layer so as to sandwich the first semiconductor region and formed shallower than the first semiconductor region A region, a portion sandwiching the first semiconductor region and the second semiconductor region sandwiching the first semiconductor region from the outside, and proceeding below the first semiconductor region at a position deeper than the first semiconductor region A vertical cross-section having an overhanging portion in the horizontal direction is sandwiched between an inverted T-shaped or trapezoidal second conductivity type buried region, the horizontal overhanging portion of the buried region and the semiconductor substrate, and in the high-resistance semiconductor layer Formed first conductivity type A drift region, a channel region formed in the high resistance semiconductor layer sandwiched between the first semiconductor region and the buried region, and leading to the drift region, and a first region formed on the first semiconductor region An electrode, a second electrode formed so as to be connected to a portion of the buried region sandwiching the second semiconductor region and the second semiconductor region from the outside, and formed on the lower surface of the semiconductor substrate And a third electrode formed.
[0019]
Furthermore, a third semiconductor device according to the present invention includes a semiconductor substrate, a high-resistance semiconductor layer formed on the upper surface of the semiconductor substrate, and a second first conductivity type formed on the upper surface of the high-resistance semiconductor layer. A first conductive region of a second conductivity type formed on the upper surface of the high resistance semiconductor layer so as to sandwich the second semiconductor region, and formed deeper than the second semiconductor region; Formed in the high-resistance semiconductor layer at a position deeper than one semiconductor region so as to face the semiconductor substrate and having an opening in a region sandwiched between the first semiconductor region and the semiconductor substrate. A buried region of a second conductivity type having a buried portion, a contact portion exposed on the upper surface of the high-resistance semiconductor layer, and a first region formed in the high-resistance layer sandwiched between the buried region and the semiconductor substrate. Conductive drift A channel region that is sandwiched between the first semiconductor region and communicates with the drift region through the opening in the buried region, a first electrode formed on the first semiconductor region, and the second electrode And a third electrode formed on the lower surface of the semiconductor substrate. The second electrode is connected to the contact portion of the buried region.
[0020]
Furthermore, a fourth semiconductor device of the present invention includes a first conductive type high-resistance semiconductor layer, a third semiconductor region having a stripe-like planar shape formed on the surface of the high-resistance semiconductor layer, and the high-resistance semiconductor layer. On the surface of the semiconductor layer, the first semiconductor region of the second conductivity type provided to face the side surface of the striped third semiconductor region and the high resistance so as to sandwich the first semiconductor region A first conductivity type formed on the surface of the semiconductor layer and provided such that a distance from the third semiconductor region is greater than a distance between the first semiconductor region and the third semiconductor region. A planar shape having a second semiconductor region, a portion sandwiching the first semiconductor region and the second semiconductor region sandwiching the first semiconductor region from the outside, and a projecting portion wider than this portion is T-shaped. Type or trapezoid type second conductivity type intervention A first conductivity type drift region sandwiched between the region, the overhanging portion of the intervening region, and the third semiconductor region, and formed in the high-resistance semiconductor layer, the first semiconductor region, and the intervening region A channel region formed in the high-resistance semiconductor layer and connected to the drift region; a first electrode formed on the first semiconductor region; the second semiconductor region; and the intervening region. And a second electrode formed on the third semiconductor region, and a third electrode formed on the third semiconductor region.
[0021]
Furthermore, a fifth aspect of the semiconductor device of the present invention includes a first conductive type high-resistance semiconductor layer, a third semiconductor region having a stripe-like planar shape formed on the surface of the high-resistance semiconductor layer, and the high-resistance semiconductor layer. On the surface of the semiconductor layer, the high-resistance so as to sandwich the second semiconductor region with the second semiconductor region of the first conductivity type provided facing the side surface of the striped third semiconductor region A second conductivity type formed on the surface of the semiconductor layer and formed such that a distance from the third semiconductor region is smaller than a distance between the second semiconductor region and the third semiconductor layer. Formed on the surface of the high-resistance semiconductor layer between the first semiconductor region and the first and second semiconductor regions and the third semiconductor region so as to face the third semiconductor region; A first semiconductor region and the third semiconductor region; A second conductivity type intervening region having an intervening portion having a communication port to be directed, an extending portion connected to the intervening portion and extending in the direction of the second semiconductor region, and the intervening portion of the intervening region And a first conductivity type drift region formed in the high-resistance semiconductor layer sandwiched between the third semiconductor regions, the first and second semiconductor regions, and the intervening region are surrounded on three sides, A channel region communicating with the drift region through the communication port, a first electrode formed on the first semiconductor region, and a second electrode formed so as to be connected to the second semiconductor region and the intervening region. And a third electrode formed on the third semiconductor region.
[0022]
In the above semiconductor device, when the semiconductor substrate or the third semiconductor region is of the first conductivity type, it is an electrostatic induction transistor having the first, second, and third semiconductor regions as a gate, a source, and a drain, respectively. .
[0023]
In the above semiconductor device, when the semiconductor substrate or the third semiconductor region is of the second conductivity type, the electrostatic induction thyristor having the first, second, and third semiconductor regions as a gate, an emitter, and a collector, respectively. It is.
[0024]
In the semiconductor device of the present invention, the embedded (intervening) region that has the same conductivity as the gate region and is in contact with the source electrode is provided so as to be closer to the drain region than the gate region. The width of the portion facing the drain region is formed wider than the width of. For this reason, when the drift region is depleted by turn-off, electric field concentration at the end of the buried (intervening) region is suppressed, and the breakdown voltage is improved.
[0025]
In the semiconductor device of the present invention, the channel region is depleted by a voltage signal applied to the gate electrode, and conduction and interruption are performed. During switching, charge is discharged due to depletion of the drift layer, but the intervening region closer to the drain region than the gate region discharges charge from the drift layer, greatly reducing the load on the gate circuit. Furthermore, by setting the interval between the gate region and the intervening region and the interval between the intervening regions as desired, both low on-resistance and high breakdown voltage can be achieved.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0027]
(Embodiment 1)
FIG. 1 is a cross-sectional view showing the main configuration of the electrostatic induction semiconductor device according to the first embodiment. FIG. 2 is a top view of the entire chip, showing the configuration of the electrodes. A cross-sectional view along the line AA ′ in FIG. 2 corresponds to FIG.
[0028]
The electrostatic induction semiconductor device of this embodiment has a p-type surface on one surface portion of the n-type semiconductor substrate 1. + Type gate region (first semiconductor region) 2 and n + Type source region (second semiconductor region) 3 and p + And a mold embedding region 4. The source region 3 is formed so as to be sandwiched between the gate region 2 and the surface of the buried region 4. The gate region 2 is deeper than the source region 3 and the buried region 4 is deeper than the gate region 2. ing. Gate region 2 and p + N between mold embedding regions 4 The mold region becomes a channel region 7 in which a drain-source current flows.
[0029]
On the other hand, the other surface of the semiconductor substrate 1 is n + A type drain region (third semiconductor region) 5 is provided. The space between the buried region 4 and the drain region 5 is n The type drift layer 6 is formed. P + The mold embedding region 4 has an inverted T-shaped cross-sectional shape and is n larger than the substrate surface side. + The portion facing the type drain region 5 is wider. The space between the adjacent buried region 4 tips is set to a position including a line that vertically connects the gate region and the drain region. Further, the horizontally extending portion of the buried region 4 is disposed so as to block at least a part of the line that connects the source region 3 and the drain region 5 vertically.
[0030]
n The impurity concentration of the type drift layer 6 is 10 15 cm -3 -10 17 cm -3 And other n + Type and p + The impurity concentration in the high impurity concentration region of the mold is 10 20 cm -3 -10 21 cm -3 Degree. The concentration and thickness of the drift layer 6 are determined from design values of electrical characteristics such as withstand voltage and on-voltage, but when using a SiC substrate, it is about 10 μm at 1000 V class.
[0031]
Further, as shown in FIG. 2, the upper surface electrode of this electrostatic induction semiconductor device is a comb-shaped source electrode 11 and gate electrode 12 which are combined so as to face each other. The source electrode 11 is n + Type source region 3 and p + The gate electrode 12 is connected to the mold buried region 4 and p + It is connected to the mold gate region 2. On the back side of the semiconductor substrate 1, n + A drain electrode 13 connected to the type drain region 5 is provided.
[0032]
Next, the operation of the semiconductor device will be described. For example, when a positive potential is applied to the drain electrode 13, a ground potential is applied to the source electrode 11, and a predetermined potential of 0 or positive is applied to the gate electrode 12, the semiconductor device is turned on, and n + Type drain region 5 to n + A current flows through the mold source region 3.
[0033]
n + Type drain region 5 to n + When blocking the current to the source region 3, p + Type gate region 2 and n When a reverse bias (the gate potential is negative with respect to the source potential) is applied to the pn junction between the channel regions 7, p + Type gate region 2 to n A depletion layer extends to the channel region 7 and n The mold channel region 7 is pinched off.
[0034]
As a result, the drain-source voltage recovers to the power supply voltage. + Type drain region 5 and p opposite thereto + A reverse bias is applied to the mold embedding region 4 and p + Mold embedding regions 4 to n Depletion layer extends into the drift region and positive charge is p + It is discharged from the mold buried region 4 to the source electrode 11.
[0035]
That is, p + N than the type gate region 2 + P close to the type drain region 5 + Since the mold embedded region 4 mainly discharges positive charges, the load on the gate circuit can be greatly reduced.
[0036]
Although the operation at the time of turn-off has been described here, a positive potential is applied to the gate electrode 12 at the time of turn-on, and the positive charge is p. + Type gate region 2 and p + It flows in a direction in which the depletion layer is charged from the mold buried region 4.
[0037]
In this embodiment, p + The mold embedding area has an inverted T shape, and n + Since the area near the type drain region is formed large, the above-mentioned discharge or charge current sharing can be more effectively executed. Further, when the drift region is depleted due to turn-off, electric field concentration at the end of the buried (intervening) region is suppressed, and the breakdown voltage is improved.
[0038]
In addition, p which determines on-resistance + Type gate region and p + P that determines the interval between the buried regions and the breakdown voltage + The interval between the mold embedding regions can be determined independently. That is, p + Type gate region and p + After determining the space between the mold embedding regions, p + The interval between the embedded regions can be freely determined by adjusting the length of the inverted T-shaped horizontal portion. Thus, by setting the two intervals freely, both low on-resistance and high breakdown voltage can be achieved simultaneously.
[0039]
Next, a method for manufacturing the semiconductor device of this embodiment will be described with reference to FIGS. 3 and FIG. 4, the UC1 portion surrounded by the dotted line in FIG.
[0040]
First, as shown in FIG. 3A, n having a thickness of 10 μm Type SiC layer 21 (impurity concentration 1 × 10 15 ~ 1x10 17 cm -3 N) on the surface + A type SiC substrate (with a substrate thickness of about 400 μm) is prepared, and after cleaning, an ion implantation mask 22 having a width of 4 μm is formed. In this example, the pitch of one unit cell is 16 μm.
[0041]
The ion implantation mask only needs to be able to block implanted ions, and an oxide film mask, a resist mask, a metal mask, and the like are candidates. For the patterning, a known photolithography technique or the like may be used.
[0042]
Next, using this mask 22, p-type impurities (Al or B) are implanted into the upper surface of the SiC layer 21 with an acceleration voltage of several keV to several MeV to a depth of 2 μm to obtain an impurity concentration of 1 × 10 6. 20 ~ 1x10 21 cm -3 P with + A mold region 23 is formed. Any p-type impurity may be used as long as it imparts p-type conductivity to SiC.
[0043]
Next, as shown in FIG. 3C, after removing the mask layer 22, an n layer is formed on the SiC layer 21. Type SiC layer 25 (impurity concentration 1 × 10 15 ~ 1x10 17 cm -3 ) Is epitaxially grown to a thickness of 4 μm. N-type impurities such as N and P can be used as the n-type impurity, but any n-type impurity may be used as long as it imparts n-type conductivity to SiC. In addition, since this SiC layer 25 is integrated with the SiC layer 21, the reference numeral 21 is used hereinafter.
[0044]
Next, as shown in FIG. 3D, an ion implantation mask 27 having a width of 14 μm is formed, and exposed portions of 1 μm are provided at both ends of the unit region.
[0045]
Next, as shown in FIG. 3E, p-type impurities (Al or B) are ion-implanted at a depth of 4 μm with an acceleration voltage of several keV to several MeV using a mask 27, and p + P connected to mold region 23 + Mold region 28 (impurity concentration 1 × 10 20 ~ 1x10 21 cm -3 ). This p + The mold region 28 is p + Since it is integrated with the mold region 23, it will be denoted by reference numeral 23 hereinafter. p + The mold region 23 becomes the embedded region 4 in FIG.
[0046]
P + For the formation of the mold region 28, n in FIG. P of FIG. 3E from the epitaxial growth of the type SiC layer 25 + The process up to the ion implantation of the mold region 28 may be repeated a plurality of times until the total film thickness becomes 4 μm.
[0047]
Next, as shown in FIG. 3F, after removing the mask 27, a new ion implantation mask 29 is formed. The mask 29 masks 3 μm at both ends, and has an opening having a width of 10 μm at the center.
[0048]
Next, as shown in FIG. 4A, using a mask 29, a p-type impurity (Al or B) is ion-implanted at a depth of 2 μm with an acceleration voltage of several keV to several MeV. + Mold region 31 (impurity concentration 1 × 10 20 ~ 1x10 21 cm -3 ). This p + The mold region 31 becomes the gate region 2 in FIG.
[0049]
Next, as shown in FIG. + An ion implantation mask 33 is formed so as to cover the mold regions 23 and 31. Subsequently, as shown in FIG. 4C, an n-type impurity (N or P) is ion-implanted with an acceleration voltage of several keV to several hundred keV. N + Mold region 35 (impurity concentration 1 × 10 20 ~ 1x10 21 cm -3 ). This n + The mold region 35 becomes the source region 3 in FIG.
[0050]
Next, as shown in FIG. + Type region 35 and p + An insulating film 37 having a width of 4 μm is formed on the boundary of the mold region 31 at an interval of 3 μm. Subsequently, as shown in FIG. 4E, a source electrode 11 and a gate electrode are formed of a metal such as Ni, Co, Al, Ti or the like. 12 is formed. The insulating film 37 is provided so that the source electrode 11 and the gate electrode 12 are not short-circuited, and is omitted in FIG. The source electrode 11 is p + The mold region 23 is provided so as to overlap.
[0051]
Thus, the element on the upper surface side of the SiC substrate is formed. For the back surface side of the SiC substrate, n-type impurities are ion-implanted and diffused from the back surface side of the n-type SiC substrate 1 by n. + A type drain region 5 is formed, and a drain electrode 13 is formed of a metal such as Ni, Co, Al, Ti or the like. After the formation of the source electrode 11, the gate electrode 12, and the drain electrode 13, it is desirable to reduce the contact resistance of the electrode by applying a heat treatment. When the n-type impurity concentration of the n-type SiC substrate 1 is high, this n + The formation of the type impurity region can be omitted as necessary.
[0052]
In Embodiment 1, n is provided on the back side of the SiC substrate. + Type drain region 5 is formed as an electrostatic induction transistor, but n P having a mold region on the surface + A static induction thyristor can also be obtained by using a mold substrate.
[0053]
(Embodiment 2)
The second embodiment is a modification of the first embodiment and provides an embodiment in which the mounting density is further improved. FIG. 5 is a perspective view of the second embodiment, and FIG. 6 is a top view of the chip. The chip top view of FIG. 6 is the same as FIG. 2, but the structure under the source electrode is different from that of the first embodiment (FIG. 2). A cross section taken along line BB ′ of FIG. 6 is shown as a perspective view of FIG.
[0054]
As is clear from FIG. 6, as in the first embodiment, n + Type source region 3, p + Type gate region 2, n + Both sides of the source region 3 are inverted T-shaped p + The mold embedding region 4 is sandwiched, and the portion sandwiched between the embedding regions 4 is n The mold channel region 7 is formed. The channel region 7 extends in the depth direction of the paper and is orthogonal to the comb-teeth portion of the gate electrode 12. In FIG. 5, the channel region bridges adjacent comb teeth. That is, the arrangement direction of the gate region 2, the source region 3, and the buried region 4 is 90 degrees different from that of the first embodiment.
[0055]
The source electrode 11 is n + Type source region 3 and p + Although contact is made with the mold buried region 4, insulation is maintained with the gate region 2 through the insulating film 8. A signal is sent to the gate region 2 from a portion (not shown) of the gate electrode 12 (comb teeth) arranged perpendicular to the extending direction of the channel region 7.
[0056]
In the first embodiment, one channel region 7 is formed for each comb tooth of the gate electrode 12. Furthermore, it is necessary to consider the gap between the adjacent comb teeth of the gate electrode 12 to ensure the gap with the source electrode 11, and there is a limit to narrowing the gap.
[0057]
On the other hand, in the second embodiment, the gate region 2, the source region 3, and the buried region 4 can be repeatedly arranged without considering the clearance between the electrodes, so that the channel region 7 can be arranged at a high density. In addition, the on-resistance can be further reduced as compared with the first embodiment. Needless to say, the effects described in the first embodiment can be obtained in the second embodiment as well.
[0058]
Since the configuration of the unit cell is the same as that of the first embodiment, the manufacturing method can be substantially the same as that of the first embodiment. However, since it is not necessary to consider a short circuit between the source electrode and the gate electrode between the unit cells, the cell pitch can be set to 10 μm. Therefore, in FIG. 3A, the cell width is 10 μm, but the width of the ion implantation mask 22 remains 4 μm. Further, since the gate region 31 and the source region 35 are connected to the respective electrodes in different cross sections, the steps of FIGS. 4D and 4E are different. 7A and 7B show a process of forming the insulating film 37 and the source electrode 11 at the connection portion of the source electrode. 8A and 8B show a process of forming the insulating film 37 and the gate electrode 12 at the connection portion of the gate electrode.
[0059]
In the second embodiment, n P having a mold region on the surface + A static induction thyristor can be obtained by using a mold substrate.
[0060]
(Embodiment 3)
In the third embodiment, the cross-sectional shape of the buried region 4 in the first embodiment is changed. The buried region 4 only needs to have a structure in which the width on the side facing the drain region 5 is wider than the width of the portion in contact with the source electrode 11. For example, the buried region 4 has a side surface formed obliquely as shown in FIG. It does not matter. The oblique embedded region 4 can be formed by using a method such as oblique ion implantation of p-type impurities. In this case, it is desirable that the side surface of the source region 3 is also inclined as shown in FIG. For example, the width of the upper surface of the gate region 2 is 10 μm, the width of the source region 3 is 2 μm, the depth of the buried layer 4 is 8 μm, and the interval between the adjacent buried layers 4 is 4 μm.
[0061]
In this embodiment, p + The cross section of the mold embedding region is formed in a trapezoidal shape, and n + Since the area near the type drain region is formed large, it is possible to more effectively execute charge discharge or charge sharing during switching. Further, when the drift region is depleted due to turn-off, electric field concentration at the end of the buried (intervening) region is suppressed, and the breakdown voltage is improved.
[0062]
In addition, p which determines on-resistance + Type gate region and p + P that determines the interval between the buried regions and the breakdown voltage + The interval between the mold embedding regions can be determined independently. That is, p + Type gate region and p + After determining the space between the mold embedding regions, p + The interval between the mold embedding regions can be freely determined by adjusting the length of the base of the trapezoid. Thus, by setting the two intervals freely, both low on-resistance and high breakdown voltage can be achieved simultaneously.
[0063]
(Embodiment 4)
In the fourth embodiment, the configuration of the embedded region 4 in the first embodiment is also changed. FIG. 10 shows a cross-sectional view of the main part of the fourth embodiment. A trench 9 is provided in a portion where the buried region 4 and the source electrode 11 are in contact with each other, and this is buried with at least one conductive charge 10 of polysilicon and metal. As a result, it is possible to reduce the resistance when discharging positive charges from the buried region 4 to the source electrode 11, and the switching speed can be further increased.
[0064]
The semiconductor device manufacturing method of the fourth embodiment is performed in the same manner as the manufacturing method of the first embodiment up to FIG. 4C, after the mask 33 is removed, a mask is formed that opens the center of the p + -type region 23 on both sides of the unit cell, and a trench is formed by RIE or the like using this mask. Embedded with polysilicon. Thereafter, by performing the steps after FIG. 4D, the semiconductor device of FIG. 10 can be obtained.
[0065]
With such a structure, the effects described in the first embodiment can be similarly achieved, and the switching speed can be further improved.
[0066]
(Embodiment 5)
FIG. 11 is a perspective view of an electrostatic induction semiconductor device according to the fifth embodiment. In order to facilitate understanding, the same parts as those in the first to fourth embodiments are denoted by the same reference numerals. The electrostatic induction semiconductor device of Embodiment 5 is formed on the upper surface portion of the n-type semiconductor substrate 1 with p. + Mold embedding region 4 and p + Type gate region (first semiconductor region) 2 and n + Type source region (second semiconductor region) 3. The source region 3 is arranged so as to be sandwiched between the gate regions 2, the gate region 2 is provided deeper than the source region 3, and the p region is more than the gate region 2. + The mold embedding region 4 is deeply provided.
[0067]
On the other hand, n below the semiconductor substrate 1 + Type drain region (third semiconductor region) 5 and p + The space between the mold buried region 4 and the drain region 5 is n The type drift layer 6 is formed.
[0068]
p + At least a part of the mold embedding region 4 is connected to the source electrode 11, and the portion facing the drain region 5 is wider than the portion connecting to the source electrode 11. P + At least a part of the portion of the type buried region 4 facing the drain region 5 is opened (an n-type or i-type region other than p-type is provided), and electrons from the source electrode 11 are transferred to the drift layer 6. To flow.
[0069]
FIG. 12 is a top view showing the electrode structure, which is the same as in the first to fourth embodiments. A cross-sectional view taken along the line CC 'in FIG. 11 or 12 is shown in FIG. 13, and a cross-sectional view taken along the line DD' is shown in FIG.
[0070]
As is clear from FIG. 13 or FIG. + Type source region, n P on both sides of the channel region 7 + P-type gate region 2 is sandwiched between p + P at a position deeper than the type gate region 2 + The mold embedding area extends horizontally and n + Type source region and p + A part of the mold embedding region is in contact with the source electrode 11. p + A gate electrode 12 is formed on the mold gate region 2.
[0071]
In Example 5, p + The mold buried region 4 is provided as a horizontal buried layer at a position deeper than the gate region 2, and the contact with the source electrode 11 may be made at least at one place. Therefore, the mounting density in the semiconductor device can be improved as compared with the first embodiment, and the size can be further reduced.
[0072]
P + Since the opening is provided in the buried layer portion of the mold buried region 4 so as to include a line that vertically connects the gate region 2 and the drain region 5, the channel region 7 can be reliably connected to the drift region 6. .
[0073]
The operation of the fifth embodiment is the same as that of the first embodiment, and the same effect as that of the first embodiment can be obtained. Similarly to the fourth embodiment, a trench may be provided in a portion where the buried region 4 and the source electrode 11 are in contact, and the trench may be buried with a conductive filler such as polysilicon or metal. By doing so, it becomes possible to reduce the resistance when discharging positive charges from the buried region 4, and the switching can be further speeded up.
[0074]
Next, a method for manufacturing the semiconductor device of Embodiment 5 will be described. In FIG. 11, a unit cell (indicated by UC2) including a contact portion to the source electrode 11 in the buried region 4 will be described step by step.
[0075]
Initially, the manufacturing method of the cross-section part along DD 'line is described. First, as shown in FIG. 15A, n having a thickness of 10 μm is used. Type SiC layer 21 (impurity concentration 1 × 10 15 ~ 1x10 17 cm -3 Is prepared on the surface, and a mask 22 for ion implantation having a width of 4 μm is formed after cleaning. Using this mask 22, a p-type impurity (Al or B) is implanted into the upper surface of the SiC layer 21 with an acceleration voltage of several keV to several MeV to a depth of 2 μm to obtain an impurity concentration of 1 × 10. 20 ~ 1x10 21 cm -3 P with + A mold region 23 is formed. p + The width of the mold region 23 is 7 μm in the contact region (however, since only one side portion is displayed, it is 14 μm as a whole), and is 8 μm in the region other than the contact region.
[0076]
Next, as shown in FIG. 15B, after removing the mask layer 22, n SiC is formed on the SiC layer 21. Type SiC layer 25 (impurity concentration 1 × 10 15 ~ 1x10 17 cm -3 ) Is epitaxially grown to a thickness of 4 μm. N, P or the like is used as the n-type impurity. In addition, since this SiC layer 25 is integrated with the SiC layer 21, the reference numeral 21 is used hereinafter.
[0077]
Next, as shown in FIG. 15C, an ion implantation mask 27 is formed, and an exposed portion of 2 μm is provided in a portion of the buried layer 4 where the contact is to be formed. In the figure, only half of the contact is shown, so the contact width is 4 μm.
[0078]
Next, as shown in FIG. 15C, p-type impurities (Al or B) are ion-implanted at a depth of 4 μm with an acceleration voltage of several keV to several MeV using a mask 27, and p + P connected to mold region 23 + Mold region 28 (impurity concentration 1 × 10 20 ~ 1x10 21 cm -3 ). This p + The mold region 28 is p + Since it is integrated with the mold region 23, it will be denoted by reference numeral 23 hereinafter. p + The mold region 23 becomes the buried region 4 in FIG.
[0079]
Next, as shown in FIG. 15D, after the mask 27 is removed, a new ion implantation mask 29 is formed. The mask 29 has an opening having a width of 10 μm for forming a gate region. Using this mask 29, p-type impurities (Al or B) are ion-implanted at a depth of 2 μm at an acceleration voltage of several keV to several MeV, and p + Mold region 31 (impurity concentration 1 × 10 20 ~ 1x10 21 cm -3 ). This p + The mold region 31 becomes the gate region 2 in FIG.
[0080]
Next, as shown in FIG. + An ion implantation mask 33 is formed so as to cover the mold regions 23 and 31, and n-type impurities (N or P) are ion-implanted with an acceleration voltage of several keV to several hundred keV, and n + Mold region 35 (impurity concentration 1 × 10 20 ~ 1x10 21 cm -3 ). This n + The mold region 35 becomes the source region 3 in FIG.
[0081]
Next, as shown in FIG. + Type region 35 and p + An insulating film 37 having a width of 4 μm is provided on the boundary of the mold region 31, and the source electrode 11 and the gate electrode 12 are formed of a metal such as Ni, Co, Al, Ti or the like. The insulating film 37 is provided so that the source electrode 11 and the gate electrode 12 are not short-circuited. The source electrode 11 is p + It is provided so as to overlap the mold region 23. After forming the source electrode 11 and the gate electrode 12, heat treatment is performed to reduce the contact resistance.
[0082]
Next, a method of forming a cross section along the line CC ′ in FIG. 11 will be described with reference to FIG. FIG. 17A is a process corresponding to FIG. + The mold region 23 is formed continuously, and the points are different. Thereafter, the same steps as in FIGS. 15B to 16A are performed, and finally the shape of FIG. 17B is completed. Needless to say, the processes of the section CC ′ and the section DD ′ proceed simultaneously.
[0083]
Also in the fifth embodiment, n P with mold layer on the surface + By using a type semiconductor substrate, an electrostatic induction thyristor can be obtained.
[0084]
(Embodiment 6)
The sixth embodiment is a modification of the fifth embodiment, and relates to the arrangement direction of the gate region 2 and the source region 3, and the form of the second embodiment (the arrangement direction of the gate region 2 and the source region 3 is changed by 90 degrees from the first embodiment). Is a combination. FIG. 18 is a perspective view of a semiconductor device according to the sixth embodiment. FIG. 19 is a top view showing the electrode structure, which is the same as in the first to fifth embodiments. A sectional view taken along the line EE ′ of FIG. 18 or FIG. 19 is shown in FIG. 20, and a sectional view taken along the line FF ′ is shown in FIG. Since the semiconductor device manufacturing method of the present embodiment may be carried out in the same manner as in FIGS.
[0085]
By configuring as described above, the same effects as those of the fifth embodiment can be achieved, and further downsizing can be realized as compared with the fifth embodiment. Similarly to the fourth embodiment, a trench may be provided in a portion where the buried region 4 is in contact with the source electrode 11, and the trench may be buried with a conductive filler such as polysilicon or metal. By doing so, the resistance at the time of discharging positive charges from the buried region 4 is lowered, and the switching can be further speeded up.
[0086]
(Embodiment 7)
The seventh embodiment is an embodiment in which the configuration of the electrostatic induction semiconductor device described so far is configured in a horizontal shape, and FIG. 22 is a top view showing the configuration of the main part thereof. The electrostatic induction semiconductor device of this embodiment is n P juxtaposed on the upper surface portion of the high resistance semiconductor layer of the mold + Type gate region (first semiconductor region) 2 and n + Type source region (second semiconductor region) 3 and p + Mold intervening region 4 and n + A type drain region (third semiconductor region) 5 is provided.
[0087]
The source region 3 is formed so as to be sandwiched between the intervening region 4 and the gate region 2. The gate region 2 is closer to the drain region 5 than the source region 3, and the intervening region 4 is further drained than the gate region 2. It is provided near 5.
[0088]
Further, the intervening region 4 has a substantially T-shaped shape, and the portion closer to the drain region 5 is wider than the portion contacting the source region electrode 3. The space between the intervening region 4 and the drain region 5 is n It is a type drift layer.
[0089]
The space between the adjacent distal end portions of the intervening region 4 (the portion facing the drain region 5) is set to a position including a line that connects the gate region 2 and the drain region 5 vertically. Further, the portion where the intervening region 4 extends in parallel to the drain region 5 is disposed so as to block at least a part of the line that connects the source region 3 and the drain region 5 vertically.
[0090]
In addition, in the intervening region 4, it is sufficient that the drain region 5 side has a wider width than the portion in contact with the source region 3. In addition to the above T shape, for example, as shown in FIG. May be formed in a trapezoidal shape. In this case, the source region 3 is preferably triangular.
[0091]
24 is a cross-sectional view taken along the line GG ′ of FIG. 22 or FIG. P on the upper surface of the type semiconductor substrate 1 + Type gate region 2, n + Type source region 3, p + A mold intervening region is formed. p + N at the bottom of the gate region 2 of the mold The mold layer 15 is provided and p + The gate region 4 of the mold is electrically separated.
[0092]
The method for manufacturing the semiconductor device of this embodiment is, for example, p. N on the mold substrate Each region may be formed by ion implantation or the like after epitaxially growing the mold layer. By repeating the process of epitaxial growth and each region creation (ion implantation) a plurality of times, an element having a thickness in the vertical direction can be formed. Or you may make it form said each area | region formed in a surface part in the semiconductor layer (for example, SOI layer) on an insulating film.
[0093]
In the semiconductor device of this embodiment, for example, when the width of the source region 3 is 2 μm, the closest distance between adjacent intervening regions 4 may be 4 μm (see FIGS. 22 and 23). The dimensions of the other element regions may be obtained by replacing the dimensions in the cross-sectional view of the first embodiment with a plan view. For example, the width of the gate region 2 is 10 μm, and the portion of the intervening region 4 facing the drain region 5 The width may be 12 μm or the like.
[0094]
22 and 23, the source electrode, the gate electrode, and the drain electrode are not shown. However, as shown in FIG. 24, the source electrode 11 is the source region 3 and the intervening region 4, and the gate electrode 12 is the gate region 2. The drain electrodes (not shown) may be formed so as to be in contact with the drain region 5 and to maintain insulation.
[0095]
A planar arrangement example (for one unit cell) of the source electrode 11 and the gate electrode 12 is shown in FIG. In FIG. 25, an insulating film is not shown, but an insulating film is interposed between the electrodes. In the first, second, fifth, and sixth embodiments, the example in which the source electrode 11 is formed in all the surface regions of the buried region 4 is shown. However, as shown in FIG. 25, the buried region (intervening region) 4 is formed. The source electrode 11 may be formed only in a portion in contact with the source region 3.
[0096]
Even with the above horizontal configuration, the effects described in the first embodiment can be similarly obtained. That is, p + The mold intervening region is T-shaped or trapezoidal, and n + Since the area near the type drain region is formed large, the above-mentioned discharge or charge current sharing can be more effectively executed. Further, when the drift region is depleted due to turn-off, electric field concentration at the end of the intervening region is suppressed and the breakdown voltage is improved.
[0097]
In addition, p which determines on-resistance + Type gate region and p + P that determines the interval between the mold intervening regions and the breakdown voltage + The interval between the mold intervening regions can be determined independently. That is, p + Type gate region and p + After determining the spacing of the mold intervening regions, p + The distance between the mold intervening regions can be freely determined by adjusting the length of the T-shaped horizontal portion or the length of the long side of the trapezoid. Thus, by setting the two intervals freely, both low on-resistance and high breakdown voltage can be achieved simultaneously.
[0098]
Also in the seventh embodiment, n + P type drain region 5 + By changing to a mold region, an electrostatic induction thyristor can be obtained.
[0099]
(Embodiment 8)
FIG. 26 is a schematic perspective view (partially perspective view) of the semiconductor device according to the eighth embodiment. This embodiment is also an example in which the electrostatic induction semiconductor device is formed in a horizontal shape. However, unlike Example 7, the n is provided on the substrate 1 ′ via the insulating film 16. P-type high resistance semiconductor layer + Type gate region (first semiconductor region) 2 and n + Type source region (second semiconductor region) 3 and n + Type drain region (third semiconductor region) 5 and a T-shaped p + A mold intervening region 4 is provided between the gate region 2 and the drain region 5. A drift layer 6 is formed between the intervening region 4 and the drain layer 5. This configuration is substantially the same as the horizontal configuration of the configuration of the second embodiment.
[0100]
In the above configuration, n + Type source region 3 is p + N-type gate region 2 and n + N more than the type source region 3 + N type gate region 2 is n + Near the drain region 5 and p + P than the type gate region 2 + The T-shaped horizontal bar portion of the mold interposition region 4 is n + It is provided so as to be close to the type drain region 5.
[0101]
At least a part of the vertical bar portion of the T-shaped intervening region is n + A portion facing the drain region 5 is wider than a portion in contact with the source region 3 and in contact with the source region 3. In addition, at least a part of the buried layer of the T-hour type horizontal bar portion is opened (a non-p-type region is provided), and electrons from the source electrode 3 flow to the drift layer 6. Yes.
[0102]
The opening is set at a position including a line that connects the gate region 2 and the drain region 5 vertically. Further, the portion of the intervening region 4 where the opening is not provided in the T-shaped horizontal bar portion is disposed so as to block at least a part of the line that connects the source region 3 and the drain region 5 vertically.
[0103]
26, the source electrode, the gate electrode, and the drain electrode are not shown. However, as shown in the top view of FIG. 27, the source electrode 11 is in contact with the source region 3 and the intervening region 4, and the gate electrode 12 is The gate region 2 and the drain electrode 13 are in contact with the drain region 5, respectively, and each is insulated by an insulating film (not shown).
[0104]
In the present embodiment, each region for forming an element is provided on the insulating layer 16, but as in the seventh embodiment, p Each of the above regions is formed on the upper surface of the type semiconductor substrate, and p + N at the bottom of the gate region A mold layer may be inserted to electrically isolate the p-type region. When SiC is used for the semiconductor layer in the element formation region, the dimensions of the cross-sectional shape of the third embodiment (FIG. 11) can be replaced with the dimensions of the plan view.
[0105]
Even in the above configuration, the effects described in the third embodiment can be similarly achieved. That is, p + The mold intervening region is T-shaped and n + Since the area near the type drain region is formed large, the above-mentioned discharge or charge current sharing can be more effectively executed. Further, since the intervening region is formed continuously, the breakdown voltage is improved without causing electric field concentration at the end of the intervening region when the drift region is depleted by turn-off.
[0106]
In addition, p which determines on-resistance + Type gate region and p + Since the distance between the mold intervening regions can be determined independently without considering the breakdown voltage, both low on-resistance and high breakdown voltage can be achieved simultaneously.
[0107]
Also in the eighth embodiment, n + P type drain region 5 + By changing to a mold region, an electrostatic induction thyristor can be obtained.
[0108]
As mentioned above, although the structure which implement | achieves a desired withstand pressure | voltage without raising ON resistance was demonstrated through Embodiment 1-8, the effect is demonstrated through an actual model. FIG. 28 shows a conventional electrostatic induction semiconductor device having a cathode region 100 together with a gate region 102 and a source region 103 on the upper surface of a semiconductor substrate 101. When the width of the source region 103 is 2 μm and the width of the gate region is 4 μm (the margin is 1 μm to the left and right according to the gate electrode width of 2 μm), the distance between the cathodes is 8 μm. When this is applied to the graph of FIG. 30B described above, the withstand voltage is about 3.9 kV.
[0109]
On the other hand, when the model shown in FIG. 29 is considered as a representative example of the present invention, if the minimum width of the channel region is 2 μm as shown, the distance between the buried regions 4 is the sum of the left and right channel widths. Since it is considered that the above is sufficient, 4 μm is sufficient. When this is applied to the graph of FIG. 30, it can be seen that the breakdown voltage can be improved to about 4.6 kV.
[0110]
(Application examples)
In general, an inverter circuit forms a circuit by connecting one switching element and one rectifying element in parallel. However, in the switching element according to the present invention, the region having conductivity opposite to that of the drain region is in contact with the source electrode, so that when the source potential is raised above the drain potential with the gate turned off, Current flows through However, no current flows if the source potential is lowered below the drain potential with the gate turned off. By utilizing this property, as shown in FIG. 31, an inverter circuit can be assembled by using the semiconductor device 20 of the present invention as a switching element without preparing a new rectifying element. The number of elements can be reduced by half, and the inverter circuit can be made smaller, more reliable, and less expensive.
[0111]
The present invention is not limited to the embodiment described above. For example, the p-type and the n-type are reversed, which can be considered as another embodiment. In the above embodiment, the substrate is also exemplified by SiC, but other semiconductors such as Si can be used. The impurity concentration and the dimensions of each region at that time are values determined in consideration of electrical characteristics such as breakdown voltage and on-resistance.
[0112]
In the above embodiment, a unipolar electrostatic induction semiconductor is taken as an example. As described above, a bipolar electrostatic induction semiconductor is provided by providing a conductive region opposite to the drain region on the drain region side of the drift layer. can do.
[0113]
Further, the p-type region and the n-type region can be formed by a combination of ion implantation and epitaxial growth, and any means can be used.
[0114]
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.
[0115]
【The invention's effect】
A semiconductor device of the present invention includes a drain region (third semiconductor region) on the surface of a substrate, a gate region (first semiconductor region), a source region (second semiconductor region), a gate region opposite to the drain region (third semiconductor region). It has a buried (intervening) region having the same conductivity type and electrically connected to the source region. The buried (intervening) region has a larger width on the side facing the drain region than on the side in contact with the source region. For this reason, when the drift region is depleted by turn-off, electric field concentration at the end of the buried (intervening) region is suppressed, and the breakdown voltage is improved. At the same time, since the buried (intervening) region shares the discharge of positive charges to the source electrode when the drift region is depleted, the gate drive power can be reduced.
[0116]
Since the distance between the gate region and the embedded (intervening) region that determines the on-resistance at turn-on and the distance between the embedded (intervening) region that determines the breakdown voltage at the turn-off can be determined independently, the optimum conditions can be determined. The degree of freedom increases.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment.
FIG. 2 is a top view of the semiconductor device according to the first embodiment.
FIG. 3 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to the first embodiment.
4 is a cross-sectional view of a semiconductor device illustrating a process following FIG. 3;
FIG. 5 is a perspective view of a semiconductor device according to a second embodiment.
FIG. 6 is a top view of a semiconductor device according to a second embodiment.
FIG. 7 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the second embodiment.
FIG. 8 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the second embodiment.
FIG. 9 is a cross-sectional view of a semiconductor device according to a third embodiment.
FIG. 10 is a perspective view of a semiconductor device according to a fourth embodiment.
FIG. 11 is a perspective view of a semiconductor device according to a fifth embodiment.
FIG. 12 is a top view of a semiconductor device according to a fifth embodiment.
FIG. 13 is a cross-sectional view of a semiconductor device according to a fifth embodiment.
FIG. 14 is another cross-sectional view of the semiconductor device according to the fifth embodiment.
FIG. 15 is a cross-sectional view illustrating a manufacturing step of the semiconductor device of the fifth embodiment.
16 is a cross-sectional view of a semiconductor device, illustrating a step following the step in FIG. 15;
FIG. 17 is another cross-sectional view illustrating the manufacturing process of the semiconductor device of the fifth embodiment.
FIG. 18 is a perspective view of a semiconductor device according to a sixth embodiment.
FIG. 19 is a top view of a semiconductor device according to a sixth embodiment.
FIG. 20 is a cross-sectional view of a semiconductor device according to a sixth embodiment.
FIG. 21 is another cross-sectional view of the semiconductor device according to the sixth embodiment.
FIG. 22 is a plan view of a semiconductor device according to a seventh embodiment.
FIG. 23 is a plan view of a semiconductor device according to a modification of the seventh embodiment.
FIG. 24 is a cross-sectional view of a semiconductor device according to a seventh embodiment.
FIG. 25 is a partial top view showing an electrode configuration of a semiconductor device according to a seventh embodiment.
FIG. 26 is a perspective view of a semiconductor device according to an eighth embodiment.
FIG. 27 is a top view of a semiconductor device according to an eighth embodiment.
FIG. 28 is a cross-sectional view of a conventional electrostatic induction semiconductor device.
FIG. 29 is a cross-sectional view illustrating a model representing a semiconductor device of the present invention.
30 is a diagram for explaining a relationship between a gate-to-gate distance and a withstand voltage cited from Non-Patent Document 2. FIG.
FIG. 31 is a circuit diagram showing an application example of a semiconductor device of the invention.
[Explanation of symbols]
1 ... Semiconductor substrate
2 ... Gate area
3 ... Source area
4 ... Embedded region, intervening region
5 ... Drain region
6 ... Drift region
7 Channel region
8 ... Insulating film
11 ... Source electrode
12 ... Gate electrode
13 ... Drain electrode
15 ... n Type semiconductor layer
16 ... Insulating film
20 ... Semiconductor device

Claims (5)

第1と第2の主面を有する半導体基板と、
前記半導体基板の第1の主面に形成された第1導電型の高抵抗半導体層と、
前記第1導電型の高抵抗半導体層の表面に設けられた第2導電型の第1の半導体領域と、
前記第1導電型の高抵抗半導体層の前記表面に前記第1の半導体領域を挟むように形成され、前記第1の半導体領域よりも浅く形成された第1導電型の第2の半導体領域と、
前記第1及び第2の半導体領域と前記半導体基板との間の前記高抵抗半導体層中に、前記第1及び第2の半導体領域と離隔して埋め込まれた埋め込み部分と、前記埋め込み部分に接続され前記高抵抗半導体層の表面に導出された前記埋め込み部分より幅が狭いコンタクト部分とを有する第2導電型の埋め込み領域と、を具備し、前記第1の半導体領域と前記半導体基板とに挟まれた領域を通じて、前記高抵抗層中に前記第2の半導体領域と前記半導体基板間の電流路が形成されることを特徴とする半導体装置。
A semiconductor substrate having first and second main surfaces;
A high-resistance semiconductor layer of a first conductivity type formed on the first main surface of the semiconductor substrate;
A second conductivity type first semiconductor region provided on a surface of the first conductivity type high-resistance semiconductor layer;
A first conductivity type second semiconductor region formed so as to sandwich the first semiconductor region on the surface of the first conductivity type high-resistance semiconductor layer and formed shallower than the first semiconductor region; ,
A buried portion buried in the high-resistance semiconductor layer between the first and second semiconductor regions and the semiconductor substrate and spaced apart from the first and second semiconductor regions; and connected to the buried portion And a second conductivity type buried region having a contact portion that is narrower than the buried portion led to the surface of the high resistance semiconductor layer, and is sandwiched between the first semiconductor region and the semiconductor substrate. A semiconductor device, wherein a current path between the second semiconductor region and the semiconductor substrate is formed in the high resistance layer through the region.
半導体基板と、
前記半導体基板の上面に形成された第1導電型の高抵抗半導体層と、
前記高抵抗半導体層の上面に形成された第2導電型の第1の半導体領域と、
前記第1の半導体領域を挟むように前記高抵抗半導体層の上面に形成され、前記第1の半導体領域より浅く形成された第1導電型の第2の半導体領域と、
前記第1の半導体領域とこれを挟む前記第2の半導体領域をさらにその外側から挟む部分を有し、前記第1の半導体領域より深い位置で、前記第1の半導体領域下方に向かう水平方向の張り出し部を有する縦断面が逆T字型若しくは台形型の第2導電型の埋め込み領域と、
前記埋め込み領域の前記水平張り出し部と前記半導体基板に挟まれ、前記高抵抗半導体層中に形成された第1導電型のドリフト領域と、
前記第1の半導体領域と前記埋め込み領域に挟まれて前記高抵抗半導体層中に形成され、前記ドリフト領域に通じるチャネル領域と、
前記第1の半導体領域上に形成された第1の電極と、
前記第2の半導体領域と前記第2の半導体領域をさらにその外側から挟む前記埋め込み領域の部分に接続するように形成された第2の電極と、
前記半導体基板の前記下面に形成された第3の電極と、
を具備することを特徴とする半導体装置。
A semiconductor substrate;
A first conductivity type high-resistance semiconductor layer formed on an upper surface of the semiconductor substrate;
A first semiconductor region of a second conductivity type formed on the upper surface of the high-resistance semiconductor layer;
A second semiconductor region of a first conductivity type formed on an upper surface of the high-resistance semiconductor layer so as to sandwich the first semiconductor region, and formed shallower than the first semiconductor region;
A portion that further sandwiches the first semiconductor region and the second semiconductor region sandwiching the first semiconductor region from the outside thereof, in a horizontal direction toward the lower side of the first semiconductor region at a position deeper than the first semiconductor region. A buried region of a second conductivity type in which the longitudinal section having the overhanging portion is an inverted T-shaped or trapezoidal shape;
A drift region of a first conductivity type sandwiched between the horizontal protruding portion of the buried region and the semiconductor substrate and formed in the high-resistance semiconductor layer;
A channel region formed in the high resistance semiconductor layer sandwiched between the first semiconductor region and the buried region, and leading to the drift region;
A first electrode formed on the first semiconductor region;
A second electrode formed to connect the second semiconductor region and the portion of the buried region sandwiching the second semiconductor region from the outside;
A third electrode formed on the lower surface of the semiconductor substrate;
A semiconductor device comprising:
半導体基板と、
前記半導体基板の上面に形成された高抵抗半導体層と、
前記高抵抗半導体層の上面に形成された第1導電型の第2の半導体領域と、
前記第2の半導体領域を挟むように前記高抵抗半導体層の上面に形成され、前記第2の半導体領域より深く形成された第2導電型の第1の半導体領域と、
前記第1の半導体領域より深い位置の前記高抵抗半導体層中に、前記半導体基板と対峙して形成され、前記第1の半導体領域と前記半導体基板に挟まれた領域に開口部を有するように形成された埋め込み部分と、前記高抵抗半導体層の上面に露呈するコンタクト部分を有する第2導電型の埋め込み領域と、
前記埋め込み領域と前記半導体基板に挟まれた前記高抵抗層中に形成された第1導電型のドリフト領域と、
前記第1の半導体領域に挟まれ、前記埋め込み領域の前記開口部を通じて前記ドリフト領域に通じるチャネル領域と、
前記第1の半導体領域上に形成された第1の電極と、
前記第2の半導体領域と前記埋め込み領域の前記コンタクト部分に接続するように形成された第2の電極と、
前記半導体基板の下面に形成された第3の電極と、
を具備することを特徴とする半導体装置。
A semiconductor substrate;
A high-resistance semiconductor layer formed on the upper surface of the semiconductor substrate;
A second semiconductor region of a first conductivity type formed on the upper surface of the high-resistance semiconductor layer;
A second conductivity type first semiconductor region formed on an upper surface of the high-resistance semiconductor layer so as to sandwich the second semiconductor region, and formed deeper than the second semiconductor region;
Formed in the high-resistance semiconductor layer deeper than the first semiconductor region so as to face the semiconductor substrate, and having an opening in a region sandwiched between the first semiconductor region and the semiconductor substrate A buried portion of a second conductivity type having a buried portion formed and a contact portion exposed on the upper surface of the high-resistance semiconductor layer;
A drift region of a first conductivity type formed in the high resistance layer sandwiched between the buried region and the semiconductor substrate;
A channel region sandwiched between the first semiconductor regions and leading to the drift region through the opening of the buried region;
A first electrode formed on the first semiconductor region;
A second electrode formed to connect to the contact portion of the second semiconductor region and the buried region;
A third electrode formed on the lower surface of the semiconductor substrate;
A semiconductor device comprising:
第1導電型の高抵抗半導体層と、
前記高抵抗半導体層の表面に形成された平面形状がストライプ状の第3の半導体領域と、
前記高抵抗半導体層の前記表面において、ストライプ状の前記第3の半導体領域の側面に対向して設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域を挟むように前記高抵抗半導体層の前記表面に形成され、前記第3の半導体領域との距離が、前記第1の半導体領域と前記第3の半導体領域との距離より大となるように設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域とこれを挟む前記第2の半導体領域をさらにその外側から挟む部分を有し、この部分よりも幅の広い張り出し部を有する平面形状がT字型若しくは台形型の第2導電型の介在領域と、
前記介在領域の前記張り出し部と前記第3の半導体領域に挟まれ、前記高抵抗半導体層中に形成された第1導電型のドリフト領域と、
前記第1の半導体領域と前記介在領域に挟まれて前記高抵抗半導体層中に形成され、前記ドリフト領域に通じるチャネル領域と、
前記第1の半導体領域上に形成された第1の電極と、
前記第2の半導体領域と前記介在領域上に接続するように形成された第2の電極と、
前記第3の半導体領域上に形成された第3の電極と、
を具備することを特徴とする半導体装置。
A first conductivity type high-resistance semiconductor layer;
A third semiconductor region having a stripe-like planar shape formed on the surface of the high-resistance semiconductor layer;
A first semiconductor region of a second conductivity type provided on the surface of the high-resistance semiconductor layer so as to face a side surface of the striped third semiconductor region;
A distance between the first semiconductor region and the third semiconductor region is formed on the surface of the high-resistance semiconductor layer so as to sandwich the first semiconductor region, and a distance from the third semiconductor region is greater than a distance between the first semiconductor region and the third semiconductor region. A second semiconductor region of the first conductivity type provided to be large;
A planar shape having a portion sandwiching the first semiconductor region and the second semiconductor region sandwiching the first semiconductor region from the outside, and having an overhanging portion wider than this portion is a T-shaped or trapezoidal second shape. A conductive type intervening region;
A drift region of a first conductivity type sandwiched between the protruding portion of the intervening region and the third semiconductor region and formed in the high-resistance semiconductor layer;
A channel region formed in the high-resistance semiconductor layer sandwiched between the first semiconductor region and the intervening region, and leading to the drift region;
A first electrode formed on the first semiconductor region;
A second electrode formed so as to connect to the second semiconductor region and the intervening region;
A third electrode formed on the third semiconductor region;
A semiconductor device comprising:
第1導電型の高抵抗半導体層と、
前記高抵抗半導体層の表面に形成された平面形状がストライプ状の第3の半導体領域と、
前記高抵抗半導体層の前記表面において、ストライプ状の前記第3の半導体領域の側面に対向して設けられた第1導電型の第2の半導体領域と、
前記第2の半導体領域を挟むように前記高抵抗半導体層の前記表面に形成され、前記第3の半導体領域との距離が、前記第2の半導体領域と前記第3の半導体層の距離よりも、小さくなるように形成された第2導電型の第1の半導体領域と、
前記第1及び第2の半導体領域と第3の半導体領域の間の前記高抵抗半導体層の前記表面に、前記第3の半導体領域に対向するように形成され、前記第1の半導体領域と前記第3の半導体領域を対向させる連通口を有する介在部分と、前記介在部分に接続され前記第2の半導体領域の方向に延在する延在部分とを有する第2導電型の介在領域と、
前記介在領域の前記介在部分と前記第3の半導体領域に挟まれた前記高抵抗半導体層中に形成された第1導電型のドリフト領域と、
前記第1および第2の半導体領域と前記介在領域に3方を囲まれ、前記連通口を通じて前記ドリフト領域に通じるチャネル領域と、
前記第1の半導体領域上に形成された第1の電極と、
前記第2の半導体領域と前記介在領域に接続するように形成された第2の電極と、
前記第3の半導体領域上に形成された第3の電極と、
を具備することを特徴とする半導体装置。
A first conductivity type high-resistance semiconductor layer;
A third semiconductor region having a stripe-like planar shape formed on the surface of the high-resistance semiconductor layer;
A second semiconductor region of a first conductivity type provided on the surface of the high-resistance semiconductor layer so as to face a side surface of the striped third semiconductor region;
A distance between the second semiconductor region and the third semiconductor layer is formed on the surface of the high-resistance semiconductor layer so as to sandwich the second semiconductor region, and a distance between the second semiconductor region and the third semiconductor layer is larger A first semiconductor region of a second conductivity type formed to be small;
Formed on the surface of the high-resistance semiconductor layer between the first and second semiconductor regions and the third semiconductor region so as to face the third semiconductor region; and A second conductivity type intervening region having an intervening portion having a communication port facing the third semiconductor region, and an extending portion connected to the intervening portion and extending in the direction of the second semiconductor region;
A drift region of a first conductivity type formed in the high resistance semiconductor layer sandwiched between the intervening portion of the intervening region and the third semiconductor region;
A channel region surrounded on three sides by the first and second semiconductor regions and the intervening region and leading to the drift region through the communication port;
A first electrode formed on the first semiconductor region;
A second electrode formed to connect to the second semiconductor region and the intervening region;
A third electrode formed on the third semiconductor region;
A semiconductor device comprising:
JP2003165150A 2003-06-10 2003-06-10 Semiconductor device Pending JP2005005385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165150A JP2005005385A (en) 2003-06-10 2003-06-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165150A JP2005005385A (en) 2003-06-10 2003-06-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2005005385A true JP2005005385A (en) 2005-01-06

Family

ID=34091726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165150A Pending JP2005005385A (en) 2003-06-10 2003-06-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2005005385A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294716A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Semiconductor device
JP2014220434A (en) * 2013-05-09 2014-11-20 古河電気工業株式会社 Semiconductor device
WO2015145641A1 (en) * 2014-03-26 2015-10-01 日本碍子株式会社 Semiconductor device
WO2017165123A1 (en) * 2016-03-22 2017-09-28 General Electric Company Superjunction power semiconductor devices with fast switching capability
WO2019022205A1 (en) * 2017-07-26 2019-01-31 株式会社デンソー Semiconductor device
CN110945633A (en) * 2017-07-26 2020-03-31 株式会社电装 Semiconductor device with a plurality of semiconductor chips
WO2020153229A1 (en) * 2019-01-21 2020-07-30 株式会社デンソー Semiconductor device
WO2020153230A1 (en) * 2019-01-21 2020-07-30 株式会社デンソー Method of manufacturing semiconductor device
CN114695564A (en) * 2022-03-04 2022-07-01 电子科技大学 High-voltage silicon carbide power field effect transistor and high-voltage and low-voltage integrated circuit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294716A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Semiconductor device
JP2014220434A (en) * 2013-05-09 2014-11-20 古河電気工業株式会社 Semiconductor device
WO2015145641A1 (en) * 2014-03-26 2015-10-01 日本碍子株式会社 Semiconductor device
WO2015145913A1 (en) * 2014-03-26 2015-10-01 日本碍子株式会社 Semiconductor device
US10243039B2 (en) 2016-03-22 2019-03-26 General Electric Company Super-junction semiconductor power devices with fast switching capability
WO2017165123A1 (en) * 2016-03-22 2017-09-28 General Electric Company Superjunction power semiconductor devices with fast switching capability
US11355589B2 (en) * 2017-07-26 2022-06-07 Denso Corporation Semiconductor device
CN110945633A (en) * 2017-07-26 2020-03-31 株式会社电装 Semiconductor device with a plurality of semiconductor chips
WO2019022205A1 (en) * 2017-07-26 2019-01-31 株式会社デンソー Semiconductor device
CN110945633B (en) * 2017-07-26 2023-08-11 株式会社电装 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
WO2020153229A1 (en) * 2019-01-21 2020-07-30 株式会社デンソー Semiconductor device
WO2020153230A1 (en) * 2019-01-21 2020-07-30 株式会社デンソー Method of manufacturing semiconductor device
CN113302724A (en) * 2019-01-21 2021-08-24 株式会社电装 Semiconductor device with a plurality of semiconductor chips
CN113316837A (en) * 2019-01-21 2021-08-27 株式会社电装 Method for manufacturing semiconductor device
CN113302724B (en) * 2019-01-21 2023-08-15 株式会社电装 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN113316837B (en) * 2019-01-21 2023-12-05 株式会社电装 Method for manufacturing semiconductor device
US11923461B2 (en) 2019-01-21 2024-03-05 Denso Corporation Semiconductor device
CN114695564A (en) * 2022-03-04 2022-07-01 电子科技大学 High-voltage silicon carbide power field effect transistor and high-voltage and low-voltage integrated circuit
CN114695564B (en) * 2022-03-04 2023-11-07 电子科技大学 High-voltage silicon carbide power field effect transistor and high-low voltage integrated circuit

Similar Documents

Publication Publication Date Title
US9947779B2 (en) Power MOSFET having lateral channel, vertical current path, and P-region under gate for increasing breakdown voltage
US9461127B2 (en) Vertical power MOSFET having planar channel and its method of fabrication
USRE38953E1 (en) Insulated gate semiconductor device and method of manufacturing the same
US6452231B1 (en) Semiconductor device
JP2504862B2 (en) Semiconductor device and manufacturing method thereof
JP4635304B2 (en) Bidirectional superjunction semiconductor device and manufacturing method thereof
JP5261980B2 (en) Insulated gate type semiconductor device manufacturing method
EP1803159B1 (en) Mos-gated transistor with reduced miller capacitance
JP3979258B2 (en) MIS semiconductor device and manufacturing method thereof
CN103268887B (en) Field effect transistor, edge structure and related manufacturing method
JP2000114520A (en) Semiconductor device for electric power
KR20130038844A (en) Power semiconductor device
JP2007281034A (en) Power semiconductor element
CN104838500A (en) Semiconductor device and method for manufacturing same
CN111048590A (en) Double-groove SiC MOSFET structure with embedded channel diode and preparation method thereof
JP2005005385A (en) Semiconductor device
CN105706241A (en) MOS-bipolar device
US11145717B2 (en) Cellular insulated gate power device with edge design to prevent failure near edge
JP4746169B2 (en) Power semiconductor device and driving method thereof
JP2017191817A (en) Method for manufacturing switching element
WO2018034818A1 (en) Power mosfet having planar channel, vertical current path, and top drain electrode
JP2000243756A (en) Horizontal bipolar field effect transistor and manufacture thereof
KR102660669B1 (en) Super junction semiconductor device and method of manufacturing the same
CN118571921B (en) MOSFET device active area structure, MOSFET device and preparation method
JP2006351713A (en) Insulating-gate semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313