[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005093955A - Organic semiconductor element and its manufacturing method - Google Patents

Organic semiconductor element and its manufacturing method Download PDF

Info

Publication number
JP2005093955A
JP2005093955A JP2003329137A JP2003329137A JP2005093955A JP 2005093955 A JP2005093955 A JP 2005093955A JP 2003329137 A JP2003329137 A JP 2003329137A JP 2003329137 A JP2003329137 A JP 2003329137A JP 2005093955 A JP2005093955 A JP 2005093955A
Authority
JP
Japan
Prior art keywords
organic semiconductor
semiconductor element
liquid crystal
phase
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003329137A
Other languages
Japanese (ja)
Other versions
JP4857516B2 (en
Inventor
Nobuyuki Ito
信行 伊藤
Akihiko Nakasa
昭彦 仲佐
Junichi Hanna
純一 半那
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003329137A priority Critical patent/JP4857516B2/en
Publication of JP2005093955A publication Critical patent/JP2005093955A/en
Application granted granted Critical
Publication of JP4857516B2 publication Critical patent/JP4857516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic semiconductor element having practical current drive performance and high carrier mobility. <P>SOLUTION: The organic semiconductor element comprises: an organic semiconductor layer, having one or more layers consisting of a liquid crystal organic semi-conducting material and having smectic liquid crystal phase, between two electrodes which face with each other; and an oriented film consisting of a conductive high polymer material, in between one or both of the two electrodes and the organic semiconductor layer. Alternatively, the organic semiconductor element comprises an organic semiconductor layer which consists of a liquid crystal organic semi-conducting material and has a crystal phase that has been transited from a liquid crystal phase, and an oriented film consisting of a conductive high polymer material, in between one or both of the two electrodes and the organic semiconductor layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機半導体層に液晶性有機半導体材料を用いた有機半導体素子及びその製造方法に関する。   The present invention relates to an organic semiconductor element using a liquid crystalline organic semiconductor material for an organic semiconductor layer and a method for manufacturing the same.

近年、有機半導体材料を用いた活性層(以下、有機半導体層という。)を備えた新規な半導体素子(以下、有機半導体素子という。)を開発する研究が盛んに行われている。このような有機半導体素子は、有機半導体材料が柔軟性を有するので、シリコン等の無機半導体材料を用いた活性層(以下、無機半導体層という。)を備えた従来の半導体素子(以下、無機半導体素子という。)と比較して、低温プロセスによる製造が可能であること、大面積素子の大量生産が可能であること、フレキシブルな半導体素子を製造できること等のメリットがある。   In recent years, research for developing a new semiconductor element (hereinafter referred to as an organic semiconductor element) including an active layer (hereinafter referred to as an organic semiconductor layer) using an organic semiconductor material has been actively conducted. In such an organic semiconductor element, since an organic semiconductor material has flexibility, a conventional semiconductor element (hereinafter referred to as an inorganic semiconductor) including an active layer (hereinafter referred to as an inorganic semiconductor layer) using an inorganic semiconductor material such as silicon is used. Compared with a device), there are merits such as that it can be manufactured by a low-temperature process, that a large-area device can be mass-produced, and a flexible semiconductor device can be manufactured.

このような有機半導体素子は、無機半導体素子と比較してキャリア移動度が低いので、半導体素子としての性能が低いという問題がある。すなわち、無機半導体素子は、無機半導体層の結晶構造が緻密なためドリフト伝導によりキャリアが伝導するが、有機半導体素子では有機半導体層を形成する有機半導体材料の分子間結合が弱いので、隣接分子間でのホッピング伝導が支配的となりキャリアがスムーズに流れない。そのため、最近ではキャリア移動度の高い有機半導体材料の研究が行われている。   Such an organic semiconductor element has a problem that its performance as a semiconductor element is low because its carrier mobility is lower than that of an inorganic semiconductor element. That is, in an inorganic semiconductor element, carriers are conducted by drift conduction because the crystal structure of the inorganic semiconductor layer is dense, but in an organic semiconductor element, the intermolecular bond of the organic semiconductor material forming the organic semiconductor layer is weak, so The hopping conduction is dominant and carriers do not flow smoothly. Therefore, research on organic semiconductor materials having high carrier mobility has been recently conducted.

キャリア移動度の高い有機半導体材料としては、液晶性有機半導体材料が知られている。液晶性有機半導体材料は、自己組織化により自発的に分子性配向し易いという特徴がある。そのため、液晶性有機半導体材料から形成された有機半導体層は、液晶分子の配向により分子同士が効率よく充填され、キャリアがその分子間をスムーズにホッピング伝導しやすいので、キャリアを高速で移動させることができる。したがって、このような有機半導体層を有する有機半導体素子は、真空蒸着によって作製されるアモルファス有機半導体素子や、溶液塗布によって作製される高分子有機半導体素子等の他の有機半導体素子に比較して、よりキャリア移動度が高いという特徴がある。   A liquid crystalline organic semiconductor material is known as an organic semiconductor material having high carrier mobility. The liquid crystalline organic semiconductor material has a feature that it easily undergoes molecular orientation spontaneously by self-organization. Therefore, the organic semiconductor layer formed from the liquid crystalline organic semiconductor material is efficiently filled with each other due to the alignment of the liquid crystal molecules, and the carriers are likely to smoothly hop and conduct between the molecules. Can do. Therefore, an organic semiconductor element having such an organic semiconductor layer is compared with other organic semiconductor elements such as an amorphous organic semiconductor element produced by vacuum deposition and a polymer organic semiconductor element produced by solution coating. It is characterized by higher carrier mobility.

このような有機半導体素子において、より高いキャリア移動度を得るためには、液晶分子をさらに効率よく充填するための配向処理を施すことが有効である。   In such an organic semiconductor element, in order to obtain higher carrier mobility, it is effective to perform an alignment treatment for more efficiently filling liquid crystal molecules.

配向処理として、液晶表示装置(LCD)の技術分野ではポリイミド膜を布で擦るラビング処理が従来から広く実施されている。ラビング処理とは、基板上に成膜したポリイミド膜を、回転しながら基板を移動するローラーに巻きつけた布で擦り、一軸延伸させる処理である。LCDは、このような基板で作製されたセルの中に液晶性材料を注入して製造され、ラビング処理された膜によりその液晶性材料の液晶分子が配向し、ダイレクタを良好に駆動できるLCDとなる。   As the alignment process, a rubbing process in which a polyimide film is rubbed with a cloth has been widely practiced in the technical field of liquid crystal display devices (LCD). The rubbing process is a process in which a polyimide film formed on a substrate is rubbed with a cloth wound around a roller that moves the substrate while rotating and uniaxially stretched. An LCD is manufactured by injecting a liquid crystalline material into a cell made of such a substrate, and the liquid crystal molecules of the liquid crystalline material are aligned by a rubbing-treated film so that the director can be driven well. Become.

有機半導体層に液晶性有機半導体材料を用いた有機半導体素子についても同様に、液晶分子を配向させる手段としてポリイミド膜をラビング処理することが報告されている(例えば、非特許文献1を参照。)。この有機半導体素子は、透明電極付きガラス基板に成膜したポリイミド薄膜(膜厚600Å)をラビング処理し、基板間に有機半導体層としてスメクティック液晶相を呈する層を配置している。
Kogo et.Al.,“Polarized light emission from A calamitic liquid crystalline semiconductor doped with dyes”Applied Physics Letters、Vol.73、P1595.(1998年) 特開2002−25779号公報
Similarly, for an organic semiconductor element using a liquid crystalline organic semiconductor material for the organic semiconductor layer, it is reported that a polyimide film is rubbed as means for aligning liquid crystal molecules (see, for example, Non-Patent Document 1). . In this organic semiconductor element, a polyimide thin film (film thickness: 600 mm) formed on a glass substrate with a transparent electrode is rubbed, and a layer exhibiting a smectic liquid crystal phase is disposed as an organic semiconductor layer between the substrates.
Kogo et. Al., “Polarized light emission from A calamitic liquid crystalline semiconductor doped with dyes” Applied Physics Letters, Vol. 73, P1595. (1998) JP 2002-25779 A

しかしながら、上記の非特許文献1に記載された有機半導体素子は、電極間隔が2μm程度であるにもかかわらず電流が流れ始める電圧が150Vと非常に高く、実用的な電流駆動特性を発揮することができない。その理由は、この配向膜に使用されたポリイミドが絶縁体であることに起因している。したがって、このような配向膜は、液晶分子のダイレクタを電界駆動するLCDに使用される場合は問題ないが、液晶性半導体材料を電流制御素子に利用する有機半導体素子に使用される場合は、有機半導体層にキャリアが注入されるのを妨げてしまい、キャリアの移動に必要な量のキャリアを有機半導体層に供給できないという問題がある。   However, the organic semiconductor element described in Non-Patent Document 1 has a very high voltage of 150 V at which current starts to flow even though the electrode interval is about 2 μm, and exhibits practical current driving characteristics. I can't. The reason is that the polyimide used for this alignment film is an insulator. Therefore, such an alignment film has no problem when it is used in an LCD in which a director of liquid crystal molecules is driven by an electric field, but when it is used in an organic semiconductor element that uses a liquid crystalline semiconductor material as a current control element, There is a problem that carriers are prevented from being injected into the semiconductor layer, and an amount of carriers necessary for carrier movement cannot be supplied to the organic semiconductor layer.

有機エレクトロルミネッセンス素子(以下、有機EL素子という。)の技術分野では、上記特許文献1に示したように、キャリア輸送層をラビング処理し、配向膜としての機能を持たせ、発光層に電界発光性を持つ液晶性半導体材料を用いた有機EL素子が報告されている。この発光層に用いられる液晶性半導体材料は、電界印加により液晶分子のダイレクタが変化しやすいネマティック液晶相を呈するものである。この有機EL素子においても、発光が確認できる電圧は100V以上であり、高効率の燐光発光材料を添加した系でも50V以上とやはり高いという問題がある。   In the technical field of organic electroluminescence elements (hereinafter referred to as organic EL elements), as shown in Patent Document 1, the carrier transport layer is rubbed to have a function as an alignment film, and the light emitting layer is electroluminescent. An organic EL element using a liquid crystalline semiconductor material having a property has been reported. The liquid crystalline semiconductor material used for the light emitting layer exhibits a nematic liquid crystal phase in which directors of liquid crystal molecules are easily changed by applying an electric field. This organic EL element also has a problem that the voltage at which light emission can be confirmed is 100 V or more, and even in a system to which a highly efficient phosphorescent material is added, it is still as high as 50 V or more.

本発明は、上記課題を解決するためになされたものであって、その目的は、実用的な電流駆動特性と高いキャリア移動度を有する有機半導体素子及びその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an organic semiconductor element having practical current driving characteristics and high carrier mobility, and a method for manufacturing the same.

上記課題を解決するための本発明の第1の形態にかかる有機半導体素子は、2つの対向する電極の間に有機半導体層を備える有機半導体素子であって、前記有機半導体層が、スメクティック液晶相を呈している液晶性有機半導体材料からなる層を1層又は2層以上有し、前記2つの電極の一方又は両方と前記有機半導体層との間には、導電性高分子材料からなる配向膜が設けられていることを特徴とする。   An organic semiconductor element according to a first aspect of the present invention for solving the above problem is an organic semiconductor element comprising an organic semiconductor layer between two opposing electrodes, wherein the organic semiconductor layer is a smectic liquid crystal phase. An alignment film made of a conductive polymer material is provided between the one or both of the two electrodes and the organic semiconductor layer. Is provided.

また、上記課題を解決するための第2の形態にかかる有機半導体素子は、2つの対向する電極の間に有機半導体層を備える有機半導体素子であって、前記有機半導体層は、液晶相から相転移した結晶相を呈している液晶性有機半導体材料により形成されており、前記2つの電極の一方又は両方と前記有機半導体層との間には、導電性高分子材料からなる配向膜が設けられていることを特徴とする。   An organic semiconductor element according to a second embodiment for solving the above problem is an organic semiconductor element including an organic semiconductor layer between two opposing electrodes, and the organic semiconductor layer is phased from a liquid crystal phase. An alignment film made of a conductive polymer material is provided between one or both of the two electrodes and the organic semiconductor layer. It is characterized by.

これらの発明によれば、対向する2つの電極の一方又は両方と有機半導体層との間に導電性高分子材料からなる配向膜が設けられ、かつ、配向膜の作用により有機半導体層中の液晶分子が配向しているので、有機半導体層にキャリアが容易に注入される。その結果、本発明の有機半導体素子は、電流が流れ始める電圧が低くなり、実用的な電流駆動特性を有する有機半導体素子となる。また、これらの発明によれば、有機半導体層において液晶分子の配向秩序が向上するので、キャリア移動度の高い有機半導体素子となる。   According to these inventions, an alignment film made of a conductive polymer material is provided between one or both of two opposing electrodes and the organic semiconductor layer, and the liquid crystal in the organic semiconductor layer is formed by the action of the alignment film. Since the molecules are oriented, carriers are easily injected into the organic semiconductor layer. As a result, the organic semiconductor element of the present invention is an organic semiconductor element having a practical current driving characteristic because the voltage at which current begins to flow is lowered. Moreover, according to these inventions, since the alignment order of liquid crystal molecules is improved in the organic semiconductor layer, an organic semiconductor element having high carrier mobility is obtained.

本発明の第1の形態にかかる有機半導体素子において、前記有機半導体層は、等方相からネマティック液晶相を経由してスメクティック液晶相に相転移した液晶性有機半導体材料により形成されていることが好ましい。また、本発明の第2の形態にかかる有機半導体素子において、前記有機半導体層は、等方相からネマティック液晶相を経由して結晶相に相転移した液晶性有機半導体材料により形成されていることが好ましい。   In the organic semiconductor element according to the first aspect of the present invention, the organic semiconductor layer is formed of a liquid crystalline organic semiconductor material that has undergone a phase transition from an isotropic phase to a smectic liquid crystal phase via a nematic liquid crystal phase. preferable. In the organic semiconductor element according to the second aspect of the present invention, the organic semiconductor layer is formed of a liquid crystalline organic semiconductor material that has undergone a phase transition from an isotropic phase to a crystalline phase via a nematic liquid crystal phase. Is preferred.

本発明の有機半導体素子において、前記有機半導体層を形成する液晶性有機半導体材料中の液晶分子が、前記電極の面内方向に配向していることが好ましく、また、前記配向膜は、ラビング処理された前記導電性高分子材料からなる膜であることが好ましい。   In the organic semiconductor element of the present invention, the liquid crystal molecules in the liquid crystalline organic semiconductor material forming the organic semiconductor layer are preferably aligned in the in-plane direction of the electrode, and the alignment film is rubbed. It is preferable that the film is made of the conductive polymer material.

これらの発明によれば、有機半導体層の液晶分子が電極の面内方向に高い配向秩序をもって配向しているので、有機半導体層にキャリアを容易に注入でき、かつ、キャリア移動度の高い有機半導体素子となる。   According to these inventions, since the liquid crystal molecules of the organic semiconductor layer are aligned with a high alignment order in the in-plane direction of the electrode, the organic semiconductor can easily inject carriers into the organic semiconductor layer and has high carrier mobility. It becomes an element.

本発明の有機半導体素子は、前記有機半導体層中に埋め込まれた1又は2以上のゲート電極を有し、静電誘導トランジスタとして動作することが好ましい。   The organic semiconductor element of the present invention preferably has one or more gate electrodes embedded in the organic semiconductor layer and operates as an electrostatic induction transistor.

上記課題を解決するための本発明の第1の形態にかかる有機半導体素子の製造方法は、電極と導電性高分子材料からなる配向膜とがこの順に形成された2枚の基板を対向させ、前記基板の間に、等方相、ネマティック液晶相及びスメクティック液晶相の相転移系列を有する液晶性有機半導体材料からなる有機半導体層を形成する有機半導体素子の製造方法であって、前記有機半導体層の形成は、前記基板の間に等方相を呈する前記液晶性有機半導体材料を注入する工程と、等方相からネマティック液晶相を経由してスメクティック液晶相を呈するまで、前記液晶性有機半導体材料を冷却する工程とにより行われることを特徴とする。   The method for manufacturing an organic semiconductor element according to the first aspect of the present invention for solving the above-described problem is to face two substrates on which an electrode and an alignment film made of a conductive polymer material are formed in this order, An organic semiconductor element manufacturing method for forming an organic semiconductor layer made of a liquid crystalline organic semiconductor material having a phase transition series of an isotropic phase, a nematic liquid crystal phase and a smectic liquid crystal phase between the substrates, the organic semiconductor layer The step of injecting the liquid crystalline organic semiconductor material exhibiting an isotropic phase between the substrates, and the liquid crystalline organic semiconductor material from the isotropic phase to the smectic liquid crystal phase via the nematic liquid crystal phase And the step of cooling.

上記課題を解決するための本発明の第2の形態にかかる有機半導体素子の製造方法は、電極と導電性高分子材料からなる配向膜とがこの順に形成された2枚の基板を対向させ、前記基板の間に、等方相、ネマティック液晶相及び結晶相の相転移系列を有する液晶性有機半導体材料からなる有機半導体層を形成する有機半導体素子の製造方法であって、前記有機半導体層の形成は、前記基板の間に等方相を呈する前記液晶性有機半導体材料を注入する工程と、等方相からネマティック液晶相を経由して結晶相を呈するまで、前記液晶性有機半導体材料を冷却する工程とにより行われることを特徴とする。   The method for manufacturing an organic semiconductor element according to the second aspect of the present invention for solving the above-described problem is to face two substrates on which an electrode and an alignment film made of a conductive polymer material are formed in this order, An organic semiconductor element manufacturing method for forming an organic semiconductor layer made of a liquid crystalline organic semiconductor material having a phase transition series of an isotropic phase, a nematic liquid crystal phase, and a crystal phase between the substrates, The formation is performed by injecting the liquid crystalline organic semiconductor material exhibiting an isotropic phase between the substrates, and cooling the liquid crystalline organic semiconductor material until the crystalline phase is exhibited from the isotropic phase via the nematic liquid crystal phase. It is characterized by being performed by the process to do.

この発明によれば、有機半導体層の液晶分子が高い配向秩序をもって配向するので、キャリア移動度の高い有機半導体素子を得ることができる。   According to the present invention, since the liquid crystal molecules of the organic semiconductor layer are aligned with a high alignment order, an organic semiconductor element having a high carrier mobility can be obtained.

本発明の有機半導体素子の製造方法において、前記配向膜は、導電性高分子材料の塗布膜をラビング処理する工程により形成することが好ましい。   In the method for producing an organic semiconductor element of the present invention, the alignment film is preferably formed by a step of rubbing a coating film of a conductive polymer material.

本発明の有機半導体素子によれば、有機半導体層にキャリアを容易に注入できるので、有機半導体素子に電流が流れ始める電圧が低くなり、実用的な電流駆動特性を有する有機半導体素子となる。また、本発明の有機半導体素子によれば、有機半導体層中の液晶分子の配向秩序が向上するので、高いキャリア移動度を有する有機半導体素子となる。さらに、本発明の有機半導体素子によれば、キャリアを高速で移動させる有機半導体層に充分な量のキャリアを容易に供給できるので、大電流を制御できる有機半導体素子となる。   According to the organic semiconductor element of the present invention, since carriers can be easily injected into the organic semiconductor layer, the voltage at which current starts to flow through the organic semiconductor element is reduced, and the organic semiconductor element has practical current driving characteristics. In addition, according to the organic semiconductor element of the present invention, since the alignment order of the liquid crystal molecules in the organic semiconductor layer is improved, the organic semiconductor element has high carrier mobility. Furthermore, according to the organic semiconductor element of the present invention, a sufficient amount of carriers can be easily supplied to the organic semiconductor layer that moves carriers at a high speed, so that an organic semiconductor element that can control a large current is obtained.

また、本発明の有機半導体素子の製造方法は、有機半導体層の液晶分子が高い配向秩序をもって配向するので、キャリア移動度の高い有機半導体素子を得ることができる。   In addition, since the liquid crystal molecules in the organic semiconductor layer are aligned with a high alignment order, the organic semiconductor element manufacturing method of the present invention can provide an organic semiconductor element with high carrier mobility.

本発明の有機半導体素子及びその製造方法について、図面を参照して詳しく説明する。   The organic semiconductor element and the manufacturing method thereof of the present invention will be described in detail with reference to the drawings.

図1は、本発明の有機半導体素子の一例を示す断面図である。本発明の有機半導体素子1は、電極3と配向膜4とを備えた2枚の基板2が、電極3等を備える面を内側にして対向するように配置され、その2枚の基板2の間に有機半導体層5が設けられているものである。   FIG. 1 is a cross-sectional view showing an example of the organic semiconductor element of the present invention. The organic semiconductor element 1 of the present invention is arranged such that two substrates 2 provided with an electrode 3 and an alignment film 4 face each other with the surface provided with the electrode 3 or the like facing inside. An organic semiconductor layer 5 is provided therebetween.

(基板)
基板2は、絶縁性の材料であれば広い範囲の材料から選択され、例えばガラス、プラスチック等からなる基板を適用できる。基板2の厚さは、通常0.5〜2.0mmである。
(substrate)
The substrate 2 is selected from a wide range of materials as long as it is an insulating material. For example, a substrate made of glass, plastic, or the like can be applied. The thickness of the substrate 2 is usually 0.5 to 2.0 mm.

(電極)
電極3は、基板2上に設けられており、配向膜4を介して有機半導体層5にキャリア(正孔又は電子)を注入するものである。
(electrode)
The electrode 3 is provided on the substrate 2 and injects carriers (holes or electrons) into the organic semiconductor layer 5 through the alignment film 4.

電極3は、金、白金、透明導電膜(インジウム・スズ酸化物、インジウム・亜鉛酸化物等)等の材料を用いて、スパッタリング法、電子ビーム(EB)蒸着法等の方法により形成される。電極の厚さは、10〜1000nm程度である。   The electrode 3 is formed by a method such as a sputtering method or an electron beam (EB) vapor deposition method using a material such as gold, platinum, or a transparent conductive film (such as indium / tin oxide or indium / zinc oxide). The thickness of the electrode is about 10 to 1000 nm.

(配向膜)
配向膜4は、有機半導体層5の片面又は両面に隣接して設けられている。本発明における配向膜4は、導電性高分子材料で形成された膜に配向処理したものであり、有機半導体層5の液晶分子を秩序高く配向させる役割と有機半導体層5にキャリアを容易に注入させる役割を有する。
(Alignment film)
The alignment film 4 is provided adjacent to one side or both sides of the organic semiconductor layer 5. In the present invention, the alignment film 4 is formed by conducting an alignment process on a film formed of a conductive polymer material, and the role of aligning the liquid crystal molecules of the organic semiconductor layer 5 in an orderly manner and carriers are easily injected into the organic semiconductor layer 5. Have a role to play.

上記導電性高分子材料は、有機半導体層5にキャリアが注入されるのを妨げない程度の導電率を有する高分子材料であって、この材料からなる膜に配向処理を施した場合に有機半導体層5を構成する液晶分子を配向できるものであればよい。この導電性高分子材料の導電率は、10−5〜10−4S/m程度であることが好ましい。そのような導電性高分子材料としては、ポリエチレンジオキシチオフェン(PEDOT)を好ましく挙げることができるが、上記の特性を有すればこれに限定されず、例えばポリアニリン(PANI)、ポリピロール又はヨウ素をドープしたポリフェニレンビニレン等も使用できる。このような導電性高分子材料から形成されている配向膜は、有機半導体層5の液晶分子を配向させるだけでなく、有機半導体層5にキャリアを容易に注入させることができる。 The conductive polymer material is a polymer material having a conductivity that does not prevent carriers from being injected into the organic semiconductor layer 5, and the organic semiconductor when the film made of this material is subjected to orientation treatment. Any material can be used as long as the liquid crystal molecules constituting the layer 5 can be aligned. The conductivity of the conductive polymer material is preferably about 10 −5 to 10 −4 S / m. As such a conductive polymer material, polyethylenedioxythiophene (PEDOT) can be preferably mentioned, but it is not limited to this as long as it has the above-mentioned properties. For example, polyaniline (PANI), polypyrrole or iodine is doped. Polyphenylene vinylene and the like can also be used. The alignment film formed from such a conductive polymer material not only aligns the liquid crystal molecules of the organic semiconductor layer 5 but also allows carriers to be easily injected into the organic semiconductor layer 5.

この導電性高分子材料には、導電性向上の目的でドーパントを含有させることが好ましく、そのようなドーパントとして、ポリスチレンスルホンネート(PSS)等の電子受与体材料を用いることができる。   This conductive polymer material preferably contains a dopant for the purpose of improving conductivity, and an electron acceptor material such as polystyrene sulfonate (PSS) can be used as such a dopant.

配向膜4は、このような導電性高分子材料からなる膜に配向処理を施すことにより形成される。このような処理を施すことにより、隣接する有機半導体層5のキャリア移動度を向上させることができるだけでなく、有機半導体層5にキャリアを容易に注入させることができる。   The alignment film 4 is formed by performing an alignment process on a film made of such a conductive polymer material. By performing such treatment, not only can the carrier mobility of the adjacent organic semiconductor layer 5 be improved, but also carriers can be easily injected into the organic semiconductor layer 5.

配向膜4は、電極3が形成された基板2上に上記導電性高分子材料で塗布膜を形成し、その塗布膜の上に配向処理を施すことにより形成される。なお、配向処理される前の塗布膜を、必要に応じて焼成することもできる。   The alignment film 4 is formed by forming a coating film of the conductive polymer material on the substrate 2 on which the electrode 3 is formed, and performing an alignment treatment on the coating film. In addition, the coating film before an orientation process can also be baked as needed.

配向処理は、有機半導体層を構成する液晶分子が電極の面内方向に配向するように施すことが好ましく、そのような処理としてラビング処理が挙げられる。ラビング処理は、図3に示すように、基板2の電極3が形成されている面に導電性高分子材料を成膜し、ラビングローラー10に巻きつけたラビング布11を回転させながらその基板上を移動させて、基板上の導電性高分子材料の膜4’を擦ることより行われる。なお、図3中の符号7は基板を移動させる方向を示し、符号8はラビング方向を示し、符号9はローラーの回転方向を示す。また、他の配向処理として、導電性高分子材料で形成された膜へのエネルギー線照射を利用することができ、例えばイオン照射や紫外線照射を利用することができる。なお、配向膜を利用した配向手段以外の配向手段(例えば、スペーサーエッジ、温度勾配、メカニカルシアーや磁場等を利用した配向手段)を上記配向膜による配向手段と併用することもできる。   The alignment treatment is preferably performed so that the liquid crystal molecules constituting the organic semiconductor layer are aligned in the in-plane direction of the electrode, and such treatment includes rubbing treatment. As shown in FIG. 3, the rubbing treatment is performed by forming a conductive polymer material on the surface of the substrate 2 on which the electrode 3 is formed and rotating the rubbing cloth 11 wound around the rubbing roller 10 on the substrate. Is moved, and the conductive polymer material film 4 'on the substrate is rubbed. In addition, the code | symbol 7 in FIG. 3 shows the direction to which a board | substrate is moved, the code | symbol 8 shows the rubbing direction, and the code | symbol 9 shows the rotation direction of a roller. Further, as another alignment treatment, energy beam irradiation to a film formed of a conductive polymer material can be used, and for example, ion irradiation or ultraviolet irradiation can be used. Note that alignment means other than the alignment means using the alignment film (for example, alignment means using spacer edges, temperature gradient, mechanical shear, magnetic field, etc.) can be used in combination with the alignment means using the alignment film.

配向膜4は、有機半導体層5の片面のみに設けられていても両面に設けられていてもよいが、両面に設けられている場合にはより配向の効果が高いので好ましい。   The alignment film 4 may be provided on only one side or both sides of the organic semiconductor layer 5. However, the orientation film 4 is preferable because the orientation effect is higher when provided on both sides.

配向膜4の膜厚は、有機半導体層の液晶分子を配向できる程度であればよく、通常0.01〜2μmである。   The film thickness of the alignment film 4 should just be a grade which can align the liquid crystal molecule of an organic-semiconductor layer, and is 0.01-2 micrometers normally.

(有機半導体層)
有機半導体層5は、対向する2つの電極の間に位置し、一方の電極から供給されたキャリアを他方の電極に輸送する層である。本発明における有機半導体層5は、液晶性有機半導体材料から形成される層であり、その液晶性有機半導体材料がスメクティック液晶相を呈している第1の形態と、液晶相から相転移した結晶相を呈している第2の形態とに分けられる。
(Organic semiconductor layer)
The organic semiconductor layer 5 is a layer which is located between two electrodes facing each other and transports carriers supplied from one electrode to the other electrode. The organic semiconductor layer 5 in the present invention is a layer formed from a liquid crystalline organic semiconductor material. The first form in which the liquid crystalline organic semiconductor material exhibits a smectic liquid crystal phase, and a crystal phase that has undergone a phase transition from the liquid crystal phase. It is divided into the 2nd form which presents.

(1)第1の形態
第1の形態の有機半導体層5は、スメクティック液晶相を呈している液晶性有機半導体材料により形成されている。このような材料として、例えば2‐(4’‐オクチルフェニル)‐6‐テトリロキシナフタレン(以下、8PNPO4という。)が挙げられる。この8PNPO4は、等方相、スメクティックA相、スメクティックE相及び結晶相の相転移系列を有している。
(1) 1st form The organic-semiconductor layer 5 of a 1st form is formed with the liquid crystalline organic-semiconductor material which exhibits the smectic liquid crystal phase. An example of such a material is 2- (4′-octylphenyl) -6-tetryloxynaphthalene (hereinafter referred to as 8PNPO4). This 8PNPO4 has a phase transition series of an isotropic phase, a smectic A phase, a smectic E phase, and a crystal phase.

スメクティック液晶相は、図2(a)に示すように、概ね一定方向を向いた液晶分子6が、一定の秩序をもって配列している層構造の液晶相である。こうしたスメクティック液晶相は、個々の分子の自由度が制限され配向秩序が高い。したがって、このような有機半導体層は、有機半導体層を構成する液晶分子の分子間距離が短く、電極から供給されたキャリアがその分子間をホッピング伝導しやすいので、キャリアを高速で移動させることができる。一方、ネマティック液晶相の液晶分子は、図2(b)に示すように、液晶分子6が概ね一定方向を向いているものの、個々の分子の自由度が高く配向秩序が低いため、スメクティック液晶相よりもキャリアの移動は低速であると考えられる。   As shown in FIG. 2A, the smectic liquid crystal phase is a liquid crystal phase having a layer structure in which liquid crystal molecules 6 oriented in a substantially constant direction are arranged with a constant order. Such a smectic liquid crystal phase has a high degree of alignment order because the degree of freedom of individual molecules is limited. Therefore, such an organic semiconductor layer has a short intermolecular distance between the liquid crystal molecules constituting the organic semiconductor layer, and carriers supplied from the electrodes are easy to hop-conduct between the molecules, so that the carriers can be moved at high speed. it can. On the other hand, the liquid crystal molecules in the nematic liquid crystal phase, as shown in FIG. 2 (b), although the liquid crystal molecules 6 are generally oriented in a certain direction, the degree of freedom of the individual molecules is high and the alignment order is low. The movement of the carrier is considered to be slower.

上記液晶性有機半導体材料の呈するスメクティック液晶相は、等方相からネマティック液晶相を経由して相転移したものであることが好ましい。このような有機半導体層は、分子の自由度が高いネマティック液晶相を経由するので、等方相からスメクティック液晶相へ直接転移して形成された有機半導体層よりも配向秩序が高い。このような有機半導体層の液晶性有機半導体材料としては、TRIP−O10(4、4’’‐ジデカロキシ‐3’’‐イソプロピル‐p‐ターフェニル)を用いることができる。このTRIP−O10は、等方相、ネマクティック相、スメクティックA相、スメクティックE相及び結晶相の相転移系列を有している。   The smectic liquid crystal phase exhibited by the liquid crystalline organic semiconductor material is preferably a phase transition from an isotropic phase via a nematic liquid crystal phase. Since such an organic semiconductor layer passes through a nematic liquid crystal phase having a high degree of molecular freedom, the organic semiconductor layer has higher alignment order than an organic semiconductor layer formed by direct transition from an isotropic phase to a smectic liquid crystal phase. As a liquid crystalline organic semiconductor material for such an organic semiconductor layer, TRIP-O10 (4,4 ″ -didecaroxy-3 ″ -isopropyl-p-terphenyl) can be used. This TRIP-O10 has a phase transition series of an isotropic phase, a nematic phase, a smectic A phase, a smectic E phase, and a crystalline phase.

上記液晶性有機半導体材料の呈するスメクティック液晶相は、液晶分子の配向秩序を高くする観点から、低次相よりも高次相であることが好ましく、具体的にはスメクティックA相よりもスメクティックE相であることが好ましい。   The smectic liquid crystal phase exhibited by the liquid crystalline organic semiconductor material is preferably a higher order phase than a lower order phase, specifically a smectic E phase rather than a smectic A phase, from the viewpoint of increasing the alignment order of liquid crystal molecules. It is preferable that

この有機半導体層5は、上記液晶性有機半導体材料の液晶分子が配向していることが好ましく、特に電極3の面内方向に配向していることが好ましい。本発明において、液晶分子の配向は、有機半導体層5の片面又は両面に隣接する配向膜4によりなされている。液晶分子がこのように配向していると、電極から供給されたキャリアがホッピング伝導しやすいので、有機半導体層におけるキャリアの移動が高速になり、また、そのような有機半導体層にキャリアが容易に注入される。   In the organic semiconductor layer 5, the liquid crystal molecules of the liquid crystalline organic semiconductor material are preferably aligned, and particularly preferably in the in-plane direction of the electrode 3. In the present invention, the liquid crystal molecules are aligned by the alignment film 4 adjacent to one or both sides of the organic semiconductor layer 5. When the liquid crystal molecules are aligned in this way, the carriers supplied from the electrodes are easy to hop and conduct, so that the carriers move in the organic semiconductor layer at a high speed, and carriers are easily transferred to such an organic semiconductor layer. Injected.

有機半導体層の厚さは、通常0.1〜10μm程度であり、後述するセルの間隙により制御される。   The thickness of the organic semiconductor layer is usually about 0.1 to 10 μm, and is controlled by the cell gap described later.

(2)第2の形態
第2の形態の有機半導体層5は、液晶相から相転移した結晶相を呈している液晶性有機半導体材料で形成されている。このような有機半導体層5は、分子の配向秩序が高いので、キャリアがホッピング伝導しやすく、キャリアを高速で移動させることができる。このような液晶性有機半導体材料としては、例えば、上記の8PNPO4が挙げられる。
(2) Second Form The organic semiconductor layer 5 of the second form is formed of a liquid crystalline organic semiconductor material exhibiting a crystal phase that has undergone phase transition from a liquid crystal phase. Since such an organic semiconductor layer 5 has a high molecular orientation order, carriers are easily hopped and can move carriers at a high speed. As such a liquid crystalline organic semiconductor material, for example, the above-mentioned 8PNPO4 can be mentioned.

また、この有機半導体層においても、等方相からネマティック液晶相を経由して結晶相を呈していることが好ましく、このとき用いられる液晶性有機半導体材料としては、上記のTRIP−O10が挙げられる。このような有機半導体層は、分子の自由度が高いネマティック液晶相を経由するので、等方相から結晶相へ直接転移して形成された有機半導体層よりも配向秩序が高い。   Further, this organic semiconductor layer also preferably exhibits a crystalline phase from an isotropic phase via a nematic liquid crystal phase, and examples of the liquid crystalline organic semiconductor material used at this time include the above TRIP-O10. . Since such an organic semiconductor layer passes through a nematic liquid crystal phase having a high degree of molecular freedom, it has a higher alignment order than an organic semiconductor layer formed by direct transition from an isotropic phase to a crystalline phase.

この有機半導体層5を形成する液晶性半導体材料の液晶分子は、電極3の面内方向に配向していることが好ましく、その理由や配向手段については上記した第1の形態の有機半導体層と同様である。   The liquid crystal molecules of the liquid crystalline semiconductor material forming the organic semiconductor layer 5 are preferably aligned in the in-plane direction of the electrode 3, and the reason and alignment means are the same as those of the organic semiconductor layer of the first embodiment described above. It is the same.

また、有機半導体層の厚さについても上記した第1の形態の有機半導体層と同様である。   The thickness of the organic semiconductor layer is the same as that of the organic semiconductor layer of the first embodiment described above.

(有機半導体素子の製造方法)
図4は、本発明の有機半導体素子1の製造方法の一例を示す製造工程図である。以下の工程により、等方相からネマティック液晶相を経由してスメクティック液晶相となった液晶性有機半導体材料からなる上記第1の形態の有機半導体層を有する有機半導体素子と、等方相からネマティック液晶相を経由して結晶相となった液晶性有機半導体材料からなる上記第2の形態の有機半導体層を有する有機半導体素子とを製造できる。
(Method for manufacturing organic semiconductor element)
FIG. 4 is a manufacturing process diagram showing an example of a method for manufacturing the organic semiconductor element 1 of the present invention. The organic semiconductor element having the organic semiconductor layer according to the first aspect, which is made of the liquid crystalline organic semiconductor material that has changed from the isotropic phase to the smectic liquid crystal phase via the nematic liquid crystal phase, and the isotropic phase to the nematic by the following steps An organic semiconductor element having the organic semiconductor layer according to the second embodiment, which is made of a liquid crystalline organic semiconductor material that is converted into a crystalline phase via a liquid crystal phase, can be manufactured.

まず、基板2に電極3を形成する工程(図4(a))と、基板2の電極3が形成された面に導電性高分子材料4’を塗布する工程(図4(b))と、導電性高分子材料からなる膜4’をラビング処理する工程(図4(c))と、このようにして得られた2枚の基板2を、電極3と配向膜4とが形成された面を対向させて注入孔を除いて貼り合わせる工程(図4(d))とによりセル13を作製する。   First, the step of forming the electrode 3 on the substrate 2 (FIG. 4A), the step of applying the conductive polymer material 4 ′ to the surface of the substrate 2 on which the electrode 3 is formed (FIG. 4B), The step of rubbing the film 4 ′ made of a conductive polymer material (FIG. 4C), and the two substrates 2 thus obtained were formed with the electrode 3 and the alignment film 4. The cell 13 is produced by a process (FIG. 4D) in which the surfaces are opposed to each other and the injection holes are removed and bonded together.

次に、このセル13の注入孔から等方相を呈する液晶性有機半導体材料5’を注入する工程(図4(e)、図中の矢印は材料5’がセル13に注入されている様子を示す。)と、この材料を、ネマティック液晶相を経由して所望の相(スメクティック液晶相又は結晶相)を呈するまで冷却する工程(図4(f))とにより有機半導体層5を形成して、有機半導体素子1が製造される(図4(g))。ここで、符号10はラビング布11が巻かれたラビングローラーを示す。   Next, a step of injecting the liquid crystalline organic semiconductor material 5 ′ exhibiting an isotropic phase from the injection hole of the cell 13 (FIG. 4E), the arrow in the figure indicates that the material 5 ′ is injected into the cell 13. And the step of cooling the material until it exhibits a desired phase (smectic liquid crystal phase or crystal phase) via the nematic liquid crystal phase (FIG. 4 (f)) to form the organic semiconductor layer 5. Thus, the organic semiconductor element 1 is manufactured (FIG. 4G). Here, the code | symbol 10 shows the rubbing roller by which the rubbing cloth 11 was wound.

有機半導体層の形成(図4(e)及び(f))は、液晶性有機半導体材料を、等方相を呈する温度まで加熱してセルに注入した後、ネマティック液晶相を経由してスメクティック液晶相又は結晶相を呈する温度まで冷却することにより行う。このようにして得られた有機半導体素子は、高いキャリア移動度を有する。すなわち、例えばネマティック液晶相を経由してスメクティック液晶相を呈する有機半導体層(第1の形態の有機半導体層)を形成する場合に、ネマティック液晶相の液晶分子は、図2(b)で示したように分子の自由度が高いので最適な位置に動きやすく、スメクティック液晶相に相転移する際に効率よく充填される。したがって、得られる有機半導体層は、分子の配向秩序が向上するので、キャリアがホッピング伝導しやすくなる。   Formation of the organic semiconductor layer (FIGS. 4E and 4F) is performed by heating a liquid crystalline organic semiconductor material to a temperature exhibiting an isotropic phase and injecting it into the cell, and then via a nematic liquid crystal phase. By cooling to a temperature exhibiting a phase or crystalline phase. The organic semiconductor element thus obtained has a high carrier mobility. That is, for example, in the case of forming an organic semiconductor layer that exhibits a smectic liquid crystal phase via a nematic liquid crystal phase (the organic semiconductor layer of the first form), the liquid crystal molecules in the nematic liquid crystal phase are shown in FIG. Thus, since the degree of freedom of the molecule is high, it is easy to move to an optimal position and is efficiently filled when the phase transition to the smectic liquid crystal phase. Therefore, in the obtained organic semiconductor layer, molecular orientation order is improved, so that carriers are easily hopped.

この製造方法で使用できる液晶性有機半導体材料は、等方相、ネマティック液晶相及びスメクティック液晶相の相転移系列を有する材料又は等方相、ネマティック液晶相及び結晶相の相転移系列を有する材料であり、例えば上述したTRIP−O10を使用できる。液晶性有機半導体材料にTRIP−O10を用いる場合には、TRIP−O10を100℃以上に加熱して等方相の状態にし、セルに注入後、例えば75〜60℃まで冷却することによりネマティック液晶相を経由させてスメクティックE相の状態にしたり、40〜20℃まで冷却することにより結晶相の状態にしたりして有機半導体層を形成する。   The liquid crystalline organic semiconductor material that can be used in this manufacturing method is a material having a phase transition sequence of isotropic phase, nematic liquid crystal phase and smectic liquid crystal phase, or a material having a phase transition sequence of isotropic phase, nematic liquid crystal phase and crystal phase. Yes, for example, the above-described TRIP-O10 can be used. When TRIP-O10 is used as the liquid crystalline organic semiconductor material, the nematic liquid crystal is obtained by heating TRIP-O10 to 100 ° C. or higher to form an isotropic phase, and then injecting it into the cell and then cooling to 75 to 60 ° C. The organic semiconductor layer is formed by changing to a smectic E phase state via a phase or a crystalline phase state by cooling to 40 to 20 ° C.

セルに注入された液晶性有機半導体材料の冷却速度は、より配向秩序の高い有機半導体層を形成する観点から遅いことが好ましく、0.1〜0.5℃/分であることが好ましい。   The cooling rate of the liquid crystalline organic semiconductor material injected into the cell is preferably slow from the viewpoint of forming an organic semiconductor layer having higher alignment order, and preferably 0.1 to 0.5 ° C./min.

なお、有機半導体層がネマティック液晶相を相転移系列に持たない液晶性有機半導体材料(例えば上記の8PNPO4等。)で形成される場合には、例えば等方相を呈する液晶性有機半導体材料をセル13に注入し、所望の相を呈するまで冷却することにより有機半導体素子を製造することができる。また、有機半導体層の形成工程(図4(e)及び(f))以外の工程については、上記の各項目で説明したとおりである。   In the case where the organic semiconductor layer is formed of a liquid crystalline organic semiconductor material that does not have a nematic liquid crystal phase in a phase transition series (for example, the above-described 8PNPO4 or the like), for example, a liquid crystalline organic semiconductor material that exhibits an isotropic phase is used as a cell. The organic semiconductor element can be manufactured by injecting into 13 and cooling until a desired phase is exhibited. Further, the steps other than the organic semiconductor layer forming step (FIGS. 4E and 4F) are as described in the above items.

(有機半導体素子)
本発明の有機半導体素子は、図1に示すように、電極3と配向膜4とを備えた2枚の基板2が、電極3等を備える面を内側にして対向するように配置され、その2枚の基板2の間に有機半導体層5が設けられているものである。具体的な有機半導体素子としては、例えば電極と配向膜を備える基板で形成されたセルの中に有機半導体層が設けられた有機半導体素子が挙げられる。
(Organic semiconductor device)
As shown in FIG. 1, the organic semiconductor element of the present invention is arranged such that two substrates 2 provided with an electrode 3 and an alignment film 4 face each other with the surface provided with the electrode 3 and the like facing inward. An organic semiconductor layer 5 is provided between two substrates 2. Specific examples of the organic semiconductor element include an organic semiconductor element in which an organic semiconductor layer is provided in a cell formed of a substrate including an electrode and an alignment film.

本発明の有機半導体素子は、配向膜4の作用により有機半導体層5にキャリアが容易に注入されるので、有機半導体素子に電流が流れ始める電圧が低く、実用的な電流駆動特性を有し、また、有機半導体層5中の液晶分子の配向秩序が高いので、高いキャリア移動度を有する。さらに、本発明の有機半導体素子1は、有機半導体層にキャリアを容易に注入することができるので、キャリア移動に充分な量のキャリアを有機半導体層に容易に供給することができ、低電圧で大電流を制御できる。   In the organic semiconductor element of the present invention, carriers are easily injected into the organic semiconductor layer 5 by the action of the alignment film 4, so that the voltage at which current starts to flow through the organic semiconductor element is low, and has practical current driving characteristics. Moreover, since the alignment order of the liquid crystal molecules in the organic semiconductor layer 5 is high, it has a high carrier mobility. Furthermore, since the organic semiconductor element 1 of the present invention can easily inject carriers into the organic semiconductor layer, a sufficient amount of carriers for carrier movement can be easily supplied to the organic semiconductor layer, and at a low voltage. Large current can be controlled.

本発明の有機半導体素子1は、例えば静電誘導トランジスタとして利用できる。静電誘導トランジスタは、縦型トランジスタとも呼ばれ、ゲート電極が有機半導体層に埋め込まれている構造をしている。したがって、平面型のMOSトランジスタよりもチャネル断面を広くすることもまたチャネル長を短くすることもでき、従来よりも容易に大電流制御が可能となる。   The organic semiconductor element 1 of the present invention can be used as, for example, an electrostatic induction transistor. The electrostatic induction transistor is also called a vertical transistor, and has a structure in which a gate electrode is embedded in an organic semiconductor layer. Therefore, the channel cross section can be made wider than that of the planar MOS transistor, and the channel length can be shortened, so that a large current can be controlled more easily than in the prior art.

図5は、本発明の有機半導体素子(静電誘導トランジスタ)の一例を示す断面図である。静電誘導トランジスタ1’は、棒状のゲート電極12が、対抗する電極3の面内方向に水平方向であって、有機半導体層5の液晶分子の配向方向に垂直方向に向いて、有機半導体層5の中に埋め込まれているトランジスタである。なお、このとき対向する2つの電極3は、ソース電極及びドレイン電極となる。   FIG. 5 is a cross-sectional view showing an example of the organic semiconductor element (static induction transistor) of the present invention. In the electrostatic induction transistor 1 ′, the rod-shaped gate electrode 12 is oriented in the horizontal direction in the in-plane direction of the opposing electrode 3, and in the direction perpendicular to the alignment direction of the liquid crystal molecules of the organic semiconductor layer 5. 5 is a transistor embedded in the transistor 5. At this time, the two electrodes 3 facing each other serve as a source electrode and a drain electrode.

静電誘導トランジスタ1’の製造は、例えば、電極3と配向膜4が形成された2つの基板2を対向させて、この間にゲート電極12を挟みながら、基板2を貼り合せてセルを作製し、そのセルに液晶性有機半導体材料を注入することにより、容易に行うことができる。ゲート電極には、金、白金,アルミ等を用いることができる。また、ゲート電極12は1つでも複数でもよく、複数のゲート電極を設ける場合は、それらを電極3の面内方向に平行に並ぶように配置させる。   For example, the electrostatic induction transistor 1 ′ is manufactured by making the cell 2 by bonding the substrate 2 with the gate electrode 12 sandwiched between the two substrates 2 on which the electrode 3 and the alignment film 4 are formed. It can be easily performed by injecting a liquid crystalline organic semiconductor material into the cell. Gold, platinum, aluminum, or the like can be used for the gate electrode. One or a plurality of gate electrodes 12 may be provided. When a plurality of gate electrodes are provided, they are arranged in parallel to the in-plane direction of the electrode 3.

このような静電誘導トランジスタは、無機半導体素子を利用した場合は、ゲート電極を半導体層中に作りこまなければならず作製が困難であるが、本発明の有機半導体素子は、有機半導体層が液晶性有機半導体材料で形成されるので、このような問題を容易に解決することができる。   Such an electrostatic induction transistor, when an inorganic semiconductor element is used, is difficult to manufacture because the gate electrode must be formed in the semiconductor layer. However, the organic semiconductor element of the present invention has an organic semiconductor layer Since it is formed of a liquid crystalline organic semiconductor material, such a problem can be easily solved.

以下、本発明を実施例と比較例によりさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

(実施例1)
基板及び電極として、ITO透明電極付きのガラス基板(三容真空社製、厚さ1.1mm、シート抵抗10Ω)を用い、導電性高分子材料(配向膜の材料)として、PSSがドーパントとして含有されているPEDOT(バイエル社製、商品名:CH8000)を用いた。まず、基板のITO透明電極が設けられている側の面に、導電性高分子材料を500Å(=50nm)厚にスピンコートし、200℃で30分間焼成した。続いて、この導電性高分子材料の膜をラビング処理して配向膜とした。ラビング処理は、基板に形成された導電性高分子材料の膜を、回転しながら基板上を移動するローラーに巻きつけた布で擦ることにより行った。ラビング処理の前後での基板の位相差を測定したところ、処理前の位相差は0であったが、処理後は1.2nmの位相差が生じており、ラビング処理によって導電性高分子材料の膜が一軸延伸されて配向処理されていることを確認した。
(Example 1)
As a substrate and an electrode, a glass substrate with an ITO transparent electrode (manufactured by Sanyo Vacuum Co., Ltd., thickness 1.1 mm, sheet resistance 10Ω) is used, and PSS is contained as a dopant as a conductive polymer material (material for alignment film). PEDOT (manufactured by Bayer, trade name: CH8000) was used. First, a conductive polymer material was spin-coated to a thickness of 500 mm (= 50 nm) on the surface of the substrate on which the ITO transparent electrode was provided, and baked at 200 ° C. for 30 minutes. Subsequently, the conductive polymer material film was rubbed to form an alignment film. The rubbing treatment was performed by rubbing the film of the conductive polymer material formed on the substrate with a cloth wound around a roller moving on the substrate while rotating. When the phase difference of the substrate before and after the rubbing treatment was measured, the phase difference before the treatment was 0, but after the treatment, a phase difference of 1.2 nm was generated. It was confirmed that the film was uniaxially stretched and oriented.

このようにして得られた2枚の基板を、配向膜が形成された面を内側にし、ラビング方向が平行となるように対向させ、スペーサーとUVシール剤を用いて貼り合わせ、セルギャップが4μmであるセルを作製した。このセルの作製の際、シールの一部に間隙を設けておき液晶性有機半導体材料の注入孔とした。   The two substrates thus obtained are faced so that the surface on which the alignment film is formed is inward and the rubbing direction is parallel, and are bonded using a spacer and a UV sealant, and the cell gap is 4 μm. A cell was produced. During the production of this cell, a gap was provided in a part of the seal to form an injection hole for the liquid crystalline organic semiconductor material.

液晶性有機半導体材料として、8PNPO4(等方相、スメクティックA相、スメクティックE相、結晶相の相転移系列を有する液晶性有機半導体材料)を用いた。この液晶性有機半導体材料を、等方相を呈するように約140℃に加熱しながら真空注入により上記のセルに注入し、注入孔をシール封止した。その後、液晶性有機半導体材料を冷却速度0.1℃/分で冷却温度90℃まで冷却し、スメクティックE相の有機半導体層を有する実施例1の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。   As the liquid crystalline organic semiconductor material, 8PNPO4 (a liquid crystalline organic semiconductor material having a phase transition series of isotropic phase, smectic A phase, smectic E phase, and crystal phase) was used. This liquid crystalline organic semiconductor material was injected into the cell by vacuum injection while heating to about 140 ° C. so as to exhibit an isotropic phase, and the injection hole was sealed. Thereafter, the liquid crystalline organic semiconductor material was cooled to a cooling temperature of 90 ° C. at a cooling rate of 0.1 ° C./min to produce an organic semiconductor element of Example 1 having a smectic E phase organic semiconductor layer. The organic semiconductor element thus obtained was evaluated as follows.

(実施例2)
実施例1の有機半導体素子の製造において、セルに注入した液晶性有機半導体材料の冷却温度を90℃に代えて35℃とした以外は、実施例1と同様の手順で、結晶相の有機半導体層を有する実施例2の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Example 2)
In the production of the organic semiconductor element of Example 1, the crystalline semiconductor organic semiconductor was prepared in the same procedure as in Example 1 except that the cooling temperature of the liquid crystalline organic semiconductor material injected into the cell was 35 ° C. instead of 90 ° C. An organic semiconductor device of Example 2 having a layer was produced. The organic semiconductor element thus obtained was evaluated as follows.

(実施例3)
実施例1と同様にセルを作製し、液晶性有機半導体材料として、TPIP−O10(等方相、ネマティック液晶相、スメクティックA相、スメクティックE相、結晶相の相転移系列を有する液晶性有機半導体材料)を用い、この液晶性有機半導体材料を、等方相を呈するように約140℃に加熱しながら、実施例1と同様の手順でセルに注入した。その後、液晶性有機半導体材料を冷却速度0.1℃/分で78℃まで冷却して、ネマティック液晶相を経由して形成されたスメクティックE相の有機半導体層を有する実施例2の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Example 3)
A cell was prepared in the same manner as in Example 1, and TPIP-O10 (an isotropic liquid crystal semiconductor phase having a phase transition series of an isotropic phase, a nematic liquid crystal phase, a smectic A phase, a smectic E phase, and a crystal phase) as a liquid crystal organic semiconductor material The liquid crystalline organic semiconductor material was injected into the cell in the same procedure as in Example 1 while heating to about 140 ° C. so as to exhibit an isotropic phase. Thereafter, the liquid crystalline organic semiconductor material is cooled to 78 ° C. at a cooling rate of 0.1 ° C./min, and the organic semiconductor element of Example 2 having a smectic E phase organic semiconductor layer formed via a nematic liquid crystal phase. Manufactured. The organic semiconductor element thus obtained was evaluated as follows.

(実施例4)
実施例3の有機半導体素子の製造において、セルに注入した液晶性有機半導体材料の冷却温度を78℃に代えて35℃とした以外は、実施例3と同様の手順で、ネマティック液晶相を経由して形成された結晶相の有機半導体層を有する実施例4の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
Example 4
In the production of the organic semiconductor element of Example 3, the liquid crystal organic semiconductor material injected into the cell was passed through the nematic liquid crystal phase in the same procedure as in Example 3 except that the cooling temperature was 35 ° C. instead of 78 ° C. Thus, an organic semiconductor element of Example 4 having a crystalline organic semiconductor layer formed in this manner was manufactured. The organic semiconductor element thus obtained was evaluated as follows.

(比較例1)
実施例1の有機半導体素子の製造において、セルの作製の際、基板に成膜された導電性高分子材料の膜をラビング処理しない以外は、実施例1と同様の手順で比較例1の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Comparative Example 1)
In the manufacture of the organic semiconductor device of Example 1, the organic material of Comparative Example 1 was prepared in the same procedure as in Example 1 except that the conductive polymer material film formed on the substrate was not rubbed during cell production. A semiconductor element was manufactured. The organic semiconductor element thus obtained was evaluated as follows.

(比較例2)
実施例2の有機半導体素子の製造において、セルの作製の際、基板に成膜された導電性高分子材料の膜をラビング処理しない以外は、実施例2と同様の手順で比較例2の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Comparative Example 2)
In the production of the organic semiconductor element of Example 2, the organic polymer of Comparative Example 2 was prepared in the same procedure as Example 2 except that the conductive polymer material film formed on the substrate was not rubbed during cell production. A semiconductor element was manufactured. The organic semiconductor element thus obtained was evaluated as follows.

(比較例3)
実施例3の有機半導体素子の製造において、セルの作製の際、基板に成膜された導電性高分子材料の膜をラビング処理しない以外は、実施例3と同様の手順で比較例3の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Comparative Example 3)
In the production of the organic semiconductor element of Example 3, the organic polymer of Comparative Example 3 was prepared in the same procedure as in Example 3 except that the conductive polymer material film formed on the substrate was not rubbed when the cell was produced. A semiconductor element was manufactured. The organic semiconductor element thus obtained was evaluated as follows.

(比較例4)
実施例4の有機半導体素子の製造において、セルの作製の際、基板に成膜された導電性高分子材料の膜をラビング処理しない以外は、実施例4と同様の手順で比較例4の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Comparative Example 4)
In the manufacture of the organic semiconductor element of Example 4, the organic polymer of Comparative Example 4 was prepared in the same procedure as Example 4 except that the conductive polymer material film formed on the substrate was not rubbed during cell production. A semiconductor element was manufactured. The organic semiconductor element thus obtained was evaluated as follows.

(比較例5)
実施例3の有機半導体素子の製造において、セルに注入した液晶性有機半導体材料の冷却温度を78℃に代えて90℃とした以外は、実施例3と同様の手順で、ネマティック液晶相の有機半導体層を有する比較例5の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Comparative Example 5)
In the production of the organic semiconductor element of Example 3, the organic liquid crystal organic semiconductor material injected into the cell was replaced with a liquid crystal organic semiconductor material in the same procedure as in Example 3 except that the cooling temperature was changed to 90 ° C. An organic semiconductor element of Comparative Example 5 having a semiconductor layer was produced. The organic semiconductor element thus obtained was evaluated as follows.

(比較例6)
実施例3の有機半導体素子の製造において、セルの作製の際に基板に成膜された導電性高分子材料の膜をラビング処理せず、かつ、セルに注入した液晶性有機半導体材料の冷却温度を78℃に代えて90℃とした以外は、実施例3と同様の手順で、ネマティック液晶相の有機半導体層を有する比較例6の有機半導体素子を製造した。こうして得られた有機半導体素子について以下の評価を行った。
(Comparative Example 6)
In the manufacture of the organic semiconductor element of Example 3, the cooling temperature of the liquid crystalline organic semiconductor material injected into the cell without rubbing the conductive polymer material film formed on the substrate at the time of manufacturing the cell The organic semiconductor device of Comparative Example 6 having a nematic liquid crystal phase organic semiconductor layer was produced in the same procedure as in Example 3 except that the temperature was changed to 90 ° C. instead of 78 ° C. The organic semiconductor element thus obtained was evaluated as follows.

(有機半導体層の状態の評価)
実施例及び比較例の有機半導体素子を偏光顕微鏡(オリンパス光学工業株式会社製、型番:BX51)により観察した。
(Evaluation of the state of the organic semiconductor layer)
The organic semiconductor elements of Examples and Comparative Examples were observed with a polarizing microscope (Olympus Optical Co., Ltd., model number: BX51).

図6は、液晶性半導体材料に8PNPO4を用いた有機半導体素子における有機半導体層の偏光顕微鏡写真であり、図6(a)は実施例1の有機半導体素子のものであり、図6(b)は比較例1の有機半導体素子のものである。また、図7は、液晶性半導体材料にTPIP−O10を用いた有機半導体素子における有機半導体層の偏光顕微鏡写真であって、図7(a)は実施例3の有機半導体素子のものであり、図7(b)は比較例3の有機半導体素子のものであり、図7(c)は比較例5の有機半導体素子のものであり、図7(d)は比較例6の有機半導体素子のものである。なお、図7中に示した矢印は、ラビング処理した方向を示す。また、図6及び図7中のPとAは、それぞれ偏光子と検光子を示し、それらが直交していることを示す。   FIG. 6 is a polarization micrograph of an organic semiconductor layer in an organic semiconductor element using 8PNPO4 as a liquid crystalline semiconductor material. FIG. 6 (a) is that of the organic semiconductor element of Example 1, and FIG. These are those of the organic semiconductor element of Comparative Example 1. FIG. 7 is a polarization micrograph of the organic semiconductor layer in the organic semiconductor element using TPIP-O10 as the liquid crystalline semiconductor material, and FIG. 7A is that of the organic semiconductor element of Example 3. 7B shows the organic semiconductor element of Comparative Example 3, FIG. 7C shows the organic semiconductor element of Comparative Example 5, and FIG. 7D shows the organic semiconductor element of Comparative Example 6. Is. In addition, the arrow shown in FIG. 7 shows the direction which carried out the rubbing process. Moreover, P and A in FIG.6 and FIG.7 show a polarizer and an analyzer, respectively, and show that they are orthogonal.

実施例1及び3の有機半導体素子は、ラビング処理していない比較例1及び3の有機半導体素子と比較して、有機半導体層におけるドメインが大きく成長しており均一性が明らかに高かった。なお、有機半導体層がネマティック液晶相を経由してスメクティックE相を呈している実施例3の有機半導体素子は、有機半導体層がネマティック液晶相を経由しないでスメクティックE相を呈している実施例1の有機半導体素子と比較して、有機半導体層におけるドメインの成長が大きく、均一であった。   Compared to the organic semiconductor elements of Comparative Examples 1 and 3 that were not rubbed, the organic semiconductor elements of Examples 1 and 3 were clearly higher in uniformity because the domains in the organic semiconductor layer were greatly grown. The organic semiconductor element of Example 3 in which the organic semiconductor layer exhibits a smectic E phase via a nematic liquid crystal phase is the same as that of Example 1 in which the organic semiconductor layer exhibits a smectic E phase without passing through a nematic liquid crystal phase. Compared with the organic semiconductor element, the growth of the domain in the organic semiconductor layer was large and uniform.

(電流−電圧特性の評価)
実施例1〜4と比較例1〜4の有機半導体素子について、デジタルソースメーター(KEITHLEY社製、型番:KEITHLEY237)を用い、電極間に電圧を印加して電流−電圧特性を評価した。
(Evaluation of current-voltage characteristics)
About the organic-semiconductor element of Examples 1-4 and Comparative Examples 1-4, the voltage was applied between electrodes using the digital source meter (the product made by KEITHLEY, model number: KEITHLEY237), and the current-voltage characteristic was evaluated.

図8及び図9は、液晶性半導体材料に8PNPO4を用いた有機半導体素子の電流−電圧特性を示すグラフである。図8は、実施例1及び2の有機半導体素子の電流−電圧特性を示すグラフであり、図9は、比較例1及び2の有機半導体素子の電流−電圧特性を示すグラフである。なお、図8の○は実施例1を示し、△は実施例2を示し、図9の○は比較例1を示し、△は比較例2を示す。   8 and 9 are graphs showing current-voltage characteristics of an organic semiconductor element using 8PNPO4 as a liquid crystalline semiconductor material. 8 is a graph showing current-voltage characteristics of the organic semiconductor elements of Examples 1 and 2, and FIG. 9 is a graph showing current-voltage characteristics of the organic semiconductor elements of Comparative Examples 1 and 2. 8 indicates Example 1, Δ indicates Example 2, ○ in FIG. 9 indicates Comparative Example 1, and Δ indicates Comparative Example 2.

実施例1及び2の有機半導体素子は、電圧が10Vを超えた辺りで電流が大きく流れはじめ、配向膜の材料にポリイミドを用いた従来の有機半導体素子(例えば、非特許文献1に記載されている有機半導体素子。)よりも1桁低い電圧で電流が流れた。よって、実施例1及び2の有機半導体素子は、従来の有機半導体素子よりも電流が流れ始める電圧が低く、より実用的な素子であることを確認した。また、実施例1及び2の有機半導体素子は、ラビング処理をしない比較例1及び2の有機半導体素子と比較して、電圧が10Vの時点で2桁大きな電流が流れた。よって、同一の材料を配向膜として用いても、配向処理した有機半導体素子は、配向処理しなかった有機半導体素子よりも低電圧で非常に大きな電流を制御できることを確認した。   In the organic semiconductor elements of Examples 1 and 2, a large current started to flow around a voltage exceeding 10 V, and a conventional organic semiconductor element using polyimide as a material for the alignment film (for example, described in Non-Patent Document 1). The current flowed at a voltage one digit lower than that of the organic semiconductor element. Therefore, it was confirmed that the organic semiconductor elements of Examples 1 and 2 had a lower voltage at which current began to flow than conventional organic semiconductor elements, and were more practical elements. In addition, the organic semiconductor elements of Examples 1 and 2 passed a current that was two orders of magnitude larger when the voltage was 10 V than the organic semiconductor elements of Comparative Examples 1 and 2 that were not rubbed. Therefore, even if the same material was used as the alignment film, it was confirmed that the organic semiconductor element subjected to the alignment treatment can control a very large current at a lower voltage than the organic semiconductor element not subjected to the alignment treatment.

また、図10及び図11は、液晶性半導体材料にTPIP−O10を用いた有機半導体素子の電流−電圧特性を示すグラフである。図10は、実施例3及び4の有機半導体素子の電流−電圧特性を示すグラフであり、図11は、比較例3及び4の有機半導体素子の電流−電圧特性を示すグラフである。なお、図10の○は実施例3を示し、△は実施例4を示し、図11の○は比較例3を示し、△は比較例4を示す。   10 and 11 are graphs showing current-voltage characteristics of an organic semiconductor element using TPIP-O10 as the liquid crystalline semiconductor material. FIG. 10 is a graph showing the current-voltage characteristics of the organic semiconductor elements of Examples 3 and 4, and FIG. 11 is a graph showing the current-voltage characteristics of the organic semiconductor elements of Comparative Examples 3 and 4. 10 indicates Example 3, Δ indicates Example 4, ○ in FIG. 11 indicates Comparative Example 3, and Δ indicates Comparative Example 4.

実施例3及び4の有機半導体素子は、電圧が4Vを超えた辺りで電流が大きく流れはじめ、配向膜の材料にポリイミドを用いた従来の有機半導体素子(例えば、非特許文献1に記載されている有機半導体素子。)よりも1桁低い電圧で電流が流れた。また、実施例3及び4の有機半導体素子は、ラビング処理をしない比較例3及び4の有機半導体素子と比較して、電圧が4Vの時点で2桁大きな電流が流れた。   In the organic semiconductor elements of Examples 3 and 4, a large current started to flow when the voltage exceeded 4 V, and a conventional organic semiconductor element using polyimide as a material for the alignment film (for example, described in Non-Patent Document 1). The current flowed at a voltage one digit lower than that of the organic semiconductor element. In addition, the organic semiconductor elements of Examples 3 and 4 passed a current that was two orders of magnitude larger when the voltage was 4 V than the organic semiconductor elements of Comparative Examples 3 and 4 that were not rubbed.

(キャリア移動度の評価)
実施例1の有機半導体素子のキャリア移動度(電極の面内方向)をTime of Flight法によって評価した。
(Evaluation of carrier mobility)
The carrier mobility (in-plane direction of the electrode) of the organic semiconductor element of Example 1 was evaluated by the Time of Flight method.

その結果、キャリア移動度として、10−3〜10−2cm/V・sという高い数値が得られた。 As a result, a high numerical value of 10 −3 to 10 −2 cm 2 / V · s was obtained as the carrier mobility.

(実施例5)
実施例1の有機半導体素子の製造において、セルの作製時に基板を対向させて貼り合せる際、Au線(外径2μm)で作製したゲート電極5本を、ラビング方向に直交するように、かつ、50μmピッチで基板の間隙のほぼ中央に配置するように挟みこんだ以外は、実施例1と同様の手順で実施例5の有機半導体素子(静電誘導トランジスタ)を作製した。
(Example 5)
In the manufacture of the organic semiconductor element of Example 1, when the substrates were bonded to face each other during the production of the cell, five gate electrodes made of Au wire (outer diameter 2 μm) were placed so as to be orthogonal to the rubbing direction, and An organic semiconductor element (electrostatic induction transistor) of Example 5 was produced in the same procedure as in Example 1 except that it was sandwiched so as to be arranged at approximately the center of the gap between the substrates at a pitch of 50 μm.

この有機半導体素子の電圧−電流特性を確認したところ、ゲート電圧の増減に応じて対向電極間に流れる電流がしきい値的に変化するトランジスタ動作を確認した。   When the voltage-current characteristics of the organic semiconductor element were confirmed, a transistor operation was confirmed in which the current flowing between the counter electrodes changes in a threshold manner as the gate voltage increases or decreases.

また、この有機半導体素子と同様の作製方法で、ゲート電極の数を5〜100本、ピッチを10〜100μmに変化させて有機半導体素子を作製し、同様に動作を確認したところ、安定なトランジスタ動作を確認できた。   Further, an organic semiconductor element was manufactured by changing the number of gate electrodes to 5 to 100 and the pitch to 10 to 100 μm by the same manufacturing method as this organic semiconductor element, and the operation was confirmed in the same manner. The operation was confirmed.

本発明の有機半導体素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic-semiconductor element of this invention. 本発明の有機半導体素子における液晶分子の配向状態を説明する模式図である。It is a schematic diagram explaining the orientation state of the liquid crystal molecule in the organic-semiconductor element of this invention. ラビング配向処理の概要説明図である。It is a schematic explanatory drawing of a rubbing orientation process. 本発明の有機半導体素子の製造方法の一例を示す製造工程図である。It is a manufacturing process figure which shows an example of the manufacturing method of the organic-semiconductor element of this invention. 本発明の有機半導体素子(静電誘導トランジスタ)の一例を示す断面図である。It is sectional drawing which shows an example of the organic-semiconductor element (electrostatic induction transistor) of this invention. 実施例1及び比較例1の有機半導体素子の偏光顕微鏡写真である。2 is a polarizing micrograph of organic semiconductor elements of Example 1 and Comparative Example 1. FIG. 実施例3、比較例3、5及び6の有機半導体素子の偏光顕微鏡写真である。It is a polarizing microscope photograph of the organic-semiconductor element of Example 3, Comparative Examples 3, 5, and 6. 実施例1及び2の有機半導体素子の電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of the organic-semiconductor element of Example 1 and 2. 比較例1及び2の有機半導体素子の電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of the organic-semiconductor element of the comparative examples 1 and 2. 実施例3及び4の有機半導体素子の電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of the organic-semiconductor element of Example 3 and 4. 比較例3及び4の有機半導体素子の電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of the organic-semiconductor element of the comparative examples 3 and 4.

符号の説明Explanation of symbols

1 有機半導体素子
1’ 静電誘導トランジスタ
2 基板
3 電極
4 配向膜
5 有機半導体層
6 液晶分子
10 ラビングローラー
11 ラビング布
12 ゲート電極
13 セル
DESCRIPTION OF SYMBOLS 1 Organic-semiconductor element 1 'Static induction transistor 2 Substrate 3 Electrode 4 Orientation film 5 Organic-semiconductor layer 6 Liquid crystal molecule 10 Rubbing roller 11 Rubbing cloth 12 Gate electrode 13 Cell

Claims (10)

2つの対向する電極の間に有機半導体層を備える有機半導体素子であって、
前記有機半導体層が、スメクティック液晶相を呈している液晶性有機半導体材料からなる層を1層又は2層以上有し、前記2つの電極の一方又は両方と前記有機半導体層との間には、導電性高分子材料からなる配向膜が設けられていることを特徴とする有機半導体素子。
An organic semiconductor element comprising an organic semiconductor layer between two opposing electrodes,
The organic semiconductor layer has one or more layers made of a liquid crystalline organic semiconductor material exhibiting a smectic liquid crystal phase, and between one or both of the two electrodes and the organic semiconductor layer, An organic semiconductor element comprising an alignment film made of a conductive polymer material.
前記有機半導体層は、等方相からネマティック液晶相を経由してスメクティック液晶相に相転移した液晶性有機半導体材料により形成されていることを特徴とする請求項1に記載の有機半導体素子。 The organic semiconductor element according to claim 1, wherein the organic semiconductor layer is formed of a liquid crystalline organic semiconductor material that has undergone a phase transition from an isotropic phase to a smectic liquid crystal phase via a nematic liquid crystal phase. 2つの対向する電極の間に有機半導体層を備える有機半導体素子であって、
前記有機半導体層は、液晶相から相転移した結晶相を呈している液晶性有機半導体材料により形成されており、前記2つの電極の一方又は両方と前記有機半導体層との間には、導電性高分子材料からなる配向膜が設けられていることを特徴とする有機半導体素子。
An organic semiconductor element comprising an organic semiconductor layer between two opposing electrodes,
The organic semiconductor layer is formed of a liquid crystalline organic semiconductor material exhibiting a crystal phase that has undergone a phase transition from a liquid crystal phase, and is electrically conductive between one or both of the two electrodes and the organic semiconductor layer. An organic semiconductor element comprising an alignment film made of a polymer material.
前記有機半導体層は、等方相からネマティック液晶相を経由して結晶相に相転移した液晶性有機半導体材料により形成されていることを特徴とする請求項3に記載の有機半導体素子。 The organic semiconductor element according to claim 3, wherein the organic semiconductor layer is formed of a liquid crystalline organic semiconductor material that has undergone a phase transition from an isotropic phase to a crystalline phase via a nematic liquid crystal phase. 前記有機半導体層を形成する液晶性有機半導体材料中の液晶分子が、前記電極の面内方向に配向していることを特徴とする請求項1〜4の何れか1項に記載の有機半導体素子。 5. The organic semiconductor element according to claim 1, wherein liquid crystal molecules in a liquid crystalline organic semiconductor material forming the organic semiconductor layer are aligned in an in-plane direction of the electrode. . 前記配向膜が、ラビング処理された前記導電性高分子材料からなる膜であることを特徴とする請求項1〜5の何れか1項に記載の有機半導体素子。 The organic semiconductor element according to claim 1, wherein the alignment film is a film made of the conductive polymer material that has been rubbed. 前記有機半導体層中に埋め込まれた1又は2以上のゲート電極を有し、静電誘導トランジスタとして動作することを特徴とする請求項1〜6の何れかに記載の有機半導体素子。 The organic semiconductor element according to claim 1, which has one or more gate electrodes embedded in the organic semiconductor layer and operates as an electrostatic induction transistor. 電極と導電性高分子材料からなる配向膜とがこの順に形成された2枚の基板を対向させ、前記基板の間に、等方相、ネマティック液晶相及びスメクティック液晶相の相転移系列を有する液晶性有機半導体材料からなる有機半導体層を形成する有機半導体素子の製造方法であって、
前記有機半導体層の形成は、前記基板の間に等方相を呈する前記液晶性有機半導体材料を注入する工程と、
等方相からネマティック液晶相を経由してスメクティック液晶相を呈するまで、前記液晶性有機半導体材料を冷却する工程とにより行われることを特徴とする有機半導体素子の製造方法。
A liquid crystal having a phase transition series of an isotropic phase, a nematic liquid crystal phase, and a smectic liquid crystal phase between two substrates in which electrodes and an alignment film made of a conductive polymer material are formed in this order. An organic semiconductor element manufacturing method for forming an organic semiconductor layer made of a conductive organic semiconductor material,
The organic semiconductor layer is formed by injecting the liquid crystalline organic semiconductor material exhibiting an isotropic phase between the substrates,
A method for producing an organic semiconductor element, comprising: cooling the liquid crystalline organic semiconductor material from an isotropic phase to a smectic liquid crystal phase via a nematic liquid crystal phase.
電極と導電性高分子材料からなる配向膜とがこの順に形成された2枚の基板を対向させ、前記基板の間に、等方相、ネマティック液晶相及び結晶相の相転移系列を有する液晶性有機半導体材料からなる有機半導体層を形成する有機半導体素子の製造方法であって、
前記有機半導体層の形成は、前記基板の間に等方相を呈する前記液晶性有機半導体材料を注入する工程と、
等方相からネマティック液晶相を経由して結晶相を呈するまで、前記液晶性有機半導体材料を冷却する工程とにより行われることを特徴とする有機半導体素子の製造方法。
Liquid crystallinity having an isotropic phase, a nematic liquid crystal phase, and a crystal phase phase transition sequence between two substrates in which electrodes and an alignment film made of a conductive polymer material are formed in this order. An organic semiconductor element manufacturing method for forming an organic semiconductor layer made of an organic semiconductor material,
The organic semiconductor layer is formed by injecting the liquid crystalline organic semiconductor material exhibiting an isotropic phase between the substrates,
A method for producing an organic semiconductor element, comprising: cooling the liquid crystalline organic semiconductor material from an isotropic phase to a crystalline phase via a nematic liquid crystal phase.
前記配向膜の形成は、導電性高分子材料の塗布膜をラビング処理する工程により行われることを特徴とする請求項8又は9に記載の有機半導体素子の製造方法。 10. The method of manufacturing an organic semiconductor element according to claim 8, wherein the alignment film is formed by a rubbing process on a coating film of a conductive polymer material.
JP2003329137A 2003-09-19 2003-09-19 Method for manufacturing organic semiconductor element Expired - Fee Related JP4857516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329137A JP4857516B2 (en) 2003-09-19 2003-09-19 Method for manufacturing organic semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329137A JP4857516B2 (en) 2003-09-19 2003-09-19 Method for manufacturing organic semiconductor element

Publications (2)

Publication Number Publication Date
JP2005093955A true JP2005093955A (en) 2005-04-07
JP4857516B2 JP4857516B2 (en) 2012-01-18

Family

ID=34458465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329137A Expired - Fee Related JP4857516B2 (en) 2003-09-19 2003-09-19 Method for manufacturing organic semiconductor element

Country Status (1)

Country Link
JP (1) JP4857516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087199A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Organic semiconductor device, and method of manufacturing the same
JP2019140316A (en) * 2018-02-14 2019-08-22 国立大学法人京都工芸繊維大学 Laminate having organic semiconductor crystal layer and conductive polymer alignment film, device including the same, and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025779A (en) * 2000-04-28 2002-01-25 Tohoku Pioneer Corp Organic electroluminescent element provided having liquid crystal display function, and liquid crystal material
JP2002164177A (en) * 1999-11-29 2002-06-07 Canon Inc Liquid crystal element
JP2002343570A (en) * 2001-05-15 2002-11-29 Canon Inc Conductive liquid crystal element and organic electroluminescence element
JP2003157965A (en) * 2001-11-22 2003-05-30 Seiko Epson Corp Light emitting device
WO2003067667A1 (en) * 2002-02-08 2003-08-14 Dai Nippon Printing Co., Ltd. Organic semiconductor structure, process for producing the same, and organic semiconductor device
JP2003258267A (en) * 2002-03-05 2003-09-12 Pioneer Electronic Corp Organic thin film semiconductor element and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164177A (en) * 1999-11-29 2002-06-07 Canon Inc Liquid crystal element
JP2002025779A (en) * 2000-04-28 2002-01-25 Tohoku Pioneer Corp Organic electroluminescent element provided having liquid crystal display function, and liquid crystal material
JP2002343570A (en) * 2001-05-15 2002-11-29 Canon Inc Conductive liquid crystal element and organic electroluminescence element
JP2003157965A (en) * 2001-11-22 2003-05-30 Seiko Epson Corp Light emitting device
WO2003067667A1 (en) * 2002-02-08 2003-08-14 Dai Nippon Printing Co., Ltd. Organic semiconductor structure, process for producing the same, and organic semiconductor device
JP2003258267A (en) * 2002-03-05 2003-09-12 Pioneer Electronic Corp Organic thin film semiconductor element and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087199A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Organic semiconductor device, and method of manufacturing the same
JP2019140316A (en) * 2018-02-14 2019-08-22 国立大学法人京都工芸繊維大学 Laminate having organic semiconductor crystal layer and conductive polymer alignment film, device including the same, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4857516B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US7605396B2 (en) Field effect type organic transistor and process for production t hereof
Chen et al. Morphological and transistor studies of organic molecular semiconductors with anisotropic electrical characteristics
Kato et al. Transport of ions and electrons in nanostructured liquid crystals
Grell et al. Blue polarized electroluminescence from a liquid crystalline polyfluorene
US8071180B2 (en) Aligned polymer organic TFT
JP4433746B2 (en) Organic field effect transistor and manufacturing method thereof
JP5257744B2 (en) Method for producing organic thin film transistor having polydiacetylene as semiconductor layer
Li et al. Volatility Transition from Short‐Term to Long‐Term Photonic Transistor Memory by Using Smectic Liquid Crystalline Molecules as a Floating Gate
JPH01259563A (en) Field effect transistor
JP4857516B2 (en) Method for manufacturing organic semiconductor element
Yamasaki et al. Solution flow assisted fabrication method of oriented π-conjugated polymer films by using geometrically-asymmetric sandwich structures
JP2005142233A (en) Orientation control method of liquid crystal compound thin film, film texture of liquid crystal compound thin film formed by using the same, tft, and organic electroluminescent element
Kawamoto et al. Polarized emission from self-organized low-molecular-weight liquid crystals with the aid of hole-injecting materials
JP4286507B2 (en) Oriented luminescent polymer blends, films and devices
JP2002170685A (en) Conductive liquid crystal element and organic electroluminescent element using the same
Ohtsuka et al. Light-emitting field-effect transistors with π-conjugated liquid crystalline polymer driven by AC-gate voltages
JP2005072200A (en) Field effect organic transistor
Shu et al. A flexible floating-gate based organic field-effect transistor non-volatile memory based on F8BT/PMMA integrated floating-gate/tunneling layer
JP2004235277A (en) Organic semiconductor element, organic semiconductor device, organic electroluminescent element, and organic electroluminescent equipment
KR100840006B1 (en) Aligned polymers for an organic tft
JP4348761B2 (en) Energy conversion element
WO2003023506A2 (en) Aligned discotic liquid crystals and their applications
JP2005174605A (en) Organic el element and image display device
Iizuka et al. Control of FET characteristics by electric field during charge transfer complex deposition
Toko et al. Enhanced light emission from self-organizing molecular semiconductor by using organic thin film transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees