JP2005000829A - Catalyst for purifying exhaust gas and production method therefor - Google Patents
Catalyst for purifying exhaust gas and production method therefor Download PDFInfo
- Publication number
- JP2005000829A JP2005000829A JP2003167995A JP2003167995A JP2005000829A JP 2005000829 A JP2005000829 A JP 2005000829A JP 2003167995 A JP2003167995 A JP 2003167995A JP 2003167995 A JP2003167995 A JP 2003167995A JP 2005000829 A JP2005000829 A JP 2005000829A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- noble metal
- alumina layer
- catalyst
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は自動車の排気系などに配置されて排ガスを浄化する排ガス浄化用触媒に関し、詳しくは排ガス中の酸素濃度の変動に関わらず安定した浄化活性を有する排ガス浄化用触媒とその製造方法に関する。
【0002】
【従来の技術】
排ガス浄化用触媒(三元触媒)は、例えばコージェライト等の耐熱性セラミックスからなる担体基材と、この担体基材上に形成された活性アルミナ等からなる触媒担持層と、この触媒担持層に担持されたPt等の貴金属と、から構成されている。この三元触媒は、内燃機関の排ガス中の炭化水素(HC)及び一酸化炭素(CO)を酸化浄化し、窒素酸化物(NOx )を還元浄化する。
【0003】
ところが、運転条件などによって排ガス中の酸素濃度が大きく変動するため、三元触媒においては酸化と還元の浄化活性が不安定となる場合がある。そこで触媒担持層にセリアを添加することが行われている。セリアは、酸化雰囲気下では酸素を貯蔵し、還元雰囲気下では酸素を放出する酸素吸放出能(以下OSC という)をもち、これにより排ガス中の酸素濃度が変動しても安定した浄化活性が得られる。
【0004】
また、セリアを含む三元触媒は、 800℃以上の高温下で使用されると、セリアの結晶成長とそれに伴う貴金属の粒成長によって、OSC が低下しやすい。このため、セリアの結晶成長を抑制して高いOSC を維持するため、セリアとジルコニアの固溶体を用いることも行われている。
【0005】
しかし近年のエンジン性能の向上と高速走行の増加に伴い、排ガス温度が著しく上昇している。そのため、使用時の排ガス浄化用触媒の温度も従来に比べてかなり上昇し、セリアとジルコニアの固溶体を用いても貴金属の粒成長を抑制することが困難となっている。
【0006】
そこで特開平08−131830号公報には、アルミナ粒子にPtを担持し、さらにその表面をセリア層で覆った排ガス浄化用触媒が提案されている。この排ガス浄化用触媒によれば、アルミナは耐熱性に優れているためアルミナに担持されたPtは粒成長が抑制される。そしてセリア層によりリーン雰囲気でもPtが酸化白金となるのが抑制され、かつセリア層によって酸化白金の気相移動が抑制されるので、Ptの粒成長がさらに抑制される。
【0007】
しかしながら、この触媒においてもセリアの粒成長は抑制することが困難であるため、耐久後のOSC の低下を抑制することは困難である。
【0008】
また特開平10−202102号公報には、金属アルコキシドから調製されたAl−Ce−Zr複合酸化物担体に貴金属を担持した排ガス浄化用触媒が提案されている。Al−Ce−Zr複合酸化物を担体とすることで、セリアの粒成長が抑制され、耐久後のOSC の低下を抑制することができる。
【0009】
しかしながらこの触媒においては、貴金属に少なからず粒成長が生じ、耐久後の浄化活性の低下をさらに抑制することは困難であった。また貴金属を有効に利用しているとはいえず、OSC の発現に寄与しない貴金属が相当量存在することも明らかとなった。
【0010】
【特許文献1】特開平08−131830号
【特許文献2】特開平10−202102号
【0011】
【発明が解決しようとする課題】
本発明はこのような事情に鑑みてなされたものであり、担持されている貴金属の粒成長をさらに抑制するとともに、貴金属を効率良くOSC の発現に対して利用することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、OSC を有する酸素吸放出材粒子と酸素吸放出材粒子の表面の少なくとも一部を覆うアルミナ層とからなる複合粒子を含む担体と、担体の少なくともアルミナ層に担持された貴金属と、を含んでなることにある。
【0013】
酸素吸放出材粒子は少なくともセリアを含むことが望ましく、さらにジルコニアを含むことが望ましい。
【0014】
また本発明の排ガス浄化用触媒は、貴金属がPtである場合に特に効果的である。
【0015】
アルミナ層は厚さが1〜50nmであることが望ましく、酸素吸放出材粒子の表面の50%以上を覆っていることが望ましい。
【0016】
そして上記排ガス浄化用触媒を製造できる本発明の製造方法の特徴は、OSC を有する酸素吸放出材粒子にアルミニウム系カップリング剤を付着させ焼成することで酸素吸放出材粒子の表面の少なくとも一部を覆うアルミナ層を形成した複合粒子よりなる担体を調製し、その担体に貴金属を担持することにある。
【0017】
本発明の製造方法においても、酸素吸放出材粒子は少なくともセリアを含むことが望ましく、さらにジルコニアを含むことが望ましい。またアルミナ層は厚さが1〜50nmであることが望ましく、酸素吸放出材粒子の表面の50%以上を覆っていることが望ましい。
【0018】
【発明の実施の形態】
アルミナとセリア−ジルコニア固溶体におけるPtの粒成長の起こり易さを知るため、本願発明者らは、共沈法により製造されたAl−Ce−Zr複合酸化物粒子に対してPtを担持した触媒について 800℃でのリッチ/リーン繰り返し耐久試験を行い、その後のPt粒径をSTEMで観察した。
【0019】
先ず担体の分布をSTEMの EDXマッピングなどを用いて調べたところ、Al−Ce−Zr複合酸化物粒子は Al2O3とCeO2−ZrO2固溶体とが共存する領域と、 Al2O3のみが存在する領域とを有することがわかった。
【0020】
次にPtの粒径を観察したところ、CeO2−ZrO2固溶体上のPt粒子は最大15nm程度と大きく2nm以下の微細なPt粒子は全く観察されなかった(図1)のに対し、 Al2O3上では2nm以下の微細なPt粒子が多く観察された(図2)。このことから、PtはCeO2−ZrO2固溶体上より Al2O3上に担持された方が粒成長し難いと判断される。
【0021】
一方OSC は、PtとCeO2とが近接する部位で発現されることがわかっている。つまりCeO2と共存しない Al2O3上に担持されたPtは、粒成長が抑制され劣化が防止されているにも関わらず、三元触媒の最も重要な特性の一つであるOSC の発現には寄与しない。したがって従来のAl−Ce−Zr複合酸化物粒子にPtを担持した従来の触媒では、粒成長しにくいPtをもちながら、その一部(CeO2から乖離した Al2O3上のPt)はOSC の発現に寄与することができないという不具合があった。
【0022】
そこで本発明の排ガス浄化用触媒では、OSC を有する酸素吸放出材粒子と酸素吸放出材粒子の表面の少なくとも一部を覆うアルミナ層とからなる複合粒子を含む担体の、少なくともアルミナ層に貴金属を担持している。
【0023】
アルミナ層に担持された貴金属は、上記したように粒成長が抑制されているので、耐久後も微細な粒子として存在し表面の活性点が多く存在する。したがって耐久後の浄化活性の低下が抑制される。またアルミナ層はアモルファス状で多孔質であるので、アルミナ層に担持された貴金属に吸着した酸素は、アルミナ層の細孔を容易に通過して内部の酸素吸放出材粒子に吸蔵される。また酸素吸放出材粒子から放出された酸素は、アルミナ層の細孔を容易に通過し貴金属を介して放出される。これにより貴金属は、OSC の発現に十分に寄与する。したがって耐久後にも多くの微細な貴金属がOSC の発現に寄与できるので、耐久後にも高い浄化活性が発現される。
【0024】
OSC を有する酸素吸放出材粒子としては、CeO2、PrO4などの希土類金属酸化物、 NiO、 Fe2O3、 CuO、 Mn2O5などの遷移金属酸化物などを用いることができる。中でもCeO2が望ましく、ZrO2で安定化されたCeO2−ZrO2固溶体を用いることが特に好ましい。
【0025】
この酸素吸放出材粒子の粒径には特に制限がないが、一般的な酸化物粉末の粒径である3×10−〜3μm程度とするのがよい。
【0026】
酸素吸放出材粒子の表面のアルミナ層は薄肉であるほど好ましいが、平均厚さが1〜50nmであるのがよい。平均厚さが1nm未満では、内部の酸素吸放出材の影響を受けて貴金属が粒成長し易くなり、平均厚さが50nmを超えると酸素のアルミナ層の通過が困難となりOSC が低下する場合がある。
【0027】
またアルミナ層は、酸素吸放出材粒子の表面の少なくとも一部を覆っていればよいが、酸素吸放出材粒子の表面積の50%以上を覆っていることが望ましい。アルミナ層が覆う面積が50%未満であると、アルミナ層に担持される貴金属量が少ないために、耐久後にも微細な貴金属の量が少なくなり耐久後の活性の低下が大きくなる。
【0028】
なお担体は、アルミナ層が形成された酸素吸放出材粒子よりなる複合粒子を含めばよく、この複合粒子のみから構成してもよいし、 Al2O3,TiO2,ZrO2,SiO2など他の多孔質酸化物粉末を混合してもよい。しかし複合粒子が50体積%以上含まれるように、他の多孔質酸化物粉末の混合量は控えるべきである。
【0029】
担持される貴金属としては、Pt,Rh,Pd,Irなどの一種あるいは複数種を用いることができるが、特に粒成長し易いPtを用いた場合に本発明は効果的である。また貴金属の担持量は、触媒1リットル当たり0.05〜10gの範囲が適当である。これより少ないと十分な活性が得られず、これより多く担持しても効果が飽和するとともにコスト面で不具合がある。
【0030】
本発明の排ガス浄化用触媒を製造するには、OSC を有する酸素吸放出材粒子にアルミニウム系カップリング剤を付着させる。このアルミニウム系カップリング剤としては、例えばアセトアルコキシアルミニウムジイソプロピレートなどを用いることができる。付着方法は、乾式法又は湿式法あるいはインテグラルブレンド法を用いて行うことができ、その付着量を調整することで形成されるアルミナ層の付着面積と厚さを調整することができる。
【0031】
アルミニウム系カップリング剤は、無機物である酸素吸放出材粒子の表面に化学的に結合し、Alを含む有機質の被膜を形成する。したがってこれを焼成することで、有機質が焼失するとともにAlが酸化され、アルミナ層が形成される。焼成条件は、有機質が焼失する条件であればよい。
【0032】
次に、アルミナ層が形成された酸素吸放出材粒子よりなる複合粒子を含む担体に貴金属を担持する。この担持方法は従来の触媒の製造方法と同様でよく、吸着担持法あるいは吸水担持法を用いることができる。吸着担持法を用いれば、アルミナ層に貴金属が優先的に担持されるので、特に好ましい。
【0033】
なお本発明の排ガス浄化用触媒は、複合粒子を含む担体に貴金属を担持した触媒粉末からペレットを成形してペレット触媒としてもよいし、ハニカム基材やフォーム基材に触媒粉末からコート層を形成することもできる。ハニカム触媒やフォーム触媒とする場合には、複合粒子を含む担体からコート層を形成し、その後に貴金属を担持してもよい。
【0034】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0035】
(実施例1)
【0036】
【化1】
【0037】
上式に示すアセトアルコキシアルミニウムジイソプロピレート12gをn−プロパノール30mlに溶解し、共沈法で調製されたCeO2−ZrO2固溶体粉末 240gを混合して撹拌した。CeO2−ZrO2固溶体の組成は、モル比でCeO2:ZrO2=1:1である。
【0038】
よく撹拌した溶液をミリング容器に移し、セラミックボールを適当数入れて3時間ミリングした。ミリング終了後、デカンテーションにより溶媒をある程度除去し、エタノールで洗浄後、遠心分離により溶媒を除去した。この洗浄を3回繰り返した後、乾燥し 500℃で2時間焼成した。
【0039】
得られた担体粉末は、電子顕微鏡観察の結果、図3に示すように、平均粒径約 100nmのCeO2−ZrO2固溶体粒子(CZ粒子)の全表面に平均厚さ2〜5nmの Al2O3層が被覆された複合粒子から構成されていた。 Al2O3層は、アモルファス状で多孔質であった。
【0040】
この担体粉末に所定濃度のジニトロジアンミン白金溶液の所定量を含浸させ、蒸発乾固後、 500℃で2時間焼成してPtを担持した触媒粉末を得た。Ptの担持量は2重量%である。そして定法によりペレット形状に成形し、本実施例のペレット触媒を調製した。
【0041】
(比較例1)
実施例1と同様のCeO2−ZrO2固溶体粉末に所定濃度のジニトロジアンミン白金溶液の所定量を含浸させ、蒸発乾固後、 500℃で2時間焼成して触媒粉末を得た。Ptの担持量は2重量%である。そして定法によりペレット形状に成形し、本比較例のペレット触媒を調製した。
【0042】
(比較例2)
硝酸セリウム,オキシ硝酸ジルコニウム,硝酸アルミニウムを所定比率で混合した混合水溶液から共沈法にて沈殿を生成し、乾燥・焼成してAl−Ce−Zr複合酸化物粉末を調製した。得られたAl−Ce−Zr複合酸化物粉末の組成は、モル比で Al2O3:CeO2:ZrO2=1:1:1である。
【0043】
このAl−Ce−Zr複合酸化物粉末を用い、実施例1と同様にしてPtを担持した。Ptの担持量は、含まれるCeO2−ZrO2に対して実施例1と同一となる量である。そして定法によりペレット形状に成形し、本比較例のペレット触媒を調製した。
【0044】
<試験・評価>
各ペレット触媒を評価装置にそれぞれ5g充填し、λ=0.21のリーンガスとλ=3.98のリッチガスを、リッチ/リーン=1分/1分,流量5L/分の条件で交互に流しながら 800℃で5時間処理する耐久試験を行った。
【0045】
耐久試験後の各ペレット触媒を評価装置にそれぞれ3g充填し、O2を1%含むN2ガスと、COを2%含むN2ガスとを1分間隔で交互に切り替えながら流量20L/分,温度 400℃で流し、重量変化を測定することでそれぞれ酸素吸蔵量を測定した。これを5回繰り返し、2〜4回目の酸素吸蔵量の平均値を図4に示す。
【0046】
図4より、実施例1の触媒は各比較例の触媒に比べて高いOSC を示し、耐久試験後にも高いOSC を示していることがわかる。これはCeO2−ZrO2固溶体粒子の表面に Al2O3層を形成した担体を用いたことで、耐久試験時のPtの粒成長が抑制され、その微細なPtがCeO2−ZrO2固溶体のOSC の発現に寄与したためであると考えられる。
【0047】
【発明の効果】
すなわち本発明の排ガス浄化用触媒によれば、耐久後にも高いOSC が発現され、高い浄化活性を維持することができる。そして本発明の製造方法によれば、そのような排ガス浄化用触媒を容易にかつ安定して製造することができる。
【図面の簡単な説明】
【図1】Ptを担持したCeO2−ZrO2固溶体の耐久試験後の粒子構造を示すTEM 写真である。
【図2】Ptを担持した Al2O3の耐久試験後の粒子構造を示すTEM 写真である。
【図3】本発明に一実施例で調製された複合粒子の構造を模式的に示す断面図である。
【図4】実施例及び比較例の排ガス浄化用触媒の耐久試験後のOSC を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst that is disposed in an exhaust system of an automobile and purifies exhaust gas, and more particularly to an exhaust gas purifying catalyst having a stable purifying activity regardless of fluctuations in oxygen concentration in the exhaust gas and a method for producing the same.
[0002]
[Prior art]
The exhaust gas purifying catalyst (three-way catalyst) includes, for example, a carrier substrate made of heat-resistant ceramics such as cordierite, a catalyst carrier layer made of activated alumina or the like formed on the carrier substrate, and a catalyst carrier layer And a noble metal such as supported Pt. This three-way catalyst oxidizes and purifies hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas of the internal combustion engine, and reduces and purifies nitrogen oxides (NO x ).
[0003]
However, since the oxygen concentration in the exhaust gas varies greatly depending on operating conditions and the like, the oxidation and reduction purification activity may become unstable in the three-way catalyst. Therefore, ceria is added to the catalyst support layer. Ceria has an oxygen absorption / release capacity (hereinafter referred to as OSC) that stores oxygen in an oxidizing atmosphere and releases oxygen in a reducing atmosphere, thereby obtaining a stable purification activity even when the oxygen concentration in the exhaust gas fluctuates. It is done.
[0004]
Further, when a three-way catalyst containing ceria is used at a high temperature of 800 ° C. or higher, the OSC tends to be lowered due to the crystal growth of ceria and the accompanying noble metal grain growth. For this reason, a solid solution of ceria and zirconia is also used to suppress ceria crystal growth and maintain a high OSC.
[0005]
However, the exhaust gas temperature has risen remarkably with the recent improvement in engine performance and the increase in high-speed driving. Therefore, the temperature of the exhaust gas purifying catalyst at the time of use is considerably increased as compared with the prior art, and it is difficult to suppress the noble metal grain growth even if a solid solution of ceria and zirconia is used.
[0006]
Japanese Patent Application Laid-Open No. 08-131830 proposes an exhaust gas purification catalyst in which Pt is supported on alumina particles and the surface thereof is covered with a ceria layer. According to this exhaust gas purifying catalyst, alumina is excellent in heat resistance, so that the grain growth of Pt supported on alumina is suppressed. The ceria layer suppresses Pt from becoming platinum oxide even in a lean atmosphere, and the ceria layer suppresses the vapor phase movement of platinum oxide, thereby further suppressing the Pt grain growth.
[0007]
However, even with this catalyst, it is difficult to suppress the growth of ceria grains, so it is difficult to suppress the decrease in OSC after durability.
[0008]
Japanese Patent Application Laid-Open No. 10-202102 proposes an exhaust gas purifying catalyst in which a noble metal is supported on an Al—Ce—Zr composite oxide carrier prepared from a metal alkoxide. By using the Al—Ce—Zr composite oxide as a carrier, the growth of ceria grains can be suppressed, and the decrease in OSC after durability can be suppressed.
[0009]
However, in this catalyst, grain growth occurs in the noble metal, and it has been difficult to further suppress the decrease in purification activity after durability. It has also been revealed that noble metals are not effectively used, and there are considerable amounts of noble metals that do not contribute to the expression of OSC.
[0010]
[Patent Document 1] JP-A-08-131830 [Patent Document 2] JP-A-10-202102
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object thereof is to further suppress the grain growth of the supported noble metal and to efficiently use the noble metal for the expression of OSC.
[0012]
[Means for Solving the Problems]
The exhaust gas purifying catalyst of the present invention that solves the above problems is characterized in that a carrier comprising composite particles comprising oxygen storage / release material particles having OSC and an alumina layer covering at least a part of the surface of the oxygen storage / release material particles; And at least a noble metal supported on an alumina layer of the support.
[0013]
The oxygen storage / release material particles preferably contain at least ceria, and more preferably contain zirconia.
[0014]
The exhaust gas purifying catalyst of the present invention is particularly effective when the noble metal is Pt.
[0015]
The alumina layer preferably has a thickness of 1 to 50 nm, and preferably covers 50% or more of the surface of the oxygen storage / release material particles.
[0016]
The feature of the production method of the present invention capable of producing the exhaust gas purifying catalyst is that at least a part of the surface of the oxygen storage / release material particles is obtained by attaching an aluminum-based coupling agent to the oxygen storage / release material particles having OSC and firing. A carrier made of composite particles on which an alumina layer is formed is prepared, and a noble metal is carried on the carrier.
[0017]
Also in the production method of the present invention, the oxygen storage / release material particles preferably contain at least ceria, and more preferably contain zirconia. The alumina layer preferably has a thickness of 1 to 50 nm, and preferably covers 50% or more of the surface of the oxygen storage / release material particles.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In order to know the ease of Pt grain growth in alumina and ceria-zirconia solid solution, the inventors of the present application are concerned with a catalyst supporting Pt on Al—Ce—Zr composite oxide particles produced by a coprecipitation method. A rich / lean repeated durability test at 800 ° C. was performed, and the subsequent Pt particle size was observed with STEM.
[0019]
First, when the carrier distribution was examined using STEM EDX mapping or the like, the Al—Ce—Zr composite oxide particles had a region where Al 2 O 3 and CeO 2 —ZrO 2 solid solution coexist, and only Al 2 O 3. It was found to have a region where
[0020]
Next, when the particle size of Pt was observed, Pt particles on the CeO 2 —ZrO 2 solid solution were about 15 nm at the maximum, and no fine Pt particles of 2 nm or less were observed at all (FIG. 1), whereas Al 2 Many fine Pt particles of 2 nm or less were observed on O 3 (FIG. 2). From this, it is judged that Pt is less likely to grow when it is supported on Al 2 O 3 than on the CeO 2 —ZrO 2 solid solution.
[0021]
On the other hand, it is known that OSC is expressed at a site where Pt and CeO 2 are close to each other. That is, Pt supported on Al 2 O 3 that does not coexist with CeO 2 is one of the most important characteristics of the three-way catalyst, despite the fact that grain growth is suppressed and deterioration is prevented. Does not contribute. Therefore, in the conventional catalyst in which Pt is supported on the conventional Al—Ce—Zr composite oxide particles, Pt on the Al 2 O 3 dissociated from CeO 2 is part of the OSC while having Pt that is difficult to grow grains. There was a defect that it was not possible to contribute to the expression of.
[0022]
Therefore, in the exhaust gas purifying catalyst of the present invention, a noble metal is applied to at least the alumina layer of the carrier including the composite particles composed of the oxygen storage / release material particles having OSC and the alumina layer covering at least a part of the surface of the oxygen storage / release material particles. Carrying.
[0023]
Since the noble metal supported on the alumina layer is suppressed in grain growth as described above, it remains as fine particles after endurance and has many active points on the surface. Accordingly, a decrease in purification activity after durability is suppressed. In addition, since the alumina layer is amorphous and porous, oxygen adsorbed on the noble metal supported on the alumina layer easily passes through the pores of the alumina layer and is occluded by the internal oxygen storage / release material particles. The oxygen released from the oxygen storage / release material particles easily passes through the pores of the alumina layer and is released through the noble metal. Thereby, the noble metal contributes sufficiently to the expression of OSC. Accordingly, since many fine noble metals can contribute to the expression of OSC after the endurance, a high purification activity is exhibited even after the endurance.
[0024]
As the oxygen storage / release material particles having OSC, rare earth metal oxides such as CeO 2 and PrO 4 , transition metal oxides such as NiO, Fe 2 O 3 , CuO, and Mn 2 O 5 can be used. Among them, CeO 2 is desirable, and it is particularly preferable to use a CeO 2 —ZrO 2 solid solution stabilized with ZrO 2 .
[0025]
The particle size of the oxygen storage / release material particles is not particularly limited, but is preferably about 3 × 10 − to 3 μm, which is the particle size of a general oxide powder.
[0026]
The thinner the alumina layer on the surface of the oxygen storage / release material particles, the better, but the average thickness should be 1 to 50 nm. If the average thickness is less than 1 nm, the precious metal tends to grow due to the influence of the internal oxygen storage / release material, and if the average thickness exceeds 50 nm, it is difficult for oxygen to pass through the alumina layer and the OSC may decrease. is there.
[0027]
The alumina layer only needs to cover at least part of the surface of the oxygen storage / release material particles, but preferably covers 50% or more of the surface area of the oxygen storage / release material particles. If the area covered by the alumina layer is less than 50%, the amount of noble metal supported on the alumina layer is small, so that the amount of fine noble metal is reduced even after endurance, and the decrease in activity after endurance is increased.
[0028]
Note carrier may be included composite particle alumina layer is formed of formed oxygen-absorbing material particles may be composed of only the composite particles, Al 2 O 3, TiO 2 , ZrO 2, SiO 2 , etc. Other porous oxide powders may be mixed. However, the mixing amount of other porous oxide powders should be refrained so as to contain 50% by volume or more of composite particles.
[0029]
As the noble metal to be supported, one kind or plural kinds of Pt, Rh, Pd, Ir and the like can be used. However, the present invention is effective particularly when Pt which easily grows grains. The amount of noble metal supported is suitably in the range of 0.05 to 10 g per liter of catalyst. If it is less than this, sufficient activity cannot be obtained, and even if it is supported more than this, the effect is saturated and there is a problem in terms of cost.
[0030]
In order to produce the exhaust gas purifying catalyst of the present invention, an aluminum coupling agent is adhered to the oxygen storage / release material particles having OSC. As the aluminum coupling agent, for example, acetoalkoxyaluminum diisopropylate can be used. The adhesion method can be performed using a dry method, a wet method, or an integral blend method, and the adhesion area and thickness of the alumina layer formed can be adjusted by adjusting the adhesion amount.
[0031]
The aluminum-based coupling agent is chemically bonded to the surface of the oxygen absorbing / releasing material particles, which are inorganic substances, to form an organic film containing Al. Therefore, by firing this, the organic matter is burned out, Al is oxidized, and an alumina layer is formed. The baking conditions should just be the conditions which an organic substance burns away.
[0032]
Next, a noble metal is supported on a carrier including composite particles made of oxygen storage / release material particles on which an alumina layer is formed. This supporting method may be the same as the conventional method for producing a catalyst, and an adsorption supporting method or a water absorbing supporting method can be used. Use of the adsorption support method is particularly preferable because the noble metal is preferentially supported on the alumina layer.
[0033]
The exhaust gas purifying catalyst of the present invention may be formed as a pellet catalyst by forming a pellet from a catalyst powder in which a noble metal is supported on a carrier containing composite particles, or a coating layer is formed from a catalyst powder on a honeycomb substrate or a foam substrate. You can also When a honeycomb catalyst or a foam catalyst is used, a coat layer may be formed from a carrier containing composite particles, and then a noble metal may be supported.
[0034]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0035]
(Example 1)
[0036]
[Chemical 1]
[0037]
12 g of acetoalkoxyaluminum diisopropylate represented by the above formula was dissolved in 30 ml of n-propanol, and 240 g of CeO 2 —ZrO 2 solid solution powder prepared by a coprecipitation method was mixed and stirred. The composition of the CeO 2 —ZrO 2 solid solution is CeO 2 : ZrO 2 = 1: 1 in molar ratio.
[0038]
The well-stirred solution was transferred to a milling vessel, and an appropriate number of ceramic balls were placed and milled for 3 hours. After milling, the solvent was removed to some extent by decantation, washed with ethanol, and then centrifuged to remove the solvent. This washing was repeated three times, then dried and baked at 500 ° C. for 2 hours.
[0039]
As a result of observation with an electron microscope, the obtained carrier powder has an average thickness of 2 to 5 nm of Al 2 on the entire surface of CeO 2 —ZrO 2 solid solution particles (CZ particles) having an average particle diameter of about 100 nm as shown in FIG. It was composed of composite particles coated with an O 3 layer. The Al 2 O 3 layer was amorphous and porous.
[0040]
This carrier powder was impregnated with a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration, evaporated to dryness, and calcined at 500 ° C. for 2 hours to obtain a catalyst powder carrying Pt. The amount of Pt supported is 2% by weight. And it shape | molded to the pellet shape by the usual method, and prepared the pellet catalyst of a present Example.
[0041]
(Comparative Example 1)
A CeO 2 —ZrO 2 solid solution powder similar to that in Example 1 was impregnated with a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration, evaporated to dryness, and calcined at 500 ° C. for 2 hours to obtain a catalyst powder. The amount of Pt supported is 2% by weight. And it shape | molded to the pellet shape by the usual method, and prepared the pellet catalyst of this comparative example.
[0042]
(Comparative Example 2)
Precipitation was produced by a coprecipitation method from a mixed aqueous solution in which cerium nitrate, zirconium oxynitrate, and aluminum nitrate were mixed at a predetermined ratio, and dried and fired to prepare an Al—Ce—Zr composite oxide powder. The composition of the obtained Al—Ce—Zr composite oxide powder is Al 2 O 3 : CeO 2 : ZrO 2 = 1: 1: 1 in molar ratio.
[0043]
Using this Al—Ce—Zr composite oxide powder, Pt was supported in the same manner as in Example 1. The amount of Pt supported is the same amount as in Example 1 with respect to CeO 2 —ZrO 2 contained. And it shape | molded to the pellet shape by the usual method, and prepared the pellet catalyst of this comparative example.
[0044]
<Test and evaluation>
Each evaluation catalyst is filled with 5 g of each pellet catalyst, and a lean gas of λ = 0.21 and a rich gas of λ = 3.98 are alternately flowed under the conditions of rich / lean = 1 min / 1 min and a flow rate of 5 L / min. An endurance test was performed in which treatment was performed at 800 ° C. for 5 hours.
[0045]
Each pellet catalyst after the durability test evaluation device and 3g respectively filled, flow rate 20L / min and N 2 gas containing O 2 1%, while switching the N 2 gas containing CO 2% alternately at 1 minute intervals, The oxygen storage amount was measured by flowing at 400 ° C. and measuring the change in weight. This is repeated 5 times, and the average value of the second to fourth oxygen storage amounts is shown in FIG.
[0046]
FIG. 4 shows that the catalyst of Example 1 shows a higher OSC than the catalysts of the respective comparative examples, and also shows a high OSC after the durability test. This is because the use of a support in which an Al 2 O 3 layer is formed on the surface of CeO 2 —ZrO 2 solid solution particles suppresses the Pt grain growth during the durability test, and the fine Pt becomes CeO 2 —ZrO 2 solid solution. This is thought to be because it contributed to the expression of OSC.
[0047]
【The invention's effect】
That is, according to the exhaust gas purifying catalyst of the present invention, high OSC is expressed even after durability, and high purifying activity can be maintained. And according to the manufacturing method of this invention, such a catalyst for exhaust gas purification can be manufactured easily and stably.
[Brief description of the drawings]
FIG. 1 is a TEM photograph showing a particle structure after a durability test of a CeO 2 —ZrO 2 solid solution supporting Pt.
FIG. 2 is a TEM photograph showing a particle structure after durability test of Al 2 O 3 supporting Pt.
FIG. 3 is a cross-sectional view schematically showing the structure of composite particles prepared in one example of the present invention.
FIG. 4 is a graph showing OSC after endurance test of exhaust gas purifying catalysts of Examples and Comparative Examples.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003167995A JP4175186B2 (en) | 2003-06-12 | 2003-06-12 | Exhaust gas purification catalyst and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003167995A JP4175186B2 (en) | 2003-06-12 | 2003-06-12 | Exhaust gas purification catalyst and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005000829A true JP2005000829A (en) | 2005-01-06 |
JP4175186B2 JP4175186B2 (en) | 2008-11-05 |
Family
ID=34093630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003167995A Expired - Fee Related JP4175186B2 (en) | 2003-06-12 | 2003-06-12 | Exhaust gas purification catalyst and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4175186B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007313456A (en) * | 2006-05-26 | 2007-12-06 | Nissan Motor Co Ltd | Catalyst for cleaning exhaust gas and its manufacturing method |
JP2008093496A (en) * | 2006-10-05 | 2008-04-24 | Nissan Motor Co Ltd | Exhaust gas purifying catalyst |
EP1944082A1 (en) | 2007-01-10 | 2008-07-16 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and producing method thereof |
EP1952876A1 (en) | 2007-01-25 | 2008-08-06 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and manufacturing method thereof |
WO2008133168A1 (en) | 2007-04-20 | 2008-11-06 | Nissan Motor Co., Ltd. | Highly heat-resistant catalyst, and method for production thereof |
JP2008284534A (en) * | 2007-01-25 | 2008-11-27 | Nissan Motor Co Ltd | Exhaust gas purifying catalyst and its manufacturing method |
WO2010101223A1 (en) | 2009-03-04 | 2010-09-10 | 日産自動車株式会社 | Exhaust gas purification catalyst and process for producing same |
US8404611B2 (en) | 2005-11-01 | 2013-03-26 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and production method thereof |
US8609578B2 (en) | 2008-07-31 | 2013-12-17 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst |
US8683787B2 (en) | 2009-11-17 | 2014-04-01 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and method for manufacturing the same |
JP2015157234A (en) * | 2014-02-21 | 2015-09-03 | マツダ株式会社 | Catalyst material for purifying engine exhaust gas, and particulate filter |
JP2017186225A (en) * | 2016-03-31 | 2017-10-12 | 株式会社豊田中央研究所 | Core-shell type oxide material, method for producing the same, catalyst for exhaust purification prepared therewith, and exhaust purifying method using the same |
JP2018150207A (en) * | 2017-03-14 | 2018-09-27 | 株式会社豊田中央研究所 | Core-shell type oxide material, catalyst for exhaust gas purification using the same and exhaust gas purification method |
JP2022051070A (en) * | 2020-09-18 | 2022-03-31 | 株式会社豊田中央研究所 | Core-shell type oxygen absorption/desorption material, its manufacturing method, exhaust gas purification catalyst using the same and exhaust gas purification method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9114389B2 (en) | 2010-08-05 | 2015-08-25 | Dowa Electronics Materials Co., Ltd. | Method for producing catalyst composition, catalyst composition, diesel particulate filter using the same, and exhaust gas purification system |
-
2003
- 2003-06-12 JP JP2003167995A patent/JP4175186B2/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9073044B2 (en) | 2005-11-01 | 2015-07-07 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and production method thereof |
US8404611B2 (en) | 2005-11-01 | 2013-03-26 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and production method thereof |
EP3308846A1 (en) | 2005-11-01 | 2018-04-18 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and production method thereof |
JP2007313456A (en) * | 2006-05-26 | 2007-12-06 | Nissan Motor Co Ltd | Catalyst for cleaning exhaust gas and its manufacturing method |
JP2008093496A (en) * | 2006-10-05 | 2008-04-24 | Nissan Motor Co Ltd | Exhaust gas purifying catalyst |
US8877675B2 (en) | 2007-01-10 | 2014-11-04 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and producing method thereof |
EP1944082A1 (en) | 2007-01-10 | 2008-07-16 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and producing method thereof |
US7851405B2 (en) | 2007-01-25 | 2010-12-14 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and manufacturing method thereof |
JP2012125767A (en) * | 2007-01-25 | 2012-07-05 | Nissan Motor Co Ltd | Exhaust gas purifying catalyst and manufacturing method thereof |
JP2008284534A (en) * | 2007-01-25 | 2008-11-27 | Nissan Motor Co Ltd | Exhaust gas purifying catalyst and its manufacturing method |
EP1952876A1 (en) | 2007-01-25 | 2008-08-06 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and manufacturing method thereof |
WO2008133168A1 (en) | 2007-04-20 | 2008-11-06 | Nissan Motor Co., Ltd. | Highly heat-resistant catalyst, and method for production thereof |
US8158554B2 (en) | 2007-04-20 | 2012-04-17 | Nissan Motor Co., Ltd. | High heat-resistant catalyst and manufacturing method thereof |
US8609578B2 (en) | 2008-07-31 | 2013-12-17 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst |
WO2010101223A1 (en) | 2009-03-04 | 2010-09-10 | 日産自動車株式会社 | Exhaust gas purification catalyst and process for producing same |
US8486853B2 (en) | 2009-03-04 | 2013-07-16 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and method for manufacturing the same |
US8683787B2 (en) | 2009-11-17 | 2014-04-01 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and method for manufacturing the same |
JP2015157234A (en) * | 2014-02-21 | 2015-09-03 | マツダ株式会社 | Catalyst material for purifying engine exhaust gas, and particulate filter |
JP2017186225A (en) * | 2016-03-31 | 2017-10-12 | 株式会社豊田中央研究所 | Core-shell type oxide material, method for producing the same, catalyst for exhaust purification prepared therewith, and exhaust purifying method using the same |
JP2018150207A (en) * | 2017-03-14 | 2018-09-27 | 株式会社豊田中央研究所 | Core-shell type oxide material, catalyst for exhaust gas purification using the same and exhaust gas purification method |
JP7307710B2 (en) | 2020-09-18 | 2023-07-12 | 株式会社豊田中央研究所 | Core-shell type oxygen storage/release material, method for producing same, catalyst for purifying exhaust gas using the same, and method for purifying exhaust gas |
JP2022051070A (en) * | 2020-09-18 | 2022-03-31 | 株式会社豊田中央研究所 | Core-shell type oxygen absorption/desorption material, its manufacturing method, exhaust gas purification catalyst using the same and exhaust gas purification method |
Also Published As
Publication number | Publication date |
---|---|
JP4175186B2 (en) | 2008-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5376261B2 (en) | Exhaust gas purification catalyst | |
JP3498453B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP6964580B2 (en) | Exhaust gas purification catalyst | |
JP4971918B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4175186B2 (en) | Exhaust gas purification catalyst and production method thereof | |
JP4196745B2 (en) | Exhaust gas purification catalyst | |
JP3988202B2 (en) | Exhaust gas purification catalyst | |
JP5684973B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method using the same | |
JP2012055842A (en) | Exhaust gas purifying catalyst | |
WO2008007628A1 (en) | Catalyst carrier particle, method for producing the same, and exhaust gas purifying catalyst | |
JP6204023B2 (en) | Exhaust gas purification catalyst | |
JP5078125B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
JPH08131830A (en) | Catalyst for purification of exhaust gas | |
JP3522957B2 (en) | Exhaust gas purification catalyst | |
JP3766568B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP4692741B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH09248462A (en) | Exhaust gas-purifying catalyst | |
JP3362532B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2005131551A (en) | Catalyst for purifying exhaust gas | |
JP3882422B2 (en) | Method for producing exhaust gas purification catalyst | |
JPH10216514A (en) | Catalyst for exhaust gas purification | |
JP4306625B2 (en) | Catalyst for purifying automobile exhaust gas and method for producing the same | |
JP4805031B2 (en) | Exhaust gas purification catalyst, its production method and use method | |
JPH09206599A (en) | Catalyst for purification of exhaust gas | |
JP2002113367A (en) | Catalyst for saturated hydrocarbon oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080811 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |