JP2005005057A - セラミックヒータ、並びにセラミックヒータ構造体 - Google Patents
セラミックヒータ、並びにセラミックヒータ構造体 Download PDFInfo
- Publication number
- JP2005005057A JP2005005057A JP2003165476A JP2003165476A JP2005005057A JP 2005005057 A JP2005005057 A JP 2005005057A JP 2003165476 A JP2003165476 A JP 2003165476A JP 2003165476 A JP2003165476 A JP 2003165476A JP 2005005057 A JP2005005057 A JP 2005005057A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- ceramic
- heater
- ceramic heater
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
【解決手段】アルミナを主成分とするセラミック絶縁層1中に、白金を主成分とする発熱体2と、発熱体2と接続され発熱体2に電流を供給するためのリード部3を埋設してなるセラミックヒータであって、発熱体2の厚みをt1(μm)、リード部3の導体厚みをt2(μm)とすると、13≦t1≦30、1.1≦t1/t2≦3.0を満足することを特徴とする。また、発熱体2が、27〜45体積%のアルミナを含有すること、またリード部3が、5〜26体積%のアルミナを含有することが望ましい。
【選択図】図1
Description
【発明の属する技術分野】
本発明は、耐久性に優れ、半導体基板の加熱用ヒータや、石油ファンヒータ、および車両用のガスセンサの加熱用として好適に用いられるセラミックヒータとそれを具備したセラミックヒータ構造体に関する。
【0002】
【従来技術】
従来、アルミナなどの絶縁性セラミックスからなる絶縁基板の内部に発熱体を埋設したセラミックヒータが知られており(特許文献1参照)、半導体基板の加熱ヒータの他、温水ヒータや、石油ファンヒータとして用いられている。
【0003】
一方、自動車等の内燃機関においては、排出ガス中の酸素濃度を検出して、その検出値に基づいて内燃機関に供給する空気および燃料供給量を制御することにより、内燃機関からの有害物質、例えばCO、HC、NOxを低減させる方法が採用されている。
【0004】
この検出素子として、主として酸素イオン伝導性を有するジルコニアを主成分とする固体電解質基板の外面および内面にそれぞれ一対の電極層が形成された固体電解質型の酸素センサが用いられている。
【0005】
この酸素センサの代表的なものとしては、平板状の固体電解質基板の外面および内面に基準電極と測定電極をそれぞれ設けると同時に、セラミック絶縁体の内部に白金からなる発熱体を埋設したセラミックヒータを一体型した酸素センサが提案されている(例えば、特許文献2、3)。このセラミックヒータを一体化した酸素センサは、セラミックヒータによって直接加熱されることによって検知部は800〜1000℃の高温まで急速昇温されるメリットを有する。
【0006】
【特許文献1】
特開平3−149791号公報
【0007】
【特許文献2】
特開2002−540399号公報
【0008】
【特許文献3】
特開2002−236104号公報
【0009】
【発明が解決しようとする課題】
特許文献1〜3に記載されるようなこれらセラミックヒータに対しては、上記の用途に対してそれぞれの機能を発現するに至る、いわゆる作動時間を短縮したり、高温度で使用することにより性能の安定化を図るため、セラミックヒータ自身に対して、耐久性と同時に、急速昇温性や、加熱温度の高温化等の要求が高まってきた。
【0010】
しかしながら、セラミックヒータを上記の用途に使用する場合、1000℃を超えるような高温度の環境で使用される場合や、急速にヒータを加熱する場合、ヒータが破損したり、あるいは発熱体の抵抗が急激に増加するという問題があった。そのため、これらのセラミックヒータは、現在1000℃以下、多くの場合700℃以下で、且つ急激な急速昇温を避けて用いられている。
【0011】
そのため、本発明では耐久性に優れると同時に、急速昇温性を有する低コストのセラミックヒータとそれを具備するセラミックヒータ構造体を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明者は、上記の問題について検討した結果、白金発熱体および発熱体に電流を供給するためのリード部が埋設されたセラミックヒータにおいて、発熱体を所定の厚みに制御すると同時に、発熱体の厚みとリード部導体の厚みの比率を一定の範囲に保持することにより、耐久性と急速昇温性に優れたセラミックヒータが製造できることを見出した。
【0013】
即ち、本発明は、アルミナを主成分とするセラミック絶縁層中に、白金を主成分とする発熱体と、該発熱体と接続され該発熱体に電流を供給するためのリード部を埋設してなるセラミックヒータであって、前記発熱体の厚みをt1(μm)、前記リード部の導体厚みをt2(μm)とすると、13≦t1≦30、1.1≦t1/t2≦3.0を満足することを特徴とするものである。
【0014】
また、前記白金を主成分とする発熱体は、27〜45体積%のアルミナを含有することが、また前記白金を主成分とするリード部は、5〜26体積%のアルミナを含有することがそれぞれ望ましい。これによって、急速昇温が可能な耐久性に優れた低コストのセラミックヒータを提供することができる。
【0015】
【発明の実施の形態】
以下に、本発明のセラミックヒータの基本構造を図面をもとに説明する。本発明のセラミックヒータにおいては、図1の分解斜視図に示すようにアルミナを主成分とするセラミック絶縁層1中には、白金を主成分とする発熱体2と、発熱体2に電気的に接続され発熱体2に電流を供給するための白金を主成分とするリード部3がそれぞれ埋設されている。また、セラミック絶縁層1の外面には、電極パッド4が設けられており、スルーホール導体5によって接続されている。
【0016】
図2に、図1のセラミックヒータにおける発熱体2形成部分の断面図を(a)に、リード部3形成部の断面図を(b)に示した。本発明によれば、かかるセラミックヒータにおいて、図2(a)に示すように、発熱体2の厚みをt1(μm)、またリード部3の厚みをt2(μm)とすると、13≦t1≦30、1.1≦t1/t2≦3.0であることが重要であり、この厚みを上記のように設定することによって、白金を主成分とする発熱体を具備するセラミックヒータの耐久性と急速昇温性を大きく向上させることができる。
【0017】
ここで、発熱体2の厚みt1が13μmより小さいと、発熱体2の耐久性の悪くなり、熱サイクルを繰り返すと発熱体2の抵抗が徐々に増加する。また、それに伴いセラミックの破損率も高くなる傾向を示す。それに対して、t1が30μmを越えると、発熱体2の抵抗が小さくなるため、通電により発熱体2が急速に加熱されセラミック絶縁層1が熱衝撃により破壊する。
【0018】
また、t1/t2の比率に関しては、t1/t2が1.1より小さくなるとリード部3の抵抗が小さくなるため、通電により発熱体2が急速に加熱され発熱体2を埋設しているセラミック絶縁層1が熱衝撃により破壊しやすくなる。逆に、t1/t2が3を越えると、リード部3の抵抗が大きくなり、急速昇温性が失われる。また、セラミック絶縁層1も破損されやすくなる。
【0019】
このような理由により、上記の範囲が設定された。発熱体2の厚みt1としては特に18〜27μmで、かつt1/t2の比率として1.3〜2.5の範囲が特に優れる。
【0020】
また、発熱体2およびリード部3は、いずれも白金を主成分とするものであるが、またアルミナを適量含有することが望ましい。具体的には、発熱体2は27〜45体積%、およびリード部3は5〜26体積%のアルミナを含有することがそれぞれ望ましい。発熱体2中のアルミナ含有率を上記範囲とすることによって、ヒータの耐久性を向上するとともに、ヒータの抵抗を安定に保ち、ヒータの急速昇温性を高めることができる。発熱体2のアルミナ含有率としては、30〜40体積%が特に優れる。
【0021】
一方、リード部3に関しては、アルミナの含有率を上記範囲とすることいによって、リード部とアルミナセラミックスとの接合性を高め、温度サイクルに対する耐久性を高めるとともに、リード部3の抵抗を適正に保ち、急速昇温性を向上させることができる。リード部3中のアルミナの含有率としては、10〜20体積%が特に好ましい。
【0022】
本発明におけるセラミック絶縁層1を形成するアルミナセラミックスは、アルミナを97質量%以上含有するものであり、必要に応じてSiO2、MgO、CaOなどの焼結助剤を3質量%以下、特に0.5〜1.5質量%含有するもので相対密度80%以上、開気孔率が5%以下の緻密質なセラミックスによって構成されていることによってセラミックヒータの強度を高め耐久性を高めることができる。
【0023】
また、Naなどのアルカリ金属のマイナス極側への移動と抵抗増加を防止する観点から、アルミナを主成分とするセラミック絶縁層1中のアルカリ金属(Na,K,Li)の含有量がそれぞれ50ppm以下、特に30ppm以下にすることが望ましい。
【0024】
本発明では、発熱体2およびリード部3は、白金を主成分とし、具体的には、白金単体の他、あるいは白金と、ロジウム、パラジウム、ルテニウムの群から選ばれる1種との合金が用いられる。また、発熱体2およびリード部3中のアルミナの平均結晶粒子径は0.2〜1.0μm、特に0.3〜0.8μmとすることが望ましい。これによって、発熱体2の平坦性を高め、また、Al2O3の凝集に伴う2次粒子径のばらつきによって、発熱体2中に抵抗の温度ばらつきが生じるのを防止できる。
【0025】
次に、本発明のセラミックヒータの製造方法について説明する。図1の分解斜視図に基づくと、白金等の金属とアルミナとの混合粉末からなる発熱体2とリード部2の印刷用のペーストをそれぞれ調製する。そして、それぞれのペーストを用いて、未焼成のセラミック絶縁層1a(グリーンシート1a)表面に、発熱体2のパターンを所定の幅および厚みで印刷した後、さらにリード部3のパターンを所定の幅および厚みで、互いの端部が重なり合うように印刷する。
【0026】
また、同様に、未焼成のセラミック絶縁層1b(グリーンシート1b)に、貫通穴を形成して白金ペーストを充填してビア導体5を形成するとともに、白金ペーストを用いて電極パッド4を印刷形成した後、この未焼成のセラミック絶縁層1bを前記発熱体2のパターンやリード3のパターンの上に積層圧着した後、1200〜1700℃の温度で酸化性、または中性の雰囲気で焼成することによって作製される。
【0027】
ここで、セラミックグリーンシート1a、1bは、平均粒径が0.2〜1.0μmのアルミナ粉末に、焼結助剤として、SiO2、MgO、CaOなどの焼結助剤を0〜3質量%,特に0.1〜1質量%添加混合し、これに有機バインダを添加混合して、スラリーを調製する。そしてこのスラリーをドクターブレード法などのシート成形法によって厚さ50〜500μmの厚さに成形する。また、ここで用いるグリーンシートのうち、発熱体2のパターン上に積層圧着されるセラミックグリーンシート1bのヤング率は、700MPa、特に500MPa以下であることが望ましい。即ち、このヤング率は、グリーンシートの変形のしやすさを示すもので、このヤング率を上記範囲に設定することによって発熱体2のパターンやリード部3のパターンの厚みによる凸部に対してグリーンシート1bが追従することができる結果、密着性を高めることができるとともに、発熱体2の端部でのセラミックの開き6を小さく制御することができる。
【0028】
なお、この積層圧着時の圧力は、30〜50MPaの範囲とすることによって、セラミックの開きの発生を抑制することができる。このセラミックグリーンシートのヤング率は有機バインダー量をセラミック粉末100質量部に対して、固形分量として5〜20質量部の割合で、また溶媒量を原料100質量部に対して50〜100質量部の範囲で変化させることによって容易に制御できる。
【0029】
また、発熱体2のパターン、リード部3のパターンを印刷形成する導体ペーストは、平均粒径1〜3μmの白金粉末に、平均粒径が0.2〜1.0μmのアルミナ粉末を前述した所定比率でそれぞれ添加混合して、これに、アクリル樹脂などの有機バインダおよびトルエンなどの有機溶媒を添加し、混合することによって調製される。
【0030】
なお、この導体ペーストは、グラインドゲージによる測定値で20μm以下、特に15μm以下に制御することが発熱体の耐久性の観点から重要である。このグラインドゲージとは、ペーストの粒径測定用装置であり、最大粒径を表すパラメータである。即ち、このグラインドゲージが20μmよりも大きいと、発熱体2表面に凹凸ができたり、特性の信頼性を低下させる原因となる。なお、このグラインドゲージは、ペースト中のアルミナ粒子径や白金粒子径を調整すること制御できる。
【0031】
なお、本発明においては、発熱体2のパターンは、図1に示すように、ヒータの長手方向に伸び、長手方向の端部で折り返した構造でも、あるいは長手方向と直交する方向の端部で折り返した波形(ミアンダ)構造のいずれでもよいが、特に、発熱体2の耐久性の観点からは、図1に示すような長手方向の端部で折り返したパターンが望ましい。この際、発熱体2の線幅としては印刷の精度から0.15mm以上、特に0.2mm以上が好ましい。
【0032】
また、本発明のセラミックヒータは、図1、2のような外形形状が平板状のもの他、円筒形状、円柱形状であっても問題は無い。
【0033】
さらに、本発明のセラミックヒータは、種々の構造部品における加熱手段の他、酸素センサ、NOxセンサ、COセンサ等の各種素子を高温に加熱するために、他の部材と一体化したセラミックヒータ構造体を形成できる。
【0034】
このようなセラミックヒータ構造体の具体例として、図3に本発明のセラミックヒータを酸素センサ素子の加熱に応用した構造体を示した。図4(a)は概略斜視図、(b)は、Y1−Y1断面図である。これは、一般的に理論空撚比センサ素子と呼ばれるものであり、図4の例ではセンサ部20とヒータ部21とが一体的に形成されている。
【0035】
図3の酸素センサ素子においては、ジルコニアからなる酸素イオン導電性を有する固体電解質基板22と、この固体電解質基板22の対向する両面には、空気に接する基準電極23aと、排気ガスと接する測定電極24aとが形成されており、酸素濃度を検知する機能を有するセンサ部20を形成している。
【0036】
一方、発熱体27aを埋設する絶縁性セラミック基体26から構成されるヒータ部21は先端が封止された平板状の中空形状からなり、この中空部が大気導入孔22aを形成している。そして、この中空内壁に、空気などの基準ガスと接触する基準電極23aが被着形成され、この基準電極23aと対向する固体電解質基板22の外面に、排気ガスなどの被測定ガスと接触する測定電極24aが形成されている。
【0037】
また、排気ガスによる電極の被毒を防止する観点から、測定電極24a表面には電極保護層としてセラミック多孔質層25が形成されている。
【0038】
本発明の酸素センサ素子において用いられる固体電解質は、ZrO2を含有するセラミックスからなり、安定化剤として、Y2O3およびYb2O3、Sc2O3、Sm2O3、Nd2O3、Dy2O3等の希土類酸化物を酸化物換算で1〜30モル%、好ましくは3〜15モル%含有する部分安定化ZrO2あるいは安定化ZrO2が用いられている。
【0039】
また、ZrO2中のZrを1〜20原子%をCeで置換したZrO2を用いることにより、イオン導電性が大きくなり、応答性がさらに改善されるといった効果がある。
【0040】
さらに、焼結性を改善する目的で、上記ZrO2に対して、Al2O3やSiO2を添加含有させることができるが、多量に含有させると、高温におけるクリープ特性が悪くなることから、Al2O3およびSiO2の添加量は総量で5質量%以下、特に2質量%以下であることが望ましい。
【0041】
固体電解質基板22の表面に被着形成される基準電極23a、測定電極24aは、いずれも白金、あるいは白金と、ロジウム、パラジウム、ルテニウムおよび金の群から選ばれる1種との合金が用いられる。
【0042】
また、動作時に、電極中の金属の粒成長を防止する目的と、応答性に係わる白金粒子と固体電解質と気体との、いわゆる3相界面の接点を増大する目的で、上述のセラミック固体電解質成分を1〜50体積%、特に10〜30体積%の割合で上記電極中に混合してもよい。
【0043】
また、電極23a,24aの形状としては、四角形でも楕円形でもよい。また、電極の厚さは、3〜20μm、特に5〜10μmが好ましい。
【0044】
一方、ヒータ部21は、図1〜図2にて説明したような、発熱体2の厚みやリード部の厚み等を制御した本発明のセラミックヒータによって形成する。
【0045】
なお、発熱体27aを埋設するセラミック絶縁層26としては、アルミナセラミックスからなる相対密度80%以上、開気孔率が5%以下の緻密質なセラミックスによって構成されていることによってガスセンサの強度を高め耐久性を高めることができる。
【0046】
また、測定電極24aの表面に形成されるセラミック多孔質層25は、厚さ10〜800μmで、気孔率が10〜50%のジルコニア、アルミナ、γ−アルミナおよびスピネルの群から選ばれる少なくとも1種によって形成されていることが望ましい。
【0047】
また、本発明のセラミックヒータまたは酸素センサなどの検出素子は、素子全体の厚さとしては、0.8〜1.5mm、特に1.0〜1.2mm、素子の長さとしては45〜55mm、特に45〜50mmが急速昇温性と素子のエンジン中への取付け具合との関係から好ましい。
【0048】
次に、本発明のセラミックヒータ構造体の製造方法について、図3の酸素センサ素子の製造方法を図4の分解斜視図をもとに説明する。
【0049】
まず、固体電解質のグリーンシート41を作製する。このグリーンシート41は、例えば、ジルコニアの酸素イオン導電性を有するセラミック固体電解質粉末に対して、適宜、成形用有機バインダーを添加してドクターブレード法や、押出成形や、静水圧成形(ラバープレス)あるいはプレス形成などの周知の方法により作製される。
【0050】
次に、上記のグリーンシート41の両面に、それぞれ測定電極24および基準電極23となるパターン42a、42cやリードパターン42b、42d、パット43a、スルーホール43bなどを例えば、白金を含有する導電性ペーストを用いてスラリーディップ法、あるいはスクリーン印刷、パット印刷、ロール転写で印刷形成することにより、センサ部Aを作製する。
【0051】
さらに、この時に使用する白金を含有する導電性ペーストとしては、上述のセラミック固体電解質成分からなるジルコニアを1〜50体積%、特に10〜30体積%の割合で包含する白金粒子を用いて、その他に、エチルセルロース等の有機樹脂成分を含有するものが望ましい。
【0052】
次に、絶縁性セラミック基体からなるグリーンシート47の表面に、平均粒径が1〜3μmの白金と、平均粒径が0.2〜1.0μmのアルミナとの混合粉末とアクリル樹脂などの有機バインダおよびトルエンなどの有機溶媒を添加して混合して発熱体およびリード部形成用の印刷用ペーストを調製し、これを用いて、発熱体パターン49やリードパターン50、電極パターン51、スルーホール52などをスクリーン印刷、パット印刷、ロール転写で印刷して、前述したような所定の厚みにそれぞれ印刷形成する。
【0053】
そして、さらにアルミナのグリーンシートをアクリル樹脂や有機溶媒などの接着剤を介在させるか、あるいはローラ等で圧力を加えながら、大気導入孔44を形成した絶縁性セラミック基体からなるグリーンシート45、46と機械的に接着することにより、ヒータ部21用の積層体Bを作製する。
【0054】
この後、センサ部20の積層体Aとヒータ部21の積層体Bをアクリル樹脂や有機溶媒などの接着剤を介在させるか、あるいはローラ等で圧力を加えながら両者を機械的に接着することにより接着一体化した後、これらを焼成する。焼成は、大気中または不活性ガス雰囲気中、1300℃〜1700℃の温度範囲で1〜10時間焼成する。
【0055】
その後、必要に応じ、測定電極42aの上に、プラズマ溶射法等により,アルミナ、ジルコニア、スピネルの群から選ばれる少なくとも1種のセラミック多孔質層25を形成することによってヒータ部が一体化された酸素センサ素子を形成することができる。
【0056】
なお、上記の方法では、ヒータ部Aはセンサ部Bと同時焼成して形成した場合について説明したが、センサ部Aとヒータ部Bとはそれぞれ別体で焼成した後、ガラスなどの適当な無機接合材によって接合することによって一体化することも可能である。
【0057】
【実施例】
市販の純度が99.9%で平均粒子径が0.5μmのアルミナ粉末(シリカ0.1質量%含有)に、SiO2、MgO,CaOを合計で0.5重量%添加したセラミック粉末に、アクリル系の有機バインダーとトルエンを溶媒として添加してスラリーを作製し、ドクターブレード法により、シートの厚さが0.3mmになるようなアルミナのグリーンシートを作製した。このグリーンシートのヤング率は、約400MPaであった。
【0058】
発熱体として、平均粒子径が0.3μmのアルミナ粉末を、27〜45体積%含有する平均粒子径が2μmの白金粉末と、リード部の導体として、アルミナ粉末を5〜26体積%含有する平均粒子径が2μmの白金粉末からなるペーストをそれぞれ準備した。この際、グラインドゲージによる粒子の最大径はいずれも15μmであった。
【0059】
この2種類の白金ペーストを用いて、まず発熱体のパターンを印刷し、さらにリード部のパターンを端部同士が重ねるように電気的に接続するように印刷した。この際、発熱体とリード部の厚みは、焼成後の厚みが表1に示す厚みになるように変化させた。
【0060】
そして、これらのパターンの上面にアクリル系の有機接着材を用いて前記アルミナグリーンシートを室温で10MPaの圧力で積層圧着してヒータの積層体を作製した。
【0061】
その後、この積層体を1500℃で2時間、大気中で焼成した。なお、この条件下でのセラミック絶縁層の相対密度は98%以上、気孔率は2%以内である。また、アルミナ絶縁層中のアルカリ金属の含有量は30ppm以下であった。
【0062】
この後、セラミックヒータの外形において、幅が4mm、長さ50mmになるように外周を加工した後、さらにエッジ部については、0.2mmのC面取りを施した。
【0063】
(特性および性能評価)
表1に示す特性に関しては、下記の方法により測定した。
【0064】
・発熱体およびリード部の導体厚みと組成
作製したセラミックヒータについて、発熱体およびリード部の断面をそれぞれ5箇所鏡面出しして、1000倍の走査型電子顕微鏡写真を撮影し、各写真から発熱体の最大厚みt1およびリード部の厚みt2を測定し、t1、t2の平均値と厚みの比率t1/t2を求めた。
【0065】
また、発熱体とリード部導体の白金とアルミナの組成比率(体積%)は、上記の試料を使って検量線を用いたEPMA法により決定した。この際、検量線を作成するに用いた標準試料の組成の計算にはジルコニアおよびアルミナの密度(g/cm3)をそれぞれ5.79と3.97を用いた。また、測定点はそれぞれ5点とした。
【0066】
・発熱体抵抗
発熱体抵抗は、25℃の恒温室の中で一対の電極パッド間で測定した。表1の値は、5個の試料の平均値でその際抵抗値のバラツキは±5%であった。
【0067】
・到達時間
上記のセラミックヒータに12V印加した時、ヒータの最高表面温度が室温から400℃まで達するに必要な時間を示す。
【0068】
・抵抗の増加率および破損率
上記の作製したセラミックヒータに約25V前後の電圧を印加し、室温から1100℃まで約20秒で昇温し、さらに1100℃で1分保持した後、印加電圧を切ってセラミックヒータを室温まで空冷した。この温度サイクルを1サイクルとして、これを10万回繰り返した時のヒータの破損率を求めた。この際、試料は、それぞれ10個とし、その平均値を求めた。
【0069】
・抵抗の増加率
上記の作製直後の抵抗に対して、上記の温度サイクルと2万回行なった後の抵抗値を求め、両者の値から抵抗増加率を計算した。
【0070】
【表1】
【0071】
表1より、発熱体の厚みt1が、13μmより薄い試料No.1ではヒータ抵抗が高く、ヒータの急速昇温性が悪く、また温度サイクルによる抵抗の増加率も高いことが分かる。それに対して、厚みt1が30μmを越える試料No.6ではヒータの抵抗が低くなり、アルミナセラミックの破損率が高いことが分かる。
【0072】
また、発熱体とリード部導体の厚みの比率t1/t2に関しては、厚みの比率が3を超える試料No.7および試料No.16では、ヒータ抵抗が高く、その結果温度サイクルにおけるヒータの抵抗増加率および破損率が高くなった。また、ヒータの急速昇温性も悪いことが分かる。逆に、厚みの比率が1.1より小さい試料No.11ではヒータ抵抗が低くなり、その結果温度サイクルによるセラミックの破損率が高かった。
【0073】
また、発熱体およびリード部おけるアルミナ含有率に関しては、発熱体のアルミナ含有率としては、30〜40体積%、リード部のアルミナ含有率としては10〜20体積%の範囲がヒータの急速昇温性や温度サイクルに対する耐熱性,耐久性に優れた性能を有する。
【0074】
【発明の効果】
以上詳述した通り、本発明によれば、白金発熱体および発熱体に電流を供給するためのリード部が埋設されたセラミックヒータにおいて、発熱体を所定の厚みに制御すると同時に、発熱体の厚みとリード部導体の厚みの比率を一定の範囲に保持することにより、発熱体の高温度におけるヒータの耐久性や急速昇温の際の熱衝撃による破壊等の問題を解決し、ヒータ寿命を長期化した急速昇温が可能なセラミックヒータを提供することができる。
【図面の簡単な説明】
【図1】本発明のセラミックヒータの一例の分解斜視図を示す。
【図2】図1のセラミックヒータにおける(a)発熱体形成部のX1−X1断面図、(b)リード部形成部のX2−X2断面図を示す。
【図3】本発明のセラミックヒータ構造体の一例である酸素センサ素子の(a)概略斜視図、(b)Y1−Y1断面図である。
【図4】図3の酸素センサ素子の製造方法を説明するための分解斜視図である。
【符号の説明】
1,26 セラミック絶縁層
2,27a 発熱体
3 リード部
4 電極パッド
5 ビア導体
22 固体電解質基板
22a 大気導入孔
23a 基準電極
24a 測定電極
25 セラミック多孔質層
20 センサ部
21 ヒータ部
Claims (4)
- アルミナを主成分とするセラミック絶縁層中に、白金を主成分とする発熱体と、該発熱体と接続され該発熱体に電流を供給するためのリード部を埋設してなるセラミックヒータであって、前記発熱体の厚みをt1(μm)、前記リード部の導体厚みをt2(μm)とすると、
13≦t1≦30
1.1≦t1/t2≦3.0
を満足することを特徴とするセラミックヒータ。 - 前記白金を主成分とする発熱体が、27〜45体積%のアルミナを含有することを特徴とする請求項1記載のセラミックヒータ。
- 前記白金を主成分とするリード部が、5〜26体積%のアルミナを含有することを特徴とする請求項1または請求項2記載のセラミックヒータ。
- 請求項1乃至請求項3のいずれか記載のセラミックヒータを具備するセラミックヒータ構造体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165476A JP2005005057A (ja) | 2003-06-10 | 2003-06-10 | セラミックヒータ、並びにセラミックヒータ構造体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165476A JP2005005057A (ja) | 2003-06-10 | 2003-06-10 | セラミックヒータ、並びにセラミックヒータ構造体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005005057A true JP2005005057A (ja) | 2005-01-06 |
Family
ID=34091949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003165476A Pending JP2005005057A (ja) | 2003-06-10 | 2003-06-10 | セラミックヒータ、並びにセラミックヒータ構造体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005005057A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007085946A (ja) * | 2005-09-22 | 2007-04-05 | Denso Corp | ガスセンサ素子の製造方法 |
JP2007101545A (ja) * | 2005-09-30 | 2007-04-19 | Robert Bosch Gmbh | 測定ガスパラメータを測定するためのセンサユニット |
JP2007198970A (ja) * | 2006-01-27 | 2007-08-09 | Ngk Spark Plug Co Ltd | ガスセンサ |
JP2013530396A (ja) * | 2010-06-04 | 2013-07-25 | デルファイ・テクノロジーズ・インコーポレーテッド | 低コスト同時焼成センサ加熱回路 |
US11837490B2 (en) | 2019-09-18 | 2023-12-05 | Ngl Insulators, Ltd. | Electrostatic chuck heater |
-
2003
- 2003-06-10 JP JP2003165476A patent/JP2005005057A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007085946A (ja) * | 2005-09-22 | 2007-04-05 | Denso Corp | ガスセンサ素子の製造方法 |
JP2007101545A (ja) * | 2005-09-30 | 2007-04-19 | Robert Bosch Gmbh | 測定ガスパラメータを測定するためのセンサユニット |
JP2007198970A (ja) * | 2006-01-27 | 2007-08-09 | Ngk Spark Plug Co Ltd | ガスセンサ |
JP2013530396A (ja) * | 2010-06-04 | 2013-07-25 | デルファイ・テクノロジーズ・インコーポレーテッド | 低コスト同時焼成センサ加熱回路 |
US11837490B2 (en) | 2019-09-18 | 2023-12-05 | Ngl Insulators, Ltd. | Electrostatic chuck heater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4884103B2 (ja) | セラミックヒータおよびガスセンサ素子 | |
JP4502991B2 (ja) | 酸素センサ | |
JP3572241B2 (ja) | 空燃比センサ素子 | |
JP2004325196A (ja) | 酸素センサ素子 | |
JP2003279528A (ja) | 酸素センサ素子 | |
JP2005005057A (ja) | セラミックヒータ、並びにセラミックヒータ構造体 | |
JP4324439B2 (ja) | セラミックヒータおよびセラミックヒータ構造体 | |
JP4416427B2 (ja) | セラミックヒータおよびその製造方法 | |
JP2004296142A (ja) | セラミックヒータおよびそれを用いた検出素子 | |
JP2003279531A (ja) | 酸素センサ素子 | |
JP3748408B2 (ja) | 酸素センサおよびその製造方法 | |
JP2003315303A (ja) | 酸素センサ素子 | |
JP3935754B2 (ja) | 酸素センサ素子 | |
JP4113479B2 (ja) | 酸素センサ素子 | |
JP2004117099A (ja) | 酸素センサ素子 | |
JP4721593B2 (ja) | 酸素センサ | |
JP4698041B2 (ja) | 空燃比センサ素子 | |
JP2003279529A (ja) | 酸素センサ素子 | |
JP2006210122A (ja) | セラミックヒータ素子及びそれを用いた検出素子 | |
JP2003149196A (ja) | 酸素センサ | |
JP2003194762A (ja) | 酸素センサ | |
JP2004241148A (ja) | セラミックヒータ構造体および検出素子 | |
JP3987708B2 (ja) | 理論空燃比センサ素子 | |
JP2004085493A (ja) | 酸素センサ素子 | |
JP3677479B2 (ja) | 酸素センサ素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071019 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100809 |