JP2005076144A - Nonwoven fabric and method for producing the same - Google Patents
Nonwoven fabric and method for producing the same Download PDFInfo
- Publication number
- JP2005076144A JP2005076144A JP2003307141A JP2003307141A JP2005076144A JP 2005076144 A JP2005076144 A JP 2005076144A JP 2003307141 A JP2003307141 A JP 2003307141A JP 2003307141 A JP2003307141 A JP 2003307141A JP 2005076144 A JP2005076144 A JP 2005076144A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- split
- nonwoven fabric
- fibers
- type composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は、分割型複合繊維を含有する繊維集合体からなる不織布に関する。 The present invention relates to a nonwoven fabric composed of a fiber assembly containing split-type conjugate fibers.
極細繊維は、バッテリーセパレータ、ワイピングクロス等の様々な用途に利用されており、剥離分割型複合繊維を剥離分割することで得られる。剥離分割型複合繊維は、相溶性の低い複数の熱可塑性樹脂をセグメントとして組み合わせて紡糸することで得られる。この熱可塑性樹脂の組み合わせは、例えば、ポリエステルとポリオレフィン、ポリエステルとポリアミド、ポリアミドとポリオレフィンを挙げることができる。極細繊維は、このような剥離分割型複合繊維に対してニードルパンチ加工等の物理的応力や化学薬品に対する熱可塑性樹脂の収縮差を利用し、その応力によりセグメントを剥離分割させることで、得られる。このように機械的な衝撃を加えることで容易に分割可能な熱可塑性樹脂を組み合わせて、ニードルパンチによりそれを分割、絡合した極細繊維を含むワイパー用不織布が提案されている(例えば、特許文献1参照)。 Ultrafine fibers are used in various applications such as battery separators and wiping cloths, and can be obtained by peeling and dividing a separation-dividing composite fiber. The peelable split type composite fiber can be obtained by combining a plurality of thermoplastic resins with low compatibility as a segment and spinning. Examples of the thermoplastic resin combination include polyester and polyolefin, polyester and polyamide, and polyamide and polyolefin. Ultrafine fibers can be obtained by using the physical stress such as needle punching and the difference in shrinkage of the thermoplastic resin to chemicals to separate and divide the segments using such stress. . Thus, a nonwoven fabric for wipers has been proposed that includes a combination of thermoplastic resins that can be easily divided by applying a mechanical impact, and is divided and entangled by a needle punch (for example, patent literature). 1).
また、化学繊維及び/または天然繊維と極細繊維とを含み、構成繊維の単位体積あたりの総表面積A(cm2/cm3)が450〜800であるインクジェット式プリンター用インク吸収体が提案されている(例えば、特許文献2参照)。このインク吸収体は、ポリエステル、ポリアミド等の異種のポリマーからなる繊維が混在した構成であるため、ニードルパンチ加工時の物理的応力で容易に分割できるものの、耐薬品性が低いといった問題があった。 Further, there has been proposed an ink absorber for an ink jet printer that includes chemical fibers and / or natural fibers and ultrafine fibers, and has a total surface area A (cm 2 / cm 3 ) per unit volume of the constituent fibers of 450 to 800. (For example, refer to Patent Document 2). This ink absorber has a configuration in which fibers made of different types of polymers such as polyester and polyamide are mixed. Therefore, although it can be easily divided by physical stress during needle punching, it has a problem of low chemical resistance. .
一方、前記異種ポリマーの組合せに比べてポリオレフィン同士の組合せからなる分割型複合繊維は、耐薬品性等に優れるものの、熱可塑性樹脂の相溶性が比較的高いことから、機械的な衝撃では分割しにくいといった問題があった。なお、この分割型複合繊維に対して、高圧水流加工等による分割を行う場合に、より大きな機械的な衝撃が必要になる。 On the other hand, split type composite fibers composed of a combination of polyolefins compared to the combination of different polymers are superior in chemical resistance and the like, but have a relatively high compatibility with thermoplastic resins. There was a problem that it was difficult. It should be noted that a larger mechanical impact is required when the split type composite fiber is split by high-pressure water flow processing or the like.
このようなポリオレフィン系分割繊維の分割性を改善するため、オルガノシロキサンまたはその変性体を添加したポリオレフィン系分割型複合繊維が提案されている(例えば、特許文献3参照)。また、ポリプロピレンのQ値(重量平均分子量/数平均分子量の比)を規定し、繊維断面の中央部に中空部を有するポリオレフィン系分割型複合繊維も提案されている(例えば、特許文献4参照)。更にポリオレフィンからなる、繊維中心部に中空部を有する分割型複合繊維が提案されている(例えば、特許文献5参照)。 In order to improve the splitting property of such a polyolefin-based split fiber, a polyolefin-based split composite fiber to which organosiloxane or a modified product thereof is added has been proposed (for example, see Patent Document 3). In addition, a polyolefin-based split composite fiber that defines the Q value (ratio of weight average molecular weight / number average molecular weight) of polypropylene and has a hollow portion at the center of the fiber cross section has also been proposed (see, for example, Patent Document 4). . Furthermore, a split type composite fiber made of polyolefin and having a hollow portion at the fiber center has been proposed (see, for example, Patent Document 5).
しかし、前記文献3〜5で挙げられているのはスパンレース加工(高圧液体流処理)及びこの加工によって得られる不織布である。スパンレース加工は、均一で高い分割細繊化が可能であるが、高圧水流による物理的応力が繊維集合体(例えばウェブ、スライバー等)の表層部分に集中するため、分割したセグメントがその表層部分で二次元的に拡散し易くなる。このため、高圧水流での加工では表層部分がフィルムに近い形状になることがしばしば見られ、通気性や空隙率の減少が生じる問題があった。更に、繊維集合体が高目付になるにつれて、前記問題がより顕著となり、不織布内部を三次元的に分割、絡合した構造にすることが困難であった。 However, the documents 3 to 5 mentioned above are spunlace processing (high-pressure liquid flow treatment) and nonwoven fabric obtained by this processing. Spunlace processing enables uniform and highly divided finening, but physical stress due to high-pressure water flow concentrates on the surface layer part of the fiber assembly (for example, web, sliver, etc.), so the divided segment is the surface layer part. It becomes easy to diffuse in two dimensions. For this reason, in processing with a high-pressure water stream, the surface layer portion is often seen to have a shape close to a film, and there is a problem in that the air permeability and the porosity are reduced. Furthermore, as the fiber aggregate becomes higher in weight, the problem becomes more prominent, and it is difficult to obtain a structure in which the inside of the nonwoven fabric is three-dimensionally divided and entangled.
このようなことから、本発明の課題は、分割型複合繊維の一部が分割することで一体化された、通気性、空隙率の低下がなく、表面だけでなく内部も繊維が分割された、不織布を提供することである。 Therefore, the problem of the present invention is that a part of the split type composite fiber is integrated by splitting, there is no decrease in air permeability and porosity, and the fiber is split not only on the surface but also inside. It is to provide a non-woven fabric.
本発明者らは、上記課題を解決するため鋭意検討を重ねた。その結果、下記構成を有することで、前記課題を解決することを見出し、この知見に基づいて本発明を完成させた。
本発明は、以下の構成を有する。
The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, it has been found that the above-described problems can be solved by having the following configuration, and the present invention has been completed based on this finding.
The present invention has the following configuration.
[1]分割型複合繊維を含有する繊維集合体からなる不織布であって、該分割型複合繊維は、異なるポリオレフィンからなる少なくとも2種のセグメントの組み合わせが連なる繊維横断面構造を有しており、該不織布は、分割型複合繊維の未分割部分(A)、分割型複合繊維の分割細繊化されたセグメントが分散した部分(B)及び分割型複合繊維の分割細繊化されたセグメントが繊維軸方向に沿って収束した部分(C)が混在して含まれており、且つ分割型複合繊維の分割細繊化されたセグメントが、三次元的に絡合していることを特徴とする不織布。
[2]繊維集合体が、分割型複合繊維のみから構成されていることを特徴とする前記[1]項記載の不織布。
[3]分割型複合繊維が、繊維横断面の中央部に、繊維横断面積に対して15〜40%の中空部を有し、その繊度が、2.2dtexを超えて大きく、5dtex未満であることを特徴とする前記[1]項または前記[2]項記載の不織布。
[4]不織布が、ポリオレフィン繊維のみから構成されていることを特徴とする前記[1]〜[3]のいずれか1項記載の不織布。
[5]不織布が、ニードルパンチ不織布であることを特徴とする前記[1]〜[4]のいずれか1項記載の不織布。
[6]前記[1]〜[5]のいずれか1項記載の不織布を用いた吸音材。
[7]繊維横断面の中央部に、繊維横断面積に対して15〜40%の中空部を有し、異なるポリオレフィンからなる少なくとも2種のセグメントの組み合わせが連なる繊維横断面構造を有する、繊度が2.2dtexを超えて大きく、5dtex未満の分割型複合繊維を含む繊維集合体に、ニードルパンチ加工を施して、分割型複合繊維を分割細繊化することを特徴とする不織布の製造方法。
[8]不織布が、ポリオレフィン繊維のみから構成されていることを特徴とする前記[7]項記載の不織布の製造方法。
[9]前記[7]項または前記[8]項記載の製造方法によって得られた不織布を用いた吸音材。
[1] A nonwoven fabric composed of a fiber assembly containing split-type composite fibers, wherein the split-type composite fibers have a fiber cross-sectional structure in which a combination of at least two types of segments made of different polyolefins is continuous. The non-woven fabric is composed of an undivided portion (A) of a split-type conjugate fiber, a portion (B) in which a segmented fine segment of the split-type conjugate fiber is dispersed, and a segmented fine segment of the split-type conjugate fiber. A non-woven fabric characterized in that a part (C) converged along the axial direction is mixedly contained, and the segmented and refined segments of the segmented composite fiber are intertwined three-dimensionally .
[2] The nonwoven fabric according to item [1], wherein the fiber assembly is composed of only split-type composite fibers.
[3] The split-type conjugate fiber has a hollow portion of 15 to 40% with respect to the cross-sectional area of the fiber at the center of the fiber cross section, and the fineness is greater than 2.2 dtex and less than 5 dtex. The nonwoven fabric according to item [1] or item [2], wherein
[4] The nonwoven fabric according to any one of [1] to [3], wherein the nonwoven fabric is composed only of polyolefin fibers.
[5] The nonwoven fabric according to any one of [1] to [4], wherein the nonwoven fabric is a needle punched nonwoven fabric.
[6] A sound absorbing material using the nonwoven fabric according to any one of [1] to [5].
[7] The fineness of the fiber having a fiber cross-sectional structure having a hollow portion of 15 to 40% with respect to the cross-sectional area of the fiber and having a combination of at least two types of segments composed of different polyolefins in the center of the fiber cross-section. A method for producing a nonwoven fabric, comprising subjecting a fiber assembly including split-type composite fibers larger than 2.2 dtex to less than 5 dtex to needle punching to split-split the split-type composite fibers.
[8] The method for producing a nonwoven fabric according to the above [7], wherein the nonwoven fabric is composed only of polyolefin fibers.
[9] A sound absorbing material using a nonwoven fabric obtained by the production method according to the item [7] or [8].
本発明の不織布は、繊維集合体の表面だけでなく、その内部の分割型複合繊維も分割され、分割細繊化されたセグメント(以下、「繊維セグメント」または「極細繊維」という。)によって絡合されていることで、通気性、空隙率の著しい低下が生じない。
本発明の不織布は、分割型複合繊維の未分割部分(A)、繊維セグメントが分散した部分(B)及び繊維セグメントが繊維軸方向に沿って収束した部分(C)が三次元的に混在、絡合しており、且つ不均一な分布に由来した充分な空隙を形成するので、吸音材、クッション材、空気フィルター、液体フィルター、人口皮革用基布、保温材、カーペット基材、自動車用内装材、芯地、コーティング基布、ラミネート基材、農芸用資材、絶縁材、オムツ等の衛生材料等に好適に使用できる。また、繊維セグメントを含むことから、油膜、塵埃の掻き取り性、捕集性の他、吸水性、吸油性に優れており、ワイピング材、油吸着材、インクタンク用吸着材、研磨材等に好適に使用することができる。更に分割型複合繊維の空隙層に、種々の機能剤を包含できるため、様々な機能付与が可能である。また、本発明の不織布を用いた吸音材は、優れた吸音性を有する。
The nonwoven fabric of the present invention is entangled not only with the surface of the fiber assembly, but also with the segmented composite fibers in the interior thereof, which are divided into finely divided segments (hereinafter referred to as “fiber segments” or “extra fine fibers”). By being combined, the air permeability and the porosity are not significantly reduced.
In the nonwoven fabric of the present invention, the undivided part (A) of the split composite fiber, the part (B) in which the fiber segments are dispersed, and the part (C) in which the fiber segments converge along the fiber axis direction are mixed three-dimensionally, Entangling and forming sufficient voids due to uneven distribution, so sound absorbing material, cushioning material, air filter, liquid filter, artificial leather base fabric, heat insulating material, carpet base material, automotive interior It can be suitably used for sanitary materials such as materials, interlinings, coated base fabrics, laminate base materials, agricultural materials, insulating materials, and diapers. In addition, because it contains fiber segments, it has excellent water absorption and oil absorption properties, as well as oil film and dust scraping and collecting properties, and can be used for wiping materials, oil adsorbents, ink tank adsorbents, abrasives, etc. It can be preferably used. Furthermore, since various functional agents can be included in the void layer of the split-type composite fiber, various functions can be imparted. The sound absorbing material using the nonwoven fabric of the present invention has excellent sound absorbing properties.
以下、本発明を詳細に説明する。
本発明の不織布は、分割型複合繊維を含有する繊維集合体からなる不織布であって、該分割型複合繊維が、異なるポリオレフィンからなる少なくとも2種のセグメントの組み合わせが連なる繊維横断面構造を有しており、該不織布は、分割型複合繊維の未分割部分(A)、分割型複合繊維の分割細繊化されたセグメントが分散した部分(B)及び分割型複合繊維の分割細繊化されたセグメントが繊維軸方向に沿って収束した部分(C)が混在して含まれており、且つ分割型複合繊維の分割細繊化されたセグメントが、三次元的に絡合して、一体化している。このように、前記分割型複合繊維は、少なくとも2種のセグメントの組み合わせが連なるように、少なくとも異なる2種のポリオレフィンから構成されている。
本発明において、分割型複合繊維を分割するためには、物理的応力を分割型複合繊維に加えればよく、その最も好ましい加工方法は、ニードルパンチ加工であり、この加工方法で得られる不織布が、ニードルパンチ不織布である。
Hereinafter, the present invention will be described in detail.
The nonwoven fabric of the present invention is a nonwoven fabric composed of a fiber assembly containing split-type composite fibers, and the split-type composite fibers have a fiber cross-sectional structure in which a combination of at least two types of segments made of different polyolefins are continuous. The non-woven fabric was undivided part (A) of the split composite fiber, the part (B) in which the split fine segment of the split composite fiber was dispersed, and the split fine fiber of the split composite fiber. A portion (C) in which the segments converge along the fiber axis direction is included, and the segmented and refined segments of the segmented composite fibers are intertwined and integrated in three dimensions. Yes. Thus, the split type composite fiber is composed of at least two different polyolefins so that a combination of at least two types of segments is continuous.
In the present invention, in order to divide the split-type conjugate fiber, physical stress may be applied to the split-type conjugate fiber, and the most preferable processing method is needle punching, and the nonwoven fabric obtained by this processing method is It is a needle punched nonwoven fabric.
本発明の不織布を構成する分割型複合繊維の横断面構造は、分割可能であれば特に限定されないが、好ましくは繊維内部に中空部を有することであり、例えば図1〜3に示したようなa、b2成分のポリオレフィンが交互に配列した横断面構造である。多成分のポリオレフィンから構成される分割型複合繊維の場合には、同成分が隣り合うことなく、異なるポリオレフィンからなる複数のセグメントの組み合わせが連なる繊維横断面構造を形成する。なお、図1〜3に例示した中空部を有する分割型複合繊維(以下、「中空分割型複合繊維」という。)の横断面構造はモデル図であり、実際の繊維製造時には、該複合繊維が、種々の外部応力を受け、断面構造及び形状に変形が生じている場合がある。しかし、これらの変形は、実用上、問題はない。 The cross-sectional structure of the split-type conjugate fiber constituting the nonwoven fabric of the present invention is not particularly limited as long as it can be split, but preferably has a hollow portion inside the fiber, for example, as shown in FIGS. It is a cross-sectional structure in which a and b2 component polyolefins are alternately arranged. In the case of a split type composite fiber composed of a multi-component polyolefin, a fiber cross-sectional structure in which a combination of a plurality of segments composed of different polyolefins are formed without the same component being adjacent to each other. 1 to 3 is a model diagram of the cross-sectional structure of a split type composite fiber having a hollow portion illustrated in FIGS. 1 to 3 (hereinafter referred to as “hollow split type composite fiber”). In some cases, the cross-sectional structure and shape are deformed due to various external stresses. However, these deformations have no problem in practical use.
本発明において、分割後の繊維セグメントの平均単糸繊度は、1.0dtex以下であることが好ましく、0.7dtex以下であることがより好ましい。従って中空分割型複合繊維の分割セグメント数(これは、設計上のセグメント数をいう。)は、極細繊維の平均繊度が1.0dtex以下となるように決めればよく、中空分割型繊維のセグメント数が多ければ分割後の繊度が小さくなる利点があるが、実際には繊維製造上の容易さから4〜32のセグメント数にすることが好ましい。また個々のセグメントの繊度は同一である必要はなく、分割型複合繊維が完全に分割していない場合には、未分割の分割型複合繊維と完全に分割した極細繊維との中間に複数の異る繊度の繊維が混在するが、特に問題はない。また、本発明の不織布は、図1、図2または図3に例示した繊維横断面を有する中空分割型複合繊維が混繊されていると、繊度及びセグメント数が変化して、外観、風合等が良好になる。 In the present invention, the average single yarn fineness of the fiber segments after the division is preferably 1.0 dtex or less, and more preferably 0.7 dtex or less. Therefore, the number of segments of the hollow segmented composite fiber (this is the number of segments in the design) may be determined so that the average fineness of the ultrafine fibers is 1.0 dtex or less. If there is more, there exists an advantage which the fineness after a division | segmentation becomes small, but it is preferable to actually make it the number of segments of 4-32 from the ease on fiber manufacture. In addition, the fineness of each segment does not need to be the same, and if the split-type conjugate fiber is not completely split, a plurality of different sizes are placed between the unsplit split-type conjugate fiber and the completely split ultrafine fiber. However, there is no particular problem. In addition, when the non-woven fabric of the present invention is mixed with hollow split type composite fibers having the fiber cross section exemplified in FIG. 1, FIG. 2 or FIG. 3, the fineness and the number of segments change, and the appearance, texture Etc. become better.
本発明に用いる中空分割型複合繊維の繊維中心部に存在する中空部が占める繊維横断面積に対する中空部の面積の比、即ち中空率は、15%〜40%が好ましく、より好ましくは、20〜35%である。中空率がこの範囲であれば、隣接セグメント同士の接触面積が適切になるため、ニードルパンチ加工等の針貫通時の物理的応力だけで分割させることができる。またカード機通過時の物理的応力で分割し易いが、これによってシリンダーへの沈み込みによる通過不良、またはネップの発生による地合不良を引き起こし、加工性が大きく低下することがない。従って、中空率を上記範囲にすることで、加工性、生産性を維持したまま、ニードルパンチ加工で分割し易い繊維にすることができる。 The ratio of the area of the hollow part to the cross-sectional area of the fiber occupied by the hollow part present in the fiber center part of the hollow split composite fiber used in the present invention, that is, the hollow ratio is preferably 15% to 40%, more preferably 20 to 20%. 35%. If the hollow ratio is within this range, the contact area between adjacent segments is appropriate, and therefore, the area can be divided only by physical stress during needle penetration such as needle punching. Moreover, although it is easy to divide | segment by the physical stress at the time of card machine passage, this causes the passage defect by subduction into a cylinder, or the formation defect by generation | occurrence | production of a nep, and workability does not fall significantly. Therefore, by setting the hollow ratio within the above range, it is possible to obtain a fiber that can be easily divided by needle punching while maintaining workability and productivity.
本発明に用いる分割型複合繊維の分割前の単糸繊度は、特に限定されないが、ニードルパンチ加工においては、針のウェブ貫通時の物理的応力及びバーブによる衝撃、摩擦等の物理的応力を受け易い繊度、形状であることが望ましい。具体的には、物理的応力を受け易い繊度は、分割前繊度が2.2dtexを超えて大きく、5dtex未満である。2.2dtex以下ではウェブの構成繊維本数が多いため、ウェブ貫通時に過度の物理的応力による針折れが発生し易くなり、単繊維当たりの物理的応力が分散されるため、分割が困難になる。また、5dtex以上の繊度では、分割性はよくなるが、カード機通過時に分割されたセグメントによるシリンダーへの沈み込み等が発生し易く、加工性が低下する。本発明に用いる分割型複合繊維は、繊維横断面の中央部に、繊維横断面積に対して15〜40%の中空部を有し、その繊度が、2.2dtexを超えて大きく、5dtex未満であることが、ニードルパンチ加工により分割し易いために最も好ましい。また、繊維集合体が、分割型複合繊維のみから構成されている場合には、得られる不織布を構成する繊維セグメントの繊度を低くすることができるために好ましい。 The single yarn fineness before splitting of the split-type composite fiber used in the present invention is not particularly limited. However, in needle punching, physical stress during needle penetration through the web and physical stresses such as impact and friction due to barbs are applied. It is desirable that the fineness and shape be easy. Specifically, the fineness that is susceptible to physical stress is such that the fineness before division is greater than 2.2 dtex and less than 5 dtex. At 2.2 dtex or less, since the number of constituent fibers of the web is large, needle breakage due to excessive physical stress is likely to occur at the time of web penetration, and physical stress per single fiber is dispersed, making division difficult. In addition, at a fineness of 5 dtex or more, the splitting property is improved, but subsidence into the cylinder due to the segment divided when passing through the card machine is likely to occur, and the workability is lowered. The split-type conjugate fiber used in the present invention has a hollow portion of 15 to 40% with respect to the cross-sectional area of the fiber at the center of the fiber cross section, and the fineness is greater than 2.2 dtex and less than 5 dtex. It is most preferable that it is easily divided by needle punching. Moreover, when the fiber assembly is comprised only from a split type composite fiber, since the fineness of the fiber segment which comprises the nonwoven fabric obtained can be made low, it is preferable.
ニードルパンチ加工工程において、分割型複合繊維を用いることで、針貫通の物理的応力による分割が容易となるが、本発明の製造方法で得られる不織布は、分割型複合繊維の未分割部分(A)と、分割型複合繊維の分割細繊化されたセグメントが分散した部分(B)とが不織布中に偏在しており、更に分割細繊化されたセグメントが繊維軸方向に沿って収束した部分(C:以下、「連糸束」という。)が混在している。ここで、連糸束とは、分割した各セグメントが完全に不織布中に分散するのではなく、各セグメント同士がある程度の間隔を保ちながら束なった状態で収束した状態をいう。例えばローラーカード機、エアレイド機によるウェブ、スライバーへの加工工程等の繊維開繊工程を通過した直後の繊維は、その殆どが未分割部分(A)で占められているが、ニードルパンチ加工工程を通過する際に、針のウェブ貫通時の物理的応力及びバーブによる衝撃、摩擦等の物理的応力により分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)が発現し、更に針がウェブを押し下げることにより(A)、(B)及び(C)が三次元的に絡合、偏在した構造を形成する。これらの構造は、針による物理的応力をウェブの流れ方向に対して点方向に集中させることで発現し易くなるが、更に得られる不織布の表面が緻密になり過ぎないように高圧液体流処理を併用することで上記(A)〜(C)の分布状態を変えることができる。 In the needle punching process, by using split-type composite fibers, splitting by physical stress through the needle is facilitated, but the nonwoven fabric obtained by the production method of the present invention is an unsplit part of split-type composite fibers (A ) And the part (B) in which the segmented finely divided segments of the segmented composite fiber are dispersed are unevenly distributed in the nonwoven fabric, and the segmented and further refined segments are converged along the fiber axis direction. (C: hereinafter referred to as “continuous yarn bundle”) is mixed. Here, the continuous yarn bundle refers to a state in which the divided segments are not completely dispersed in the nonwoven fabric but are converged in a state where the segments are bundled while maintaining a certain distance. For example, most of the fibers immediately after passing through the fiber opening process such as a roller card machine, a web using an air laid machine, and a processing process into a sliver are occupied by the undivided portion (A). When passing, the part (B) and the yarn bundle (C) in which the segmented and finely divided segments are dispersed due to the physical stress at the time of penetrating the web of the needle and the physical stress such as impact and friction due to barb are developed. Further, when the needle further pushes down the web, (A), (B), and (C) are intertwined and unevenly distributed three-dimensionally. These structures are easily developed by concentrating the physical stress due to the needle in the point direction with respect to the flow direction of the web, but further, high pressure liquid flow treatment is performed so that the surface of the resulting nonwoven fabric is not too dense. By using them together, the distribution states (A) to (C) can be changed.
一般に行われる分割型複合繊維の代表的な加工方法である高圧液体流処理の場合、孔径が0.05〜1.5mm、特に0.1〜0.5mmの噴射孔を孔間隔0.1〜1.5mmで一列または複数列に多数配列した装置を用いて、噴射孔から高水圧で噴射させて得られる高圧液体流をウェブの進行方向と直交する方向に配列して加工する。このとき、高圧液体流による物理的応力はウェブの流れ方向に対して線方向に集中しているため、分割後の極細繊維と未分割の繊維は、二次元的にほぼ均一な分布であり、得られる不織布も非常に緻密な物となる。なお、本発明では、高圧流体流処理の使用を排除しているのではなく、例えば、上記のように不織布表面の繊維の分布状態を変えるために、補助的に用いることができる。 In the case of high-pressure liquid flow treatment, which is a typical processing method for split-type composite fibers, which is generally performed, the hole diameter is 0.05 to 1.5 mm, particularly 0.1 to 0.5 mm. A high pressure liquid flow obtained by jetting at a high water pressure from the jet holes is arranged and processed in a direction perpendicular to the traveling direction of the web, using an apparatus arranged in a row or a plurality of rows at 1.5 mm. At this time, since the physical stress due to the high-pressure liquid flow is concentrated in the linear direction with respect to the flow direction of the web, the divided ultrafine fibers and the undivided fibers have a substantially two-dimensional distribution, The resulting nonwoven fabric is also very dense. In the present invention, the use of high-pressure fluid flow treatment is not excluded, but it can be used supplementarily, for example, to change the fiber distribution state on the surface of the nonwoven fabric as described above.
これに対して、本発明の不織布の場合、分割後の極細繊維と未分割の繊維、または連糸束が不織布中に偏在した構造である。つまり、各セグメントに完全に分割した密な部分と、未分割の繊維が若干残った疎な部分及び連糸束が多い部分が不織布中に不均一に分布した構造になっている。しかも、分割細繊化されたセグメントが三次元絡合されているのである。このため、得られた不織布は緻密性、通気性を共に満たすことにより、形態安定性、塵埃捕集性等に優れた特性を発現することが可能になる。 On the other hand, in the case of the nonwoven fabric of the present invention, it is a structure in which the divided ultrafine fibers and undivided fibers, or continuous yarn bundles are unevenly distributed in the nonwoven fabric. That is, it has a structure in which a dense portion completely divided into each segment, a sparse portion in which some undivided fibers remain, and a portion with many continuous yarn bundles are unevenly distributed in the nonwoven fabric. Moreover, the segmented and refined segments are three-dimensionally entangled. For this reason, when the obtained nonwoven fabric satisfies both denseness and air permeability, it is possible to express characteristics excellent in form stability, dust collection ability, and the like.
分割型複合繊維に用いるポリオレフィンは、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリメチルペンテン、1、2−ポリブタジエン及び1、4−ポリブタジエンの他、エチレン、ブテン−1、ヘキセン−1、オクテン−1、4−メチルペンテン−1等のホモポリオレフィンまたは脂肪族α−オレフィンとの結晶性共重合体である。例えばエチレン−プロピレン共重合体、エチレン−プロピレン−1−ブテン三元共重合体等の共重合ポリオレフィンも使用できる。また前記α−オレフィンに他のオレフィンまたは少量の他のエチレン系不飽和モノマー、例えばブタジエン、イソプレン、1、3−ペンタジエン、スチレン及びα−メチルスチレン等のエチレン系不飽和モノマーと共重合されていてもよく、また上記ポリオレフィン樹脂の混合物であってもよい。更に通常のチーグラーナッタ触媒から重合されたこれらポリオレフィンだけでなく、メタロセン触媒から重合されたポリオレフィン及びそれらの共重合体も例示することができる。更に、その他のポリオレフィンとしては、立体規則性ポリスチレンを挙げることができる。 Polyolefins used for split type composite fibers include high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polypropylene, polymethylpentene, 1,2-polybutadiene, and 1,4-polybutadiene, as well as ethylene, butene- 1. A crystalline copolymer with a homopolyolefin such as 1, hexene-1, octene-1, 4-methylpentene-1, or an aliphatic α-olefin. For example, copolymer polyolefin such as ethylene-propylene copolymer and ethylene-propylene-1-butene terpolymer can be used. The α-olefin is copolymerized with other olefins or a small amount of other ethylenically unsaturated monomers such as butadiene, isoprene, 1,3-pentadiene, styrene and α-methylstyrene. It may also be a mixture of the above polyolefin resins. Further, not only these polyolefins polymerized from ordinary Ziegler-Natta catalysts, but also polyolefins polymerized from metallocene catalysts and copolymers thereof can be exemplified. Furthermore, stereoregular polystyrene can be mentioned as other polyolefin.
立体規則性ポリスチレンは、13C−NMR法により測定されるタクティシティーとして、連続する複数個の構造単位の存在割合、例えば2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドによって示すことができるが、本発明で用いてよい該立体規則性ポリスチレンは、通常ペンタッド分率が85%以上、好ましくは95%以上のシンジオタクティシティーを有するポリスチレン、ポリメチルスチレン、ポリエチルスチレン、ポリイソプロピルスチレン等のポリアルキルスチレン、ポリクロロスチレン、ポリブロモスチレン、ポリフルオロスチレン等のポリハロゲン化スチレン、ポリクロロメチルスチレン等のポリハロゲン化アルキルスチレン、ポリメトキシスチレン、ポリエトキシスチレン等のポリアルコキシスチレン、ポリ安息香酸エステルスチレン等であり、これらは単独または混合して使用することができる。更に、これら重合体を構成するモノマー相互の共重合体またはこれらモノマーを主成分とする共重合体も使用できる。 Stereoregular polystyrene is a tacticity measured by the 13 C-NMR method. The presence ratio of a plurality of consecutive structural units is, for example, 2 dyads, 3 triads, 5 cases. The stereoregular polystyrene that can be used in the present invention, which can be represented by a pentad, is usually a polystyrene, polymethylstyrene, polyethyl having a syndiotacticity of a pentad fraction of 85% or more, preferably 95% or more. Polyalkyl styrene such as styrene, polyisopropyl styrene, polyhalogenated styrene such as polychlorostyrene, polybromostyrene, polyfluorostyrene, polyhalogenated alkyl styrene such as polychloromethyl styrene, polymethoxy styrene, polyethoxy styrene, etc. Polyalkoxys Tylene, polybenzoic acid ester styrene and the like, which can be used alone or in combination. Furthermore, a copolymer of monomers constituting these polymers or a copolymer containing these monomers as main components can also be used.
すなわち、前記共重合体は、上述の立体規則性ポリスチレンを構成するモノマーから選択される少なくとも1種のモノマーと、エチレン、プロピレン、ブテン、ヘキセン、ヘプテン、オクテン、デセン等のオレフィン系モノマー、ブタジエン、イソプレン等のジエン系モノマー、環状オレフィンモノマー、環状ジエンモノマーまたはメタクリル酸メチル、無水マレイン酸、アクリロニトリル等の極性ビニル系モノマーとのシンジオタクティックスチレン構造を有する共重合体である。これらは、市販の単独重合体及び共重合体を使用することができる。 That is, the copolymer includes at least one monomer selected from the monomers constituting the above-mentioned stereoregular polystyrene, olefinic monomers such as ethylene, propylene, butene, hexene, heptene, octene, and decene, butadiene, It is a copolymer having a syndiotactic styrene structure with a diene monomer such as isoprene, a cyclic olefin monomer, a cyclic diene monomer, or a polar vinyl monomer such as methyl methacrylate, maleic anhydride, or acrylonitrile. For these, commercially available homopolymers and copolymers can be used.
本発明の不織布に用いる分割型複合繊維は、少なくとも異なる2種のポリオレフィンを任意に組み合わせることで得られるが、特に耐薬品性が要求される産業資材分野及び衛生材料分野等に使用する場合には、耐薬品性が高く、コスト的に有利なポリオレフィンのみの組み合わせが好ましく、特にポリプロピレンとポリエチレンとの組み合わせが好ましい。ポリプロピレンは、例えばプロピレン単独重合体、プロピレンを70重量%以上含有するプロピレンとプロピレン以外の上記α−オレフィンとの共重合体を挙げることができる。このような共重合体は、例えばエチレン−プロピレン二元共重合体、エチレン−プロピレン−ブテン三元共重合体等を挙げることができる。 The split-type conjugate fiber used in the nonwoven fabric of the present invention can be obtained by arbitrarily combining at least two different polyolefins, but particularly when used in the industrial material field and sanitary material field where chemical resistance is required. A combination of only polyolefins having high chemical resistance and cost advantage is preferable, and a combination of polypropylene and polyethylene is particularly preferable. Examples of the polypropylene include a propylene homopolymer and a copolymer of propylene containing 70% by weight or more of propylene and the above α-olefin other than propylene. Examples of such a copolymer include an ethylene-propylene binary copolymer and an ethylene-propylene-butene terpolymer.
また、ポリエチレンは、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)及びこれら2種以上の混合物等を使用することができる。これらのなかでも高密度ポリエチレンが好ましい。 As the polyethylene, high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), a mixture of two or more of these, and the like can be used. Among these, high density polyethylene is preferable.
本発明で用いるポリオレフィンのメルトフローレート(以下、「MFR」という)は、溶融紡糸可能な範囲であればよく、紡糸条件等の変更で、繊維成形後のMFRが10〜100g/10分の範囲内になることが好ましく、より好ましくは、10〜70g/10分である。繊維成形後のMFRが10〜100g/10分の範囲であれば、中空率を高く維持でき、可紡性も良好になる。また、本発明で用いる2種の異なるポリオレフィンのメルトフローレート比は、0.1〜5であることが好ましく、より好ましくは、0.5〜3である。この範囲であれば、溶融紡糸時の2成分の口金内の流れ性、中空形状に吐出された後の溶融張力差、冷却時の粘度上昇の差が大きくなる等の要因の影響を受けず、中空率を維持し、かつ可紡性良く紡糸することが可能になる。 The melt flow rate (hereinafter referred to as “MFR”) of the polyolefin used in the present invention may be within a range in which melt spinning is possible, and the MFR after fiber molding is in the range of 10 to 100 g / 10 min by changing the spinning conditions and the like. It is preferable to be within, more preferably 10 to 70 g / 10 minutes. If the MFR after fiber molding is in the range of 10 to 100 g / 10 min, the hollowness can be maintained high and the spinnability is also improved. Moreover, it is preferable that the melt flow rate ratio of 2 types of different polyolefin used by this invention is 0.1-5, More preferably, it is 0.5-3. Within this range, it is not affected by factors such as the flowability in the two-component die during melt spinning, the difference in melt tension after being discharged into a hollow shape, and the difference in viscosity increase during cooling increases. It becomes possible to spin with good spinnability while maintaining the hollow ratio.
上記MFR以外のポリオレフィンの物性、例えばQ値(重量平均分子量/数平均分子量の比)やロックウェル硬度、分岐メチル鎖数等の物性は、本発明の用件を満たすものであれば、特に限定されない。 Physical properties of polyolefins other than the above MFR such as Q value (ratio of weight average molecular weight / number average molecular weight), Rockwell hardness, number of branched methyl chains, etc. are particularly limited as long as they satisfy the requirements of the present invention. Not.
本発明の不織布の製造方法をニードルパンチ加工により例示する。
まず、分割対象である分割型複合繊維を含む繊維集合体を製造し、この繊維集合体に、ニードルパンチ加工を施こすことで、分割型複合繊維を分割細繊化することができる。この繊維集合体として、ウェブを用いる場合には、例えば前記分割型複合繊維の短繊維を用いて、カード法、エアレイド法または抄紙法を用いて必要な目付のウェブを作製することができる。また短繊維の他にも、長繊維トウを分繊ガイド等によりウェブを作製することができる。更にメルトブロー法、スパンボンド法等で直接ウェブを作製してもよい。前記の方法で作製したウェブを、プレーンニードル、クラウンニードル、フォークニードル等の種々の加工針を用いたニードルパンチ加工機に通過させ、分割細繊化して不織布を得ることができる。更に、この不織布を熱風、熱ロールまたは熱プレス等の公知の加工方法で、更に処理することもできる。なお、熱ロール、熱プレス等の方法で本発明の不織布をフィルム化させて成形品として用いた場合でも、柔軟性、隠蔽性等に優れた物品を得ることができる。
The method for producing the nonwoven fabric of the present invention is exemplified by needle punching.
First, it is possible to divide and divide the split composite fiber by manufacturing a fiber assembly including the split composite fiber to be split and subjecting the fiber assembly to needle punching. When a web is used as the fiber assembly, a web having a required basis weight can be produced by using, for example, the short fiber of the split type composite fiber, using a card method, an airlaid method, or a papermaking method. In addition to short fibers, a web can be produced from long fiber tows using a splitting guide or the like. Further, the web may be directly produced by a melt blow method, a spun bond method or the like. The web produced by the above method can be passed through a needle punching machine using various processing needles such as a plain needle, a crown needle, a fork needle, etc., and divided into fine fibers to obtain a nonwoven fabric. Furthermore, this non-woven fabric can be further processed by a known processing method such as hot air, hot roll or hot press. Even when the nonwoven fabric of the present invention is formed into a film by a method such as a hot roll or a hot press and used as a molded product, an article excellent in flexibility, concealment property and the like can be obtained.
本発明の不織布の目付は、特に限定されないが、70g/m2以上、1,000g/m2以下が好ましく、70g/m2以上、600g/m2以下がより好ましく使用できる。不織布の目付がこの範囲であれば、針貫通時の物理的応力で分割細繊化する際、地合不良な不織布になることが殆どない。 Although the fabric weight of the nonwoven fabric of this invention is not specifically limited, 70 g / m < 2 > or more and 1,000 g / m < 2 > or less are preferable, and 70 g / m < 2 > or more and 600 g / m < 2 > or less can be used more preferably. When the basis weight of the nonwoven fabric is within this range, it is rare that the nonwoven fabric is poorly formed when divided into fine fibers by physical stress during needle penetration.
本発明の不織布は、種々の用途と耐薬品性を考慮するとポリオレフィン繊維のみから構成されることが好ましいが、必要に応じてポリオレフィン繊維の他にポリアミド、ポリエステル、アクリル等の熱可塑性樹脂からなる合成繊維を繊維集合体に併用(混綿、混繊)してもよく、2種類以上の不織布を積層させてもよい。また親水性を付与させたい場合や親水性の薬剤を含浸させたい場合には親水性繊維を混綿、混繊または積層して使用することができる。ここで親水性繊維は、親水性を示す繊維であれば限定されることはなく、例えばレーヨン、キュプラに代表される再生繊維、アセテート、トリアセテートに代表される半合成繊維、ポリアミド、アクリル等の合成繊維、綿、羊毛、麻等の天然繊維等が挙げられる。 The nonwoven fabric of the present invention is preferably composed only of polyolefin fibers in consideration of various uses and chemical resistance. However, if necessary, the nonwoven fabric may be composed of a thermoplastic resin such as polyamide, polyester, or acrylic in addition to the polyolefin fibers. The fibers may be used in combination with the fiber assembly (mixed cotton, mixed fiber), or two or more kinds of nonwoven fabrics may be laminated. Further, when it is desired to impart hydrophilicity or impregnation with a hydrophilic drug, hydrophilic fibers can be used by blending, blending or laminating. Here, the hydrophilic fiber is not limited as long as it is a fiber exhibiting hydrophilicity. For example, regenerated fibers represented by rayon and cupra, semi-synthetic fibers represented by acetate and triacetate, and synthetic materials such as polyamide and acrylic. Examples thereof include natural fibers such as fiber, cotton, wool, and hemp.
前記のポリオレフィン以外の熱可塑性樹脂からなる合成繊維の繊維形態は、例えば単一成分型、複合型等が利用できる。また繊維の横断面構造が、円形、異形のいずれでもよく、更にこれらは、中空、中実のいずれであってもよい。また複合型(複合繊維)の横断面構造は、鞘芯型、偏心鞘芯型、並列型、多層型、海島型、放射状型、中空放射状型等のいずれであってもよい。 As the fiber form of the synthetic fiber made of a thermoplastic resin other than the polyolefin, for example, a single component type, a composite type or the like can be used. The cross-sectional structure of the fiber may be either circular or irregular, and these may be hollow or solid. The cross-sectional structure of the composite type (composite fiber) may be any of a sheath core type, an eccentric sheath core type, a parallel type, a multilayer type, a sea island type, a radial type, a hollow radial type, and the like.
本発明に用いるポリオレフィンまたは熱可塑性樹脂には、本発明の効果を妨げない範囲内で、更に酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤、親水剤等の添加剤を必要に応じて適宜添加してもよい。 For the polyolefin or thermoplastic resin used in the present invention, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, an epoxy stabilizer, a lubricant, You may add suitably additives, such as an antibacterial agent, a flame retardant, an antistatic agent, a pigment, a plasticizer, a hydrophilic agent, as needed.
本発明の不織布には、接着成分または溶着成分を併用して、その成分により更に強固に一体化することができる。これらの成分として熱可塑性樹脂を利用した場合には、熱可塑性樹脂からなる繊維を混綿するとよい。このとき、分割型複合繊維を接着して不織布とするために、熱可塑性樹脂からなる繊維が分割型複合繊維を構成している熱可塑性樹脂と同種類の熱可塑性樹脂を含む繊維であることが好ましい。また混綿した繊維を熱処理により溶融し、接着加工する場合には、分割型複合繊維の低融点樹脂よりも低い温度で溶融する熱可塑性樹脂を接着成分とすることで、分割型複合繊維を溶融することなく不織布を成形でき、更に分割細繊化も進み易くなるために好ましい。また接着繊維として複合型の繊維を用いることで不織布の強度を更に高くすることができる。 In the nonwoven fabric of the present invention, an adhesive component or a welding component can be used in combination, and the component can be more strongly integrated with the component. In the case where a thermoplastic resin is used as these components, it is preferable to blend fibers made of a thermoplastic resin. At this time, in order to bond the split type composite fiber to form a nonwoven fabric, the fiber made of the thermoplastic resin may be a fiber containing the same kind of thermoplastic resin as the thermoplastic resin constituting the split type composite fiber. preferable. Also, when the mixed cotton fiber is melted by heat treatment and bonded, the split composite fiber is melted by using a thermoplastic resin that melts at a temperature lower than the low melting point resin of the split composite fiber as an adhesive component. This is preferable because the nonwoven fabric can be formed without any problem, and the splitting and finening can easily proceed. Moreover, the strength of the nonwoven fabric can be further increased by using composite fibers as the adhesive fibers.
本発明の不織布に前記熱接着繊維及び親水性繊維を混綿、積層する場合には、該前記熱接着性繊維及び親水性繊維を併用(混綿、混繊)する比率が、10〜80重量%であることが好ましく、20〜70重量%であることがより好ましい。この範囲であると、極細繊維の本来有する機能を発現でき、また、充分な形態安定性と親水性が得られる。 In the case of blending and laminating the thermal adhesive fiber and the hydrophilic fiber to the nonwoven fabric of the present invention, the ratio of using the thermal adhesive fiber and the hydrophilic fiber together (mixed cotton, mixed fiber) is 10 to 80% by weight. It is preferable that it is 20 to 70% by weight. Within this range, the functions inherent to the ultrafine fibers can be expressed, and sufficient form stability and hydrophilicity can be obtained.
本発明の不織布の空隙率は、特に限定されないが、先に挙げた分割後の極細繊維と未分割の繊維、または連糸束が不織布中に偏在した構造に由来する効果を有効に発現させるため、充分な空隙率を有する必要がある。具体的には55〜98%が好ましく、より好ましくは65〜98%である。空隙率が55%以上であれば隙間が充分になり、各セグメントに完全に分割した密な部分と、未分割の繊維が若干残った疎な部分及び連糸束の多い部分が各々の特性を充分に発現させることができる。また空隙率が98%以下であれば不織布の形態安定性が維持され易い。 Although the porosity of the nonwoven fabric of the present invention is not particularly limited, in order to effectively express the effect derived from the structure in which the ultrafine fibers after splitting and the unsplit fibers, or the bundle of bundles are unevenly distributed in the nonwoven fabric. It is necessary to have a sufficient porosity. Specifically, it is preferably 55 to 98%, more preferably 65 to 98%. If the porosity is 55% or more, the gap will be sufficient, and a dense part that is completely divided into each segment, a sparse part in which some undivided fibers remain, and a part with a lot of continuous yarn bundles will have the respective characteristics. It can be fully expressed. If the porosity is 98% or less, the shape stability of the nonwoven fabric is easily maintained.
更に本発明の不織布には、必要に応じて機能剤を付着または包含させることにより、他の繊維の混繊、混綿の方法では付与し難い機能を与えることができる。本発明では従来公知の機能剤を使用することができる。例えば抗菌防臭剤、防カビ剤、消臭剤、吸着剤、研磨剤、イオン交換樹脂、高分子吸水ポリマー等を挙げることができる。前記機能剤が溶液の場合は、多孔質基材に含浸して使用してもよい。多孔質基材は、アロフェン、イモゴライト、人工ゼオライト、天然ゼオライト、合成ゼオライト、活性炭、珪藻土の他、カオリン、ろう石、セピオライト、バーミキュライト、水膨潤性グレードのマイカ、セリサイト、ベントナイト等の粘土鉱物等が例示できる。また吸着剤は、前記多孔性基材を用いることができる。不織布に機能剤を包含させる方法は、機能剤がゼオライト等の粉末の場合、ウェブに加工した分割型複合繊維をニードルパンチ加工により分割細繊化と不織布化とを同時に行った後、機能剤を篩等で不織布上に均一になるように散布し、その後、適当な温度で加熱、接着させるとよい。その他の方法として更に機能剤を液体のバインダー中に分散させ、スプレー法等により不織布に付着させた後、加熱、接着させるとよい。 Furthermore, the non-woven fabric of the present invention can be provided with a function that is difficult to be imparted by other fiber blending and cotton blending methods by attaching or including a functional agent as necessary. In the present invention, conventionally known functional agents can be used. For example, an antibacterial deodorant, an antifungal agent, a deodorant, an adsorbent, an abrasive, an ion exchange resin, a polymer water-absorbing polymer and the like can be mentioned. When the functional agent is a solution, it may be used by impregnating the porous substrate. Porous base materials include allophane, imogolite, artificial zeolite, natural zeolite, synthetic zeolite, activated carbon, diatomaceous earth, clay minerals such as kaolin, wax, sepiolite, vermiculite, water-swellable grade mica, sericite, bentonite, etc. Can be illustrated. Moreover, the said porous base material can be used for adsorption agent. In the method of including the functional agent in the nonwoven fabric, when the functional agent is a powder such as zeolite, the split type composite fiber processed into a web is subjected to split finening and non-woven fabric simultaneously by needle punching, and then the functional agent is added. It is good to spread it uniformly on the nonwoven fabric with a sieve or the like, and then heat and bond at an appropriate temperature. As another method, the functional agent may be further dispersed in a liquid binder and adhered to the nonwoven fabric by a spray method or the like, and then heated and bonded.
本発明に用いる抗菌防臭剤、防カビ剤は、銀、銅、亜鉛及びこれら金属とセラミックとの複合体に代表される無機系抗菌剤、塩化ベンザルコニウム、塩化セチルピリジニウム、有機シリコン系第四級アンモニウム塩、ポリヘキサメチレンビグアニジン塩酸塩、グルコン酸クロルヘキシジンに代表される有機系抗菌剤、キチン、キトサン、ポリリジン、ヒバ油、ユーカリ、カテキン、アロエ等の天然系抗菌剤等が例示できる。消臭剤は、ベタイン系両性界面活性剤、カルボニル系化合物、無水マレイン酸、アクリル酸、メタクリル酸及びこれらをモノマーとして含有する共重合体等の有機系消臭剤、活性炭、ゼオライト、金属イオン等の無機系消臭剤、カテキン等の天然系消臭剤、または二酸化チタンに代表される光触媒、銅−フタロシアニン、鉄−フタロシアニン等の触媒系消臭剤等が例示できる。 Antibacterial and deodorizing agents and fungicides used in the present invention are inorganic antibacterial agents represented by silver, copper, zinc, and composites of these metals and ceramics, benzalkonium chloride, cetylpyridinium chloride, and organic silicon type fourth. Examples include organic antibacterial agents typified by quaternary ammonium salts, polyhexamethylene biguanidine hydrochloride, chlorhexidine gluconate, natural antibacterial agents such as chitin, chitosan, polylysine, hiba oil, eucalyptus, catechin, and aloe. Deodorants include betaine amphoteric surfactants, carbonyl compounds, maleic anhydride, acrylic acid, methacrylic acid, and organic deodorants such as copolymers containing these as monomers, activated carbon, zeolite, metal ions, etc. Inorganic deodorants, natural deodorants such as catechins, photocatalysts typified by titanium dioxide, catalyst-type deodorants such as copper-phthalocyanine, iron-phthalocyanine, and the like can be exemplified.
本発明に用いる研磨剤は、ガーネット、エメリー、溶融アルミナ、炭化ケイ素等が例示できる。 Examples of the abrasive used in the present invention include garnet, emery, fused alumina, silicon carbide and the like.
本発明の不織布に機能剤を包含させる場合は、機能剤との親和性に優れた機能を有する熱可塑性樹脂からなる繊維を併用することにより、機能剤の脱落を更に抑えることができる。このような熱可塑性樹脂は、エチレンビニルアルコール共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、エチレン酢酸ビニル共重合体、エチレン無水マレイン酸グラフト共重合体等が例示できる。 When the functional agent is included in the nonwoven fabric of the present invention, dropping of the functional agent can be further suppressed by using together a fiber made of a thermoplastic resin having a function excellent in affinity with the functional agent. Examples of such thermoplastic resins include ethylene vinyl alcohol copolymer, polyvinyl acetate, polyacrylic ester, ethylene vinyl acetate copolymer, ethylene maleic anhydride graft copolymer, and the like.
このように本発明の製造方法によれば、ポリオレフィンから構成された分割型複合繊維であっても、ニードルパンチ加工で容易に分割させることができ、嵩高でかつ緻密な不織布を得ることができる。これにより、ポリオレフィンの耐薬品性を生かした吸音材、ワイピング材、フィルター、クッション材、油吸着材、インクタンク用吸着材等の産業資材分野をはじめ、衛生材料分野、医療分野にも好適に使用することができる。 As described above, according to the production method of the present invention, even a split type composite fiber composed of polyolefin can be easily split by needle punching, and a bulky and dense nonwoven fabric can be obtained. This makes it suitable for use in the field of industrial materials such as sound absorbing materials, wiping materials, filters, cushion materials, oil adsorbing materials, ink tank adsorbing materials, and other hygienic materials and medical fields that take advantage of the chemical resistance of polyolefins. can do.
本発明の不織布をワイピング材として用いた場合、極細繊維が集中した密な部分で油膜等の微細な成分を掻き取り、未分割及び連糸束が多い部分で塵やダニ、髪の毛等の塵埃を保持することができる。更にインクタンク用吸収剤として用いた場合も、水系顔料、油等の高粘性液の吸収性、毛細管現象等に適度に優れた効果を発揮する。 When the nonwoven fabric of the present invention is used as a wiping material, fine components such as an oil film are scraped off at a dense part where ultrafine fibers are concentrated, and dust such as dust, mites, and hair is removed at an undivided part where there are many continuous yarn bundles. Can be held. Further, when used as an absorbent for ink tanks, it exhibits moderately excellent effects on the absorbability of high-viscosity liquids such as water-based pigments and oils, and capillary action.
また、本発明の不織布を吸音材として用いた場合、未分割の部分から各セグメントの繊度まで広い繊度分布を有するため、幅広い周波数の音に対応できることや、未分割部分(A)と、分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)との偏在と三次元絡合による複雑な空隙が振動の伝播を抑制することから、吸音材としても高い効果を発揮することができる。 In addition, when the nonwoven fabric of the present invention is used as a sound absorbing material, it has a wide fineness distribution from the undivided portion to the fineness of each segment, so that it can cope with a wide range of frequencies, and the undivided portion (A) The uneven distribution of the part (B) in which the fibrillated segments are dispersed and the continuous yarn bundle (C) and the complicated gap due to the three-dimensional entanglement suppress the propagation of vibration, so that it is highly effective as a sound absorbing material. be able to.
バグフィルターは、圧力損失の抑制と塵埃保持性が共に要求されるため、高圧液体流処理で得られた不織布は、均一かつ緻密であることからこれらの要求を共に満たすことが困難であった。これに対して、本発明の不織布は、未分割の繊維が若干残った疎な部分と連糸束が多い部分とが圧力損失の抑制に寄与し、極細繊維が集中した密な部分が塵埃捕集性に寄与するため、バグフィルターとして充分な性能を発揮することができる。またバグフィルターに用いる場合、針深度等の加工条件を適宜選定し、異なる繊度の積層、混綿により厚み方向における密度勾配を付与することで、より好適に用いることができる。 Since the bag filter is required to have both pressure loss suppression and dust retention, the nonwoven fabric obtained by the high-pressure liquid flow treatment is uniform and dense, so it is difficult to satisfy both of these requirements. On the other hand, in the nonwoven fabric of the present invention, a sparse portion where a few undivided fibers remain and a portion where there are many continuous yarn bundles contribute to suppression of pressure loss, and a dense portion where ultrafine fibers are concentrated is dust trapping. Since it contributes to the collection, it can exhibit sufficient performance as a bag filter. Moreover, when using for a bag filter, it can use more suitably by selecting processing conditions, such as needle depth, suitably, and providing the density gradient in the thickness direction by lamination | stacking of different fineness, and mixed cotton.
以下、本発明を実施例及び比較例によって説明するが、本発明はこれらに限定されるものではない。なお、実施例、比較例における用語と物性の測定方法は以下の通りである。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these. In addition, the term and the measuring method of a physical property in an Example and a comparative example are as follows.
(メルトフローレート)
JIS K 7210に準拠して測定した。
原料ポリプロピレン:表1の条件14
原料ポリエチレン :表1の条件4
(Melt flow rate)
The measurement was performed according to JIS K 7210.
Raw material polypropylene: Condition 14 in Table 1
Raw material polyethylene: Condition 4 in Table 1
(融点)
デュポン社製熱分析装置DSC10(商品名)を用い、JIS K 7122に準拠して測定を行った。
(Melting point)
The measurement was performed according to JIS K 7122 using a DuPont thermal analyzer DSC10 (trade name).
(分割前繊度)
JIS L 1015 化学繊維ステープル試験方法 繊度 A法に基づく繊維10000mで換算した繊度を用いた。
(Fineness before division)
JIS L 1015 Test method for chemical fiber staple Fineness The fineness converted with a fiber of 10,000 m based on the method A was used.
(中空率)
未分割横断面写真から以下の式により算出した。
中空率(%)=(中空部の横断面積/繊維の中空部を含む総繊維横断面積)×100
(Hollow rate)
It was calculated by the following formula from the undivided cross-sectional photograph.
Hollow ratio (%) = (cross-sectional area of hollow part / total cross-sectional area of fiber including hollow part of fiber) × 100
(セグメントの繊度)
以下の式により算出した
理論セグメント繊度(dtex)=分割前繊度/分割数
(Segment fineness)
Theoretical segment fineness (dtex) calculated by the following formula = fineness before division / number of divisions
(セグメント分割率)
分割後の不織布を、繊維軸に対して直角にカミソリで切断し、その断面を電子顕微鏡で撮影した。得られた写真から、分割型複合繊維を任意に100本選び、その平均繊度から下記式で算出した。
セグメント分割率(%)=(セグメント繊度/平均繊度)×100
(Segment ratio)
The divided nonwoven fabric was cut with a razor at a right angle to the fiber axis, and the cross section was photographed with an electron microscope. From the obtained photograph, 100 split-type composite fibers were arbitrarily selected, and the average fineness was calculated by the following formula.
Segment division rate (%) = (segment fineness / average fineness) × 100
(カード通過性)
20℃、相対湿度60%の雰囲気下で、試料繊維50gを7m/minの速度のローラーカード機でウェブにした。このとき、カード通過性について以下の基準で評価した。評価は目視による確認で行った。
○:シリンダーへ繊維の沈み、ネップ発生による地合不良が見られず良好。
△:シリンダーへ繊維の沈み、ネップ発生による地合不良が若干確認される。
×:シリンダーへ繊維の沈み、ネップ発生著しく加工困難。
(Card passability)
Under an atmosphere of 20 ° C. and a relative humidity of 60%, 50 g of sample fibers were formed into a web using a roller card machine at a speed of 7 m / min. At this time, card passability was evaluated according to the following criteria. Evaluation was performed by visual confirmation.
◯: Good with no formation failure due to fiber sinking or nep generation in the cylinder.
Δ: Slightly inferior formation due to sinking of fibers in the cylinder and generation of neps.
X: Sinking of fibers in the cylinder and generation of neps are remarkably difficult to process.
(NP加工性)
試料繊維をローラーカード機で目付300g/m2のウェブにした後、ニードルパンチ(NP)加工機で加工し、NP加工性について以下の基準で評価した。評価は目視による確認で行った。
○:加工時の針折れはなく、加工性良好。
△:加工時の針折れが若干確認される。
×:針折れが著しく、加工困難。
(NP processability)
The sample fiber was made into a web having a basis weight of 300 g / m 2 with a roller card machine, then processed with a needle punch (NP) processing machine, and NP processability was evaluated according to the following criteria. Evaluation was performed by visual confirmation.
○: No breakage of needle during processing and good workability.
Δ: Needle breakage during processing is slightly confirmed.
X: Needle breakage is remarkable and processing is difficult.
(形態保持性)
5人のモニターに、サンプルをワイピング材としてフローリング、壁、机及び畳を実際に手で持って掃除してもらい、評価を受け、その評価結果を下記のとおり分類した。
○:3人以上が”不織布形態を保持し、使用し易い”と判断した。
△:2人が”不織布形態を保持し、使用し易い”と判断した。
×:”使用し易い”と判断したのは1人以下であった。
(Form retention)
Five monitors used the samples as wiping materials to clean the flooring, walls, desks, and tatami mats by hand, received evaluations, and classified the evaluation results as follows.
○: Three or more people judged that “the nonwoven fabric was maintained and it was easy to use”.
(Triangle | delta): Two persons judged that it was "it is easy to use keeping a nonwoven fabric form."
X: Only one person judged that it was “easy to use”.
(吸音性)
JIS A 1405に基づいて吸音率を測定した。
(Sound absorption)
The sound absorption rate was measured based on JIS A 1405.
ポリプロピレン(プロピレン単独重合体、融点163℃、MFR16g/10min)をa成分、高密度ポリエチレン(融点131℃、MFR16g/10min)をb成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図1に例示した横断面構造の分割型複合繊維を紡糸し、単糸繊度21dtexの未延伸糸とした。得られた未延伸糸を90℃、5.5倍で延伸し、スタッファボックスで機械捲縮を付与して、4.5dtexの分割型複合繊維を得た。次に、得られた繊維をローラーカード機でカーディングしてウェブとした。続いてウェブを、プレーンニードルを有するパンチングマシンで300本/cm2の針密度で加工した。分割型複合繊維の構成、加工性及び不織布の物性を表1に示す。電子顕微鏡で観察したところ、得られた不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)が三次元に交絡、偏在した構造を示していた。 Using polypropylene (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as component a, high-density polyethylene (melting point 131 ° C., MFR 16 g / 10 min) as component b, and using a split composite fiber die, a volume ratio of 50 / 50, a split type composite fiber having a cross-sectional structure illustrated in FIG. 1 was spun into an undrawn yarn having a single yarn fineness of 21 dtex. The obtained unstretched yarn was stretched at 90 ° C. and 5.5 times, and mechanical crimping was imparted by a stuffer box to obtain a 4.5 dtex split type composite fiber. Next, the obtained fiber was carded with a roller card machine to obtain a web. Subsequently, the web was processed at a needle density of 300 / cm 2 with a punching machine having a plain needle. Table 1 shows the structure, processability, and physical properties of the nonwoven fabric of the split-type composite fibers. When observed with an electron microscope, the obtained non-woven fabric has three-dimensional undivided parts (A) of split-type conjugate fibers, parts (B) in which segmented and finely divided segments are dispersed, and continuous yarn bundles (C). Confounded and unevenly distributed structure.
a成分、b成分は実施例1と同様の熱可塑性樹脂の構成を用い、分割型複合繊維用口金を用いて、容積比率50/50、図1に例示した横断面構造の分割型複合繊維を紡糸し、単糸繊度15dtexの未延伸糸とした。得られた未延伸糸を90℃、5倍で延伸し、トータル10万dtex、単糸繊度3.3dtexの延伸糸トウとした。このトウを開繊機で開繊して、所定の目付となるように積層後、プレーンニードルを有するパンチングマシンで300本/cm2の針密度で加工した。分割型複合繊維の構成、加工性及び不織布の物性を表1に示す。電子顕微鏡で観察したところ、得られた不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)が三次元に交絡、偏在した構造を示していた。 The components a and b have the same thermoplastic resin structure as in Example 1, and the split composite fiber having the volume ratio of 50/50 and the cross-sectional structure illustrated in FIG. Spinning was performed to obtain an undrawn yarn having a single yarn fineness of 15 dtex. The obtained undrawn yarn was drawn at 90 ° C. and 5 times to obtain a drawn yarn tow having a total of 100,000 dtex and a single yarn fineness of 3.3 dtex. This tow was opened with a spreader, laminated so as to have a predetermined basis weight, and then processed with a punching machine having a plain needle at a needle density of 300 / cm 2 . Table 1 shows the structure, processability, and physical properties of the nonwoven fabric of the split-type composite fibers. When observed with an electron microscope, the obtained non-woven fabric has three-dimensional undivided parts (A) of split-type conjugate fibers, parts (B) in which segmented and finely divided segments are dispersed, and continuous yarn bundles (C). Confounded and unevenly distributed structure.
表1の条件で、実施例1に準拠してニードルパンチ不織布を製造した。 A needle punched nonwoven fabric was produced in accordance with Example 1 under the conditions shown in Table 1.
ポリプロピレン(プロピレン単独重合体、融点163℃、MFR16g/10min)をa成分、線状低密度ポリエチレン(MFR:23g/10分)をb成分とし、分割型複合繊維用口金を用いて、a成分とb成分の容積比率50/50、中空率28%、繊度4.5dtexの図1に例示した横断面構造の分割型複合繊維を紡糸した。次に、得られた繊維をローラーカード機でカーディングしてウェブにし、これを、プレーンニードルを有するパンチングマシンで300本/cm2の針密度で加工した。分割型複合繊維の構成、加工性及び不織布の物性を表1に示す。電子顕微鏡で観察したところ、得られた不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)が三次元に交絡、偏在した構造を示していた。 Polypropylene (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) is a component, linear low density polyethylene (MFR: 23 g / 10 min) is a component b, and a split type composite fiber die is used. A split type composite fiber having a cross-sectional structure illustrated in FIG. 1 and having a volume ratio of component b of 50/50, a hollowness of 28%, and a fineness of 4.5 dtex was spun. Next, the obtained fiber was carded with a roller card machine to form a web, which was processed with a punching machine having a plain needle at a needle density of 300 / cm 2 . Table 1 shows the structure, processability, and physical properties of the nonwoven fabric of the split-type composite fibers. When observed with an electron microscope, the obtained non-woven fabric has three-dimensional undivided parts (A) of split-type conjugate fibers, parts (B) in which segmented and finely divided segments are dispersed, and continuous yarn bundles (C). Confounded and unevenly distributed structure.
表1の条件で、実施例1に準拠してニードルパンチ不織布を製造した。 A needle punched nonwoven fabric was produced in accordance with Example 1 under the conditions shown in Table 1.
表1の条件で、実施例1に準拠してニードルパンチ不織布を製造した。 A needle punched nonwoven fabric was produced in accordance with Example 1 under the conditions shown in Table 1.
表1の条件で、実施例1に準拠してニードルパンチ不織布を製造した。 A needle punched nonwoven fabric was produced in accordance with Example 1 under the conditions shown in Table 1.
表1の条件で、実施例1に準拠してニードルパンチ不織布を製造した。 A needle punched nonwoven fabric was produced in accordance with Example 1 under the conditions shown in Table 1.
ポリプロピレン(プロピレン単独重合体、融点163℃、MFR16g/10min)をa成分、ポリメチルペンテン(融点240℃、MFR60g/10min:290℃、2160g)をb成分とし、分割型複合繊維用口金を用いて、a成分とb成分の容積比率50/50、中空率30%、繊度4.8dtexの図1に例示した横断面構造の分割型複合繊維を紡糸した。次に、得られた繊維をローラーカード機でカーディングしてウェブとした。続いてウェブを、プレーンニードルを有するパンチングマシンで300本/cm2の針密度で加工した。分割型複合繊維の構成、加工性及び不織布の物性を表1に示す。電子顕微鏡で観察したところ、得られた不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)が三次元に交絡、偏在した構造を示していた。 Using polypropylene (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as component a and polymethylpentene (melting point 240 ° C., MFR 60 g / 10 min: 290 ° C., 2160 g) as component b, using a split composite fiber die A split type composite fiber having a cross-sectional structure illustrated in FIG. 1 and having a volume ratio of 50/50 between the a component and the b component, a hollow ratio of 30%, and a fineness of 4.8 dtex was spun. Next, the obtained fiber was carded with a roller card machine to obtain a web. Subsequently, the web was processed at a needle density of 300 / cm 2 with a punching machine having a plain needle. Table 1 shows the structure, processability, and physical properties of the nonwoven fabric of the split-type composite fibers. When observed with an electron microscope, the obtained non-woven fabric has three-dimensional undivided parts (A) of split-type conjugate fibers, parts (B) in which segmented and finely divided segments are dispersed, and continuous yarn bundles (C). Confounded and unevenly distributed structure.
表2の条件で、実施例1に準拠してニードルパンチ不織布を製造した。 A needle punched nonwoven fabric was produced in accordance with Example 1 under the conditions shown in Table 2.
ポリプロピレン(プロピレン単独重合体、融点163℃、MFR16g/10min)を芯成分、高密度ポリエチレン(融点131℃、MFR16g/10min)を鞘成分とし鞘芯型複合繊維用口金を用いて、容積比率50/50の吐出量が異なる2種類の鞘芯型複合繊維(未延伸糸)を紡糸した。得られた2種類の未延伸糸を90℃、4.0倍で延伸し、スタッファボックスで機械捲縮を付与した後、51mmに切断した。4.4dtexの鞘芯型複合繊維、6dtexの鞘芯型複合繊維が得られた。4.4dtexの鞘芯型複合繊維(30重量%)、6dtexの鞘芯型複合繊維(30重量%)及び実施例1で作製した分割型複合繊維(40重量%)を、各々ローラーカード機でウェブとした後、6dtexの鞘芯型複合繊維からなるウェブ/4.4dtexの鞘芯型複合繊維からなるウェブ/分割型複合繊維からなるウェブの順で積層し、多層ウェブにした。続いてこの積層ウェブを、プレーンニードルを有するパンチングマシンで450本/cm2の針密度で加工した。電子顕微鏡で観察したところ、得られた不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)が三次元に交絡、偏在した構造を示していた。 Using polypropylene (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as a core component, high-density polyethylene (melting point 131 ° C., MFR 16 g / 10 min) as a sheath component, using a sheath core type composite fiber die, a volume ratio of 50 / Two types of sheath-core type composite fibers (undrawn yarns) having different discharge amounts of 50 were spun. The obtained two types of undrawn yarns were drawn at 90 ° C. and 4.0 times, subjected to mechanical crimping with a stuffer box, and then cut into 51 mm. A 4.4 dtex sheath-core type composite fiber and a 6 dtex sheath-core type composite fiber were obtained. 4.4 dtex sheath-core type composite fiber (30 wt%), 6 dtex sheath-core type composite fiber (30 wt%) and the split type composite fiber (40 wt%) produced in Example 1 were each used in a roller card machine. After forming a web, the web was laminated in the order of a web consisting of a 6 dtex sheath-core type composite fiber / a web consisting of a 4.4 dtex sheath-core type composite fiber / a web consisting of a split type composite fiber to form a multilayer web. Subsequently, the laminated web was processed with a punching machine having a plain needle at a needle density of 450 needles / cm 2 . When observed with an electron microscope, the obtained non-woven fabric has three-dimensional undivided parts (A) of split-type conjugate fibers, parts (B) in which segmented and finely divided segments are dispersed, and continuous yarn bundles (C). Confounded and unevenly distributed structure.
実施例1で作製した分割型複合繊維50重量%とレーヨン(1.7dtex、繊維長44mm)50重量%とを混綿して、ローラーカード機でウェブにし、実施例1と同様にニードルパンチ加工した。電子顕微鏡で観察したところ、得られた不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメント(B)及び連糸束(C)が三次元に交絡、偏在した構造を示していた。 50% by weight of the split-type composite fiber prepared in Example 1 and 50% by weight of rayon (1.7 dtex, fiber length: 44 mm) were mixed into a web using a roller card machine, and needle punched in the same manner as in Example 1. . When observed with an electron microscope, the obtained nonwoven fabric was entangled and unevenly distributed three-dimensionally in the undivided portion (A) of the split-type conjugate fiber, the segmented finely divided segment (B), and the continuous yarn bundle (C). The structure was shown.
ポリプロピレン(プロピレン単独重合体、融点163℃、MFR16g/10min)をa成分、高密度ポリエチレン(融点131℃、MFR26g/10min)と変性ポリエチレン(密度0.931g/cm3の直鎖状低密度ポリエチレンを幹ポリマーとした無水マレイン酸グラフト変性率0.15モル/kgのポリマー。MFR14g/10min)を重量比80/20でブレンドした樹脂をb成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図1に例示した横断面構造の分割型複合繊維を紡糸し、単糸繊度21dtexの未延伸糸を得た。得られた未延伸糸を90℃、5倍で延伸し、スタッファボックスで機械捲縮を付与して分割型複合繊維を得た。得られた繊維を実施例1と同様にローラーカード機による加工及びニードルパンチ加工を施して不織布化を行った。電子顕微鏡で観察したところ、得られた不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメントが分散した部分(B)及び連糸束(C)が三次元的に交絡、偏在した構造を示していた。次に、得られた不織布に人工ゼオライト(平均粒子径10〜30μm、平均細孔径20×10−8〜50×10−8cm、比表面積40〜100m2/g)を20g/m2になるよう、不織布上に均一に散布し、155℃で15分間加熱、接着させた。得られた不織布の物性を表2に示す。 Polypropylene (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) a component, high density polyethylene (melting point 131 ° C., MFR 26 g / 10 min) and modified polyethylene (linear low density polyethylene with a density of 0.931 g / cm 3 ) A polymer having a maleic anhydride graft modification rate of 0.15 mol / kg as a backbone polymer, MFR 14 g / 10 min) blended at a weight ratio of 80/20, and using a split type composite fiber die as a volume ratio. 50/50, a split type composite fiber having a cross-sectional structure illustrated in FIG. 1 was spun to obtain an undrawn yarn having a single yarn fineness of 21 dtex. The obtained undrawn yarn was drawn at 90 ° C. and 5 times, and mechanical crimping was imparted by a stuffer box to obtain a split type composite fiber. The obtained fiber was processed by a roller card machine and needle punched in the same manner as in Example 1 to make a nonwoven fabric. Observation with an electron microscope reveals that the obtained nonwoven fabric has three-dimensional undivided portions (A) of split-type conjugate fibers, portions (B) where segmented and finely divided segments are dispersed, and continuous yarn bundles (C). The structure was entangled and unevenly distributed. Next, the obtained nonwoven fabric for artificial zeolite comprising (average particle size 10 to 30 [mu] m, an average pore diameter of 20 × 10 -8 ~50 × 10 -8 cm, a specific surface area of 40 to 100 m 2 / g) to 20 g / m 2 It was sprayed uniformly on the nonwoven fabric and heated and bonded at 155 ° C. for 15 minutes. Table 2 shows the physical properties of the obtained nonwoven fabric.
以下に、比較例1〜5を示す。 Below, Comparative Examples 1-5 are shown.
(比較例1)
ポリプロピレン(プロピレン単独重合体、融点163℃、MFR16g/10min)を芯成分、高密度ポリエチレン(融点131℃、MFR16g/10min)を鞘成分とし鞘芯型複合繊維用口金を用いて、容積比率50/50、図4に例示した横断面構造の鞘芯型複合繊維を紡糸した。得られた未延伸糸を90℃、4.0倍で延伸し、機械捲縮を付与した後、51mmに切断して、4.4dtexの鞘芯型複合繊維を得た。この短繊維をローラーカード機でウェブにし、実施例1と同様にニードルパンチ加工により不織布化した。得られた不織布の性能を表2に示す。
(Comparative Example 1)
Using polypropylene (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as a core component, high-density polyethylene (melting point 131 ° C., MFR 16 g / 10 min) as a sheath component, using a sheath core type composite fiber die, a volume ratio of 50 / 50. A sheath-core type composite fiber having a cross-sectional structure illustrated in FIG. 4 was spun. The obtained undrawn yarn was drawn at 90 ° C. and 4.0 times to give mechanical crimp, and then cut to 51 mm to obtain a 4.4 dtex sheath-core type composite fiber. This short fiber was made into a web with a roller card machine and made into a nonwoven fabric by needle punching as in Example 1. Table 2 shows the performance of the obtained nonwoven fabric.
(比較例2)
実施例1に準拠して、中空率25%、図1に例示した横断面構造である1.5dtexの分割型複合繊維を得た。この短繊維を実施例1と同様にローラーカード機による加工及びニードルパンチ加工を施して不織布化を行った。この加工において、分割型複合繊維は、カード通過性は良好であったが、分割前繊度が1.5dtexと細いため、ニードルパンチ加工工程で針折れが多発した。また、得られた不織布のセグメント分割率も低かった。
(Comparative Example 2)
In accordance with Example 1, a split type composite fiber having a hollowness of 25% and a cross-sectional structure of 1.5 dtex illustrated in FIG. 1 was obtained. This short fiber was processed into a non-woven fabric by processing with a roller card machine and needle punching in the same manner as in Example 1. In this processing, the split-type composite fiber had good card passing properties, but the fineness before split was as thin as 1.5 dtex, so needle breakage occurred frequently in the needle punch processing step. Moreover, the segment division ratio of the obtained nonwoven fabric was also low.
(比較例3)
実施例1に準拠して、中空率35%、図1に例示した横断面構造の6dtexの分割型複合繊維を得た。この分割型複合繊維を実施例1と同様にローラーカード機による加工及びニードルパンチ加工を施して不織布化を行った。この加工において、分割型複合繊維は、分割前繊度が6dtexと太いため、カード工程での沈み込み及びネップの発生が若干見られた。
(Comparative Example 3)
Based on Example 1, a split composite fiber having a hollow ratio of 35% and a cross-sectional structure illustrated in FIG. In the same manner as in Example 1, this split type composite fiber was processed by a roller card machine and needle punched to make a nonwoven fabric. In this processing, the split type composite fiber had a fineness before splitting as thick as 6 dtex.
(比較例4)
実施例1に準拠して、中空率10%、図1に例示した横断面構造の4.5dtexの分割型複合繊維を得た。この分割型複合繊維を実施例1と同様にローラーカード機による加工及びニードルパンチ加工を施して不織布化を行った。この加工において、分割型複合繊維は、カード通過性、ニードルパンチ加工性共に良好であったが、中空率が10%と低いため、得られた不織布は未分割部分(A)が多く、殆ど分割していなかった。
(Comparative Example 4)
According to Example 1, a split type composite fiber having a hollow ratio of 10% and a cross-sectional structure of 4.5 dtex illustrated in FIG. 1 was obtained. In the same manner as in Example 1, this split type composite fiber was processed by a roller card machine and needle punched to make a nonwoven fabric. In this processing, the split-type conjugate fiber was good in both card passing property and needle punching property. However, since the hollow ratio is as low as 10%, the obtained nonwoven fabric has many undivided parts (A) and is almost split. I did not.
(比較例5)
実施例1に準拠して、中空率45%、図1に例示した横断面構造の4.5dtexの分割型複合繊維を得た。この分割型複合繊維を実施例1と同様にローラーカード機による加工及びニードルパンチ加工を施して不織布化を行った。この加工において、分割型複合繊維は、中空率が45%と高く、カード工程での分割による沈み込み及びネップの発生が著しく、加工は困難であった。
(Comparative Example 5)
In accordance with Example 1, a split composite fiber having a hollow ratio of 45% and a cross-sectional structure of 4.5 dtex illustrated in FIG. 1 was obtained. In the same manner as in Example 1, this split type composite fiber was processed by a roller card machine and needle punched to make a nonwoven fabric. In this processing, the split-type composite fiber has a high hollowness ratio of 45%, and the subsidence and the generation of neps due to the splitting in the card process are remarkable, and the processing is difficult.
実施例1と比較例1のニードルパンチ不織布を吸音材として用いて、250Hz〜5kHzの各周波数における吸音率(垂直入射)を調べた。その結果、比較例1のニードルパンチ不織布は0.04〜0.3の吸音率であるのに対し、実施例1のニードルパンチ不織布は0.05〜0.6の吸音率を示し、比較例1のニードルパンチ不織布よりも吸音性に優れていた。 Using the needle punched nonwoven fabric of Example 1 and Comparative Example 1 as a sound absorbing material, the sound absorption rate (normal incidence) at each frequency of 250 Hz to 5 kHz was examined. As a result, the needle punched nonwoven fabric of Comparative Example 1 has a sound absorption rate of 0.04 to 0.3, whereas the needle punched nonwoven fabric of Example 1 shows a sound absorption rate of 0.05 to 0.6, which is a comparative example. The sound absorbing property was superior to that of No. 1 needle punched nonwoven fabric.
本発明の不織布は、分割型複合繊維の未分割部分(A)、分割細繊化されたセグメントが分散した部分(B)及び分割細繊化されたセグメントが繊維軸方向に沿って収束した部分(C)が三次元的に混在、絡合しており、かつ不均一な分布に由来した充分な空隙を形成するので、吸音材、クッション材、空気フィルター、液体フィルター、人口皮革用基布、保温材、カーペット基材、自動車用内装材、芯地、コーティング基布、ラミネート基材、農芸用資材、絶縁材、オムツ等の衛生材料として好適に使用できる。また、油膜、塵埃の掻き取り、捕集性の他、吸水性、吸油性に優れることから、ワイピング材、油吸着材、インクタンク用吸着材、研磨材等にも好適に使用することができる。更に分割繊維の空隙層に、種々の機能剤を包含できるため、様々な機能付与が可能となる。 The non-woven fabric of the present invention is a non-divided portion (A) of split-type conjugate fibers, a portion (B) in which split fine segments are dispersed, and a portion in which split fine segments converge along the fiber axis direction. (C) is mixed and entangled three-dimensionally and forms sufficient voids derived from non-uniform distribution, so that sound absorbing materials, cushion materials, air filters, liquid filters, artificial leather base fabrics, It can be suitably used as sanitary materials such as heat insulating materials, carpet base materials, automotive interior materials, interlinings, coating base fabrics, laminate base materials, agricultural materials, insulating materials, and diapers. In addition to oil film, dust scraping and collecting properties, it also has excellent water absorption and oil absorption properties, so it can be suitably used for wiping materials, oil adsorbents, ink tank adsorbents, abrasives, etc. . Furthermore, since various functional agents can be included in the void layer of the split fibers, various functions can be imparted.
A:a成分
B:b成分
A: a component B: b component
Claims (9)
The sound-absorbing material using the nonwoven fabric obtained by the manufacturing method of Claim 7 or Claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307141A JP4281474B2 (en) | 2003-08-29 | 2003-08-29 | Nonwoven fabric and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307141A JP4281474B2 (en) | 2003-08-29 | 2003-08-29 | Nonwoven fabric and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005076144A true JP2005076144A (en) | 2005-03-24 |
JP4281474B2 JP4281474B2 (en) | 2009-06-17 |
Family
ID=34410023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003307141A Expired - Lifetime JP4281474B2 (en) | 2003-08-29 | 2003-08-29 | Nonwoven fabric and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4281474B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110110145A (en) * | 2008-12-04 | 2011-10-06 | 에먼에이트 피티와이 리미티드 | Nonwoven textile made from short fibers |
US9546439B2 (en) | 2014-05-15 | 2017-01-17 | Zephyros, Inc. | Process of making short fiber nonwoven molded articles |
US10113322B2 (en) | 2014-12-08 | 2018-10-30 | Zephyros, Inc. | Vertically lapped fibrous flooring |
JP2019063349A (en) * | 2017-10-03 | 2019-04-25 | 株式会社グッドスマイルインターナショナル | Wet sheet |
US10460715B2 (en) | 2015-01-12 | 2019-10-29 | Zephyros, Inc. | Acoustic floor underlay system |
US10755686B2 (en) | 2015-01-20 | 2020-08-25 | Zephyros, Inc. | Aluminized faced nonwoven materials |
US11541626B2 (en) | 2015-05-20 | 2023-01-03 | Zephyros, Inc. | Multi-impedance composite |
-
2003
- 2003-08-29 JP JP2003307141A patent/JP4281474B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110110145A (en) * | 2008-12-04 | 2011-10-06 | 에먼에이트 피티와이 리미티드 | Nonwoven textile made from short fibers |
JP2012511108A (en) * | 2008-12-04 | 2012-05-17 | イーマン8 ピーティワイ リミテッド | Nonwoven textile made from short fibers |
US9315930B2 (en) | 2008-12-04 | 2016-04-19 | Zephyros, Inc. | Nonwoven textile made from short fibers |
KR101658628B1 (en) * | 2008-12-04 | 2016-09-22 | 제피로스, 인크. | Nonwoven textile made from short fibers |
US9546439B2 (en) | 2014-05-15 | 2017-01-17 | Zephyros, Inc. | Process of making short fiber nonwoven molded articles |
US10329701B2 (en) | 2014-05-15 | 2019-06-25 | Zephyros, Inc. | Method of forming a nonwoven molded article |
US10113322B2 (en) | 2014-12-08 | 2018-10-30 | Zephyros, Inc. | Vertically lapped fibrous flooring |
US11542714B2 (en) | 2014-12-08 | 2023-01-03 | Zephyros, Inc. | Vertically lapped fibrous flooring |
US10460715B2 (en) | 2015-01-12 | 2019-10-29 | Zephyros, Inc. | Acoustic floor underlay system |
US10755686B2 (en) | 2015-01-20 | 2020-08-25 | Zephyros, Inc. | Aluminized faced nonwoven materials |
US11541626B2 (en) | 2015-05-20 | 2023-01-03 | Zephyros, Inc. | Multi-impedance composite |
JP7029266B2 (en) | 2017-10-03 | 2022-03-03 | 株式会社グッドスマイルインターナショナル | Wet wipes |
JP2019063349A (en) * | 2017-10-03 | 2019-04-25 | 株式会社グッドスマイルインターナショナル | Wet sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4281474B2 (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9475034B2 (en) | Nonwoven fibrous webs containing chemically active particulates and methods of making and using same | |
EP2561127B1 (en) | Nonwoven nanofiber webs containing chemically active particulates and methods of making and using same | |
EP2726659B1 (en) | Non-woven electret fibrous webs and methods of making same | |
DE69910660T2 (en) | Dust filter bag for a vacuum cleaner or filter, and method for filtering a gas | |
US20130108831A1 (en) | Patterned air-laid nonwoven electret fibrous webs and methods of making and using same | |
CN101952498A (en) | Composite non-woven fibrous webs having continuous particulate phase and methods of making and using the same | |
CN110945165A (en) | Fibers comprising crystalline polyolefin and hydrocarbon tackifier resin and process for making same | |
JP2021521000A (en) | Filtration medium particularly useful for filtering fluids associated with wire electric discharge machining (WEDM) processes | |
JP4281474B2 (en) | Nonwoven fabric and method for producing the same | |
KR20240110988A (en) | Nonwoven fabric containing recycled polypropylene | |
JP6133035B2 (en) | Electrostatic filter | |
JP2010081987A (en) | Nonwoven fabric for wiper | |
JPWO2016108285A1 (en) | Fiber assembly, liquid absorbent sheet using the same, and method for producing fiber assembly | |
JP6333436B2 (en) | Electrostatic filter | |
JP3948781B2 (en) | Short fiber nonwoven fabric and method for producing the same | |
WO2019025942A1 (en) | Multi-component fibers including a crystalline polyolefin and a hydrocarbon tackifier resin, and process for making same | |
KR101723335B1 (en) | Splittable conjugate fiber and manufacturing method thereof, and nonwoven fabrics and manufacturing method thereof | |
JP4015831B2 (en) | Ultrafine fiber nonwoven fabric and method for producing the same | |
JP4581601B2 (en) | Latent crimped conjugate fiber, fiber structure using the same, and absorbent article | |
JP2004169249A (en) | Non-woven fabric and wiping material using the same | |
JPH02191759A (en) | High-tenacity sheet | |
JP4784907B2 (en) | Latent crimped composite fiber tow, method for producing the same and fiber structure | |
CN110998003A (en) | Semi-continuous filaments comprising crystalline polyolefin and hydrocarbon tackifying resin and process for making same | |
JP3961724B2 (en) | Polyolefin-based split composite fiber and non-woven fabric using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080430 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4281474 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140327 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |