JP2005002383A - Method of producing high strength aluminum alloy fin material for heat exchanger - Google Patents
Method of producing high strength aluminum alloy fin material for heat exchanger Download PDFInfo
- Publication number
- JP2005002383A JP2005002383A JP2003165359A JP2003165359A JP2005002383A JP 2005002383 A JP2005002383 A JP 2005002383A JP 2003165359 A JP2003165359 A JP 2003165359A JP 2003165359 A JP2003165359 A JP 2003165359A JP 2005002383 A JP2005002383 A JP 2005002383A
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- fin material
- thickness
- rolled
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
- Prevention Of Electric Corrosion (AREA)
- Metal Rolling (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ろう付け性に優れた熱交換器用アルミニウム合金フィン材の製造方法に関し、詳しくは、ラジエータ、カーヒータ、カーエアコンなどのようにフィンと作動流体通路構成材料とがろう付けにより接合される熱交換器に用いられるアルミニウム合金フィン材であって、ろう付け後の強度と熱伝導度が高く、且つ耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用アルミニウム合金フィン材の製造方法に関する。
【0002】
【従来の技術】
自動車のラジエータ、エアコン、インタークーラー、オイルクーラーなどの熱交換器は、Al−Cu系合金、Al−Mn系合金、Al−Mn−Cu系合金などからなる作動流体通路構成材料と、Al−Mn系合金フィンとをろう付けすることにより組立てられている。フィン材には、作動流体通路構成材料を防食するために犠牲陽極効果が要求されるとともに、ろう付け時の高温加熱により変形したり、ろうが浸透したりしないように優れた耐サグ性、耐エロージョン性が要求される。
【0003】
フィン材としてJIS 3003、JIS 3203などのAl−Mn系アルミニウム合金が使用されるのは、Mnがろう付け時の変形やろうの浸食を防ぐために有効に作用するためである。Al−Mn系合金フィン材に犠牲陽極効果を付与するためには、この合金にZn、Sn、Inなどを添加して電気化学的に卑にする方法(特許文献1(特開昭62−120455号公報)など)があり、耐高温座屈性(耐サグ性)をさらに向上させるためには、Al−Mn系合金にCr、Ti、Zrなどを含有させる方法(特許文献2(特開昭50−118919号公報))がある。
【0004】
しかし、最近では、熱交換器の軽量化、コスト低減がますます強く要求され、作動流体通路構成材料、フィン材などの熱交換器構成材料をさらに薄肉化することが必要となってきているが、例えばフィンを薄肉化すると伝熱断面積が小さくなるために熱交換性能が低下し、製品としての熱交換器の強度、耐久性にも問題が生じるところから、伝熱性能とろう付け後の強度、耐サグ性、耐エロージョン性、自己耐食性の一層の改善が望まれている。
【0005】
従来のAl−Mn系合金では、ろう付け時の加熱によりMnが固溶するため、熱伝導度が低下するという問題点がある。この難点を解決するフィン材として、Mn含有量を0.8wt%以下に制限し、Zr0.02〜0.2wt%およびSi0.1〜0.8wt%を含むアルミニウム合金が提案されている(特許文献3(特公昭63−23260号公報))。この合金は改善された熱伝導度を有するが、Mnが少ないためろう付け後の強度が十分でなく、熱交換器として使用中にフィン倒れや変形が生じ易く、また電位が十分に卑でないために犠牲陽極効果が小さいという欠点がある。
【0006】
一方、アルミニウム合金溶湯からスラブを鋳造する際の冷却速度を速くすることで、Si、Mn含有量などを0.05〜1.5質量%としてもスラブの段階で晶出している金属間化合物のサイズを最大値5μm以下と小さくすることが可能となり、このようなスラブから圧延工程を経ることで、フィン材の疲労特性を向上させる提案もなされている(特許文献4(特開2001−226730号公報))。しかし、当該発明は疲労寿命を向上させることが目的であり、又スラブを鋳造する際の冷却速度を速くする手段については鋳造スラブを薄くするなどの記載はあるものの、実操業規模における双ベルト鋳造機による薄スラブ連続鋳造などの具体的な開示は見られない。
【特許文献1】
特開昭62−120455号公報(特許請求の範囲)
【特許文献2】
特開昭50−118919号公報(特許請求の範囲)
【特許文献3】
特公昭63−23260号公報(特許請求の範囲)
【特許文献4】
特開2001−226730号公報(特許請求の範囲)
【0007】
【発明が解決しようとする課題】
本発明の目的は、ろう付け後において高い強度と熱伝導度を有し、耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材の製造方法を提供することである。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明の熱交換器用アルミニウム合金フィン材の製造方法は、Si0.5〜1.5wt%、Fe0.15〜1.0wt%、Mn0.8〜3.0wt%、Zn0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部通常の不純物とAlからなる溶湯を、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続して鋳造しロールに巻き取った後、板厚0.08〜2.0mmまで冷間圧延し、保持温度350〜500℃で中間焼鈍を施し、冷延率50〜96%の冷間圧延を行って最終板厚40μm〜200μmとすることを特徴とする。
【0009】
【発明の実施の形態】
本発明者は、熱交換器用フィン材に対する薄肉化の要求を満足するアルミニウム合金フィン材を開発するために、強度特性、伝熱性能、耐サグ性、耐エロージョン性、自己耐食性および犠牲陽極効果について、従来のDCスラブ鋳造からの圧延材と双ベルト式連続鋳造からの圧延材の比較を行いつつ、その組成、中間焼鈍条件、圧下率の最適化を検討した結果、本発明を完成した。
本発明の熱交換器用アルミニウム合金フィン材における合金成分の意義および限定理由を以下に説明する。
【0010】
〔Si:0.5〜1.5wt%〕
Siは、Fe、Mnと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させるとともに、Mnの固溶量を減少させて熱伝導度を向上させる。Siの含有量が0.5wt%未満ではその効果が十分でなく、1.5wt%を超えると、ろう付け時にフィン材の溶融が生じるおそれがある。従って、好ましい含有範囲は0.5〜1.5wt%とする。Siのさらに好ましい含有量は0.8〜1.2wt%の範囲である。
【0011】
〔Fe:0.15〜1.0wt%〕
Feは、Mn、Siと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させるとともに、Mnの固溶量を減少させて熱伝導度を向上させる。Feの含有量が0.15wt%未満では高純度の地金を必要とするため製造コストが高くなり好ましくない。1.0wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となる。従って、好ましい含有範囲は0.15〜1.0wt%とする。Feのさらに好ましい含有量は0.2〜0.7wt%の範囲である。
【0012】
〔Mn:0.8〜3.0wt%〕
Mnは、Fe、Siと共存させることによりろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系化合物として高密度に析出して、ろう付け後の合金材の強度を向上させる。また、サブミクロンレベルのAl−(Fe・Mn)−Si系析出物は強い再結晶阻止作用を有するため再結晶粒が150μm以上と粗大になり、耐サグ性と耐エロージョン性が向上する。Mnが0.8wt%未満ではその効果が十分でなく、3.0wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となるとともに、Mnの固溶量が増加して熱伝導度が低下する。従って、好ましい含有範囲は0.8〜3.0wt%とする。Mnのさらに好ましい含有範囲は1.0〜2.0wt%である。
【0013】
〔Zn:0.5〜2.5wt%〕
Znは、フィン材の電位を卑にし、犠牲陽極効果を与える。含有量が0.5wt%未満ではその効果が十分でなく、2.5wt%を超えると材料の自己耐食性が劣化し、また、Znの固溶によって熱伝導度が低下する。Znのさらに好ましい含有量は1.0〜1.5wt%の範囲である。
【0014】
〔Mg:0.05wt%以下〕
Mgは、ろう付け性に影響し、含有量が0.05wt%を超えるとろう付け性を害するおそれがある。とくにフッ化物系フラックスろう付けの場合、フラックスの成分であるフッ素(F)と合金中のMgとが反応し易くなり、MgF2 などの化合物が生成することに起因してろう付け時に有効に作用するフラックスの絶対量が不足し、ろう付け不良が生じ易くなる。従って、不純物としてのMgの含有量は0.05wt%以下に限定する。
【0015】
Mg以外の不純物成分については、Cuは材料の電位を貴にするため0.2wt%以下に制限するのが好ましく、Cr、Zr,Ti、Vは、微量でも材料の熱伝導度を著しく低下させるので、これらの元素の合計含有量は0.20wt%以下に限定するのが好ましい。
【0016】
次に、本発明における薄スラブの鋳造条件、中間焼鈍条件、最終冷延率の意義および限定理由を以下に説明する。
〔双ベルト式鋳造機により厚さ5〜10mmの薄スラブに連続的に鋳造〕
双ベルト鋳造法は、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。
本発明においては、鋳造するスラブの厚さは5〜10mmに限定する。この厚さであると板厚中央部の凝固速度も速く、均一組織でしかも本発明範囲の組成であると粗大な化合物の少ない、およびろう付け後において結晶粒径の大きい優れた諸性質を有するフィン材とすることができる。
【0017】
すなわち、双ベルト式鋳造機による薄スラブ厚さが5mm未満の場合、単位時間当たりに鋳造機を通過するアルミニウム量が小さくなりすぎて、鋳造が困難になる。逆に厚さが10mmを超える場合、ロールによる巻取りができなくなるため、スラブ厚さの範囲を5〜10mmに限定する。
【0018】
なお、溶湯の凝固時の鋳造速度は5〜15m/min であることが好ましく、ベルト内で凝固が完了することが望ましい。鋳造速度が5m/min 未満の場合、鋳造に時間が掛かりすぎて生産性が低下するため、好ましくない。鋳造速度が15m/min を超える場合、アルミニウム溶湯の供給が追いつかず、所定の形状の薄スラブを得ることが困難となる。
【0019】
〔保持温度350〜500℃で中間焼鈍を施し〕
中間焼鈍の保持温度は350〜500℃に限定する。中間焼鈍の保持温度が350℃未満の場合、十分な軟化状態を得ることができない。しかし、中間焼鈍の保持温度が500℃を超えると、ろう付け時に析出する固溶Mnの多くが高温での中間焼鈍時に比較的大きなAl−(Fe・Mn)−Si系化合物として析出してしまうため、ろう付け時の再結晶阻止作用が弱まって再結晶粒径が150μm未満となり、耐サグ性と耐エロージョン性が低下する。
【0020】
中間焼鈍の保持時間は特に限定する必要はないが1〜5時間の範囲とすることが好ましい。中間焼鈍の保持時間が1時間未満の場合、コイル全体の温度が不均一なまま保持時間が経過する可能性があり、板中における均一な再結晶組織の得られないリスクがあり、好ましくない。中間焼鈍の保持時間が5時間を超えると、固溶Mnの析出が進行してろう付け後の再結晶粒径150μm以上を安定して確保する上で不利になるばかりでなく、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。
【0021】
中間焼鈍処理時の昇温速度および冷却速度は特に限定する必要はないが、30℃/hr以上とすることが好ましい。中間焼鈍処理時の昇温速度および冷却速度が30℃/hr未満の場合、固溶Mnの析出が進行してろう付け後の再結晶粒径150μm以上を安定して確保する上で不利であるばかりでなく、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。
【0022】
〔冷間率50〜96%の冷間圧延〕
最終冷延率は50〜96%に限定する。最終冷延率が50%未満の場合、ろう付け後の再結晶粒が1000μm以上となり、抗張力が低下する。96%を超えると圧延時の耳割れが顕著になり歩留まりが低下する。なお、最終冷延率が80%以上の場合、組成によっては製品強度が高くなり過ぎて、フィン成形において所定のフィン形状を得ることが困難になるときには、最終冷延板に150〜300℃で1〜3時間程度の軟化処理を行なっても諸特性を損なうことはない。
【0023】
本発明のアルミニウム合金フィン材は、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを速度5〜15m/min で鋳造してロールに巻き取った後、板厚0.4〜1.0mmまで冷間圧延し、昇温速度30℃/hr以上、保持温度350〜450℃、保持時間1〜5hr、冷却速度30℃/hr以上の中間焼鈍を施して、さらに冷間圧延を行って、通常厚さ0.1mm以下の板材とする。この板材は、所定幅にスリッティングした後コルゲート加工して、作動流体通路用材料、例えば、ろう材を被覆した3003合金などからなるクラッド板からなる偏平管と交互に積層し、ろう付け接合することにより熱交換器ユニットとする。
【0024】
本発明の方法によれば、双ベルト式鋳造機による薄スラブ鋳造時、スラブ中にAl−(Fe・Mn)−Si系化合物が均一かつ微細に晶出するとともに、母相Al中に過飽和に固溶したMnとSiが、ろう付け時の高温加熱によってサブミクロンレベルのAl−(Fe・Mn)−Si相として高密度に析出する。これにより熱伝導性を大きく低下させるマトリックス中の固溶Mn量が少なくなるため、ろう付け後の電気伝導率は高くなり、優れた熱伝導性を示す。また、同様の理由により、微細に晶出したAl−(Fe・Mn)−Si系化合物、および高密度に析出したサブミクロンレベルのAl−(Fe・Mn)−Si相が塑性変形時の転位の動きを妨げるため、ろう付け後の最終板の抗張力は高い値を示す。また、ろう付け時に析出するサブミクロンレベルのAl−(Fe・Mn)−Si相は強い再結晶阻止作用を有するため、ろう付け後の再結晶粒径が150μm以上となるため耐サグ性が良好となり、同様の理由から、ろう付け後にも優れた耐エロージョン性を示すようになる。但し、ろう付け後の再結晶粒の平均粒径が1000μmを超えると抗張力が低下するため好ましくない。
【0025】
さらに、双ベルト式鋳造機は溶湯の凝固速度が速く、薄スラブ中に晶出するAl−(Fe・Mn)−Si系化合物は均一で微細なものとなる。そのため最終のフィン材において、粗大な晶出物起因の円相当径で5μm以上の第二相粒子が存在しなくなり、優れた自己耐食性を発現するようになる。
【0026】
このように双ベルト式連続鋳造法により薄スラブを鋳造することにより、スラブ鋳塊におけるAl−(Fe・Mn)−Si化合物を均一かつ微細とし、ろう付け後のサブミクロンレベルのAl−(Fe・Mn)−Si相析出物を高密度にするとともに、ろう付け後の結晶粒径を150〜1000μmと粗くすることで、ろう付け後の強度、熱伝導度、耐サグ性、耐エロージョン性、自己腐食性を高め、同時にZnを含有させることによって材料の電位を卑にして犠牲陽極効果を優れたものとし、耐久性の優れた熱交換器用アルミニウム合金フィン材とすることができる。
【0027】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。
〔実施例1〕
本発明例として、表1に示した組成の合金溶湯を溶製し、セラミックス製フィルターを通過させて双ベルト鋳造鋳型に注湯し、鋳造速度8m/min で厚さ7mmのスラブを得た。溶湯の凝固時冷却速度は50℃/sec であった。該スラブを0.8mmまで冷間圧延して板となし、昇温速度50℃/hr、400℃で2時間保持、冷却速度50℃/hr(100℃まで)の中間焼鈍を施して軟化させた。次いで該板を冷間圧延して厚さ80μmのフィン材とした。
【0028】
比較例として、表1に示した組成の合金溶湯を溶製し、常法のDC鋳造(厚さ500mm、凝固時冷却速度約1℃/sec )、面削、均熱処理、熱間圧延、冷間圧延(厚さ0.13mm)、中間焼鈍(400℃×2時間)、冷間圧延により厚さ80μmのフィン材を製造した。
得られた本発明例および比較例のフィン材について下記(1)〜(3)の測定を行なった。
【0029】
(1)圧延方向に平行な断面を走査型電子顕微鏡(反射電子像)で観察し、画像解析装置を用いて、円相当径が5μm以上の第二相粒子の個数(個/mm2 )を測定した。
【0030】
(2)ろう付け温度を想定して600〜605℃×3.5分間加熱し、冷却後下記項目を測定した。
[1] 抗張力(MPa )
[2] 表面を電解研磨してパーカー法で結晶粒組織を現出後、切断法で圧延方向に平行な結晶粒径(μm)
[3] JIS−H0505記載の導電性試験法で導電率(%IACS)
[4] LWS T 8801記載のサグ試験方法で、突き出し長さ50mmとしたサグ量(mm)
[5] 銀塩化銀電極を照合電極として、5%食塩水中で電位掃引速度20mV/分で行ったカソード分極より求めた腐食電流密度(μA/cm2 )
【0031】
(3)コルゲート状に加工したフィン材を非腐食性弗化物系フラックスを塗布した厚さ0.25mmのブレージングシート(ろう材4045合金クラッド率8%)のろう材面上に載置(負荷荷重324g)し、昇温速度50℃/min で610℃まで加熱して10分間保持した。冷却後、ろう付け断面を観察し、フィン材結晶粒界のエロージョンが軽微なものを良(○印)とし、エロージョンが激しくフィン材の溶融が顕著なものを不良(×印)とした。なおコルゲート形状は下記のとおりとした。
コルゲート形状:高さ2.3mm×幅21mm×ピッチ3.4mm、10山
結果を表2に示す。
【0032】
【表1】
【0033】
【表2】
【0034】
表2の結果から、本発明の製造方法によるフィン材は従来の製造方法による比較フィン材に比べて、ろう付け後の抗張力、ろう付け後の導電率、耐サグ性、自己耐食性および耐エロージョン性のいずれも良好であることが判る。
【0035】
〔実施例2〕
実施例1で得られた双ベルト鋳造スラブを分割し、表3に示した各中間焼鈍板厚まで冷間圧延した後、表3に示した各温度まで昇温速度50℃/hrで加熱し、2時間保持、冷却速度50℃/hr(100℃まで)の中間焼鈍を施して軟化させた。次いで該板を表3に示した最終冷延率で冷間圧延して厚さ80μmのフィン材とした。これらフィン材について、実施例1に示した方法で、ろう付け後の結晶粒径、ろう付け後の抗張力、耐サグ性、および耐エロージョン性を評価した結果を表4に示す。
【0036】
【表3】
【0037】
【表4】
【0038】
表より、本発明方法で製造されたフィン材番号1、2、および4は、ろう付け後の抗張力、耐サグ性、および耐エロージョン性のいずれも良好であるのに対し、最終冷延率の少ないフィン材番号3は、ろう付け後の再結晶粒が超粗大なため抗張力が低くなり、中間焼鈍温度が高いフィン材番号5は、ろう付け後の再結晶粒が小さくなるため、耐サグ性と耐エロージョン性が劣っていることが分かる。
【0039】
【発明の効果】
本発明によれば、ろう付け後において高い強度と熱伝導度を有し、耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材の製造方法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aluminum alloy fin material for heat exchangers with excellent brazing properties, and more specifically, a fin and a working fluid passage constituent material are joined by brazing such as a radiator, a car heater, and a car air conditioner. Aluminum alloy fin material used for heat exchangers, with high strength and thermal conductivity after brazing, and excellent erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance The present invention relates to a method for manufacturing a material.
[0002]
[Prior art]
Heat exchangers for automobile radiators, air conditioners, intercoolers, oil coolers, etc. are composed of working fluid passage materials composed of Al-Cu alloys, Al-Mn alloys, Al-Mn-Cu alloys, and Al-Mn alloys. It is assembled by brazing alloy fins. The fin material is required to have a sacrificial anode effect in order to prevent the working fluid passage constituent material from being corroded, and has excellent sag resistance and resistance to prevent deformation due to high temperature heating during brazing and penetration of the braze. Erosion is required.
[0003]
The reason why Al-Mn aluminum alloys such as JIS 3003 and JIS 3203 are used as the fin material is that Mn acts effectively to prevent deformation during brazing and erosion of the brazing. In order to impart the sacrificial anode effect to the Al—Mn alloy fin material, a method of adding Zn, Sn, In, or the like to this alloy to make it electrochemically base (Patent Document 1 (Japanese Patent Laid-Open No. 62-120455)). In order to further improve the high temperature buckling resistance (sag resistance), a method in which an Al—Mn based alloy contains Cr, Ti, Zr, etc. 50-118919)).
[0004]
Recently, however, there has been an increasing demand for weight reduction and cost reduction of heat exchangers, and it has become necessary to further reduce the thickness of heat exchanger constituent materials such as working fluid passage constituent materials and fin materials. For example, if the fins are made thinner, the heat transfer cross-sectional area becomes smaller and the heat exchange performance deteriorates, causing problems in the strength and durability of the heat exchanger as a product. Further improvements in strength, sag resistance, erosion resistance, and self-corrosion resistance are desired.
[0005]
The conventional Al-Mn alloy has a problem that the thermal conductivity is lowered because Mn is dissolved by heating during brazing. As a fin material that solves this difficulty, an aluminum alloy that limits the Mn content to 0.8 wt% or less and contains Zr 0.02 to 0.2 wt% and Si 0.1 to 0.8 wt% has been proposed (patent) Reference 3 (Japanese Patent Publication No. 63-23260)). This alloy has improved thermal conductivity, but because Mn is low, the strength after brazing is not sufficient, fins are liable to collapse and deform during use as a heat exchanger, and the potential is not sufficiently low. However, the sacrificial anode effect is small.
[0006]
On the other hand, by increasing the cooling rate when casting the slab from the molten aluminum alloy, the intermetallic compound crystallized at the stage of the slab even if the Si, Mn content, etc. is 0.05 to 1.5% by mass. It has become possible to reduce the size to a maximum value of 5 μm or less, and a proposal has been made to improve the fatigue characteristics of the fin material through a rolling process from such a slab (Patent Document 4 (Japanese Patent Laid-Open No. 2001-226730). Publication)). However, the present invention is intended to improve the fatigue life, and although there is a description of thinning the casting slab as a means for increasing the cooling rate when casting the slab, it is a twin belt casting on an actual operation scale. There is no specific disclosure of thin slab continuous casting by machine.
[Patent Document 1]
Japanese Patent Laid-Open No. 62-120455 (Claims)
[Patent Document 2]
JP 50-118919 A (Claims)
[Patent Document 3]
Japanese Patent Publication No. 63-23260 (Claims)
[Patent Document 4]
JP 2001-226730 A (Claims)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an aluminum alloy fin material for a heat exchanger that has high strength and thermal conductivity after brazing and is excellent in sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. That is.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing an aluminum alloy fin material for a heat exchanger according to the present invention includes Si 0.5 to 1.5 wt%, Fe 0.15 to 1.0 wt%, and Mn 0.8 to 3.0 wt%. , Containing 0.5 to 2.5 wt% of Zn, further limiting Mg as an impurity to 0.05 wt% or less, and using a double belt casting machine to melt a molten metal composed of ordinary impurities and Al with a thickness of 5 to 10 mm. After thin slabs are continuously cast and wound on a roll, they are cold-rolled to a thickness of 0.08 to 2.0 mm, subjected to intermediate annealing at a holding temperature of 350 to 500 ° C., and a cold rolling rate of 50 to 96%. Cold rolling is performed to obtain a final thickness of 40 μm to 200 μm.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In order to develop an aluminum alloy fin material that satisfies the requirements for thinning the heat exchanger fin material, the present inventor is concerned with strength characteristics, heat transfer performance, sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. As a result of studying optimization of the composition, intermediate annealing conditions, and rolling reduction while comparing the rolling material from the conventional DC slab casting and the rolling material from the twin belt type continuous casting, the present invention was completed.
The significance and reasons for limitation of the alloy components in the aluminum alloy fin material for heat exchangers of the present invention will be described below.
[0010]
[Si: 0.5 to 1.5 wt%]
Si coexists with Fe and Mn to form submicron-level Al- (Fe · Mn) -Si compounds during brazing, improving strength and reducing the solid solution amount of Mn to conduct heat. Improve the degree. If the Si content is less than 0.5 wt%, the effect is not sufficient, and if it exceeds 1.5 wt%, the fin material may melt during brazing. Therefore, the preferable content range is 0.5 to 1.5 wt%. A more preferable content of Si is in the range of 0.8 to 1.2 wt%.
[0011]
[Fe: 0.15-1.0 wt%]
Fe coexists with Mn and Si to produce submicron-level Al- (Fe · Mn) -Si compounds during brazing, improving strength and reducing Mn solid solution to conduct heat. Improve the degree. If the Fe content is less than 0.15 wt%, a high-purity bare metal is required, which is not preferable because the production cost increases. If it exceeds 1.0 wt%, coarse Al- (Fe.Mn) -Si-based crystallized matter is generated during casting of the alloy, making it difficult to produce a plate material. Therefore, the preferable content range is 0.15 to 1.0 wt%. The more preferable content of Fe is in the range of 0.2 to 0.7 wt%.
[0012]
[Mn: 0.8 to 3.0 wt%]
By coexisting with Fe and Si, Mn precipitates at a high density as a sub-micron level Al— (Fe · Mn) —Si compound at the time of brazing, and improves the strength of the alloy material after brazing. Moreover, since the submicron level Al— (Fe · Mn) —Si based precipitate has a strong recrystallization inhibiting action, the recrystallized grains become coarser to 150 μm or more, and the sag resistance and erosion resistance are improved. If Mn is less than 0.8 wt%, the effect is not sufficient, and if it exceeds 3.0 wt%, coarse Al- (Fe.Mn) -Si-based crystallized products are produced during casting of the alloy, making it difficult to produce a plate material. At the same time, the solid solution amount of Mn increases and the thermal conductivity decreases. Therefore, the preferable content range is 0.8 to 3.0 wt%. A more preferable content range of Mn is 1.0 to 2.0 wt%.
[0013]
[Zn: 0.5 to 2.5 wt%]
Zn lowers the potential of the fin material and provides a sacrificial anode effect. If the content is less than 0.5 wt%, the effect is not sufficient, and if it exceeds 2.5 wt%, the self-corrosion resistance of the material is deteriorated, and the thermal conductivity is lowered due to the solid solution of Zn. A more preferable content of Zn is in the range of 1.0 to 1.5 wt%.
[0014]
[Mg: 0.05 wt% or less]
Mg affects the brazing property, and if the content exceeds 0.05 wt%, the brazing property may be impaired. In particular, in the case of fluoride-based flux brazing, fluorine (F), which is a component of the flux, easily reacts with Mg in the alloy, and works effectively during brazing due to the formation of compounds such as MgF 2. The absolute amount of flux to be used is insufficient, and brazing defects are likely to occur. Therefore, the content of Mg as an impurity is limited to 0.05 wt% or less.
[0015]
For impurity components other than Mg, Cu is preferably limited to 0.2 wt% or less in order to make the potential of the material noble, and Cr, Zr, Ti, and V significantly reduce the thermal conductivity of the material even in a small amount. Therefore, the total content of these elements is preferably limited to 0.20 wt% or less.
[0016]
Next, the meaning of the casting conditions, the intermediate annealing conditions, the final cold rolling rate of the thin slab in the present invention, and the reasons for limitation will be described below.
[Continuous casting into a thin slab with a thickness of 5-10mm by a twin belt type casting machine]
In the double belt casting method, molten metal is poured between rotating belts facing each other up and down, and the molten metal is solidified by cooling from the belt surface to form a slab. It is a continuous casting method that is drawn out and wound into a coil.
In the present invention, the thickness of the cast slab is limited to 5 to 10 mm. With this thickness, the solidification rate in the central part of the plate thickness is fast, and with a uniform structure and with a composition within the range of the present invention, there are few coarse compounds and excellent properties with a large crystal grain size after brazing. It can be a fin material.
[0017]
That is, when the thickness of the thin slab by the twin belt type casting machine is less than 5 mm, the amount of aluminum passing through the casting machine per unit time becomes too small, and casting becomes difficult. Conversely, when the thickness exceeds 10 mm, winding with a roll becomes impossible, so the slab thickness range is limited to 5 to 10 mm.
[0018]
In addition, it is preferable that the casting speed at the time of solidification of a molten metal is 5-15 m / min, and it is desirable that solidification is completed within a belt. A casting speed of less than 5 m / min is not preferable because it takes too much time for casting and decreases productivity. When the casting speed exceeds 15 m / min, the supply of the molten aluminum cannot catch up, and it becomes difficult to obtain a thin slab having a predetermined shape.
[0019]
[Intermediate annealing is performed at a holding temperature of 350 to 500 ° C.]
The holding temperature of the intermediate annealing is limited to 350 to 500 ° C. When the holding temperature of intermediate annealing is less than 350 ° C., a sufficient softened state cannot be obtained. However, if the holding temperature of the intermediate annealing exceeds 500 ° C., most of the solid solution Mn that precipitates during brazing will precipitate as a relatively large Al— (Fe · Mn) —Si compound during intermediate annealing at a high temperature. For this reason, the recrystallization inhibiting action at the time of brazing is weakened, the recrystallized grain size becomes less than 150 μm, and the sag resistance and the erosion resistance are lowered.
[0020]
The holding time for the intermediate annealing is not particularly limited, but is preferably in the range of 1 to 5 hours. If the holding time of the intermediate annealing is less than 1 hour, the holding time may elapse while the temperature of the entire coil is not uniform, and there is a risk that a uniform recrystallized structure in the plate cannot be obtained, which is not preferable. If the holding time of the intermediate annealing exceeds 5 hours, precipitation of the solid solution Mn proceeds and not only is disadvantageous in securing a recrystallized grain size of 150 μm or more after brazing, but also the processing time is increased. This is not preferable because it is too much and the productivity is lowered.
[0021]
The temperature raising rate and the cooling rate during the intermediate annealing treatment are not particularly limited, but are preferably 30 ° C./hr or more. When the heating rate and cooling rate during the intermediate annealing process are less than 30 ° C./hr, precipitation of the solid solution Mn progresses, which is disadvantageous in securing a recrystallized grain size of 150 μm or more after brazing. Not only that, but it takes too much time for the processing and the productivity is lowered.
[0022]
[Cold rolling with a cold rate of 50 to 96%]
The final cold rolling rate is limited to 50 to 96%. When the final cold rolling rate is less than 50%, the recrystallized grains after brazing become 1000 μm or more, and the tensile strength decreases. If it exceeds 96%, the ear cracks at the time of rolling become remarkable, and the yield decreases. When the final cold rolling rate is 80% or more, depending on the composition, the product strength becomes too high, and when it is difficult to obtain a predetermined fin shape in fin molding, the final cold rolled plate is heated at 150 to 300 ° C. Even if the softening treatment is performed for about 1 to 3 hours, various characteristics are not impaired.
[0023]
The aluminum alloy fin material of the present invention is obtained by casting a thin slab having a thickness of 5 to 10 mm at a speed of 5 to 15 m / min by using a twin belt type casting machine and winding the slab on a roll. Cold-rolled, subjected to intermediate annealing at a heating rate of 30 ° C./hr or higher, a holding temperature of 350 to 450 ° C., a holding time of 1 to 5 hr, a cooling rate of 30 ° C./hr or higher, and further cold-rolled, Usually, a plate material having a thickness of 0.1 mm or less is used. This plate material is slitted to a predetermined width and then corrugated, and alternately laminated with a flat tube made of a clad plate made of a material for working fluid passage, for example, 3003 alloy coated with a brazing material, and brazed and joined. Therefore, a heat exchanger unit is obtained.
[0024]
According to the method of the present invention, at the time of thin slab casting by a twin belt type casting machine, Al- (Fe · Mn) -Si compound is crystallized uniformly and finely in the slab and supersaturated in the matrix Al. The solid solution Mn and Si are deposited at a high density as a sub-micron level Al- (Fe.Mn) -Si phase by high-temperature heating during brazing. As a result, the amount of solid solution Mn in the matrix that greatly lowers the thermal conductivity is reduced, so that the electrical conductivity after brazing is increased and excellent thermal conductivity is exhibited. For the same reason, the Al- (Fe · Mn) -Si compound finely crystallized and the submicron-level Al- (Fe · Mn) -Si phase precipitated at high density are dislocations during plastic deformation. The tensile strength of the final plate after brazing shows a high value. In addition, the sub-micron level Al- (Fe.Mn) -Si phase that precipitates during brazing has a strong recrystallization-inhibiting action, so that the recrystallized grain size after brazing is 150 μm or more, thus providing good sag resistance. Thus, for the same reason, it exhibits excellent erosion resistance even after brazing. However, if the average grain size of the recrystallized grains after brazing exceeds 1000 μm, the tensile strength decreases, which is not preferable.
[0025]
Further, the twin-belt casting machine has a high solidification rate of the molten metal, and the Al— (Fe · Mn) —Si compound crystallized in the thin slab becomes uniform and fine. Therefore, in the final fin material, second phase particles having a circle-equivalent diameter of 5 μm or more due to coarse crystals are not present, and excellent self-corrosion resistance is exhibited.
[0026]
Thus, by casting the thin slab by the twin belt type continuous casting method, the Al— (Fe · Mn) —Si compound in the slab ingot is made uniform and fine, and the submicron level Al— (Fe・ Mn) -Si phase precipitates are densified and the grain size after brazing is roughened to 150 to 1000 μm, so that strength after brazing, thermal conductivity, sag resistance, erosion resistance, By increasing the self-corrosion property and simultaneously containing Zn, the potential of the material can be reduced, the sacrificial anode effect can be improved, and the aluminum alloy fin material for heat exchanger having excellent durability can be obtained.
[0027]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
[Example 1]
As an example of the present invention, a molten alloy having the composition shown in Table 1 was melted, passed through a ceramic filter, poured into a twin belt casting mold, and a slab having a thickness of 7 mm was obtained at a casting speed of 8 m / min. The cooling rate during solidification of the molten metal was 50 ° C./sec. The slab is cold rolled to 0.8 mm to form a plate, softened by intermediate annealing at a heating rate of 50 ° C / hr and 400 ° C for 2 hours, and a cooling rate of 50 ° C / hr (up to 100 ° C). It was. Next, the plate was cold-rolled to obtain a fin material having a thickness of 80 μm.
[0028]
As a comparative example, a molten alloy having the composition shown in Table 1 was melted and subjected to conventional DC casting (thickness: 500 mm, cooling rate at solidification: about 1 ° C./sec), chamfering, soaking, hot rolling, cooling A fin material having a thickness of 80 μm was manufactured by hot rolling (thickness 0.13 mm), intermediate annealing (400 ° C. × 2 hours), and cold rolling.
The following measurements (1) to (3) were performed on the fin materials of the present invention examples and comparative examples.
[0029]
(1) A cross section parallel to the rolling direction is observed with a scanning electron microscope (reflection electron image), and the number of second phase particles having an equivalent circle diameter of 5 μm or more (pieces / mm 2 ) is measured using an image analyzer. It was measured.
[0030]
(2) Heating was performed at 600 to 605 ° C. for 3.5 minutes assuming a brazing temperature, and the following items were measured after cooling.
[1] Tensile strength (MPa)
[2] After the surface is electropolished and the crystal grain structure is revealed by the Parker method, the grain size parallel to the rolling direction by the cutting method (μm)
[3] Conductivity (% IACS) according to the conductivity test method described in JIS-H0505
[4] Sag amount (mm) with a protruding length of 50 mm by the sag test method described in LWS T 8801
[5] Corrosion current density (μA / cm 2 ) obtained from cathodic polarization using a silver-silver chloride electrode as a reference electrode in a 5% saline solution at a potential sweep rate of 20 mV / min.
[0031]
(3) A fin material processed into a corrugated shape is placed on a brazing material surface of a 0.25 mm thick brazing sheet (brazing material 4045 alloy clad rate 8%) coated with a non-corrosive fluoride flux (load load) 324 g), heated to 610 ° C. at a heating rate of 50 ° C./min and held for 10 minutes. After cooling, the brazed cross section was observed, and a slight erosion of the fin material crystal grain boundary was judged as good (◯ mark), and a erosion was severe and the fin material melted markedly as poor (x mark). The corrugated shape was as follows.
Corrugated shape: height 2.3 mm × width 21 mm × pitch 3.4 mm, and 10 mountain results are shown in Table 2.
[0032]
[Table 1]
[0033]
[Table 2]
[0034]
From the results of Table 2, the fin material produced by the production method of the present invention is higher in tensile strength after brazing, electrical conductivity after brazing, sag resistance, self-corrosion resistance and erosion resistance than the comparative fin material produced by the conventional production method. It turns out that all of these are good.
[0035]
[Example 2]
The twin-belt cast slab obtained in Example 1 was divided and cold-rolled to the respective intermediate annealing plate thicknesses shown in Table 3, and then heated to the respective temperatures shown in Table 3 at a heating rate of 50 ° C./hr. Softened by intermediate annealing at a cooling rate of 50 ° C./hr (up to 100 ° C.) for 2 hours. Next, the plate was cold-rolled at the final cold rolling rate shown in Table 3 to obtain a fin material having a thickness of 80 μm. Table 4 shows the results of evaluating the crystal grain size after brazing, the tensile strength after brazing, the sag resistance, and the erosion resistance of these fin materials by the method shown in Example 1.
[0036]
[Table 3]
[0037]
[Table 4]
[0038]
From the table, fin material numbers 1, 2, and 4 produced by the method of the present invention have good tensile strength, sag resistance, and erosion resistance after brazing, while the final cold rolling ratio The smaller fin material number 3 has a lower tensile strength because the recrystallized grains after brazing are super coarse, and the fin material number 5 having a higher intermediate annealing temperature has a smaller recrystallized grain after brazing, so that the sag resistance is reduced. It can be seen that the erosion resistance is poor.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the aluminum alloy fin material for heat exchangers which has high intensity | strength and heat conductivity after brazing, and was excellent in sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect is provided. The
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165359A JP4123059B2 (en) | 2003-06-10 | 2003-06-10 | Manufacturing method of high strength aluminum alloy fin material for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165359A JP4123059B2 (en) | 2003-06-10 | 2003-06-10 | Manufacturing method of high strength aluminum alloy fin material for heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005002383A true JP2005002383A (en) | 2005-01-06 |
JP4123059B2 JP4123059B2 (en) | 2008-07-23 |
Family
ID=34091866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003165359A Expired - Fee Related JP4123059B2 (en) | 2003-06-10 | 2003-06-10 | Manufacturing method of high strength aluminum alloy fin material for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4123059B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011242A1 (en) * | 2004-07-30 | 2006-02-02 | Nippon Light Metal Co., Ltd. | Aluminum alloy sheet and method for manufacturing the same |
JP2006281266A (en) * | 2005-03-31 | 2006-10-19 | Furukawa Sky Kk | Aluminum alloy clad material, its manufacturing method, and heat exchanger using the same aluminum alloy clad material |
WO2007013380A1 (en) * | 2005-07-27 | 2007-02-01 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy fin material and method of production of same |
WO2008015846A1 (en) * | 2006-08-02 | 2008-02-07 | Nippon Light Metal Company, Ltd. | Aluminum alloy fin material for heat exchanger, process for manufacturing the same, and process for manufacturing heat exchanger through brazing of the fin material |
WO2010103790A1 (en) * | 2009-03-11 | 2010-09-16 | 日本特殊陶業株式会社 | Spark plug for internal combustion engine and method of manufacturing same |
JP2012211393A (en) * | 2012-06-06 | 2012-11-01 | Nippon Light Metal Co Ltd | Aluminum alloy fin material for heat exchanger |
JP2015199993A (en) * | 2014-04-09 | 2015-11-12 | 株式会社Uacj | Production method of aluminum alloy fin material for heat exchanger |
WO2015173984A1 (en) * | 2014-05-14 | 2015-11-19 | 日本軽金属株式会社 | Aluminum alloy fin material for heat exchanger having exceptional brazeability and sagging resistance, and method for manufacturing same |
JP2019131858A (en) * | 2018-01-31 | 2019-08-08 | 三菱アルミニウム株式会社 | Aluminum alloy fin material for heat exchanger excellent in strength, conductivity, corrosion resistance, and brazability, and heat exchanger |
JP2020012179A (en) * | 2018-07-20 | 2020-01-23 | 三菱アルミニウム株式会社 | Fin material for heat exchanger excellent in moldability, and heat exchanger |
CN114871418A (en) * | 2015-09-10 | 2022-08-09 | 南线有限责任公司 | Ultrasonic grain refinement and degassing procedure and system for metal casting |
-
2003
- 2003-06-10 JP JP2003165359A patent/JP4123059B2/en not_active Expired - Fee Related
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011242A1 (en) * | 2004-07-30 | 2006-02-02 | Nippon Light Metal Co., Ltd. | Aluminum alloy sheet and method for manufacturing the same |
US8425698B2 (en) | 2004-07-30 | 2013-04-23 | Nippon Light Metal Co., Ltd | Aluminum alloy sheet and method for manufacturing the same |
JP2006281266A (en) * | 2005-03-31 | 2006-10-19 | Furukawa Sky Kk | Aluminum alloy clad material, its manufacturing method, and heat exchanger using the same aluminum alloy clad material |
US7998288B2 (en) | 2005-07-27 | 2011-08-16 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy fin material and method of production of same |
WO2007013380A1 (en) * | 2005-07-27 | 2007-02-01 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy fin material and method of production of same |
US8784582B2 (en) | 2005-07-27 | 2014-07-22 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy fin material and method of production of same |
KR100976883B1 (en) | 2005-07-27 | 2010-08-18 | 니폰게이긴조쿠가부시키가이샤 | High strength aluminum alloy fin material and method of production of same |
US8226781B2 (en) | 2005-07-27 | 2012-07-24 | Nippon Light Metal Company, Ltd. | High strength aluminum alloy fin material and method of production of same |
US9702032B2 (en) | 2006-08-02 | 2017-07-11 | Nippon Light Metal Company, Ltd. | Aluminum alloy fin material for heat exchanger and method of production of same and method of production of heat exchanger by brazing fin material |
US8999083B2 (en) | 2006-08-02 | 2015-04-07 | Nippon Light Metal Company, Ltd. | Aluminum alloy fin material for heat exchanger and method of production of same and method of production of heat exchanger by brazing fin material |
CN102051503A (en) * | 2006-08-02 | 2011-05-11 | 日本轻金属株式会社 | Aluminum alloy fin material for heat exchanger and method ofproduction of same and method of production of heat exchanger by brazing fin material |
WO2008015846A1 (en) * | 2006-08-02 | 2008-02-07 | Nippon Light Metal Company, Ltd. | Aluminum alloy fin material for heat exchanger, process for manufacturing the same, and process for manufacturing heat exchanger through brazing of the fin material |
US20150107731A1 (en) * | 2006-08-02 | 2015-04-23 | Nippon Light Metal Company, Ltd. | Aluminum alloy fin material for heat exchanger and method of production of same and method of production of heat exchanger by brazing fin material |
KR101455023B1 (en) * | 2006-08-02 | 2014-11-04 | 니폰게이긴조쿠가부시키가이샤 | Aluminum alloy fin material for heat exchanger |
US20090308500A1 (en) * | 2006-08-02 | 2009-12-17 | Hideki Suzuki | Aluminum alloy fin material for heat exchanger and method of production of same and method of production of heat exchanger by brazing fin material |
KR101455874B1 (en) * | 2006-08-02 | 2014-11-03 | 니폰게이긴조쿠가부시키가이샤 | Process for manufacturing aluminum alloy fin material for heat exchanger, and process for manufacturing heat exchanger through brazing of the fin material |
JP2008038166A (en) * | 2006-08-02 | 2008-02-21 | Nippon Light Metal Co Ltd | Aluminum alloy fin material for heat exchanger, manufacturing method therefor, and method for manufacturing heat exchanger provided with brazed fin material |
US8653724B2 (en) | 2009-03-11 | 2014-02-18 | Ngk Spark Plug Co., Ltd. | Spark plug for internal combustion engine having a ground electrode with a protrusion having improved erosion resistance and method of manufacturing same |
JP4644291B2 (en) * | 2009-03-11 | 2011-03-02 | 日本特殊陶業株式会社 | Spark plug for internal combustion engine and method for manufacturing the same |
WO2010103790A1 (en) * | 2009-03-11 | 2010-09-16 | 日本特殊陶業株式会社 | Spark plug for internal combustion engine and method of manufacturing same |
JP2010212097A (en) * | 2009-03-11 | 2010-09-24 | Ngk Spark Plug Co Ltd | Spark plug for internal combustion engine, and its manufacturing method |
JP2012211393A (en) * | 2012-06-06 | 2012-11-01 | Nippon Light Metal Co Ltd | Aluminum alloy fin material for heat exchanger |
JP2015199993A (en) * | 2014-04-09 | 2015-11-12 | 株式会社Uacj | Production method of aluminum alloy fin material for heat exchanger |
JP2015218343A (en) * | 2014-05-14 | 2015-12-07 | 日本軽金属株式会社 | Aluminum alloy fin material for heat exchanger excellent in brazability and sag resistance and manufacturing method therefor |
WO2015173984A1 (en) * | 2014-05-14 | 2015-11-19 | 日本軽金属株式会社 | Aluminum alloy fin material for heat exchanger having exceptional brazeability and sagging resistance, and method for manufacturing same |
CN105765094B (en) * | 2014-05-14 | 2018-05-22 | 日本轻金属株式会社 | Soldering property and excellent heat exchanger aluminium alloy fin material and its manufacturing method of sagging resistance |
CN114871418A (en) * | 2015-09-10 | 2022-08-09 | 南线有限责任公司 | Ultrasonic grain refinement and degassing procedure and system for metal casting |
JP2019131858A (en) * | 2018-01-31 | 2019-08-08 | 三菱アルミニウム株式会社 | Aluminum alloy fin material for heat exchanger excellent in strength, conductivity, corrosion resistance, and brazability, and heat exchanger |
WO2019150822A1 (en) * | 2018-01-31 | 2019-08-08 | 三菱アルミニウム株式会社 | Aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance and brazability, and heat exchanger |
JP7107690B2 (en) | 2018-01-31 | 2022-07-27 | Maアルミニウム株式会社 | Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability |
JP2020012179A (en) * | 2018-07-20 | 2020-01-23 | 三菱アルミニウム株式会社 | Fin material for heat exchanger excellent in moldability, and heat exchanger |
JP7226935B2 (en) | 2018-07-20 | 2023-02-21 | Maアルミニウム株式会社 | Fin material for heat exchangers and heat exchangers with excellent formability |
Also Published As
Publication number | Publication date |
---|---|
JP4123059B2 (en) | 2008-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5371173B2 (en) | Manufacturing method of high strength aluminum alloy fin material | |
JP4725019B2 (en) | Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material | |
JP5055881B2 (en) | Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material | |
JP5854954B2 (en) | High-strength aluminum alloy fin material and manufacturing method thereof | |
JP5195837B2 (en) | Aluminum alloy fin material for heat exchanger | |
JP4123059B2 (en) | Manufacturing method of high strength aluminum alloy fin material for heat exchanger | |
JP6978983B2 (en) | Aluminum alloy fin material for heat exchanger with excellent buckling resistance and its manufacturing method | |
JP5762387B2 (en) | Manufacturing method of high strength aluminum alloy fin material | |
JP7207935B2 (en) | Aluminum alloy fin material and heat exchanger | |
JP5506732B2 (en) | High strength aluminum alloy fin material for heat exchanger | |
JP5447593B2 (en) | Aluminum alloy fin material for heat exchanger | |
MX2008000955A (en) | High strength aluminum alloy fin material and method of production of same. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080408 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4123059 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140516 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |