[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005090926A - Double pipe type heat exchanger - Google Patents

Double pipe type heat exchanger Download PDF

Info

Publication number
JP2005090926A
JP2005090926A JP2003329162A JP2003329162A JP2005090926A JP 2005090926 A JP2005090926 A JP 2005090926A JP 2003329162 A JP2003329162 A JP 2003329162A JP 2003329162 A JP2003329162 A JP 2003329162A JP 2005090926 A JP2005090926 A JP 2005090926A
Authority
JP
Japan
Prior art keywords
pipe
double
inner pipe
tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329162A
Other languages
Japanese (ja)
Inventor
Kenichi Inui
謙一 乾
Kenichi Kikuchi
賢一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003329162A priority Critical patent/JP2005090926A/en
Publication of JP2005090926A publication Critical patent/JP2005090926A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double pipe type heat exchanger with high heat exchange efficiency without increase in size. <P>SOLUTION: A double pipe 1 comprises an inner pipe 2 through which a refrigerant flows, an outer pipe 3 arranged concentrically outside the inner pipe 2, and a partition body 4 which partitions, in the longitudinal direction, a space formed between the inner pipe 2 and the outer pipe 3. The partition body 4 comprises a body part 4C fitted into the outer periphery of the inner pipe 2, and a fin 4A expanding radially from one end of the body part 4C and having a cutout part 4B. The plurality of partition bodies 4 are arranged so that the cutout parts 4B are in a zigzag shape with respect to the longitudinal direction. A refrigerant R such as carbon dioxide gas is allowed to flow into the inner pipe 2 and a fluid W to be cooled such as water is allowed to flow through a flow path 7 outside the inner pipe 2. Water branches into both the sides of the inner pipe 2. The branched water streams flow in the direction normal to the inner pipe 2 and join in the cutout part 4B. Then, the joined water flows through the cutout part 4B to a next flow path 7. At this time, heat exchange between the carbon dioxide gas refrigerant flowing through the inner pipe 2 and water is carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、外管と内管を同心状に配置してなる二重管を用いた二重管式熱交換器に関し、特に、大型化することなく、熱交換効率に優れる二重管式熱交換器に関する。   The present invention relates to a double tube heat exchanger using a double tube in which an outer tube and an inner tube are arranged concentrically, and in particular, a double tube heat exchanger excellent in heat exchange efficiency without increasing its size. Regarding the exchanger.

外管と内管を同心状に配置してなる二重管を用いた従来の二重管式熱交換器において、内管に漏洩検知管を用いたものが知られている(例えば、特許文献1参照。)。   In a conventional double-tube heat exchanger using a double tube in which an outer tube and an inner tube are arranged concentrically, one using a leak detection tube as an inner tube is known (for example, Patent Documents). 1).

図5は、特許文献1に記載された二重管式熱交換器に使用される二重管を示す。この二重管30は、炭酸ガス等の冷媒Rが流れる内管10と、内管10の外側に同心状に配置され、内管10との間に水等の被冷却流体Wが流れる外管20と、内管10と外管20との間にスプリングを特殊な工具や装置を用いて螺旋状に挿入され、被冷却流体Wを内管10に沿って螺旋状に流れる螺旋状流路20Cを形成する伝熱促進体25とを備える。   FIG. 5 shows a double pipe used in the double pipe heat exchanger described in Patent Document 1. The double pipe 30 is arranged concentrically on the outer side of the inner pipe 10 through which the refrigerant R such as carbon dioxide flows, and the outer pipe through which the fluid W to be cooled such as water flows between the inner pipe 10. 20 and a spiral flow path 20 </ b> C in which a spring is spirally inserted between the inner tube 10 and the outer tube 20 using a special tool or device, and the fluid W to be cooled flows spirally along the inner tube 10. The heat transfer promoting body 25 is formed.

内管10は、その内部にねじれテープ等からなる内管用伝熱促進体12を有する第1の管10Aと、その外側に接して形成された第2の管10Bと、第1の管10Aと第2の管10Bとの間に二重管30の長手方向にかけて連続的に形成された漏洩検知溝10Cと、漏洩検知溝10Cの端末に形成され、炭酸ガス等の冷媒Rや水等の被冷却流体Wを検知する検知部とを備える。   The inner tube 10 includes a first tube 10A having an inner tube heat transfer promoting body 12 made of a twisted tape or the like, a second tube 10B formed in contact with the outside thereof, and a first tube 10A. A leakage detection groove 10C formed continuously between the second pipe 10B in the longitudinal direction of the double pipe 30 and formed at the end of the leakage detection groove 10C. A detection unit that detects the cooling fluid W.

この二重管式熱交換器によれば、内管10や外管20の損傷等によって漏洩検知溝10Cに漏れ出した炭酸ガス等の冷媒Rや水等の被冷却流体Wを検知部により検知するので、内管10が破損することにより冷媒Rと被冷却流体Wとが混合することを未然に防ぐことができる。   According to this double tube heat exchanger, the detection unit detects the coolant R such as carbon dioxide and water to be cooled such as water leaked into the leakage detection groove 10C due to damage of the inner tube 10 and the outer tube 20 or the like. Therefore, it is possible to prevent the refrigerant R and the fluid W to be cooled from mixing due to the inner tube 10 being damaged.

また、この二重管式熱交換器によれば、被冷却媒体Wが伝熱促進体25に沿って螺旋状に形成された螺旋状流路20C中を流れるので、流路長を増加することができる。
特開平2001−201275号公報(図5)
Further, according to this double tube heat exchanger, the medium to be cooled W flows through the spiral flow path 20C formed in a spiral shape along the heat transfer promoting body 25, so that the flow path length is increased. Can do.
Japanese Patent Laid-Open No. 2001-201275 (FIG. 5)

しかし、従来の二重管式熱交換器によれば、熱交換効率を上げるために、伝熱促進体25の高さを高くして熱伝達面積を大きくしようとすると、二重管が大きくなるため、結果として二重管式熱交換器が大型化する。   However, according to the conventional double tube heat exchanger, if the height of the heat transfer accelerator 25 is increased to increase the heat transfer area in order to increase the heat exchange efficiency, the double tube becomes large. As a result, the double-pipe heat exchanger increases in size.

従って、本発明の目的は、大型化することなく、熱交換効率に優れる二重管式熱交換器を提供することにある。   Accordingly, an object of the present invention is to provide a double-pipe heat exchanger that is excellent in heat exchange efficiency without increasing its size.

本発明は、上記目的を達成するため、内部を第1の流体が流れる内管と、前記内管の外側に同心状に配置され、前記内管との間に前記第1の流体と熱交換する第2の流体が流れる外管と、前記内管と前記外管の間に形成される空間を長手方向に沿って複数の領域に区画することにより、第1の流体の流れる方向に垂直な方向の垂直流路を形成する複数の仕切体とを備えていることを特徴とする二重管式熱交換器を提供する。   In order to achieve the above object, the present invention is arranged concentrically between an inner tube through which a first fluid flows and an outer side of the inner tube, and exchanges heat with the first fluid between the inner tube and the inner tube. By dividing the outer tube through which the second fluid flows and the space formed between the inner tube and the outer tube into a plurality of regions along the longitudinal direction, the first fluid flows in a direction perpendicular to the flow direction. There is provided a double-tube heat exchanger comprising a plurality of partitions forming a vertical flow path in a direction.

本発明の二重管式熱交換器によれば、内管と外管の間により形成される空間を複数の仕切体により第1の流体の流れる方向に垂直な方向に第2の流体が流れる流路を形成したため、流路長を長くすることができるので、大型化することなく、熱交換効率に優れる二重管式熱交換器を得ることができる。   According to the double tube heat exchanger of the present invention, the second fluid flows in a direction perpendicular to the direction in which the first fluid flows through the space formed between the inner tube and the outer tube by the plurality of partitions. Since the flow path is formed, the length of the flow path can be increased, so that a double pipe heat exchanger excellent in heat exchange efficiency can be obtained without increasing the size.

図1は、本発明の実施の形態に係る二重管式熱交換器に使用される二重管の一部を示し、図2は、図1のA方向から見た二重管の右側面を示す。この二重管1は、内部を炭酸ガス、アンモニア、フロン等の第1の流体としての冷媒が流れる内管2と、内管2の外側に同心状に配置され、内管2との間に水等の第2の流体としての被冷却流体が流れる外管3と、内管2と外管3の間に形成される空間を長手方向に沿って複数の領域に区画することにより、冷媒の流れる方向に垂直な方向の垂直流路7Aを有する流路7を形成する複数の仕切体4とを備える。   FIG. 1 shows a part of a double pipe used in a double pipe heat exchanger according to an embodiment of the present invention, and FIG. 2 is a right side view of the double pipe seen from the direction A in FIG. Indicates. The double pipe 1 is disposed concentrically on the outside of the inner pipe 2 and the inner pipe 2 through which the refrigerant as a first fluid such as carbon dioxide, ammonia, and flon flows. The outer tube 3 through which the fluid to be cooled as the second fluid such as water flows, and the space formed between the inner tube 2 and the outer tube 3 are partitioned into a plurality of regions along the longitudinal direction. And a plurality of partitions 4 forming a flow path 7 having a vertical flow path 7A in a direction perpendicular to the flow direction.

内管2は、その周壁に長手方向に延びる漏洩検知管部2Aを設け、冷媒または被冷却流体が漏洩検知管部2Aに浸み出してくれば、図示しない検出部で冷媒または被冷却流体を検出部により検出し、内管2が破損することによる冷媒や被冷却流体の混合を未然に防ぐことができるようになっている。   The inner pipe 2 is provided with a leak detection pipe portion 2A extending in the longitudinal direction on the peripheral wall thereof. If the refrigerant or the fluid to be cooled oozes out into the leak detection pipe portion 2A, the refrigerant or the fluid to be cooled is detected by the detection portion (not shown). It is possible to prevent the refrigerant and the fluid to be cooled from being mixed due to the inner pipe 2 being damaged by detection by the detection unit.

仕切体4は、内管2の外周に嵌め込まれる胴部4Cと、胴部4Cの一端の周側から径方向に広がるフィン4Aとを備える。フィン4Aは、外縁側の一部が切り欠かれた切除部4Bを有しており、内管2の長さ方向に対して垂直に形成されている。仕切体4は、切除部4Bの位置が内管2の長手方向に沿って千鳥状となるように複数配置されている。すなわち、切除部4は、内管2の長手方向に沿う中心線に対してそれぞれ点対称となる部位に配置される。   The partition body 4 includes a body portion 4C that is fitted to the outer periphery of the inner tube 2 and fins 4A that extend in the radial direction from the peripheral side of one end of the body portion 4C. The fin 4 </ b> A has a cut portion 4 </ b> B in which a part on the outer edge side is cut out, and is formed perpendicular to the length direction of the inner tube 2. A plurality of the partitions 4 are arranged such that the positions of the cut portions 4B are staggered along the longitudinal direction of the inner tube 2. That is, the excision part 4 is disposed at a site that is point-symmetric with respect to the center line along the longitudinal direction of the inner tube 2.

二重管1の製造方法を簡単に説明する。まず、内壁に漏洩検知管部2Aを有する内管2を準備し、この内管2に仕切体4の胴部4Cを、切除部4Bが所定の配置となるように順次挿入して固定する。次に、それらの外側に外管3を嵌め込んでいく。   A method for manufacturing the double tube 1 will be briefly described. First, the inner tube 2 having the leak detection tube portion 2A on the inner wall is prepared, and the body portion 4C of the partition 4 is sequentially inserted and fixed to the inner tube 2 so that the cut portion 4B is in a predetermined arrangement. Next, the outer tube 3 is fitted on the outside thereof.

図3は、図1に示す二重管1の断面を示す。この図3を用いて仕切体4の機能を説明する。内管2の内部に冷媒Rを、流路7に被冷却流体Wを流すと、被冷却流体Wの持つ熱は、フィン4Aおよび胴部4Cを介して内管2の内側に伝達され、冷媒Rの持つ熱と被冷却流体Wの持つ熱とが熱交換を行う。この熱交換は、冷媒Rおよび被冷却流体Wの流速を一定とすれば、熱伝達が行われるフィン4Aの面積および胴部4Cの面積に関係するため、二重管1の使用条件により仕切体4の数および間隔が決定される。また、冷媒Rの流れる方向に垂直な方向の垂直流路7Aを形成したため、冷媒Rと被冷却流体Wとの接触長さが長くなって熱伝達面積が実質的に増大する。ここで、流路7中の被冷却流体Wは、乱流状態で流れるように流量が設定される。層流状態だと、胴部4Cと流路7との間の熱抵抗が大きくなるので、熱伝達が十分に行われなくなるからである。   FIG. 3 shows a cross section of the double tube 1 shown in FIG. The function of the partition 4 is demonstrated using this FIG. When the refrigerant R flows inside the inner tube 2 and the fluid to be cooled W flows through the flow path 7, the heat of the fluid W to be cooled is transferred to the inside of the inner tube 2 through the fins 4A and the body portion 4C. The heat of R and the heat of the cooled fluid W exchange heat. This heat exchange is related to the area of the fin 4A and the area of the body 4C where heat transfer is performed if the flow rates of the refrigerant R and the fluid W to be cooled are constant. The number of 4 and the interval are determined. Further, since the vertical flow path 7A in the direction perpendicular to the direction in which the refrigerant R flows is formed, the contact length between the refrigerant R and the fluid W to be cooled is increased, and the heat transfer area is substantially increased. Here, the flow rate of the fluid to be cooled W in the flow path 7 is set so as to flow in a turbulent state. This is because in the laminar flow state, the heat resistance between the body 4C and the flow path 7 is increased, so that heat transfer is not sufficiently performed.

図4は、本発明の実施の形態に係る二重管式熱交換器を示す。この二重管式熱交換器5は、二重管1を中空のコイル状に曲げ加工するとともに縦方向に積層し、かつ型崩れを生じないようにバンド6によって結束されている。二重管1の一端には、内管入口2Bと外管出口3Cとが設けられており、他端には、内管出口2Cと外管入口3Bとが設けられている。   FIG. 4 shows a double-pipe heat exchanger according to an embodiment of the present invention. The double pipe heat exchanger 5 is formed by bending the double pipe 1 into a hollow coil shape and laminating it in the vertical direction, and is bound by a band 6 so as not to lose its shape. An inner tube inlet 2B and an outer tube outlet 3C are provided at one end of the double tube 1, and an inner tube outlet 2C and an outer tube inlet 3B are provided at the other end.

この二重管式熱交換器5において、内管入口2Bから内管2の内側に冷媒Rを供給し、外管入口3Bから流路7に被冷却流体Wを供給すると、被冷却流体Wは、図3に示すように、千鳥状に切除部4Bが配置された流路7を、矢印で示す方向に通過する。このとき、切除部4Bからある垂直流路7Aに入ってきた被冷却流体Wは、内管2により内管2の周りに分流し、その垂直流路7Aの出口である切除部4Bで合流する。このような分流および合流を繰り返して被冷却流体Wが攪拌されるとともに冷媒Rと熱交換を行う。なお、冷媒Rは、内管出口2Cから図示しない冷媒循環系を介して再び内管入口2Bに供給される。   In the double pipe heat exchanger 5, when the refrigerant R is supplied from the inner pipe inlet 2B to the inside of the inner pipe 2 and the cooled fluid W is supplied from the outer pipe inlet 3B to the flow path 7, the cooled fluid W is As shown in FIG. 3, the flow path 7 in which the cut portions 4B are arranged in a staggered manner passes in the direction indicated by the arrow. At this time, the to-be-cooled fluid W that has entered the vertical flow path 7A from the excision part 4B is diverted around the inner pipe 2 by the inner pipe 2, and merges at the excision part 4B that is the outlet of the vertical flow path 7A. . By repeating such diversion and merging, the fluid W to be cooled is stirred and heat exchange with the refrigerant R is performed. The refrigerant R is supplied again from the inner pipe outlet 2C to the inner pipe inlet 2B via a refrigerant circulation system (not shown).

上記した本実施の形態によると、以下の効果が得られる。
(1)内管2と外管3との間に形成される流路7は、仕切体4により垂直流路7Aを形成したため、冷媒Rと被冷却流体Wとの接触長さが長くなって熱伝達面積が実質的に増大し、その結果、熱交換効率を高めることができる。
(2)二重管1は、内管2の外側に仕切体4を形成し、フィン4Aの外縁により外管3が多数の点で支持されるため、曲げ加工を施しても屈曲部における同心性を保つことができる。そのため、二重管1の長手方向のいずれの部位にあっても一定の熱交換効率が得られる。
(3)従来のように特殊な工具や装置を使用することなく、仕切体4の胴部4Cが嵌入された内管2を外管3に嵌め込むだけで二重管1を形成することができるため、二重管式熱交換器を容易に製造することができる。
(4)胴部4Cの長さを短くすることで、内管2に形成する仕切体4の数を増やすことにより熱伝達面積を増加することができるため、より熱交換効率を高めることができる。
According to the above-described embodiment, the following effects can be obtained.
(1) Since the flow path 7 formed between the inner pipe 2 and the outer pipe 3 forms the vertical flow path 7A by the partition body 4, the contact length between the refrigerant R and the fluid W to be cooled becomes longer. The heat transfer area is substantially increased, and as a result, the heat exchange efficiency can be increased.
(2) Since the double pipe 1 forms the partition 4 on the outer side of the inner pipe 2 and the outer pipe 3 is supported at a number of points by the outer edges of the fins 4A, the double pipe 1 is concentric at the bent portion even if it is bent Can keep sex. Therefore, a constant heat exchange efficiency can be obtained regardless of the position in the longitudinal direction of the double pipe 1.
(3) The double pipe 1 can be formed by simply fitting the inner pipe 2 into which the body 4C of the partition 4 is fitted into the outer pipe 3 without using a special tool or device as in the prior art. Therefore, a double-pipe heat exchanger can be easily manufactured.
(4) Since the heat transfer area can be increased by increasing the number of partitions 4 formed in the inner pipe 2 by shortening the length of the body portion 4C, the heat exchange efficiency can be further increased. .

なお、仕切体4のフィン4Aは、内管2の長手方向に対して垂直に設けられているが、内管の長手方向に対して所定の角度傾斜し、あるいはねじれていても良い。そして、これらの仕切体4を組み合わせることにより種々の熱交換効率を有する流路7を有する二重管1が得られる。また、仕切体4の切除部4Bが内管2の長手方向に沿って千鳥状となるように配置されているが、所定角度ずつ変えて配置されていてもよい。また、フィン4Aは、胴部4Cの外周面のいずれの部位から径方向に突出されていてもよい。また、切除部4Bは、フィン4Aの外縁側に限らず中央側の任意の部位に形成されていてもよい。また、切除部4Bは、上述した以外に、たとえば、大きな穴により、あるいは小穴を多数集合させて形成したものでもよい。   The fins 4A of the partition 4 are provided perpendicular to the longitudinal direction of the inner tube 2, but may be inclined at a predetermined angle with respect to the longitudinal direction of the inner tube or twisted. And the double pipe 1 which has the flow path 7 which has various heat exchange efficiency by combining these partition bodies 4 is obtained. Further, the cut portions 4B of the partition 4 are arranged in a zigzag shape along the longitudinal direction of the inner tube 2, but may be arranged by changing a predetermined angle. Further, the fin 4A may protrude in the radial direction from any portion of the outer peripheral surface of the body portion 4C. Further, the cut portion 4B is not limited to the outer edge side of the fin 4A, and may be formed at an arbitrary site on the center side. In addition to the above, the cut portion 4B may be formed by, for example, a large hole or a large number of small holes.

本発明の実施の形態に係る二重管式熱交換器に使用される二重管の一部を破断して示した斜視図である。It is the perspective view which fractured and showed a part of double pipe used for the double pipe type heat exchanger concerning an embodiment of the invention. 図1のR方向から見た右側面図である。It is the right view seen from the R direction of FIG. 図1に示す二重管の断面図である。It is sectional drawing of the double pipe | tube shown in FIG. 本発明の実施の形態に係る二重管式熱交換器を示す図である。It is a figure which shows the double pipe type heat exchanger which concerns on embodiment of this invention. 従来の二重管式熱交換器に使用される二重管の一部を破断して示した斜視図である。It is the perspective view which fractured | ruptured and showed a part of double tube used for the conventional double tube type heat exchanger.

符号の説明Explanation of symbols

1 二重管
2 内管
2A 漏洩検知管部
2B 内管入口
2C 内管出口
3 外管
3B 外管入口
3C 外管出口
4 フィン部
4A フィン
4B 切除部
4C 胴部
5 二重管式熱交換器
6 バンド
7 流路
7A 垂直流路
10 内管
10A 第1の管
10B 第2の管
10C 漏洩検知溝
12 内管用伝熱促進体
20 外管
25 伝熱促進体
30 二重管
DESCRIPTION OF SYMBOLS 1 Double pipe 2 Inner pipe 2A Leak detection pipe part 2B Inner pipe inlet 2C Inner pipe outlet 3 Outer pipe 3B Outer pipe inlet 3C Outer pipe outlet 4 Fin part 4A Fin 4B Cutting part 4C Trunk part 5 Double pipe type heat exchanger 6 Band 7 Flow path 7A Vertical flow path 10 Inner pipe 10A First pipe 10B Second pipe 10C Leak detection groove 12 Inner pipe heat transfer promotion body 20 Outer pipe 25 Heat transfer promotion body 30 Double pipe

Claims (5)

内部を第1の流体が流れる内管と、
前記内管の外側に同心状に配置され、前記内管との間に前記第1の流体と熱交換する第2の流体が流れる外管と、
前記内管と前記外管の間に形成される空間を長手方向に沿って複数の領域に区画することにより、第1の流体の流れる方向に垂直な方向の垂直流路を形成する複数の仕切体とを備えていることを特徴とする二重管式熱交換器。
An inner tube through which the first fluid flows;
An outer tube disposed concentrically outside the inner tube and through which a second fluid that exchanges heat with the first fluid flows between the inner tube and the inner tube;
A plurality of partitions forming a vertical flow path in a direction perpendicular to a direction in which the first fluid flows by dividing a space formed between the inner tube and the outer tube into a plurality of regions along the longitudinal direction. A double-pipe heat exchanger characterized by comprising a body.
前記内管は、漏洩検知管を備えていることを特徴とする請求項1記載の二重管式熱交換器。   The double pipe heat exchanger according to claim 1, wherein the inner pipe includes a leak detection pipe. 前記仕切体は、前記内管の外側に嵌入される筒状部と、前記筒状部の外周面から径方向に広がる板状体とを備えていることを特徴とする請求項1記載の二重管式熱交換器。   The said partition is provided with the cylindrical part inserted by the outer side of the said inner pipe, and the plate-shaped body which spreads in radial direction from the outer peripheral surface of the said cylindrical part. Double pipe heat exchanger. 前記複数の仕切体は、前記板状体の外縁側に切除部が形成され、複数の前記切除部は千鳥状に配置されていることを特徴とする請求項3記載の二重管式熱交換器。   4. The double-tube heat exchange according to claim 3, wherein the plurality of partitions are formed with cut portions on an outer edge side of the plate-like body, and the plurality of cut portions are arranged in a staggered manner. vessel. 前記板状体は、前記内管の長手方向に対して垂直に、あるいは所定の角度を有して設けられていることを特徴とする請求項3記載の二重管式熱交換器。

The double-pipe heat exchanger according to claim 3, wherein the plate-like body is provided perpendicularly to the longitudinal direction of the inner tube or at a predetermined angle.

JP2003329162A 2003-09-19 2003-09-19 Double pipe type heat exchanger Pending JP2005090926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329162A JP2005090926A (en) 2003-09-19 2003-09-19 Double pipe type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329162A JP2005090926A (en) 2003-09-19 2003-09-19 Double pipe type heat exchanger

Publications (1)

Publication Number Publication Date
JP2005090926A true JP2005090926A (en) 2005-04-07

Family

ID=34458484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329162A Pending JP2005090926A (en) 2003-09-19 2003-09-19 Double pipe type heat exchanger

Country Status (1)

Country Link
JP (1) JP2005090926A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095989A (en) * 2006-10-06 2008-04-24 Takasago Thermal Eng Co Ltd Condenser and refrigerating cycle device
CN100434858C (en) * 2007-03-09 2008-11-19 西安交通大学 Combined multi-shell spiral baffle plate shell-and-tube heat exchanger
KR101355431B1 (en) 2012-02-14 2014-01-27 김봉석 Heat exchanging device
KR101415188B1 (en) * 2012-01-02 2014-07-04 김봉석 Heat exchanging device
CN104848240A (en) * 2015-05-20 2015-08-19 北京志诚宏业智能控制技术有限公司 Spiral diversion hanging-container type waste-heat recoverer
KR20160102616A (en) * 2015-02-23 2016-08-31 원철호 Double pipe heat exchanger
WO2019216595A1 (en) * 2018-05-08 2019-11-14 Kim Bong Seok Refrigeration apparatus heat exchanger
WO2021054382A1 (en) * 2019-09-17 2021-03-25 いすゞ自動車株式会社 Heat exchanger, and internal combustion engine blow-by gas processing device
JP2021113408A (en) * 2020-01-16 2021-08-05 清水建設株式会社 Road surface anti-freezing system
CN113368524A (en) * 2021-06-23 2021-09-10 吉林农业科技学院 Recycling system in anthocyanin extraction system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095989A (en) * 2006-10-06 2008-04-24 Takasago Thermal Eng Co Ltd Condenser and refrigerating cycle device
CN100434858C (en) * 2007-03-09 2008-11-19 西安交通大学 Combined multi-shell spiral baffle plate shell-and-tube heat exchanger
KR101415188B1 (en) * 2012-01-02 2014-07-04 김봉석 Heat exchanging device
KR101355431B1 (en) 2012-02-14 2014-01-27 김봉석 Heat exchanging device
KR101697615B1 (en) * 2015-02-23 2017-01-18 원철호 Double pipe heat exchanger
KR20160102616A (en) * 2015-02-23 2016-08-31 원철호 Double pipe heat exchanger
CN104848240A (en) * 2015-05-20 2015-08-19 北京志诚宏业智能控制技术有限公司 Spiral diversion hanging-container type waste-heat recoverer
CN104848240B (en) * 2015-05-20 2017-11-21 郑志强 Spiral stream guidance hangs courage formula waste-heat recoverer
WO2019216595A1 (en) * 2018-05-08 2019-11-14 Kim Bong Seok Refrigeration apparatus heat exchanger
KR20190128408A (en) * 2018-05-08 2019-11-18 김봉석 Heat exahanging device
KR102125025B1 (en) 2018-05-08 2020-06-19 김봉석 Heat exahanging device
WO2021054382A1 (en) * 2019-09-17 2021-03-25 いすゞ自動車株式会社 Heat exchanger, and internal combustion engine blow-by gas processing device
US11852057B2 (en) 2019-09-17 2023-12-26 Isuzu Motors Limited Heat exchanger, and internal combustion engine blow-by gas processing device
JP2021113408A (en) * 2020-01-16 2021-08-05 清水建設株式会社 Road surface anti-freezing system
CN113368524A (en) * 2021-06-23 2021-09-10 吉林农业科技学院 Recycling system in anthocyanin extraction system

Similar Documents

Publication Publication Date Title
JP5179650B2 (en) Heat exchanger with heat exchange chamber using individual medium guiding members
CN100520269C (en) Double-tube heat exchanger and method of producing the same
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
US20220011050A1 (en) Double tube for heat-exchange
JP2006105577A (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
CA2600265A1 (en) Helical coil-on-tube heat exchanger
JP2005090926A (en) Double pipe type heat exchanger
JP2004286431A (en) Heat exchanger
JP2010210139A (en) Water-cooled condenser and refrigerating cycle device
JP2004347160A (en) Heat exchanger
JP2006317096A (en) Heat exchanger for electric water heater
JP2005055064A (en) Double tube-type heat exchanger and its manufacturing method
JP2007240092A (en) Water-refrigerant heat exchanger
JP2004293874A (en) Heat exchanger
JP2005147570A (en) Double pipe type heat exchanger
JP2005164221A (en) Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger
JP2017101904A (en) Fin for heat exchanger
JP2003156291A (en) Heat exchanger
JP2005147567A (en) Double pipe type heat exchanger
JP2004340455A (en) Heat exchanger
JP2004085142A (en) Tube for heat exchanger, and heat exchanger
JP2005321122A (en) Tubular type heat exchanger
JP2004293873A (en) Heat exchanger
JPH11230686A (en) Heat exchanger
JP2005147566A (en) Double pipe type heat exchanger