[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005072567A - Manufacturing method of solar cell module - Google Patents

Manufacturing method of solar cell module Download PDF

Info

Publication number
JP2005072567A
JP2005072567A JP2004219603A JP2004219603A JP2005072567A JP 2005072567 A JP2005072567 A JP 2005072567A JP 2004219603 A JP2004219603 A JP 2004219603A JP 2004219603 A JP2004219603 A JP 2004219603A JP 2005072567 A JP2005072567 A JP 2005072567A
Authority
JP
Japan
Prior art keywords
sealing material
material film
solar cell
cell module
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004219603A
Other languages
Japanese (ja)
Inventor
Tetsuo Sasajima
徹雄 笹嶋
Yuji Nunokawa
祐史 布川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2004219603A priority Critical patent/JP2005072567A/en
Publication of JP2005072567A publication Critical patent/JP2005072567A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of solar cell module, of which solar cell elements are not damaged by heating or pressing, which can sufficiently remove air bubbles within the solar cell module and which has proper appearance. <P>SOLUTION: In the manufacturing method of a solar cell module including steps of stacking at least a first surface member, a first surface-sealing material film, photovoltaic elements, a second surface-sealing material film, and a second surface member , and heating and pressing them, the first-sealing material film and the second surface sealing material film are contact with the photovoltaic element respectively, at least one of the surfaces of the first surface-sealing material film and the second surface-sealing material film contacting the solar cell elements is provided with trench shaped concaves which are continued from one end of the surface periphery to the other end, and the range of the area of the trench shaped concaves is between 5 to 40 % of the surface area of the first or second surface-sealing material film on which the trench shaped concaves are formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は太陽電池モジュールの製造方法に関するものであり、さらに詳しくは加熱加圧による光起電力素子の損傷がなく、外観のよい太陽電池モジュールを効率的に製造する方法に関する。   The present invention relates to a method for manufacturing a solar cell module, and more particularly to a method for efficiently manufacturing a solar cell module having a good appearance without damage of a photovoltaic element due to heat and pressure.

従来、単結晶又は多結晶を用いた結晶系太陽電池セル(光起電力素子)及び充填剤に熱可塑性樹脂を用いた彩光型太陽電池モジュールは、一般に最下層である四角状の下板ガラス(受光面側ガラス)の上に熱可塑性樹脂シート、光起電力素子、さらに熱可塑性樹脂シート及び四角状の上板ガラス(非受光面ガラス)がこの順に積層された積層構造を有する。ここで熱可塑性樹脂シートとしては、一般にエチレン・酢酸ビニル共重合体、ポリビニルブチラール、ポリウレタン等のシートが用いられている。
このような太陽電池モジュールの製造方法においては、所定の温度・雰囲気下において、下板ガラスと上板ガラスの間を減圧にすることによって、下板ガラスの下面と上板ガラスの上面から所定の圧力をかけるのと同じ状態を作り(以下単に「加圧」ということがある)、下板ガラス及び上板ガラスと光起電力素子とが熱可塑性樹脂を介して密着され、彩光型太陽電池モジュールが製造される。
Conventionally, a crystalline solar cell (photovoltaic element) using a single crystal or a polycrystal and a chromatic solar cell module using a thermoplastic resin as a filler generally have a rectangular lower plate glass (the lowermost layer) It has a laminated structure in which a thermoplastic resin sheet, a photovoltaic element, a thermoplastic resin sheet, and a rectangular upper plate glass (non-light-receiving surface glass) are laminated in this order on the light-receiving surface side glass). Here, as the thermoplastic resin sheet, a sheet of ethylene / vinyl acetate copolymer, polyvinyl butyral, polyurethane or the like is generally used.
In such a solar cell module manufacturing method, a predetermined pressure is applied from the lower surface of the lower glass plate and the upper surface of the upper glass plate by reducing the pressure between the lower glass plate and the upper glass plate at a predetermined temperature and atmosphere. (Hereinafter sometimes referred to simply as “pressurization”), the lower glass plate, the upper glass plate, and the photovoltaic element are brought into close contact with each other through a thermoplastic resin to produce a luminescent solar cell module.

より具体的には、図1に示すような積層体を、通常の合わせガラスの製造に用いられるような方法、すなわち図2に示すように密封性のバッグに入れ、バッグ内を減圧にして光起電力素子と熱可塑性樹脂を加圧密着させる方法(エアバッグ方式)が用いられる。また、図3に示すように、該積層体をプレートに載せ、さらに該積層体の上にシリコーンラバーシートを載せて周辺を固定し、内部空気を減圧にして加圧密着させる方法(シングルチャンバー方式)等が用いられている。
しかしながら、近年、結晶系太陽電池セル等の光起電力素子は、資源節減とコストダウン等の要請により、その厚みが薄くなる傾向にあり、そのためこれらの素子の強度は低下する傾向にある。従って、上記製造方法では、熱可塑性樹脂が硬い状態で、光起電力素子に真空吸引時の圧力がかかるために、光起電力素子が割れる等の損傷を起こすといった問題があった。また、一般に光起電力素子は下板及び上板よりも小さいので、光起電力素子の周辺部には図1に示す間隙が存在するが、上記製造方法においては、長時間減圧しても該間隙の空気が抜けきれず、表面部材及び裏面部材と光起電力素子とを熱可塑性樹脂を介して加圧密着させた後も気泡残りが発生し、外観不良になるといった問題があった。
More specifically, the laminate as shown in FIG. 1 is put into a sealing bag as shown in FIG. A method (airbag method) in which the electromotive force element and the thermoplastic resin are pressed and adhered is used. In addition, as shown in FIG. 3, a method of placing the laminate on a plate, placing a silicone rubber sheet on the laminate and fixing the periphery, and pressurizing and sticking the internal air under reduced pressure (single chamber method) ) Etc. are used.
However, in recent years, photovoltaic devices such as crystalline solar cells tend to be thin due to demands for resource saving and cost reduction, and thus the strength of these devices tends to decrease. Therefore, the above-described manufacturing method has a problem that the photovoltaic element is damaged when the thermoplastic resin is hard and the photovoltaic element is pressurized during vacuum suction. In addition, since the photovoltaic element is generally smaller than the lower plate and the upper plate, the gap shown in FIG. 1 exists in the periphery of the photovoltaic element. There was a problem that air in the gap could not be removed, and bubbles remained even after the front surface member, the back surface member, and the photovoltaic element were pressed and adhered through the thermoplastic resin, resulting in poor appearance.

これらの問題を解決する製造方法として、光起電力素子を熱可塑性樹脂及びガラス板等で挟んだ積層体を、上チャンバーと下チャンバーを有し、その境界をシリコーンラバーシートで仕切ったダブルチャンバー方式の真空ラミネート装置を用いて減圧加熱することにより、表面部材及び裏面部材と光起電力素子とを熱可塑性樹脂を介して加圧密着する方法が提案されている(例えば特許文献1及び2参照)。
一般にこれらの装置は加熱装置の備わったプレートを下チャンバーに有し、このプレートに上記積層体を載せて、その上にシリコーンラバーシートを重ねる。その後、該積層体及びシリコーンラバーシートを上チャンバーと下チャンバーで挟み、上下のチャンバーを減圧して積層体内部を1.3kPa以下として加熱する。加熱状態で上チャンバーの圧力を上げて加圧していき、表面部材及び裏面部材と光起電力素子とを熱可塑性樹脂を介して密着させる。この方法によれば、熱可塑性樹脂が加熱により柔らかくなった状態で加圧されるため、光起電力素子の強度が低いものでも、割れなどの損傷を起こすことがなく、また積層体内部が十分に減圧状態になった後に加圧するため、前記間隙に空気がたまることがない。
しかしながら、ダブルチャンバー方式の真空ラミネート装置は、真空チャンバーを有するので、例えばビル用等の大きなサイズの太陽電池モジュールを封着するためには、構造上大規模な装置が必要になり、通常1m×2m程度の太陽電池モジュールを作製するのが限界である。さらに大きな太陽電池モジュールをダブルチャンバー方式の真空ラミネート装置を用いて作製するには、多大な設備投資を要し、経済性の観点から必ずしも好ましい方法とはいえない。
As a manufacturing method for solving these problems, a double chamber system in which a laminate in which a photovoltaic element is sandwiched between a thermoplastic resin and a glass plate, etc. has an upper chamber and a lower chamber, and the boundary is partitioned by a silicone rubber sheet. A method has been proposed in which a front surface member, a back surface member, and a photovoltaic element are pressed and adhered through a thermoplastic resin by heating under reduced pressure using a vacuum laminating apparatus (see, for example, Patent Documents 1 and 2). .
Generally, these apparatuses have a plate equipped with a heating device in a lower chamber, and the laminate is placed on the plate, and a silicone rubber sheet is overlaid thereon. Thereafter, the laminate and the silicone rubber sheet are sandwiched between the upper chamber and the lower chamber, the upper and lower chambers are depressurized, and the inside of the laminate is heated to 1.3 kPa or less. In the heated state, the pressure in the upper chamber is increased to increase the pressure, and the front and back members and the photovoltaic element are brought into close contact with each other through a thermoplastic resin. According to this method, since the thermoplastic resin is pressed in a softened state by heating, even if the photovoltaic element has low strength, it does not cause damage such as cracking, and the inside of the laminate is sufficiently Therefore, air is not collected in the gap.
However, since the double-chamber type vacuum laminating apparatus has a vacuum chamber, for example, a large-scale apparatus is required for sealing a large-sized solar cell module for buildings and the like. The limit is to produce a solar cell module of about 2 m. In order to produce a larger solar cell module using a double chamber type vacuum laminating apparatus, a great investment in equipment is required, which is not necessarily a preferable method from the viewpoint of economy.

一方、前記気泡が発生する問題点に対して、上述の積層体中にガラス繊維不織布と有機樹脂繊維不織布のいずれか一方あるいは両方が少なくとも1枚装入された太陽電池モジュールが提案されている(特許文献3参照)。
しかしながら、ガラス繊維不織布及び有機樹脂繊維不織布の融点は、いずれも前記光起電力素子を挟持する熱可塑性樹脂の融点及び架橋温度よりも高いため、該不織布の繊維形状が残り、太陽電池モジュールの外観を損ねるという問題点がある。
On the other hand, a solar cell module in which at least one of a glass fiber nonwoven fabric and an organic resin fiber nonwoven fabric or both of them are loaded in the above-described laminate has been proposed in order to solve the problem of the generation of air bubbles ( (See Patent Document 3).
However, since the melting points of the glass fiber nonwoven fabric and the organic resin fiber nonwoven fabric are both higher than the melting point and the crosslinking temperature of the thermoplastic resin sandwiching the photovoltaic element, the fiber shape of the nonwoven fabric remains, and the appearance of the solar cell module There is a problem that damages.

また、略板状の太陽電池素子と、略板状で、前記太陽電池素子を挿入する開口部を有する基材と、前記太陽電池素子及び基材を支持する支持基板とを備え、前記太陽電池素子、前記基材及び前記支持基板の間に充填材が配置される太陽電池モジュールが提案されている(特許文献4参照)。
しかしながら、複数の太陽電池素子をタブ線で連結している場合に、太陽電池素子を挿入する開口部を有する基材が該タブ線に接し、太陽電池素子と充填材を加熱圧着する際に太陽電池素子のタブ線近傍に過大な応力を発生させ、割れ等の太陽電池素子の損傷が発生する場合がある。
Further, the solar cell includes a substantially plate-like solar cell element, a substantially plate-like base material having an opening for inserting the solar cell element, and a support substrate that supports the solar cell element and the base material. A solar cell module in which a filler is disposed between an element, the base material, and the support substrate has been proposed (see Patent Document 4).
However, when a plurality of solar cell elements are connected by a tab wire, a base material having an opening for inserting the solar cell element is in contact with the tab wire, and the solar cell element and the filler are subjected to heat pressure bonding. In some cases, excessive stress is generated in the vicinity of the tab line of the battery element, and damage to the solar cell element such as cracking may occur.

さらに、透光性基板、表面封止材膜、光起電力素子、裏面封止材膜及び裏面保護膜を積層した太陽電池モジュールにおいて、表面封止材膜及び裏面封止材膜がその表面に凹凸構造を有し、この凹凸部の高さが、該封止材膜の全厚みの10〜50%を占めることを特徴とする太陽電池モジュールが提案されている(特許文献5参照)。
しかしながら、この凹凸部の高さが、封止材膜の全厚みの10〜50%となるようにいわゆるエンボス加工した場合には、凹部の面積が封止材膜表面に対して50%以上となり、ダブルチャンバー方式の真空ラミネート装置では気泡の除去ができるが、シングルチャンバー方式の真空ラミネート装置においては、加圧によって凸部がつぶれてしまい、真空吸引によって十分に脱気することができず、気泡を十分に除去することは困難である。また凸部が50%以下となり、加熱圧着する際の応力が集中するために、過大な応力が発生し、光起電力素子が割れ等の損傷を受けるという問題点がある。
また、エンボス加工を施すことにより、該封止膜表面に多数の凹部を形成し、さらに、該凹部間を連通する連通路が設けられている太陽電池用封止膜が提案されている(特許文献6参照)。
しかしながら、連通路が狭いために前記と同様、シングルチャンバー方式の真空ラミネート装置においては、気泡を十分除去することは困難である。
Furthermore, in the solar cell module in which the light-transmitting substrate, the front surface sealing material film, the photovoltaic element, the back surface sealing material film, and the back surface protective film are laminated, the front surface sealing material film and the back surface sealing material film are formed on the surface. There has been proposed a solar cell module having an uneven structure, and the height of the uneven portion occupies 10 to 50% of the total thickness of the sealing material film (see Patent Document 5).
However, when so-called embossing is performed so that the height of the concavo-convex portion is 10 to 50% of the total thickness of the encapsulant film, the area of the recess becomes 50% or more with respect to the encapsulant film surface. In the double chamber type vacuum laminator, the bubbles can be removed, but in the single chamber type vacuum laminator, the convex part is crushed by pressurization, and the air cannot be sufficiently deaerated by vacuum suction. It is difficult to remove the sufficient amount. In addition, the convex portion is 50% or less, and the stress at the time of thermocompression bonding is concentrated, so that excessive stress is generated and the photovoltaic element is damaged such as cracking.
In addition, a solar cell sealing film has been proposed in which a number of recesses are formed on the surface of the sealing film by embossing, and further, a communication path communicating between the recesses is provided (patent). Reference 6).
However, since the communication path is narrow, it is difficult to sufficiently remove bubbles in the single chamber type vacuum laminating apparatus as described above.

特開平10−214987号公報Japanese Patent Laid-Open No. 10-214987 特開平11−254526号公報JP-A-11-254526 特開平11−112007号公報Japanese Patent Laid-Open No. 11-112007 特開2001−60709号公報JP 2001-60709 A 特開2002−134768号公報JP 2002-134768 A 特開2002−185027号公報JP 2002-185027 A

本発明は、このような状況下で、多大な設備投資をすることなく、従来の合わせガラス製造設備を利用して、安価で大寸法の太陽電池モジュールを製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for manufacturing a solar cell module of a large size at low cost using a conventional laminated glass manufacturing facility without making a large capital investment under such circumstances. To do.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、表面封止材膜と裏面封止材膜の光起電力素子と接する表面に、該表面の周の一端から他端まで連続する溝状凹部を設けることで、前記課題を解決し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have determined that the surface sealing material film and the back surface sealing material film are in contact with the photovoltaic elements on the surface from one end to the other end of the surface. It has been found that the above-mentioned problem can be solved by providing a groove-like recess that is continuous up to. The present invention has been completed based on such findings.

すなわち、本発明は、
(1)少なくとも表面部材、表面封止材膜、光起電力素子、裏面封止材膜及び裏面部材を積層し、加熱加圧する太陽電池モジュールの製造方法であって、表面封止材膜と裏面封止材膜はそれぞれ光起電力素子と接し、表面封止材膜の光起電力素子と接する表面及び裏面封止材膜の光起電力素子と接する表面の少なくとも一方に、該表面の周の一端から他端まで連続する溝状凹部を有し、かつ該溝状凹部の面積がその溝状凹部が形成された表面封止材膜又は裏面封止材膜の表面の面積に対して5〜40%の範囲であることを特徴とする太陽電池モジュールの製造方法、
(2)前記溝状凹部が複数あり、かつそれらの間隔が5〜35mmである上記(1)に記載の太陽電池モジュールの製造方法、
(3)前記溝状凹部の深さが0.3mm以上である上記(1)又は(2)のいずれかに記載の太陽電池モジュールの製造方法、
(4)前記溝状凹部の幅が1〜3mmである上記(1)〜(3)のいずれかに記載の太陽電池モジュールの製造方法、
(5)前記光起電力素子が複数であって、タブ線によって連結されている上記(1)〜(4)のいずれかに記載の太陽電池モジュールの製造方法、
(6)表面部材、表面封止材膜、光起電力素子、裏面封止材膜及び裏面部材をこの順に積層し、真空加熱装置によって、前記溝状凹部を有する表面封止材膜及び溝状凹部を有する裏面封止材膜のうち、より低い融点を有する封止材膜の融点より5〜20℃低い温度で、常圧下加熱し、その後同温度で3kPa以下に減圧し、該減圧状態でより高い融点を有する封止材膜の融点より8〜20℃高い温度で加熱することを特徴とする上記(1)〜(5)のいずれかに記載の太陽電池モジュールの製造方法、
(7)前記減圧状態での加熱後、表面封止材膜及び裏面封止材膜の架橋温度以上に加熱することを特徴とする上記(6)に記載の太陽電池モジュールの製造方法、
を提供するものである。
That is, the present invention
(1) A method for manufacturing a solar cell module in which at least a surface member, a surface sealing material film, a photovoltaic element, a back surface sealing material film, and a back surface member are laminated and heated and pressurized, wherein the surface sealing material film and the back surface The sealing material film is in contact with the photovoltaic element, and at least one of the surface of the front surface sealing material film in contact with the photovoltaic element and the surface of the back surface sealing material film in contact with the photovoltaic element is formed around the periphery of the surface. It has a groove-shaped concave portion continuous from one end to the other end, and the area of the groove-shaped concave portion is 5 to 5 with respect to the surface area of the surface sealing material film or the back surface sealing material film on which the groove-shaped concave portion is formed. A method for producing a solar cell module, characterized by being in the range of 40%;
(2) The method for producing a solar cell module according to (1), wherein there are a plurality of the groove-shaped recesses and the distance between them is 5 to 35 mm.
(3) The method for manufacturing a solar cell module according to any one of (1) and (2), wherein the depth of the groove-shaped recess is 0.3 mm or more,
(4) The manufacturing method of the solar cell module according to any one of (1) to (3), wherein the groove-shaped recess has a width of 1 to 3 mm.
(5) The method for producing a solar cell module according to any one of (1) to (4), wherein the photovoltaic elements are plural and connected by tab wires.
(6) A surface member, a surface sealing material film, a photovoltaic element, a back surface sealing material film, and a back surface member are laminated in this order, and the surface sealing material film and the groove shape having the groove-shaped recesses are formed by a vacuum heating device. Of the backside sealing material film having the recess, the heating material is heated under normal pressure at a temperature 5 to 20 ° C. lower than the melting point of the sealing material film having a lower melting point, and then reduced to 3 kPa or less at the same temperature. The method for producing a solar cell module according to any one of the above (1) to (5), wherein heating is performed at a temperature 8 to 20 ° C higher than the melting point of the sealing material film having a higher melting point,
(7) The method for producing a solar cell module according to (6), wherein the heating is performed at a temperature equal to or higher than a crosslinking temperature of the front surface sealing material film and the back surface sealing material film after heating in the reduced pressure state,
Is to provide.

本発明の太陽電池モジュールの製造方法によれば、従来のエアバッグ方式あるいはシングルチャンバー方式の製造設備を使用して、加熱加圧による光起電力素子の損傷がなく、太陽電池モジュール内部の気泡が十分に除去された外観が良好な太陽電池モジュールを製造することができる。また大型の加熱炉が使用できるので大寸法の太陽電池モジュールを効率的に製造することができる。   According to the method for manufacturing a solar cell module of the present invention, the conventional air bag type or single chamber type manufacturing equipment is used, the photovoltaic element is not damaged by heating and pressurization, and bubbles inside the solar cell module are generated. A solar cell module with a sufficiently removed appearance can be manufactured. Moreover, since a large heating furnace can be used, a large-sized solar cell module can be manufactured efficiently.

本発明の太陽電池モジュールの製造方法は、少なくとも表面部材、表面封止材膜、光起電力素子、裏面封止材膜及び裏面部材を積層し、加熱加圧する太陽電池モジュールの製造方法であって、表面封止材膜と裏面封止材膜はそれぞれ光起電力素子と接し、かつ表面封止材膜の光起電力素子と接する表面及び裏面封止材膜の光起電力素子と接する表面の少なくとも一方に、該表面の周の一端から他端まで連続する溝状凹部を有することを特徴とする。
ここで表面部材は通常光起電力素子を作動させるために、太陽光を透過させる部材であることが好ましく、透明なガラスやプラスチック板、プラスチックフィルム等が好適に用いられる。一方、裏面部材は光起電力素子を支持するものであって特に限定されず、表面部材と同様にガラス等の透光性基板を用いることができる。また、ナイロンフィルムやポリエステル等の樹脂フィルムや防湿性、耐候性を要求される場合には、アルミラミネートテドラーフィルム等を用いることもできる。その他、セラミックシートや金属シートを使用することもできる。
表面部材及び裏面部材の厚みとしては、特に限定されないが、2〜15mmの範囲であることが好ましい。2mm以上であると太陽電池モジュールの強度を十分確保することができ、一方、15mm以下であると軽量であるという利点がある。以上の観点からさらに好ましくは4〜12mmの範囲、特には5〜8mmの範囲であることが好ましい。
The method for manufacturing a solar cell module of the present invention is a method for manufacturing a solar cell module in which at least a surface member, a surface sealing material film, a photovoltaic device, a back surface sealing material film, and a back surface member are laminated and heated and pressurized. The surface sealing material film and the back surface sealing material film are in contact with the photovoltaic element, and the surface of the surface sealing material film is in contact with the photovoltaic element and the surface of the back surface sealing material film is in contact with the photovoltaic element. At least one has a groove-like recess that is continuous from one end to the other end of the circumference of the surface.
Here, the surface member is preferably a member that transmits sunlight in order to normally operate the photovoltaic element, and transparent glass, a plastic plate, a plastic film, or the like is preferably used. On the other hand, the back member supports the photovoltaic element and is not particularly limited, and a translucent substrate such as glass can be used in the same manner as the front member. In addition, when a resin film such as nylon film or polyester, moisture resistance, and weather resistance are required, an aluminum laminated tedlar film or the like can be used. In addition, a ceramic sheet and a metal sheet can also be used.
Although it does not specifically limit as thickness of a surface member and a back surface member, It is preferable that it is the range of 2-15 mm. When the thickness is 2 mm or more, the strength of the solar cell module can be sufficiently ensured, and when it is 15 mm or less, there is an advantage that it is lightweight. From the above viewpoint, the range of 4 to 12 mm is more preferable, and the range of 5 to 8 mm is particularly preferable.

本発明で用いる光起電力素子としては特に限定されず、単結晶タイプのもの多結晶タイプのもの及びアモルファスタイプのもののいずれも用いることができるが、本発明の製造方法は特に、単結晶又は多結晶の結晶系光起電力素子を用いた太陽電池モジュールを製造する方法として好適である。また光起電力素子は複数存在し、タブ線によって電気的に連結されていてもよい。光起電力素子がタブ線で連結されている場合には、タブ線の部分が他の部分よりも厚くなるために応力が集中する場合が多く、タブ線がベンディング等の変形をおこし、光起電力素子が曲げられて割れが生じることが考えられる。本発明の製造方法は後述するように、表面封止材膜及び/又は裏面封止材膜が軟化して変形し、タブ線を包み込んで厚さの違いをなくし、タブ線への応力集中が分散される。従って、光起電力素子がタブ線で連結されている場合に、本発明の製造方法は特に効果を発揮する。   The photovoltaic element used in the present invention is not particularly limited, and any of single crystal type, polycrystalline type, and amorphous type can be used. It is suitable as a method for producing a solar cell module using a crystalline crystal photovoltaic element. A plurality of photovoltaic elements may exist and may be electrically connected by a tab line. When photovoltaic elements are connected by tab wires, the tab wire portions are thicker than other portions, so stress is often concentrated. It is conceivable that the power element is bent and cracked. As described later, the manufacturing method of the present invention softens and deforms the front surface sealing material film and / or the back surface sealing material film, wraps the tab wire, eliminates the difference in thickness, and concentrates stress on the tab wire. Distributed. Therefore, the manufacturing method of the present invention is particularly effective when the photovoltaic elements are connected by tab wires.

次に、表面封止材膜及び裏面封止材膜の材料は、加熱によって軟化してタブ線を包み込んで、タブ線による段差をなくすことができ、高温においては、熱溶融流動して、光起電力素子を封止する性質が要求される。また、光起電力素子を複数個タブ線で連結するタイプの太陽電池モジュールの場合には、光起電力素子間にある間隙を埋めることができる流動性が要求される。さらに、光起電力素子と表面部材及び裏面部材を接着させることができるものであることが必要である。表面封止材膜及び裏面封止材膜の材料は、これらの要求性状を満足するものであれば特に限定されないが、一般的には、エチレン・酢酸ビニル共重合体、ポリビニルブチラール、ポリウレタン等の透明な熱可塑性樹脂シートが用いられる。また表面封止材膜と裏面封止材膜の材料は同じであっても異なってもよいが、製造上の容易さを考慮すると同じ材料を用いることが好ましい。
また表面封止材膜及び裏面封止材膜の厚みとしては、特に限定されないが、0.6〜1.2mmの範囲であることが好ましい。0.6mm以上であると光起電力素子を保護するのに十分な強度を確保することができ、一方、1.2mm以下であると、太陽電池モジュールが軽量であるという昨今の要請にこたえることが可能となる。以上の観点からさらに好ましくは0.6〜1.0mmの範囲、特には0.8〜1.0mmの範囲であることが好ましい。
Next, the material of the front surface sealing material film and the back surface sealing material film can be softened by heating so as to wrap the tab wire and eliminate a step due to the tab wire. The property of sealing the electromotive force element is required. In addition, in the case of a solar cell module of a type in which a plurality of photovoltaic elements are connected by a tab line, fluidity that can fill a gap between the photovoltaic elements is required. Further, it is necessary that the photovoltaic element can be bonded to the front surface member and the back surface member. The material for the front surface sealing material film and the back surface sealing material film is not particularly limited as long as these requirements are satisfied, but in general, ethylene / vinyl acetate copolymer, polyvinyl butyral, polyurethane, etc. A transparent thermoplastic resin sheet is used. Further, the material for the front surface sealing material film and the back surface sealing material film may be the same or different, but it is preferable to use the same material in consideration of ease of manufacturing.
Moreover, it is although it does not specifically limit as thickness of a surface sealing material film | membrane and a back surface sealing material film | membrane, It is preferable that it is the range of 0.6-1.2 mm. If it is 0.6 mm or more, sufficient strength can be secured to protect the photovoltaic device, and if it is 1.2 mm or less, it can meet the recent request that the solar cell module be lightweight. Is possible. From the above viewpoint, the range of 0.6 to 1.0 mm is more preferable, and the range of 0.8 to 1.0 mm is particularly preferable.

本発明にかかる太陽電池モジュールは、図1に示すように表面部材、表面封止材膜、光起電力素子、裏面封止材膜及び裏面部材を積層したものが例示され、通常はこの順に積層したものである。本発明では、表面封止材膜と裏面封止材膜はそれぞれ光起電力素子と接しており、表面封止材膜の光起電力素子と接する表面及び裏面封止材膜の光起電力素子と接する表面の少なくとも一方に、該表面の周の一端から他端まで連続する溝状凹部を有する。周の一端から他端まで連続する溝状凹部とは、例えば表面封止材膜が四角形の場合には一辺から他の一辺まで連続的に溝が切ってある状態をいい、具体例としては図4に示すように稜線aから稜線bに向けて連続的に溝が切ってある場合や、図5に示すように稜線aから稜線cに向けて連続的に溝が切ってある場合をいう。また、ある一辺から四角形の内部に向けて溝を切っていき、該一辺に戻ってくる場合も包含される。
表面封止材膜が円形の場合には、図6に示すように円周の一端から他端に連続的に溝が切ってある場合も含まれる。
As shown in FIG. 1, the solar cell module according to the present invention is illustrated by laminating a surface member, a surface sealing material film, a photovoltaic element, a back surface sealing material film, and a back surface member. It is a thing. In the present invention, the front surface sealing material film and the back surface sealing material film are in contact with the photovoltaic element, respectively, and the front surface and back surface sealing material film photovoltaic elements in contact with the photovoltaic element of the front surface sealing material film At least one of the surfaces in contact with the surface has a groove-like recess that is continuous from one end to the other end of the periphery of the surface. A groove-like recess that is continuous from one end of the circumference to the other end means a state in which a groove is continuously cut from one side to the other side when the surface sealing material film is square, for example. 4 shows a case where grooves are continuously cut from the ridge line a toward the ridge line b, and a case where grooves are continuously cut from the ridge line a toward the ridge line c as shown in FIG. In addition, a case in which a groove is cut from one side toward the inside of the square and returned to the one side is also included.
The case where the surface sealing material film is circular includes a case where grooves are continuously cut from one end to the other end of the circumference as shown in FIG.

また、溝状凹部は周の一端から他端まで連続的に通じていればよく、直線状に形成されている必要は必ずしもない。例えば、溝状凹部がじぐざく状であったり、曲線状であってもよい。また複数の溝状凹部が交叉していてもよく、例えば格子状であってもよい。溝状凹部を切った残りの凸部の形状は特に限定されるものではなく、例えば亀甲状や円形になるものも包含される。
溝状凹部の断面の形状は、略四角形、略半円形、略三角形、略U字形、その他の異形形状のいずれであってもよいが、本発明の効果を十分に発揮するためには、略四角形が好ましい。
尚、溝状凹部が直線的に形成されていて、該溝状凹部の方向が一方向である場合であって、光起電力素子がタブで連結されている場合には、該溝状凹部の方向とタブ線の方向が略垂直方向であることが好ましい。略垂直方向であるとタブ線が溝状凹部にはまり込むことがないため、光起電力素子の一部に応力が集中することがなく、光起電力素子の割れなどの損傷が起こることがない。
以上のように封止材膜の表面に溝状凹部を設けることにより、光起電力素子と封止材膜の加熱圧着の際に、太陽電池モジュール内の気泡が抜ける道が確保される。
該溝状凹部は、表面封止材膜の光起電力素子と接する表面又は裏面封止材膜の光起電力素子と接する表面のいずれか一方にあればよく、本発明の効果を達成する。
Moreover, the groove-shaped recessed part should just be continuously connected from the one end of the circumference to the other end, and does not necessarily need to be formed linearly. For example, the groove-like concave portion may have a jagged shape or a curved shape. Moreover, the some groove-shaped recessed part may cross, for example, a grid | lattice form may be sufficient. The shape of the remaining convex part which cut | disconnected the groove-shaped recessed part is not specifically limited, For example, the shape which becomes a tortoiseshell shape or circular is also included.
The cross-sectional shape of the groove-shaped recess may be any of a substantially square shape, a substantially semi-circular shape, a substantially triangular shape, a substantially U-shaped shape, and other irregular shapes, but in order to sufficiently exert the effects of the present invention, A quadrangle is preferred.
In addition, when the groove-shaped recess is formed linearly and the direction of the groove-shaped recess is one direction, and the photovoltaic elements are connected by tabs, the groove-shaped recess The direction and the direction of the tab line are preferably substantially vertical. In the substantially vertical direction, the tab wire does not fit into the groove-shaped recess, so that stress is not concentrated on a part of the photovoltaic element, and damage such as cracking of the photovoltaic element does not occur. .
By providing the groove-shaped recess on the surface of the encapsulant film as described above, a path through which bubbles in the solar cell module escape is secured when the photovoltaic element and the encapsulant film are thermocompression bonded.
The groove-shaped recess may be provided on either the surface of the front surface sealing material film in contact with the photovoltaic element or the surface of the back surface sealing material film in contact with the photovoltaic element, and achieves the effect of the present invention.

前記溝状凹部は、その面積が封止材膜の表面の面積に対して5〜40%の範囲であることが必須である。5%以上であると、太陽電池モジュールから気泡を効果的に除去することができ、一方、40%以下であると光起電力素子及び光起電力素子を連結するタブ線にかかる応力が十分に分散され、光起電力素子の割れ等の損傷を起こすことがない。
前記溝状凹部の面積は、封止材膜の表面の面積に対して、5〜20%の範囲であることが好ましい。
溝状凹部の深さについては、太陽電池モジュール中の気泡が効果的に除去できる範囲内で特に限定されず、太陽電池モジュールの大きさや厚みにより適宜決定されるが、通常は0.3mm以上、好ましくは0.3〜0.5mmの範囲である。
また、該溝状凹部の幅は1mmを超え3mm以下の範囲であることが好ましく、溝状凹部が封止材膜の表面に複数設けられている場合には、これらの間隔は5〜35mmの範囲であることが好ましい。ここで溝状凹部の間隔とは、図7に示すように、溝状凹部の片から次の溝状凹部の片までの距離をいう。上述のように、溝状凹部は、その面積が封止材膜の表面の面積に対して5〜40%の範囲であることを必須とするが、これら溝状凹部の幅及び間隔を上記範囲とすることで、上記面積比を容易に達成することができる。上記観点から、溝状凹部の幅は1mmを超え2mm以下の範囲であることがさらに好ましく、また溝状凹部の間隔は10〜20mmの範囲であることがさらに好ましい。
上記、溝状凹部を形成する方法としては特に制限はないが、加熱ローラー等で封止材膜表面を処理することで安価に製造することができる。
It is essential that the groove-shaped recess has an area of 5 to 40% with respect to the area of the surface of the sealing material film. If it is 5% or more, bubbles can be effectively removed from the solar cell module. On the other hand, if it is 40% or less, sufficient stress is applied to the photovoltaic elements and the tab wires connecting the photovoltaic elements. It is dispersed and does not cause damage such as cracking of the photovoltaic element.
The area of the groove-shaped recess is preferably in the range of 5 to 20% with respect to the area of the surface of the sealing material film.
The depth of the groove-shaped recess is not particularly limited as long as the bubbles in the solar cell module can be effectively removed, and is appropriately determined depending on the size and thickness of the solar cell module, but usually 0.3 mm or more, Preferably it is the range of 0.3-0.5 mm.
Moreover, it is preferable that the width | variety of this groove-shaped recessed part is the range of more than 1 mm and 3 mm or less, and when the groove-shaped recessed part is provided with two or more on the surface of the sealing material film, these space | intervals are 5-35 mm. A range is preferable. Here, the interval between the groove-shaped recesses means a distance from one groove-shaped recess piece to the next groove-like recess piece as shown in FIG. As described above, it is essential that the groove-like recesses have a range of 5 to 40% of the area of the surface of the sealing material film. However, the width and interval of these groove-like recesses are within the above range. By doing so, the above-mentioned area ratio can be easily achieved. From the above viewpoint, the width of the groove-like recesses is more preferably in the range of more than 1 mm and 2 mm or less, and the interval of the groove-like recesses is more preferably in the range of 10-20 mm.
Although there is no restriction | limiting in particular as a method of forming the said groove-shaped recessed part, It can manufacture at low cost by processing the sealing material film | membrane surface with a heating roller etc.

本発明の製造方法においては、上述のように、少なくとも表面部材、表面封止材膜、光起電力素子、裏面封止材膜及び裏面部材を積層し、その後加熱、加圧して光起電力素子と表面部材及び裏面部材を表面封止材膜及び裏面封止材膜を介して接着させる。加熱、加圧の方法としては公知の方法を用いることができ、本方法においては、通常合わせガラス等を製造する際に用いられるような、真空加熱装置を用いることができる。
加熱・加圧の方法としては、特に限定されないが、前記溝状凹部を形成させた表面封止材膜及び/又は裏面封止材膜の融点より5〜20℃低い温度まで、常圧下、好ましくは1〜5℃/分の平均昇温速度、さらには1.5〜3℃/分の平均昇温速度で加熱することが好ましい。この加熱によって、表面封止材膜及び/又は裏面封止材膜が軟化する。ここで表面封止材膜と裏面封止材膜の材料が異なり、一方にのみ溝状凹部を形成している場合には、該溝状凹部を形成している封止材膜の融点より5〜20℃低い温度とすることを意味する。また、表面封止材膜と裏面封止材膜の材料が異なり、両方に溝状凹部を形成している場合には、より融点の低い材料で構成される封止材膜の融点より5〜20℃低い温度とすることを意味する。ここで、表面封止材膜と裏面封止材膜の材料が異なる場合には、これらの材料における融点の差は10℃以内であることが好ましい。封止材膜の融点より5〜20℃低い温度に到達した時点で後述するように直ちに真空吸引を行ってもよいし、また2〜5分程度、同温度で加熱してもよい。
In the production method of the present invention, as described above, at least the front surface member, the front surface sealing material film, the photovoltaic element, the back surface sealing material film, and the back surface member are laminated, and then heated and pressurized to produce the photovoltaic element. And the front surface member and the back surface member are bonded through the front surface sealing material film and the back surface sealing material film. As a method for heating and pressurizing, a known method can be used. In this method, a vacuum heating apparatus which is usually used when producing laminated glass or the like can be used.
The heating / pressurizing method is not particularly limited, but preferably under normal pressure, up to 5 to 20 ° C. lower than the melting point of the front surface sealing material film and / or the back surface sealing material film on which the groove-like recesses are formed. Is preferably heated at an average temperature increase rate of 1 to 5 ° C./min, and more preferably at an average temperature increase rate of 1.5 to 3 ° C./min. By this heating, the front surface sealing material film and / or the back surface sealing material film is softened. Here, when the materials of the front surface sealing material film and the back surface sealing material film are different and a groove-like recess is formed in only one of them, the melting point of the sealing material film forming the groove-like recess is 5 Means a temperature lower by -20 ° C. Further, when the materials of the front surface sealing material film and the back surface sealing material film are different and both have groove-shaped recesses, the melting point of the sealing material film made of a material having a lower melting point is 5 to 5 This means that the temperature is lowered by 20 ° C. Here, when the materials of the front surface sealing material film and the back surface sealing material film are different, the difference in melting point between these materials is preferably within 10 ° C. When the temperature reaches 5 to 20 ° C. lower than the melting point of the sealing material film, vacuum suction may be performed immediately as described later, or heating may be performed at the same temperature for about 2 to 5 minutes.

次に、表面封止材膜及び/又は裏面封止材膜の融点より5〜20℃低い温度に保持しつつ、3kPa以下になるまで減圧する。該温度では、封止材膜は軟化するが、流動状態にまではならないため、溝状凹部は閉塞することがない。特に溝状凹部の幅、深さ及び間隔を上記したような範囲とすることで、さらに溝状凹部の閉塞は抑制される。従って、この減圧過程で光起電力素子近傍に存在する間隙中の空気が溝状凹部を通って脱気される。脱気をより十分に行うとの観点からさらに1.3kPa以下まで減圧することがより好ましい。
脱気が十分行われた後に、該減圧度のままで表面封止材膜及び/又は裏面封止材膜の融点より8〜20℃高い温度まで、好ましくは1〜5℃/分の平均昇温速度、さらには1.5〜3℃/分の平均昇温速度で加熱することが好ましい。この加熱によって、光起電力素子は封止され、光起電力素子と表面部材及び裏面部材は表面封止材及び裏面封止材を介して接着される。封止材膜の融点より8〜20℃高い温度に達した後は、表面封止材膜及び裏面封止材膜の材質によっては、その後これらの材料が架橋する温度以上に直ちに加熱して、該封止材膜を硬化させることもできるし、また架橋性を有しない樹脂の場合には、該硬化処理の前に封止材膜の融点より10〜20℃高い温度で5〜15分程度加熱処理することもできる。尚、上記架橋等の熱硬化処理は、光起電力素子の封止、光起電力素子と表面部材及び裏面部材との接着過程の後、一旦冷却した後に行ってもよい。
Next, the pressure is reduced to 3 kPa or less while maintaining the temperature 5 to 20 ° C. lower than the melting point of the front surface sealing material film and / or the back surface sealing material film. At this temperature, the sealing material film is softened, but does not reach a fluidized state, so that the groove-shaped recess is not blocked. In particular, by setting the width, depth, and interval of the groove-like recesses in the ranges as described above, the blockage of the groove-like recesses is further suppressed. Accordingly, air in the gap existing in the vicinity of the photovoltaic element is degassed through the groove-shaped recess during this decompression process. It is more preferable that the pressure is further reduced to 1.3 kPa or less from the viewpoint of performing degassing more sufficiently.
After sufficient deaeration, the average rise in temperature is 8 to 20 ° C. higher than the melting point of the front surface sealing material film and / or the back surface sealing material film, preferably 1 to 5 ° C./min. It is preferable to heat at a temperature rate, and more preferably at an average temperature rise rate of 1.5 to 3 ° C./min. By this heating, the photovoltaic element is sealed, and the photovoltaic element and the front surface member and the back surface member are bonded via the front surface sealing material and the back surface sealing material. After reaching a temperature 8-20 ° C. higher than the melting point of the sealing material film, depending on the material of the front surface sealing material film and the back surface sealing material film, immediately heat above the temperature at which these materials cross-link, The encapsulant film can be cured, and in the case of a resin having no crosslinkability, it is about 5 to 15 minutes at a temperature 10 to 20 ° C. higher than the melting point of the encapsulant film before the curing treatment. Heat treatment can also be performed. The thermosetting treatment such as cross-linking may be performed after the photovoltaic element is sealed, after the photovoltaic element is bonded to the front surface member and the back surface member, and then cooled.

本発明の製造方法によると、上述のように太陽電池モジュール内の気泡を除去することができ、また光起電力素子の割れ等の損傷を抑制することができるが、さらに光起電力素子のずれを防止するという効果もある。光起電力素子がずれる原因は封止材膜の材料が真空吸引される際に、ガラス等の表面部材又は裏面部材が部分的に変形して傾斜部ができ、封止材膜の材料の流動性が大きくなって、光起電力素子間の空間部に封止材膜の材料が移動するときに、傾斜による横向きの力が光起電力素子に加わって、光起電力素子がずれるものと思われる。
本発明の製造方法においては、真空吸引される前に封止材膜の材料を軟化させるため、真空吸引時にガラス等の表面部材又は裏面部材の部分的変形が起こらず、光起電力素子がずれることがない。
According to the production method of the present invention, bubbles in the solar cell module can be removed as described above, and damage such as cracking of the photovoltaic element can be suppressed. There is also an effect of preventing. The reason why the photovoltaic device is displaced is that when the material of the encapsulant film is vacuum-sucked, the front surface member or back surface member such as glass is partially deformed to form an inclined portion, and the flow of the encapsulant film material When the material of the sealing material film moves to the space between the photovoltaic elements, the lateral force due to the inclination is applied to the photovoltaic elements and the photovoltaic elements are displaced. It is.
In the manufacturing method of the present invention, since the material of the encapsulant film is softened before being vacuumed, the front surface member or the back surface member such as glass is not partially deformed during vacuum suction, and the photovoltaic element is shifted. There is nothing.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.

実施例1
エチレン酢酸・ビニル共重合体((株)ブリヂストン製、架橋温度150℃、融点76℃、以下「EVA」と省略する)からなる厚さ0.8mm、大きさ1000mm×2000mmの四角形状のシートに、加熱ローラーを用いて、図7に示すように、幅2mm、深さ0.4mmの溝状凹部を17mm間隔で形成して、表面封止材膜を作製した。次いで、図8に示すように、下板ガラスの上に上記表面封止材膜を溝状凹部が上になるように配し、その上に、光起電力素子8個を間隔が15mmとなるようにタブ線で直列に連結して、セルストリングスとし、5個のセルストリングスを間隔が40mmとなるように並べた。その上に溝状凹部のない、前記厚さ0.8mm、大きさ1000mm×2000mmの四角形状のEVAシートからなる裏面封止材膜、さらに上板ガラスを配して、積層体を作製した。このときの溝状凹部の面積は表面封止材膜の表面の面積に対して、11.8%であった。ここで用いた光起電力素子は多結晶タイプであり、大きさが150mm×155mm、平均厚さが0.33mmであって、1/1000確率曲げ強度が1.6MPaであった。
該積層体の表面封止材膜と裏面封止材膜との間(間隙部)に熱電対を装着して、エアバッグに入れ、1.5℃/分の平均昇温速度で加熱し、熱電対が65℃を示した時点で真空吸引を開始し、エアバッグ内の圧力を1.5kPaとした。その後1.5℃/分の平均昇温速度で90℃に達するまで加熱した後、該積層体をエアバッグから取り出した。次いで、表面封止材膜の架橋温度である150℃まで1.5℃/分の平均昇温速度で加熱して、炉から取り出した。光起電力素子に割れは全くなく、気泡が残存しない太陽電池モジュールが得られた。
Example 1
A rectangular sheet having a thickness of 0.8 mm and a size of 1000 mm × 2000 mm made of an ethylene acetate / vinyl copolymer (manufactured by Bridgestone Corporation, bridge temperature 150 ° C., melting point 76 ° C., hereinafter abbreviated as “EVA”). Using a heating roller, as shown in FIG. 7, groove-like recesses having a width of 2 mm and a depth of 0.4 mm were formed at intervals of 17 mm to produce a surface sealing material film. Next, as shown in FIG. 8, the surface sealing material film is arranged on the lower glass so that the groove-shaped recesses are on the top, and the photovoltaic elements are placed on the surface so that the interval is 15 mm. The cell strings were connected in series with a tab line, and five cell strings were arranged so that the interval was 40 mm. A laminated body was prepared by arranging a back surface sealing material film made of a square EVA sheet having a thickness of 0.8 mm and a size of 1000 mm × 2000 mm, and an upper plate glass without a groove-like recess. At this time, the area of the groove-shaped recess was 11.8% with respect to the area of the surface of the surface sealing material film. The photovoltaic element used here was a polycrystalline type, and had a size of 150 mm × 155 mm, an average thickness of 0.33 mm, and a 1/1000 probability bending strength of 1.6 MPa.
Attach a thermocouple between the surface sealing material film and the back surface sealing material film of the laminate (gap), put in an airbag, and heat at an average temperature increase rate of 1.5 ° C./min. Vacuum suction was started when the thermocouple showed 65 ° C., and the pressure in the airbag was set to 1.5 kPa. Thereafter, the laminate was heated at an average temperature increase rate of 1.5 ° C./min until reaching 90 ° C., and then the laminate was taken out from the airbag. Subsequently, it heated at the average temperature increase rate of 1.5 degree-C / min to 150 degreeC which is the bridge | crosslinking temperature of a surface sealing material film | membrane, and took out from the furnace. There was no crack in the photovoltaic element, and a solar cell module in which no bubbles remained was obtained.

比較例1
溝状凹部のないEVAシートを表面封止材膜として使用したこと以外は実施例1と同様の方法で、太陽電池モジュールを得た。光起電力素子の割れは生じなかったが、光起電力素子の周縁部及び透過部に残存気泡があって商品として用いることはできない状態であった。
Comparative Example 1
A solar cell module was obtained in the same manner as in Example 1 except that an EVA sheet having no groove-like recess was used as the surface sealing material film. Although cracking of the photovoltaic element did not occur, there were residual bubbles at the peripheral edge and transmission part of the photovoltaic element, so that it could not be used as a commercial product.

実施例2
幅2mm、深さ0.4mmの溝状凹部を32mm間隔で形成したEVA製シートを表面封止材膜として用い、真空吸引を開始する温度を60℃としたこと以外は実施例1と同様の方法で、太陽電池モジュールを得た。溝状凹部の面積は表面封止材膜の表面の面積に対して、6.3%であった。光起電力素子に割れは全くなく、気泡が残存しない太陽電池モジュールが得られた。
Example 2
An EVA sheet in which groove-like recesses having a width of 2 mm and a depth of 0.4 mm are formed at intervals of 32 mm is used as a surface sealing material film, and the temperature at which vacuum suction is started is set to 60 ° C. By the method, a solar cell module was obtained. The area of the groove-shaped recess was 6.3% with respect to the area of the surface of the surface sealing material film. There was no crack in the photovoltaic element, and a solar cell module in which no bubbles remained was obtained.

比較例2
溝状凹部のないEVAシートを表面封止材膜として使用したこと以外は実施例2と同様の方法で、太陽電池モジュールを得た。光起電力素子の割れは生じなかったが、光起電力素子の周縁部及び透過部に残存気泡があって商品として用いることはできない状態であった。
Comparative Example 2
A solar cell module was obtained in the same manner as in Example 2 except that an EVA sheet having no groove-like recess was used as the surface sealing material film. Although cracking of the photovoltaic element did not occur, there were residual bubbles at the peripheral edge and transmission part of the photovoltaic element, so that it could not be used as a commercial product.

実施例3
幅2mm、深さ0.4mmの溝状凹部を12mm間隔で形成したEVA製シートを表面封止材膜として用い、真空吸引を開始する温度を70℃としたこと以外は実施例1と同様の方法で、太陽電池モジュールを得た。溝状凹部の面積は表面封止材膜の表面の面積に対して、16.7%であった。光起電力素子に割れは全くなく、気泡が残存しない太陽電池モジュールが得られた。
Example 3
An EVA sheet in which groove-like recesses having a width of 2 mm and a depth of 0.4 mm are formed at intervals of 12 mm is used as a surface sealing material film, and the temperature at which vacuum suction is started is set to 70 ° C. By the method, a solar cell module was obtained. The area of the groove-shaped recess was 16.7% with respect to the surface area of the surface sealing material film. There was no crack in the photovoltaic element, and a solar cell module in which no bubbles remained was obtained.

比較例3
溝状凹部のないEVAシートを表面封止材膜として使用したこと以外は実施例3と同様の方法で、太陽電池モジュールを得た。光起電力素子の割れは生じなかったが、光起電力素子の周縁部及び透過部に残存気泡があって商品として用いることはできない状態であった。
Comparative Example 3
A solar cell module was obtained in the same manner as in Example 3 except that an EVA sheet having no groove-like recess was used as the surface sealing material film. Although cracking of the photovoltaic element did not occur, there were residual bubbles at the peripheral edge and transmission part of the photovoltaic element, so that it could not be used as a commercial product.

実施例4
幅2mm、深さ0.4mmの溝状凹部を7mm間隔で形成したEVA製シートを表面封止材膜として用い、真空吸引を開始する温度を70℃としたこと以外は実施例1と同様の方法で、太陽電池モジュールを得た。溝状凹部の面積は表面封止材膜の表面の面積に対して、28.6%であった。光起電力素子に割れは全くなく、気泡が残存しない太陽電池モジュールが得られた。
Example 4
An EVA sheet in which groove-like recesses having a width of 2 mm and a depth of 0.4 mm are formed at intervals of 7 mm is used as a surface sealing material film, and the temperature at which vacuum suction is started is set to 70 ° C. By the method, a solar cell module was obtained. The area of the groove-shaped recess was 28.6% with respect to the surface area of the surface sealing material film. There was no crack in the photovoltaic element, and a solar cell module in which no bubbles remained was obtained.

実施例5
幅2mm、深さ0.4mmの溝状凹部を5mm間隔で形成したEVA製シートを表面封止材膜として用い、真空吸引を開始する温度を60℃としたこと以外は実施例1と同様の方法で、太陽電池モジュールを得た。溝状凹部の面積は表面封止材膜の表面の面積に対して、40%であった。光起電力素子に割れは全くなく、気泡が残存しない太陽電池モジュールが得られた。
Example 5
An EVA sheet in which groove-like recesses having a width of 2 mm and a depth of 0.4 mm were formed at intervals of 5 mm was used as the surface sealing material film, and the same temperature as that of Example 1 except that the temperature at which vacuum suction was started was set to 60 ° C. By the method, a solar cell module was obtained. The area of the groove-shaped recess was 40% with respect to the area of the surface of the surface sealing material film. There was no crack in the photovoltaic element, and a solar cell module in which no bubbles remained was obtained.

比較例4
幅2mm、深さ0.4mmの溝状凹部を52mm間隔で形成したEVA製シートを表面封止材膜として用いたこと以外は実施例5と同様の方法で、太陽電池モジュールを得た。
溝状凹部の面積は表面封止材膜の表面の面積に対して、3.8%であった。光起電力素子の割れは生じなかったが、光起電力素子の周縁部及び透過部に残存気泡があって商品として用いることはできない状態であった。
Comparative Example 4
A solar cell module was obtained in the same manner as in Example 5 except that an EVA sheet in which groove-like recesses having a width of 2 mm and a depth of 0.4 mm were formed at intervals of 52 mm was used as the surface sealing material film.
The area of the groove-shaped recess was 3.8% with respect to the area of the surface of the surface sealing material film. Although cracking of the photovoltaic element did not occur, there were residual bubbles at the peripheral edge and transmission part of the photovoltaic element, so that it could not be used as a commercial product.

比較例5
真空吸引を開始する温度を55℃としたこと以外は比較例4と同様の方法で、太陽電池モジュールを得た。残存気泡は生じなかったが、光起電力素子の15%に割れが発生し、商品として用いることはできない状態であった。
Comparative Example 5
A solar cell module was obtained in the same manner as in Comparative Example 4 except that the temperature at which vacuum suction was started was 55 ° C. Although no residual bubbles were generated, 15% of the photovoltaic elements were cracked and could not be used as commercial products.

比較例6
幅2mm、深さ0.4mmの溝状凹部を102mm間隔で形成したEVA製シートを表面封止材膜として用いたこと以外は比較例5と同様の方法で、太陽電池モジュールを得た。溝状凹部の面積は表面封止材膜の表面の面積に対して、2.0%であった。光起電力素子の15%に割れが発生し、かつ光起電力素子周縁部及び透過部に気泡が残存し、商品として用いることはできない状態であった。
Comparative Example 6
A solar cell module was obtained in the same manner as in Comparative Example 5 except that an EVA sheet in which groove-like recesses having a width of 2 mm and a depth of 0.4 mm were formed at intervals of 102 mm was used as the surface sealing material film. The area of the groove-shaped recess was 2.0% with respect to the area of the surface of the surface sealing material film. Cracks occurred in 15% of the photovoltaic elements, and bubbles remained in the periphery and the transmission part of the photovoltaic elements, so that they could not be used as commercial products.

比較例7
真空吸引を開始する温度を50℃としたこと以外は比較例6と同様の方法で、太陽電池モジュールを得た。残存気泡は生じなかったが、光起電力素子の40%に割れが発生し、商品として用いることはできない状態であった。
Comparative Example 7
A solar cell module was obtained in the same manner as in Comparative Example 6 except that the temperature at which vacuum suction was started was 50 ° C. Although no residual bubbles were generated, 40% of the photovoltaic elements were cracked and could not be used as commercial products.

比較例8
溝状凹部のないEVAシートを表面封止材膜として使用したこと以外は比較例7と同様の方法で、太陽電池モジュールを得た。光起電力素子の40%に割れが発生し、光起電力素子の周縁部及び透過部に残存気泡があって商品として用いることはできない状態であった。
Comparative Example 8
A solar cell module was obtained in the same manner as in Comparative Example 7 except that an EVA sheet having no groove-like recess was used as the surface sealing material film. Cracks occurred in 40% of the photovoltaic elements, and there were residual bubbles at the periphery and transmission part of the photovoltaic elements, so that they could not be used as commercial products.

太陽電池モジュールを構成する積層体の模式図である。It is a schematic diagram of the laminated body which comprises a solar cell module. エアバッグ方式を示す模式図である。It is a schematic diagram which shows an airbag system. シングルチャンバー方式を示す模式図である。It is a schematic diagram which shows a single chamber system. 封止材膜上の溝状凹部を示す模式図である。It is a schematic diagram which shows the groove-shaped recessed part on a sealing material film. 封止材膜上の溝状凹部を示す模式図である。It is a schematic diagram which shows the groove-shaped recessed part on a sealing material film. 封止材膜上の溝状凹部を示す模式図である。It is a schematic diagram which shows the groove-shaped recessed part on a sealing material film. 封止材膜上の溝状凹部を示す模式図である。It is a schematic diagram which shows the groove-shaped recessed part on a sealing material film. 太陽電池モジュールの積層構造を示す模式図である。It is a schematic diagram which shows the laminated structure of a solar cell module.

符号の説明Explanation of symbols

1.表面部材(下板ガラス)
2.表面封止材膜(熱可塑性樹脂膜)
3.光起電力素子(太陽電池セル)
4.裏面封止材膜(熱可塑性樹脂膜)
5.裏面部材(上板ガラス)
6.間隙
7.積層体
8.脱気口
9.エアバッグ
10.締付具
11.シリコーンラバーシート
12.プレート
13.タブ線
14.溝状凹部


1. Surface member (lower glass)
2. Surface sealing material film (thermoplastic resin film)
3. Photovoltaic element (solar cell)
4). Back surface sealing material film (thermoplastic resin film)
5). Back member (upper glass)
6). Gap 7. Laminated body 8. Deaeration port 9. Airbag 10. Fastener 11. Silicone rubber sheet 12. Plate 13. Tab line 14. Groove-shaped recess


Claims (7)

少なくとも表面部材、表面封止材膜、光起電力素子、裏面封止材膜及び裏面部材を積層し、加熱加圧する太陽電池モジュールの製造方法であって、表面封止材膜と裏面封止材膜はそれぞれ光起電力素子と接し、表面封止材膜の光起電力素子と接する表面及び裏面封止材膜の光起電力素子と接する表面の少なくとも一方に、該表面の周の一端から他端まで連続する溝状凹部を有し、かつ該溝状凹部の面積がその溝状凹部が形成された表面封止材膜又は裏面封止材膜の表面の面積に対して5〜40%の範囲であることを特徴とする太陽電池モジュールの製造方法。   A method of manufacturing a solar cell module, wherein at least a surface member, a surface sealing material film, a photovoltaic element, a back surface sealing material film, and a back surface member are laminated and heated and pressurized, wherein the surface sealing material film and the back surface sealing material Each of the films is in contact with the photovoltaic element, and the surface sealing material film has at least one of the surface in contact with the photovoltaic element and the surface of the back surface sealing material film in contact with the photovoltaic element. 5 to 40% of the area of the surface sealing material film or the back surface sealing material film on which the groove-shaped recess is formed and the groove-shaped recess has an area continuous to the end. A method for manufacturing a solar cell module, characterized by being in a range. 前記溝状凹部が複数あり、かつそれらの間隔が5〜35mmである請求項1に記載の太陽電池モジュールの製造方法。   The method for manufacturing a solar cell module according to claim 1, wherein there are a plurality of the groove-like recesses, and an interval between them is 5 to 35 mm. 前記溝状凹部の深さが0.3mm以上である請求項1又は2のいずれかに記載の太陽電池モジュールの製造方法。   The method for manufacturing a solar cell module according to claim 1, wherein a depth of the groove-shaped recess is 0.3 mm or more. 前記溝状凹部の幅が1mmを超え3mm以下である請求項1〜3のいずれかに記載の太陽電池モジュールの製造方法。   The method for manufacturing a solar cell module according to any one of claims 1 to 3, wherein a width of the groove-shaped recess is more than 1 mm and 3 mm or less. 前記光起電力素子が複数であって、タブ線によって連結されている請求項1〜4のいずれかに記載の太陽電池モジュールの製造方法。   The method for manufacturing a solar cell module according to claim 1, wherein the photovoltaic elements are plural and connected by a tab wire. 表面部材、表面封止材膜、光起電力素子、裏面封止材膜及び裏面部材をこの順に積層し、真空加熱装置によって、前記溝状凹部を有する表面封止材膜及び溝状凹部を有する裏面封止材膜のうち、より低い融点を有する封止材膜の融点より5〜20℃低い温度で、常圧下加熱し、その後同温度で3kPa以下に減圧し、該減圧状態でより高い融点を有する封止材膜の融点より8〜20℃高い温度で加熱することを特徴とする請求項1〜5のいずれかに記載の太陽電池モジュールの製造方法。   A surface member, a surface sealing material film, a photovoltaic device, a back surface sealing material film, and a back surface member are laminated in this order, and the surface sealing material film having the groove-shaped recess and the groove-shaped recess are provided by a vacuum heating device. Of the backside sealing material film, it is heated under normal pressure at a temperature 5 to 20 ° C. lower than the melting point of the sealing material film having a lower melting point, and then reduced to 3 kPa or less at the same temperature. The method for producing a solar cell module according to any one of claims 1 to 5, wherein heating is performed at a temperature 8 to 20 ° C higher than a melting point of the sealing material film. 前記減圧状態での加熱後、表面封止材膜及び裏面封止材膜の架橋温度以上に加熱することを特徴とする請求項6に記載の太陽電池モジュールの製造方法。


The method for manufacturing a solar cell module according to claim 6, wherein after the heating in the reduced pressure state, heating is performed to a temperature equal to or higher than a crosslinking temperature of the front surface sealing material film and the back surface sealing material film.


JP2004219603A 2003-08-01 2004-07-28 Manufacturing method of solar cell module Withdrawn JP2005072567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219603A JP2005072567A (en) 2003-08-01 2004-07-28 Manufacturing method of solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003284916 2003-08-01
JP2004219603A JP2005072567A (en) 2003-08-01 2004-07-28 Manufacturing method of solar cell module

Publications (1)

Publication Number Publication Date
JP2005072567A true JP2005072567A (en) 2005-03-17

Family

ID=34425105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219603A Withdrawn JP2005072567A (en) 2003-08-01 2004-07-28 Manufacturing method of solar cell module

Country Status (1)

Country Link
JP (1) JP2005072567A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010299A (en) * 2006-06-29 2008-01-17 Toppan Printing Co Ltd Sealing film of inorganic el element
JP2009515365A (en) * 2005-11-04 2009-04-09 ダウ・コーニング・コーポレイション Photovoltaic encapsulation
JP2009081197A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Method of manufacturing solar-battery module, and solar-battery module
WO2010033645A2 (en) * 2008-09-16 2010-03-25 Robert Stancel Compression or arched mounting of solar panels
JP2010153465A (en) * 2008-12-24 2010-07-08 Fuji Electric Systems Co Ltd Vacuum laminating device, and vacuum laminating method
JP2010525601A (en) * 2007-04-26 2010-07-22 システム ソチエタ ペル アツィオニ Photovoltaic module or photovoltaic panel with ceramic support slab
CN102185023A (en) * 2011-04-01 2011-09-14 北京精诚铂阳光电设备有限公司 Large-area flexible thin film solar cell and manufacturing method thereof
JP2016051771A (en) * 2014-08-29 2016-04-11 三菱樹脂株式会社 Solar cell dummy module and manufacturing method thereof
JP2016051772A (en) * 2014-08-29 2016-04-11 三菱樹脂株式会社 Solar cell module and manufacturing method thereof
CN106206815A (en) * 2014-10-31 2016-12-07 比亚迪股份有限公司 Solar module and preparation method thereof
JP2017002709A (en) * 2016-06-06 2017-01-05 株式会社データ・トゥ Drain pipe, and manufacturing method and manufacturing device therefor
EP2739472B1 (en) 2011-08-04 2019-02-27 Saint-Gobain Glass France Process for the manufacture of a decorative glazing
EP3926693A1 (en) * 2020-06-16 2021-12-22 Jinko Green Energy (Shanghai) Management Co., Ltd Functional part, photovoltaic module and method for manufacturing photovoltaic module
JP7195389B1 (en) 2021-07-16 2022-12-23 上海晶科緑能企業管理有限公司 photovoltaic assembly
CN116825865A (en) * 2023-06-21 2023-09-29 安徽华晟新能源科技有限公司 Preparation method of solar cell module

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515365A (en) * 2005-11-04 2009-04-09 ダウ・コーニング・コーポレイション Photovoltaic encapsulation
JP2008010299A (en) * 2006-06-29 2008-01-17 Toppan Printing Co Ltd Sealing film of inorganic el element
JP2010525601A (en) * 2007-04-26 2010-07-22 システム ソチエタ ペル アツィオニ Photovoltaic module or photovoltaic panel with ceramic support slab
JP2009081197A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Method of manufacturing solar-battery module, and solar-battery module
EP2043163A3 (en) * 2007-09-25 2012-02-15 Sanyo Electric Co., Ltd. Method of manufacturing solar cell module and solar cell module thus manufactured
WO2010033645A2 (en) * 2008-09-16 2010-03-25 Robert Stancel Compression or arched mounting of solar panels
WO2010033645A3 (en) * 2008-09-16 2010-07-08 Robert Stancel Compression or arched mounting of solar panels
JP2010153465A (en) * 2008-12-24 2010-07-08 Fuji Electric Systems Co Ltd Vacuum laminating device, and vacuum laminating method
CN102185023A (en) * 2011-04-01 2011-09-14 北京精诚铂阳光电设备有限公司 Large-area flexible thin film solar cell and manufacturing method thereof
WO2012129862A1 (en) * 2011-04-01 2012-10-04 泉州市博泰半导体科技有限公司 Large area flexible thin-film solar cell and manufacturing method thereof
EP2739472B1 (en) 2011-08-04 2019-02-27 Saint-Gobain Glass France Process for the manufacture of a decorative glazing
JP2016051771A (en) * 2014-08-29 2016-04-11 三菱樹脂株式会社 Solar cell dummy module and manufacturing method thereof
JP2016051772A (en) * 2014-08-29 2016-04-11 三菱樹脂株式会社 Solar cell module and manufacturing method thereof
CN106206815A (en) * 2014-10-31 2016-12-07 比亚迪股份有限公司 Solar module and preparation method thereof
JP2017002709A (en) * 2016-06-06 2017-01-05 株式会社データ・トゥ Drain pipe, and manufacturing method and manufacturing device therefor
EP3926693A1 (en) * 2020-06-16 2021-12-22 Jinko Green Energy (Shanghai) Management Co., Ltd Functional part, photovoltaic module and method for manufacturing photovoltaic module
US11929444B2 (en) 2020-06-16 2024-03-12 Jinko Green Energy (Shanghai) Management Co., LTD Functional part, photovoltaic module and method for manufacturing photovoltaic module
JP7195389B1 (en) 2021-07-16 2022-12-23 上海晶科緑能企業管理有限公司 photovoltaic assembly
JP2023013894A (en) * 2021-07-16 2023-01-26 上海晶科緑能企業管理有限公司 Photovoltaic cell assembly
US11721776B2 (en) 2021-07-16 2023-08-08 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Photovoltaic module
CN116825865A (en) * 2023-06-21 2023-09-29 安徽华晟新能源科技有限公司 Preparation method of solar cell module

Similar Documents

Publication Publication Date Title
JP3875708B2 (en) Manufacturing method of solar cell module
JP4682238B2 (en) Manufacturing method of solar cell module
JP5209229B2 (en) Manufacturing method of solar cell module
JP2005072567A (en) Manufacturing method of solar cell module
EP3857613B1 (en) A method of producing a solar panel curved in two directions
US8877540B2 (en) Solar cell module and manufacturing method of solar cell module
JP4682237B2 (en) Manufacturing method of solar cell module
JP2011114262A (en) Back-united sheet and method of manufacturing solar cell module using the same
JP4682014B2 (en) Manufacturing method of solar cell module
WO2012102320A1 (en) Solar cell module and method for manufacturing solar cell module
JP2005317714A (en) Solar cell module and its manufacturing method
JP2006295087A (en) Photovoltaic module
JP5470341B2 (en) Manufacturing method of solar cell module
JP2012151423A (en) Method of manufacturing electronic component
JP2004179397A (en) Method for manufacturing solar cell module
JP2005317665A (en) Method of manufacturing solar cell module
JP3875715B2 (en) Manufacturing method of solar cell module
JP2006156873A (en) Resin film and method of manufacturing semiconductor module using the same
JP2000000950A (en) Apparatus and method for manufacturing laminate
JP5884140B2 (en) SOLAR CELL MODULE AND METHOD FOR MANUFACTURING SOLAR CELL MODULE
JP2016122733A (en) Solar battery module
JPS58137266A (en) Manufacture of module of solar cell
WO2017056363A1 (en) Method for producing solar cell module
JP2012204735A (en) Resin sheet for formation of encapsulating films for crystalline silicon solar battery modules
JP2008277378A (en) Solar-battery cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002