[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005071949A - Fuel battery electric power generator and its operation method - Google Patents

Fuel battery electric power generator and its operation method Download PDF

Info

Publication number
JP2005071949A
JP2005071949A JP2003303867A JP2003303867A JP2005071949A JP 2005071949 A JP2005071949 A JP 2005071949A JP 2003303867 A JP2003303867 A JP 2003303867A JP 2003303867 A JP2003303867 A JP 2003303867A JP 2005071949 A JP2005071949 A JP 2005071949A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
stopped
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003303867A
Other languages
Japanese (ja)
Other versions
JP4613482B2 (en
Inventor
Takahiro Umeda
孝裕 梅田
Takayuki Urata
隆行 浦田
Shinya Kosako
慎也 古佐小
Yasushi Sugawara
靖 菅原
Junji Morita
純司 森田
Kiichi Shibata
礎一 柴田
Makoto Uchida
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003303867A priority Critical patent/JP4613482B2/en
Publication of JP2005071949A publication Critical patent/JP2005071949A/en
Application granted granted Critical
Publication of JP4613482B2 publication Critical patent/JP4613482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel battery electric power generator and its operation method, in which degradation due to the oxidation of an anode and a cathode during the stop of actuation is suppressed so as to improve durability. <P>SOLUTION: A fuel battery electric power generator includes an electrolyte 1, a pair of electrodes 21 and 22, a fuel battery 5 composed of a pair of separator plates 41 and 42 and gas replacing section for replacing all or a part of oxidant gas remaining in the fuel battery 5 with inert gas and then further replacing all or a part of inert gas with fuel gas. The anode 21 and the cathode 22 enclose the fuel gas by replacing the gas in the cathode 22 with the fuel gas during the stop of the operation of the fuel battery 5 so that degradation due to the oxidation of the anode 21 and the cathode 22 is suppressed so as to improve the durability of the fuel battery generator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、起動停止による劣化の抑制または耐久性の向上を図った燃料電池発電装置とその運転方法に関するものである。   TECHNICAL FIELD The present invention relates to a fuel cell power generation apparatus and a method for operating the fuel cell power generation apparatus that suppress deterioration due to start / stop or improve durability.

従来の一般的な固体高分子電解質型燃料電池の構成および動作について図8を参照しながら説明する。図8において1は水素イオン伝導性を有するパーフルオロカーボンスルフォン酸からなる固体高分子電解質であり、電解質1の両面には一対の電極21および22が形成されている。電極21および22は、多孔質カーボンに白金などの貴金属を担持した触媒および水素イオン伝導性を有する高分子電解質との混合物からなる触媒層と、触媒層の上に積層した通気性および電子伝導性を有するガス拡散層を備えている。また、電極21および22の周囲にはガスの混合やリークを防止するガスケット31および32がそれぞれ配置され、電極21および22にそれぞれ燃料ガスおよび酸化剤ガスを供給および排出するガス流路を有する導電性のセパレータ板41および42で狭持されている。   The configuration and operation of a conventional general solid polymer electrolyte fuel cell will be described with reference to FIG. In FIG. 8, 1 is a solid polymer electrolyte made of perfluorocarbon sulfonic acid having hydrogen ion conductivity, and a pair of electrodes 21 and 22 are formed on both surfaces of the electrolyte 1. The electrodes 21 and 22 include a catalyst layer made of a mixture of a catalyst in which a noble metal such as platinum is supported on porous carbon and a polymer electrolyte having hydrogen ion conductivity, and air permeability and electronic conductivity laminated on the catalyst layer. A gas diffusion layer having Gaskets 31 and 32 for preventing gas mixing and leakage are disposed around the electrodes 21 and 22, respectively, and conductive materials having gas flow paths for supplying and discharging fuel gas and oxidant gas to the electrodes 21 and 22, respectively. Is sandwiched between separator plates 41 and 42.

以上の構成からなる単セルを複数積層したものをスタックとし、単セルまたはスタックを総称して燃料電池5とする。また、燃料ガスを供給する側の電極21をアノード、酸化剤ガスを供給する側の電極22をカソードとする。   A stack obtained by stacking a plurality of single cells having the above configuration is referred to as a stack, and the single cell or stack is collectively referred to as a fuel cell 5. The electrode 21 on the fuel gas supply side is the anode, and the electrode 22 on the oxidant gas supply side is the cathode.

アノード21およびカソード22にそれぞれ燃料ガスおよび酸化剤ガスを供給して電子負荷を接続すると、アノード21に供給された燃料ガス中に含まれる水素はアノード21と電解質1の界面で電子を放って水素イオンとなる(化1)。
(化1)
→ 2H + 2e
水素イオンは電解質1を通ってカソード22へと移動し、カソード22と電解質1の界面で電子を受け取り、カソード22に供給された酸化剤ガス中に含まれる酸素と反応し、水を生成する(化2)。
(化2)
1/2O + 2H +2e → H
全反応を(化3)に示す。
(化3)
+ 1/2O → H
このとき電子負荷を流れる電子の流れを直流の電気エネルギーとして利用することができる。また、一連の反応は発熱反応であるため、反応熱を熱エネルギーとして利用することができる。
When the fuel gas and the oxidant gas are supplied to the anode 21 and the cathode 22, respectively, and an electronic load is connected, the hydrogen contained in the fuel gas supplied to the anode 21 releases electrons at the interface between the anode 21 and the electrolyte 1 to generate hydrogen. It becomes an ion (Chemical formula 1).
(Chemical formula 1)
H 2 → 2H + + 2e
The hydrogen ions move to the cathode 22 through the electrolyte 1, receive electrons at the interface between the cathode 22 and the electrolyte 1, react with oxygen contained in the oxidant gas supplied to the cathode 22, and generate water ( 2).
(Chemical formula 2)
1 / 2O 2 + 2H + + 2e → H 2 O
The total reaction is shown in (Chemical Formula 3).
(Chemical formula 3)
H 2 + 1 / 2O 2 → H 2 O
At this time, the flow of electrons flowing through the electronic load can be used as DC electrical energy. Moreover, since a series of reactions are exothermic reactions, the reaction heat can be used as thermal energy.

次に、燃料処理部7を備えた一般的な燃料電池発電装置の構成および動作について図8を参照しながら説明する。図8においてメタンなどの炭化水素を含む原料ガスは脱硫部6に供給され、付臭剤などに含まれる硫黄化合物が吸着除去される。そして、燃料処理部7で改質され水素を含む燃料ガスとなり、燃料電池5のアノード21に供給される。燃料処理部7は、メタンなどを改質する改質部71と、発生する一酸化炭素(CO)を変成するCO変成部72と、さらにCOを除去するCO除去部73を備えている。   Next, the configuration and operation of a general fuel cell power generator including the fuel processing unit 7 will be described with reference to FIG. In FIG. 8, the raw material gas containing hydrocarbons, such as methane, is supplied to the desulfurization part 6, and the sulfur compound contained in an odorant etc. is adsorbed and removed. Then, it is reformed by the fuel processing unit 7 to become a fuel gas containing hydrogen, and is supplied to the anode 21 of the fuel cell 5. The fuel processing unit 7 includes a reforming unit 71 that reforms methane and the like, a CO conversion unit 72 that converts generated carbon monoxide (CO), and a CO removal unit 73 that further removes CO.

原料ガスにメタンを用いた場合、改質部71では、水蒸気を伴って(化4)で示した反応が起こり、水素とともに約10%のCOが発生する。
(化4)
CH + HO → CO + 3H
その後、発生したCOは(化5)で示すようにCO変成部72で二酸化炭素に酸化され、約5000ppmまで減少する。後流のCO除去器73ではCOだけでなく、燃料ガスの水素まで酸化してしまうので、CO変成部72でできるだけCO濃度を低下させる必要がある。
(化5)
CO + HO → CO + H
さらに残ったCOは(化6)で示すようにCO除去器73で酸化され、その濃度は約10ppm以下まで低下する。
(化6)
CO + 1/2O → CO
全反応式を(化7)に示す。
(化7)
CH + 2HO → CO + 4H
燃料電池5の動作温度域においてアノード21に含まれる白金はCOにより被毒しその触媒活性が劣化するため、通常アノード21には、白金−ルテニウムなどの耐CO性を有する触媒が用いられる。しかし、耐CO性の触媒においても燃料ガス中に含まれるCO濃度は少なくとも10ppm以下に抑えなければならない。
When methane is used as the source gas, in the reforming unit 71, the reaction shown in (Chemical Formula 4) occurs with water vapor, and about 10% of CO is generated together with hydrogen.
(Chemical formula 4)
CH 4 + H 2 O → CO + 3H 2
Thereafter, the generated CO is oxidized to carbon dioxide at the CO conversion section 72 as shown in (Chemical Formula 5), and is reduced to about 5000 ppm. Since the downstream CO remover 73 oxidizes not only CO but also hydrogen of the fuel gas, the CO concentration needs to be reduced as much as possible in the CO shift section 72.
(Chemical formula 5)
CO + H 2 O → CO 2 + H 2
Further, the remaining CO is oxidized by the CO remover 73 as shown in (Chemical Formula 6), and its concentration is reduced to about 10 ppm or less.
(Chemical formula 6)
CO + 1 / 2O 2 → CO 2
The overall reaction formula is shown in (Chemical Formula 7).
(Chemical formula 7)
CH 4 + 2H 2 O → CO 2 + 4H 2
Since platinum contained in the anode 21 is poisoned by CO in the operating temperature range of the fuel cell 5 and its catalytic activity deteriorates, a catalyst having CO resistance such as platinum-ruthenium is usually used for the anode 21. However, even in a CO-resistant catalyst, the CO concentration contained in the fuel gas must be suppressed to at least 10 ppm or less.

燃料電池発電装置は、主に前記した燃料電池5と燃料処理部7で構成されるが、家庭用としてメタンを主成分とする都市ガスなどの原料ガスを用いた場合、光熱費メリットを大きくするために、電気消費量の少ない時間帯は停止し、電気消費量の多い時間帯に運転する運転方法が有効である。一般に、昼間は運転して深夜は運転を停止するDSS(Daily Start-up & Shut-down)運転は光熱費メリットを大きくすることができ、燃料電池発電装置は、起動と停止を含む運転パターンに柔軟に対応できることが望ましい。   The fuel cell power generation device is mainly composed of the fuel cell 5 and the fuel processing unit 7 described above. However, when a raw material gas such as city gas mainly composed of methane is used for home use, the merit of utility cost is increased. For this reason, an operation method is effective in which the vehicle is stopped during a time period with a small amount of electricity consumption and is operated during a time period with a large amount of electricity consumption. In general, DSS (Daily Start-up & Shut-down) operation, which operates in the daytime and stops operation in the middle of the night, can increase the utility cost, and the fuel cell power generator has an operation pattern including start and stop. It is desirable to be able to respond flexibly.

また、従来のりん酸型燃料電池発電装置では安全性の観点から、停止時に装置内部に残留した燃料ガスを窒素などの不活性ガスで置換する操作が必要であった。固体高分子電解質型燃料電池発電装置においても不活性ガスパージを用いた停止方法がいくつか報告されている。   Further, in the conventional phosphoric acid type fuel cell power generator, from the viewpoint of safety, it is necessary to replace the fuel gas remaining inside the apparatus with an inert gas such as nitrogen when stopped. Several stopping methods using an inert gas purge have been reported for solid polymer electrolyte fuel cell power generators.

例えば、燃料電池内に残留した燃料ガスおよび酸化剤ガスを水または加湿された不活性ガスで置換し、封入した状態で停止していた(特許文献1参照)。これにより、電解質1の保水状態が維持され、再起動時に速やかに発電を開始することができる。   For example, the fuel gas and the oxidant gas remaining in the fuel cell are replaced with water or a humidified inert gas and stopped in a sealed state (see Patent Document 1). Thereby, the water retention state of the electrolyte 1 is maintained, and power generation can be started quickly upon restart.

あるいは、酸化剤ガスの供給を停止した状態でセルを発電させ、カソード22の酸素を消費させてからアノード21に窒素などの不活性ガスで置換して燃料電池5を停止していた(特許文献2参照)。これにより、カソード22の酸化を抑制できるだけでなく、電解質1を介し、アノード21から拡散してきた水素が、カソード22に付着した不純物を還元して除去することができる。
特開平6−251788号公報 特開2002−93448号公報
Alternatively, the fuel cell 5 is stopped by generating power in the state where the supply of the oxidant gas is stopped, consuming oxygen from the cathode 22, and then replacing the anode 21 with an inert gas such as nitrogen (Patent Document). 2). Thereby, not only the oxidation of the cathode 22 can be suppressed, but also hydrogen diffused from the anode 21 through the electrolyte 1 can reduce and remove impurities adhering to the cathode 22.
JP-A-6-251788 JP 2002-93448 A

しかしながら、前記従来の水や加湿された不活性ガスをパージする方法では、停止時に燃料電池5の温度が低下し、燃料電池5内部で結露が発生し、体積の減少が生じ、負圧となるため、外部の酸素が流入したり、電解質1が破損したり、電極21および22が短絡するなどといった課題があった。   However, in the conventional method of purging water or humidified inert gas, the temperature of the fuel cell 5 decreases when the fuel cell is stopped, condensation occurs inside the fuel cell 5, a decrease in volume occurs, and a negative pressure is generated. For this reason, there have been problems such as the inflow of external oxygen, the electrolyte 1 being damaged, and the electrodes 21 and 22 being short-circuited.

また、前記従来の酸化剤ガスの供給を停止した状態でセルを発電させ、カソード22の酸素を消費させてからアノード21に不活性ガスをパージする方法では、カソード22に消費しきれず残留した酸素や、拡散やリークなどにより混入する空気の影響により、カソード22が酸化され、劣化するという課題があった。また、発電して強制的に酸素を消費させるのでカソード22の電位が一様でなく、停止させる毎にカソードの活性化状況が異なり、起動時の電池電圧がばらつくといった課題があった。   Further, in the conventional method in which the cell is generated in a state where the supply of the oxidant gas is stopped and oxygen in the cathode 22 is consumed, and then the inert gas is purged in the anode 21, the remaining oxygen that cannot be consumed in the cathode 22 remains. In addition, there is a problem that the cathode 22 is oxidized and deteriorated due to the influence of air mixed in due to diffusion or leakage. In addition, since oxygen is forcibly consumed by power generation, the potential of the cathode 22 is not uniform, and the activation state of the cathode is different every time it is stopped, and the battery voltage at startup varies.

本発明は、前記従来の課題を解決するもので、燃料電池の停止時に、燃料電池5内に残留した酸化剤ガスを不活性ガスで置換して、さらに燃料ガスで置換することにより、安全性に優れた燃料発電装置を提供し、さらに起動停止におけるカソード22の酸化による劣化を抑制し、耐久性を向上させる燃料電池発電装置の運転方法を提供することを目的とする。   The present invention solves the above-described conventional problems. When the fuel cell is stopped, the oxidant gas remaining in the fuel cell 5 is replaced with an inert gas, and further replaced with the fuel gas. Another object of the present invention is to provide a fuel cell generator operating method that suppresses deterioration due to oxidation of the cathode 22 during start-up and stops and improves durability.

前記従来の課題を解決するために、本発明の燃料電池発電装置とその運転方法は、電解質と、一対の電極と、一対のセパレータ板とからなる燃料電池と、燃料電池の停止時に燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに不活性ガスの全部または一部を燃料ガスで置換するガス置換部とを備え、燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスを介して、燃料ガスで置換するものである。   In order to solve the above-described conventional problems, a fuel cell power generation device and an operation method thereof according to the present invention include a fuel cell including an electrolyte, a pair of electrodes, and a pair of separator plates, and a fuel cell interior when the fuel cell is stopped. And a gas replacement part for replacing all or part of the inert gas with fuel gas after replacing all or part of the remaining oxidant gas with inert gas. All or part of the gas is replaced with fuel gas through an inert gas.

これによって、アノードおよびカソードが水素を含む燃料ガスで封入され、アノードおよびカソードの酸化による劣化が抑制され、燃料電池発電装置の耐久性を向上させることができる。   As a result, the anode and the cathode are sealed with the fuel gas containing hydrogen, deterioration due to oxidation of the anode and the cathode is suppressed, and the durability of the fuel cell power generator can be improved.

また、酸化剤ガスを不活性ガスを介して燃料ガスに置換するので、酸化剤ガスに含まれる酸素と燃料ガスに含まれる水素が直接接触せず、安全に置換を行うことができる。   Further, since the oxidant gas is replaced with the fuel gas via the inert gas, the oxygen contained in the oxidant gas and the hydrogen contained in the fuel gas are not in direct contact, and the replacement can be performed safely.

以上説明したように、本発明の燃料電池発電装置とその運転方法によれば、カソードを燃料ガスで置換するので、カソードの酸化による劣化が抑制され、燃料電池発電装置の耐久性を向上させることができる。   As described above, according to the fuel cell power generator of the present invention and the operation method thereof, the cathode is replaced with the fuel gas, so that deterioration due to oxidation of the cathode is suppressed and the durability of the fuel cell power generator is improved. Can do.

請求項1に記載の発明は、電解質と、電解質を挟む一対の電極と、電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、燃料電池の停止時に燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに不活性ガスの全部または一部を燃料ガスで置換するガス置換部とを備え、カソードを不活性ガスを介して燃料ガスで置換することにより、カソードの酸化による劣化を抑制し、燃料電池発電装置の耐久性を向上させることができる。   The invention according to claim 1 supplies and discharges an electrolyte, a pair of electrodes sandwiching the electrolyte, and a fuel gas containing at least hydrogen on one of the electrodes, and supplies and discharges an oxidizing gas containing at least oxygen on the other. After substituting all or part of the oxidant gas remaining in the fuel cell with at least one cell comprising a pair of separator plates having gas flow paths and the fuel cell when the fuel cell is stopped with an inert gas And a gas replacement unit that replaces all or part of the inert gas with the fuel gas, and the cathode is replaced with the fuel gas via the inert gas, thereby suppressing deterioration due to oxidation of the cathode, and the fuel cell. The durability of the power generation device can be improved.

請求項2に記載の発明は、特に、請求項1に記載の燃料ガスおよび酸化剤ガスの供給部および排出部に遮断弁を備え、酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに不活性ガスの全部または一部を燃料ガスで置換して、遮断弁を閉じ、燃料ガスを燃料電池内に封入することにより、外部から拡散してくる空気(酸素)によるアノードおよびカソードの酸化や、電解質の乾燥を抑制し、不純物などの混入を防止することができ、装置の耐久性を向上させることができる。   The invention described in claim 2 is provided with a shut-off valve in the fuel gas and oxidant gas supply unit and the discharge unit according to claim 1 in particular, and all or part of the oxidant gas is replaced with an inert gas. After that, all or part of the inert gas is replaced with fuel gas, the shutoff valve is closed, and the fuel gas is sealed in the fuel cell, so that the anode and cathode are diffused from the outside (oxygen). Oxidation of the electrolyte and drying of the electrolyte can be suppressed, mixing of impurities and the like can be prevented, and the durability of the apparatus can be improved.

請求項3に記載の発明は、電解質と、電解質を挟む一対の電極と、電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、燃料電池の停止時に燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに不活性ガスを燃料ガスで置換するガス置換部と、燃料電池の電圧を検出する電圧検出部とを備え、燃料電池の停止時に、燃料ガスと酸化剤ガスの供給を同時に停止し、電圧検出部が燃料電池の電圧を所定の電圧以下と検出した後、燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換して、さらに不活性ガスの全部または一部を燃料ガスで置換することにより、燃料ガスと酸化剤ガスの供給を同時に停止したとき、アノードから電解質を介して拡散してきた水素が、カソード白金表面上に形成された酸化皮膜や、カソードに付着した不純物を還元して除去するので、カソードが活性化され、これらの要因で低下していた電池電圧を起動時に回復させることができる。   The invention according to claim 3 supplies and discharges an electrolyte, a pair of electrodes sandwiching the electrolyte, and a fuel gas containing at least hydrogen on one of the electrodes, and supplies and discharges an oxidant gas containing at least oxygen on the other. After substituting all or part of the oxidant gas remaining in the fuel cell with at least one cell comprising a pair of separator plates having gas flow paths and the fuel cell when the fuel cell is stopped with an inert gas And a gas replacement unit that replaces the inert gas with the fuel gas, and a voltage detection unit that detects the voltage of the fuel cell. When the fuel cell is stopped, the supply of the fuel gas and the oxidant gas is stopped at the same time. After the detection unit detects that the fuel cell voltage is equal to or lower than a predetermined voltage, all or part of the oxidant gas remaining in the fuel cell is replaced with inert gas, and all or part of the inert gas is further replaced. When the supply of fuel gas and oxidant gas was stopped at the same time by replacing with gas, hydrogen diffused from the anode through the electrolyte adhered to the oxide film formed on the cathode platinum surface or the cathode. Since impurities are reduced and removed, the cathode is activated, and the battery voltage, which has been reduced due to these factors, can be recovered at the time of startup.

また、水素が残留したアノードを基準とした場合、電圧検出部で検出する電圧からカソードの電位を推定することができる。アノードから拡散してきた水素により、カソードが活性化されるとき、カソードの電位が低下するので、電圧検出部で検出する電圧からカソードの活性化状況を知ることができ、常に一定の電圧で活性化すれば、起動時の電池電圧を安定化させることができる。   In addition, when the anode in which hydrogen remains is used as a reference, the cathode potential can be estimated from the voltage detected by the voltage detector. When the cathode is activated by the hydrogen diffused from the anode, the cathode potential decreases, so the activation status of the cathode can be known from the voltage detected by the voltage detector, and the cathode is always activated at a constant voltage. If it does, the battery voltage at the time of starting can be stabilized.

また、燃料電池の電圧を所定の電圧まで下げてから、燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換するので、カソードの酸化による劣化を抑制し、燃料電池発電装置の耐久性を向上させることができる。   In addition, since all or part of the oxidant gas remaining in the fuel cell is replaced with inert gas after the voltage of the fuel cell is lowered to a predetermined voltage, deterioration due to oxidation of the cathode is suppressed, and fuel cell power generation The durability of the apparatus can be improved.

請求項4に記載の発明は、電解質と、電解質を挟む一対の電極と、電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、燃料電池の停止時に燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに不活性ガスを燃料ガスで置換するガス置換部と、燃料電池の電圧を検出する電圧検出部とを備え、燃料電池の停止時に、燃料ガスを供給したまま酸化剤ガスの供給を停止し、電圧検出部が燃料電池の電圧を所定の電圧以下と検出した後、燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換して、さらに不活性ガスの全部または一部を燃料ガスで置換することにより、燃料ガスを供給したまま酸化剤ガスの供給を停止したとき、アノードの基準電位がより安定化し、カソードの活性化状況もさらに安定化させることができる。   The invention according to claim 4 supplies and discharges an electrolyte, a pair of electrodes sandwiching the electrolyte, and a fuel gas containing at least hydrogen on one of the electrodes, and supplies and discharges an oxidizing gas containing at least oxygen on the other. After substituting all or part of the oxidant gas remaining in the fuel cell with at least one cell comprising a pair of separator plates having gas flow paths and the fuel cell when the fuel cell is stopped with an inert gas In addition, a gas replacement unit that replaces the inert gas with the fuel gas and a voltage detection unit that detects the voltage of the fuel cell are provided. When the fuel cell is stopped, the supply of the oxidant gas is stopped while the fuel gas is supplied. After the voltage detector detects that the fuel cell voltage is equal to or lower than the predetermined voltage, all or part of the oxidant gas remaining in the fuel cell is replaced with inert gas, and all of the inert gas or By replacing the parts with the fuel gas, when stopping the feed of still oxidant gas was supplied to the fuel gas, can be the anode of the reference potential is more stable, cathode activation situation be further stabilized.

請求項5に記載の発明は、電解質と、電解質を挟む一対の電極と、電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、燃料電池の停止時に燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに不活性ガスを燃料ガスで置換するガス置換部と、燃料電池の電圧を検出する電圧検出部とを備え、燃料電池の停止時に、燃料ガスを供給したまま酸化剤ガスの供給を停止し、燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換して、電圧検出部が燃料電池の電圧を所定の電圧以下と検出した後、不活性ガスの全部または一部を燃料ガスで置換することにより、燃料ガスを供給したまま酸化剤ガスを不活性ガスで置換したとき、カソードの酸素を強制的に排出するので、より早く活性化させることができる。また、ガスを停止しただけでは置換できないガス拡散層などに残留した酸素も置換するので、さらに劣化を抑制することができる。   The invention according to claim 5 supplies and discharges an electrolyte, a pair of electrodes sandwiching the electrolyte, a fuel gas containing at least hydrogen on one of the electrodes, and an oxidant gas containing at least oxygen on the other. After substituting all or part of the oxidant gas remaining in the fuel cell with at least one cell comprising a pair of separator plates having gas flow paths and the fuel cell when the fuel cell is stopped with an inert gas In addition, a gas replacement unit that replaces the inert gas with the fuel gas and a voltage detection unit that detects the voltage of the fuel cell are provided. When the fuel cell is stopped, the supply of the oxidant gas is stopped while the fuel gas is supplied. After replacing all or part of the oxidant gas remaining in the fuel cell with an inert gas, and the voltage detection unit detects the voltage of the fuel cell below a predetermined voltage, all or part of the inert gas The Charge by replacing the gas, when the left oxidant gas was supplied to the fuel gas was replaced with an inert gas, since the forcibly discharged cathodes oxygen can be activated earlier. Moreover, since oxygen remaining in the gas diffusion layer or the like that cannot be replaced only by stopping the gas is also replaced, deterioration can be further suppressed.

請求項6に記載の発明は、特に、請求項3〜5に記載の酸化剤ガスの供給部および排出部に遮断弁を備え、燃料電池の停止時に、燃料電池内に残留した酸化剤ガスの全部または一部を不活性ガスで置換して、さらに不活性ガスの全部または一部を燃料ガスで置換した後、遮断弁を閉じ、起動する直前に遮断弁を開け、燃料ガスの全部または一部を不活性ガスで置換することにより、起動時に導入される酸化剤ガスに含まれる酸素と、封入した燃料ガスに含まれる水素が直接接触しないので、燃焼や爆発を伴うことなく、安全に起動することができる。   The invention described in claim 6 is provided with a shutoff valve in the oxidant gas supply section and discharge section according to claims 3 to 5 in particular, and the oxidant gas remaining in the fuel cell when the fuel cell is stopped. After all or part of the gas is replaced with inert gas, and all or part of the inert gas is replaced with fuel gas, the shut-off valve is closed, and the shut-off valve is opened immediately before starting, so that all or part of the fuel gas is replaced. By replacing the part with an inert gas, the oxygen contained in the oxidant gas introduced at the time of start-up and the hydrogen contained in the enclosed fuel gas are not in direct contact with each other. can do.

請求項7に記載の発明は、特に、請求項3〜5に記載の燃料ガスおよび酸化剤ガスの供給部および排出部に遮断弁を備え、燃料電池の停止時に、燃料電池内に残留した酸化剤ガスをガス流路の体積の2〜5倍の不活性ガスで置換した後、さらに不活性ガスをガス流路の体積の2〜5倍の燃料ガスで置換し、遮断弁を閉じ、起動するまで燃料電池内に燃料ガスを封入することにより、必要最小限の置換量でカソードの活性状態を保持することができる。   The invention described in claim 7 is provided with a shutoff valve in the fuel gas and oxidant gas supply section and discharge section according to claims 3 to 5, and the oxidation remaining in the fuel cell when the fuel cell is stopped. After replacing the agent gas with an inert gas 2 to 5 times the volume of the gas flow path, the inert gas is further replaced with a fuel gas 2 to 5 times the volume of the gas flow path, and the shut-off valve is closed and started. By enclosing the fuel gas in the fuel cell, the active state of the cathode can be maintained with the minimum necessary replacement amount.

請求項8に記載の発明は、特に、請求項4〜5に記載の燃料ガスおよび酸化剤ガスの供給部および排出部に遮断弁を備え、燃料電池の停止時に、燃料ガスをガス流路の体積の2〜5倍の流量で供給したまま酸化剤ガスの供給を停止し、燃料電池内に残留した酸化剤ガスをガス流路の体積の2〜5倍の不活性ガスで置換した後、さらに不活性ガスをガス流路の体積の2〜5倍の燃料ガスで置換した後、遮断弁を閉じ、起動するまで燃料電池内に燃料ガスを封入することにより、必要最小限の燃焼ガス量でカソードを活性化することができる。   According to an eighth aspect of the present invention, in particular, the fuel gas and oxidant gas supply section and the discharge section according to any one of the fourth to fifth aspects are provided with shutoff valves, and the fuel gas is supplied to the gas flow path when the fuel cell is stopped. After the supply of the oxidant gas is stopped while being supplied at a flow rate 2 to 5 times the volume, the oxidant gas remaining in the fuel cell is replaced with an inert gas 2 to 5 times the volume of the gas flow path, Furthermore, after replacing the inert gas with fuel gas 2 to 5 times the volume of the gas flow path, the shut-off valve is closed, and the fuel gas is sealed in the fuel cell until it starts, so that the minimum amount of combustion gas is required. Can activate the cathode.

請求項9に記載の発明は、原料ガスを脱硫する脱硫部と、脱硫した原料ガスから燃料ガスを生成する燃料処理部を備え、特に、請求項1〜8に記載の不活性ガスとして脱硫した原料ガスを用いることにより、窒素などのガスボンベが不要となり、装置を小型化できるだけでなく、ボンベ交換などに要するメンテナンスとコストを大幅に削減することができる。   The invention according to claim 9 includes a desulfurization section for desulfurizing the raw material gas and a fuel processing section for generating fuel gas from the desulfurized raw material gas, and in particular, desulfurized as the inert gas according to claims 1 to 8 By using the raw material gas, a gas cylinder such as nitrogen becomes unnecessary, and not only the apparatus can be miniaturized, but also maintenance and cost required for replacing the cylinder can be greatly reduced.

(実施の形態1)
図1は、本発明の第1の実施の形態における燃料電池発電装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a fuel cell power generator according to a first embodiment of the present invention.

図1において、1は水素イオン伝導性を有するパーフルオロカーボンスルフォン酸ポリマからなる膜状の固体高分子電解質であり、電解質1の両面には一対の電極、アノード21およびカソード22が形成されている。電解質1は、水分を取り込むことにより、電解質1内のスルフォン酸基の水素イオンが解離して電荷担体となり、スルフォン酸基がいくつか凝集して形成される逆ミセル構造の中を通過することで水素イオン伝導性を示す。含水率が下がると電解質1の導電率が低下するため、ガスを加湿して供給し、膜の乾燥を防ぐ方法をとった。   In FIG. 1, reference numeral 1 denotes a membrane-shaped solid polymer electrolyte made of a perfluorocarbon sulfonic acid polymer having hydrogen ion conductivity, and a pair of electrodes, an anode 21 and a cathode 22 are formed on both surfaces of the electrolyte 1. When the electrolyte 1 takes in moisture, the hydrogen ions of the sulfonic acid groups in the electrolyte 1 are dissociated to become charge carriers, and the electrolyte 1 passes through a reverse micelle structure formed by aggregation of several sulfonic acid groups. Shows hydrogen ion conductivity. When the water content decreases, the conductivity of the electrolyte 1 decreases. Therefore, a method was adopted in which the gas was humidified and supplied to prevent the membrane from drying.

また、発電時、水素イオンがカソード22へ移動する際、アノード21側の水を伴って移動するため、電解質1の含水率はカソード22側で高く、アノード21側で低くなる分布を有する。これを是正するために電解質1の膜厚を薄くし、水が逆拡散するようにした。これにより、導電率は高くなるが、燃料ガスである水素や、酸化剤ガスである酸素の透過も増大し、ガスが電解質1を通して直接反応してしまい、電流効率が低下することが判っている。   In addition, during power generation, when hydrogen ions move to the cathode 22, they move with water on the anode 21 side, so that the water content of the electrolyte 1 is high on the cathode 22 side and low on the anode 21 side. In order to correct this, the thickness of the electrolyte 1 was reduced so that water was back-diffused. As a result, the conductivity is increased, but the permeation of hydrogen, which is a fuel gas, and oxygen, which is an oxidant gas, is also increased, and the gas reacts directly through the electrolyte 1 to reduce current efficiency. .

本発明では、この従来の欠点とも言える性質を逆に利用し、起動および停止時にカソード22を酸化して劣化させる酸素を、電解質1を通してリークしてくる水素と直接反応させ、効率よく除去し活性化することにより、燃料電池発電装置の耐久性の向上を図るものである。また、カソード22は電池性能を大きく支配しており、特に、カソード22を活性化させることにより電池性能を向上させることができる。   In the present invention, the property which can be said to be the conventional defect is used in reverse, and oxygen which oxidizes and deteriorates the cathode 22 at the time of starting and stopping is directly reacted with hydrogen leaking through the electrolyte 1 to efficiently remove and activate. Thus, the durability of the fuel cell power generator is improved. Further, the cathode 22 largely dominates the battery performance. In particular, the battery performance can be improved by activating the cathode 22.

アノード21およびカソード22は、多孔質カーボンに白金などの貴金属を担持した触媒および水素イオン伝導性を有する高分子電解質との混合物からなる触媒層と、触媒層の上に積層した通気性および電子伝導性を有するガス拡散層からなる。アノード21には、耐CO性を有する白金−ルテニウムなどの合金触媒を用いた。また、ガス拡散層には撥水処理を施したカーボンペーパーあるいはカーボンクロスを用いた。   The anode 21 and the cathode 22 have a catalyst layer made of a mixture of a catalyst in which a noble metal such as platinum is supported on porous carbon and a polymer electrolyte having hydrogen ion conductivity, and air permeability and electronic conductivity laminated on the catalyst layer. It consists of a gas diffusion layer having properties. For the anode 21, an alloy catalyst such as platinum-ruthenium having CO resistance was used. Moreover, carbon paper or carbon cloth subjected to water repellent treatment was used for the gas diffusion layer.

そして、アノード21およびカソード22の周囲にガスの混合やリークを防止するガスケット31および32をそれぞれ配置し、さらに、アノード21およびカソード22にそれぞれ燃料ガスおよび酸化剤ガスを供給および排出するガス流路を有する導電性のセパレータ板41および42を用いて狭持した。以上のように構成される単セルが発生する電圧は約0.75Vであり、必要とする電圧分の複数の単セルを直列に積層してスタックを形成することができる。   Gaskets 31 and 32 for preventing gas mixing and leakage are disposed around the anode 21 and the cathode 22, respectively, and further, a gas flow path for supplying and discharging fuel gas and oxidant gas to the anode 21 and cathode 22, respectively. The conductive separator plates 41 and 42 having n The voltage generated by the single cell configured as described above is about 0.75 V, and a plurality of single cells corresponding to the required voltage can be stacked in series to form a stack.

また、セパレータ板41および42の両端には集電板と、絶縁板および端板を配置し、締結ロッドで固定した。そして、集電板に電子負荷8および電圧検出部9を接続し、一定電流を流したときの燃料電池5の電圧を検出した。   In addition, current collector plates, insulating plates, and end plates were disposed at both ends of the separator plates 41 and 42, and fixed with fastening rods. And the electronic load 8 and the voltage detection part 9 were connected to the current collection board, and the voltage of the fuel cell 5 when a fixed electric current was sent was detected.

図1において、6は脱硫部であり、原料ガスに付臭剤として含まれる硫黄化合物を吸着除去(脱硫)することができる。本実施例では、原料ガスとしてメタン、エタン、プロパンおよびブタンを主成分とする都市ガス13Aを用いた。脱硫された原料ガスは、水とともに燃料処理部7へ供給され、改質反応により水素を含む燃料ガスが生成される。燃料処理部7は、メタンなどを改質する改質部71と、発生するCOを変成するCO変成部72およびCOを除去するCO除去部73からなる。   In FIG. 1, 6 is a desulfurization part and can adsorb and remove (desulfurize) a sulfur compound contained as a odorant in the raw material gas. In this example, city gas 13A mainly composed of methane, ethane, propane and butane was used as a raw material gas. The desulfurized raw material gas is supplied to the fuel processing unit 7 together with water, and a fuel gas containing hydrogen is generated by a reforming reaction. The fuel processing unit 7 includes a reforming unit 71 that reforms methane and the like, a CO conversion unit 72 that converts generated CO, and a CO removal unit 73 that removes CO.

生成された燃料ガスは、流量制御部101により所定の流量で燃料電池5のアノード21に供給される。また、酸化剤ガスは、大気からファンなどにより取り込まれ、流量制御部102により所定の流量で燃料電池5のカソード22に供給される。また、燃料ガスおよび酸化剤ガスが膜を乾燥させないようそれぞれ加湿して供給した。   The generated fuel gas is supplied to the anode 21 of the fuel cell 5 at a predetermined flow rate by the flow rate control unit 101. The oxidant gas is taken in from the atmosphere by a fan or the like, and is supplied to the cathode 22 of the fuel cell 5 by the flow rate control unit 102 at a predetermined flow rate. Further, fuel gas and oxidant gas were supplied after being humidified so as not to dry the membrane.

また、11は切替弁であり、脱硫された原料ガスを燃料電池5の発電時に燃料処理部7へ供給し、停止時に燃料電池5のカソード22へ供給するように流路を切り替えることができる。燃料電池5の停止時、脱硫された原料ガスは、流量制御部102により所定の流量でカソード22に供給される。   Reference numeral 11 denotes a switching valve, which can switch the flow path so that the desulfurized source gas is supplied to the fuel processing unit 7 during power generation of the fuel cell 5 and is supplied to the cathode 22 of the fuel cell 5 when stopped. When the fuel cell 5 is stopped, the desulfurized source gas is supplied to the cathode 22 by the flow rate control unit 102 at a predetermined flow rate.

また、121a、121b、122aおよび122bは燃料電池5の停止時に、それぞれアノード21およびカソード22に燃料ガスを封入する遮断弁であるが、アノード21およびカソード22の供給部に備えた遮断弁121aおよび122aは、燃料処理部7で生成した燃料ガスを停止時には燃料電池5のカソード22にも供給するように流路を切り替えることのできる切替弁としても用いた。   Reference numerals 121a, 121b, 122a and 122b are shut-off valves for sealing fuel gas into the anode 21 and the cathode 22 respectively when the fuel cell 5 is stopped. 122a was also used as a switching valve capable of switching the flow path so that the fuel gas generated in the fuel processing unit 7 was also supplied to the cathode 22 of the fuel cell 5 when stopped.

以上前記した原料ガスを脱硫する脱硫部6と、燃料ガスを生成する燃料処理部7と、流量制御部102と、切替弁11と、遮断弁121a、121b、122aおよび122b、およびこれらを繋ぐ配管、ガス流路をまとめて、燃料電池5の停止時に、カソード22に不活性ガス(脱硫した原料ガス)を介して、燃料ガスを置換して封入するガス置換部とする。   As described above, the desulfurization unit 6 for desulfurizing the raw material gas, the fuel processing unit 7 for generating the fuel gas, the flow rate control unit 102, the switching valve 11, the shutoff valves 121a, 121b, 122a and 122b, and the piping connecting them. The gas flow path is integrated into a gas replacement part that replaces and fills the cathode 22 with an inert gas (desulfurized source gas) when the fuel cell 5 is stopped.

上記構成の燃料電池発電装置を用い、停止および起動時にカソード22に脱硫した原料ガスをパージした後、さらに燃料ガスをパージして、残留した酸化剤ガスを置換する運転方法について検討した。   Using the fuel cell power generator configured as described above, after purging the raw material gas desulfurized to the cathode 22 at the time of stopping and starting, an operation method for purging the fuel gas and replacing the remaining oxidant gas was studied.

まず、アノード21に燃料ガス、カソード22に酸化剤ガスを所定量供給し、セル温度約70℃、燃料ガス利用率約75%、酸化剤ガス利用率約40%とし、電子負荷8により電極面積に対して約0.2A/cmの一定電流を流した。このとき燃料電池5に接続した電圧検出部9で検出した電池電圧は約0.75Vであった。なお、燃料ガスおよび酸化剤ガスは露点がそれぞれ65℃、70℃となるように加湿して供給した。 First, a predetermined amount of fuel gas is supplied to the anode 21 and oxidant gas is supplied to the cathode 22 so that the cell temperature is about 70 ° C., the fuel gas utilization rate is about 75%, and the oxidant gas utilization rate is about 40%. A constant current of about 0.2 A / cm 2 was applied to the substrate. At this time, the battery voltage detected by the voltage detector 9 connected to the fuel cell 5 was about 0.75V. The fuel gas and the oxidant gas were supplied after being humidified so that the dew points were 65 ° C. and 70 ° C., respectively.

図2は、実施の形態1における運転方法のフローチャートである。燃料電池5の停止時において、まず、電子負荷8を停止し(STEP1)、燃料ガスと酸化剤ガスの供給を同時に停止した(STEP2)。続いてカソード22に残留した酸化剤ガスを不活性ガス(脱硫した原料ガス)で置換し(STEP3)、さらに不活性ガスを燃焼処理部7で生成した燃料ガスで置換し(STEP4)、遮断弁121a、121b、122aおよび122bを閉じて、アノード21およびカソード22に燃料ガスを封入した(STEP5)。   FIG. 2 is a flowchart of the operation method in the first embodiment. When the fuel cell 5 was stopped, the electronic load 8 was first stopped (STEP 1), and the supply of fuel gas and oxidant gas was stopped simultaneously (STEP 2). Subsequently, the oxidant gas remaining on the cathode 22 is replaced with an inert gas (desulfurized raw material gas) (STEP 3), and the inert gas is further replaced with the fuel gas generated in the combustion processing section 7 (STEP 4). 121a, 121b, 122a and 122b were closed, and fuel gas was sealed in the anode 21 and the cathode 22 (STEP 5).

本実施例では、不活性ガスに脱硫した原料ガスを用いた。脱硫した原料ガスを用いることにより、都市ガスなどのインフラを用いることができ、窒素などのガスボンベが不要となり、装置を小型化できるだけでなく、ボンベ交換などに要するメンテナンスとコストを大幅に削減することができる。   In this example, a raw material gas desulfurized to an inert gas was used. By using desulfurized source gas, it is possible to use infrastructure such as city gas, eliminating the need for gas cylinders such as nitrogen, not only miniaturizing equipment, but also greatly reducing maintenance and costs required for cylinder replacement, etc. Can do.

また、脱硫した原料ガスを介して酸化剤ガスを燃料ガスで置換することにより、カソード22に含まれる白金などの貴金属に吸着して酸化劣化を引き起こす原因となる酸素および酸化種を減少あるいは除去することができ、燃料電池発電装置の耐久性を向上させることができる。   Further, by replacing the oxidant gas with the fuel gas through the desulfurized raw material gas, oxygen and oxidative species that cause oxidative degradation by adsorbing to noble metals such as platinum contained in the cathode 22 are reduced or removed. And the durability of the fuel cell power generator can be improved.

また、酸化剤ガスを置換した後、遮断弁121a、121b、122aおよび122bを閉じて、燃料ガスを燃料電池5内に封入することにより、外部から拡散してくる空気(酸素)によるアノード21およびカソード22の酸化や、電解質1の乾燥を抑制し、不純物などの混入を防止することができ、燃料電池発電装置の耐久性を向上させることができる。   Further, after replacing the oxidant gas, the shutoff valves 121a, 121b, 122a and 122b are closed, and the fuel gas is sealed in the fuel cell 5, whereby the anode 21 and oxygen 21 diffused from outside (oxygen) and Oxidation of the cathode 22 and drying of the electrolyte 1 can be suppressed, contamination of impurities and the like can be prevented, and durability of the fuel cell power generator can be improved.

また、燃料電池内に残留した酸化剤ガスを置換する不活性ガス(原料ガス)は加湿することなく供給するため、電解質1膜を乾燥させぬようその体積は必要最小限とした。置換する前のガス流路に存在する酸化剤ガスの濃度をC、ガス流路の体積をVとすると、時間Δtの間に不活性ガスをΔVだけ流したとき、Δt後の濃度Ct1は(数1)で表される。
(数1)
t1=C(V/V+ΔV)=C(1/(1+(ΔV/V)))
さらにΔt後の濃度Ct2は(数2)で表される。
(数2)
t2=Ct1(1/(1+(ΔV/V)))=C(1/(1+(ΔV/V)))
したがってnΔt後の濃度Ctnは(数3)で表される。
(数3)
tn=C(1/(1+(ΔV/V)))
このとき、不活性ガスがガス流路の体積Vのk倍流れたとすると、(数4)が成り立つ。
(数4)
kV=nΔV
したがって、(数3)は、(数5)で表される。
(数5)
tn=C(1/(1+(k/n)))
二項定理およびTaylor展開を用いると、(数5)から(数6)を導き出すことができる。
(数6)
lim(Ctn)=lim(C(1/(1+(k/n)))=C−k
n→∞ n→∞
(数6)によれば、不活性ガスをガス流路の体積の2〜5倍流したとき、置換される酸化剤ガスの濃度は、初期濃度の約14〜0.7%まで置換することができる。
In addition, since the inert gas (raw material gas) that replaces the oxidant gas remaining in the fuel cell is supplied without being humidified, its volume is set to the minimum necessary so that the electrolyte 1 membrane is not dried. Assuming that the concentration of the oxidant gas existing in the gas flow path before replacement is C 0 and the volume of the gas flow path is V, when the inert gas is allowed to flow by ΔV during the time Δt, the concentration C t1 after Δt Is represented by (Equation 1).
(Equation 1)
C t1 = C 0 (V / V + ΔV) = C 0 (1 / (1+ (ΔV / V)))
Further, the density C t2 after Δt is expressed by (Equation 2).
(Equation 2)
C t2 = C t1 (1 / (1+ (ΔV / V))) = C 0 (1 / (1+ (ΔV / V))) 2
Therefore, the concentration C tn after nΔt is expressed by (Equation 3).
(Equation 3)
C tn = C 0 (1 / (1+ (ΔV / V))) n
At this time, if the inert gas flows k times the volume V of the gas flow path, (Equation 4) holds.
(Equation 4)
kV = nΔV
Therefore, (Equation 3) is expressed by (Equation 5).
(Equation 5)
C tn = C 0 (1 / (1+ (k / n))) n
Using the binomial theorem and Taylor expansion, (Equation 6) can be derived from (Equation 5).
(Equation 6)
lim (C tn ) = lim (C 0 (1 / (1+ (k / n)) n ) = C 0 e −k
n → ∞ n → ∞
According to (Expression 6), when the inert gas is flowed 2 to 5 times the volume of the gas flow path, the concentration of the oxidant gas to be replaced is replaced to about 14 to 0.7% of the initial concentration. Can do.

本実施例の場合、ガス流路に残留した酸化剤ガスをガス流路の3倍の体積の不活性ガスで置換した。酸化剤ガスとして空気を用いたので、カソード22のガス流路内の酸素濃度はわずか1%程度まで減少していることが判った。この状態でさらに不活性ガスを燃料ガスに置換して、アノード21およびカソード22に燃料ガスを封入するので、アノード21およびカソード22の酸化による劣化を抑制することができる。   In this example, the oxidant gas remaining in the gas channel was replaced with an inert gas having a volume three times that of the gas channel. Since air was used as the oxidant gas, it was found that the oxygen concentration in the gas flow path of the cathode 22 was reduced to only about 1%. In this state, the inert gas is further replaced with the fuel gas, and the fuel gas is sealed in the anode 21 and the cathode 22, so that deterioration due to oxidation of the anode 21 and the cathode 22 can be suppressed.

また、必要最小限の体積でガスを置換するので、電解質1の保湿状態に与える影響を小さくすることができる。   Further, since the gas is replaced with the minimum necessary volume, the influence on the moisture retention state of the electrolyte 1 can be reduced.

(実施の形態2)
図3は、実施の形態2における運転方法のフローチャートである。燃料電池5の停止時において、まず、電子負荷8を停止し(STEP11)、燃料ガスと酸化剤ガスの供給を同時に停止した(STEP12)。これにより、アノード21の水素が電解質1を介してカソード22へ拡散し、酸素と反応して水を生成し、カソード22中の酸素を消費するため、燃料電池5の電圧が徐々に低下した。電圧検出部9が燃料電池5の電圧を所定の電圧以下と検出したら(STEP13)、燃料電池5内に残留した酸化剤ガスを不活性ガスで置換して(STEP14)、さらに不活性ガスを燃料処理部7で生成した燃料ガスで置換し(STEP15)、遮断弁121a、121b、122aおよび122bを閉じ、燃料ガスを燃料電池5内に封入した(STEP16)。
(Embodiment 2)
FIG. 3 is a flowchart of the operation method according to the second embodiment. When the fuel cell 5 was stopped, the electronic load 8 was first stopped (STEP 11), and the supply of fuel gas and oxidant gas was stopped simultaneously (STEP 12). As a result, hydrogen in the anode 21 diffuses to the cathode 22 through the electrolyte 1, reacts with oxygen to generate water, and consumes oxygen in the cathode 22, so that the voltage of the fuel cell 5 gradually decreases. When the voltage detection unit 9 detects that the voltage of the fuel cell 5 is equal to or lower than a predetermined voltage (STEP 13), the oxidant gas remaining in the fuel cell 5 is replaced with an inert gas (STEP 14), and the inert gas is fueled. The fuel gas generated in the processing unit 7 was replaced (STEP 15), the shut-off valves 121a, 121b, 122a and 122b were closed, and the fuel gas was sealed in the fuel cell 5 (STEP 16).

実施の形態1の運転方法と異なるところは、燃料電池5の電圧を検出し、所定の電圧まで下げてから、不活性ガスを介して、カソード22を燃料ガスで置換する点である。   The difference from the operation method of the first embodiment is that the voltage of the fuel cell 5 is detected and lowered to a predetermined voltage, and then the cathode 22 is replaced with the fuel gas via an inert gas.

燃料ガスと酸化剤ガスの供給を同時に停止することにより、アノード21から電解質1を介して拡散してきた水素が、カソード22白金表面上に形成された酸化皮膜や、カソード22に付着した不純物を還元して除去するので、カソード22が活性化され、これらの要因で低下していた電池電圧を起動時に回復させることができる。   By simultaneously stopping the supply of the fuel gas and the oxidant gas, the hydrogen diffused from the anode 21 through the electrolyte 1 reduces the oxide film formed on the platinum surface of the cathode 22 and the impurities attached to the cathode 22. Therefore, the cathode 22 is activated, and the battery voltage that has been lowered due to these factors can be recovered at the time of startup.

このときの燃料電池5の電圧は最終的には0〜0.2Vまで下がるが、本実施例では0.2V以下になったら、不活性ガスで置換するようにした。0.2V以下まで電圧を下げることにより、カソード22の電位が低下し、カソード22の白金表面が十分に活性化される。0.2Vより高い電圧でも活性化は起こるが、その電圧が高いほど活性化の効果は弱まり、起動時に回復する電圧も小さくなる。   At this time, the voltage of the fuel cell 5 finally decreases to 0 to 0.2 V, but in this embodiment, when the voltage drops to 0.2 V or less, it is replaced with an inert gas. By lowering the voltage to 0.2 V or less, the potential of the cathode 22 is lowered, and the platinum surface of the cathode 22 is sufficiently activated. Activation occurs even at a voltage higher than 0.2 V, but the higher the voltage, the weaker the activation effect and the smaller the voltage recovered at startup.

また、水素が残留したアノード21を基準とした場合、電圧検出部9で検出する電圧からカソード22の電位を推定することができる。アノード21から拡散してきた水素により、カソード22が活性化されるとき、カソード22の電位が低下するので、電圧検出部9で検出する電圧からカソード22の活性化状況を知ることができ、検出した電圧で活性化することにより、起動時の電池電圧を安定化させることができる。   Further, when the anode 21 in which hydrogen remains is used as a reference, the potential of the cathode 22 can be estimated from the voltage detected by the voltage detector 9. When the cathode 22 is activated by the hydrogen diffused from the anode 21, the potential of the cathode 22 is lowered. Therefore, the activation state of the cathode 22 can be known from the voltage detected by the voltage detection unit 9 and detected. By activating with voltage, the battery voltage at the time of start-up can be stabilized.

また、燃料電池5の電圧を所定の電圧まで下げてから、燃料電池5内に残留した不活性ガスを介して酸化剤ガスを燃料ガスで置換するので、アノード21およびカソード22の酸化による劣化が抑制され、燃料電池発電装置の耐久性を向上させることができる。   Further, since the oxidant gas is replaced with the fuel gas through the inert gas remaining in the fuel cell 5 after the voltage of the fuel cell 5 is lowered to a predetermined voltage, the anode 21 and the cathode 22 are deteriorated due to oxidation. It is suppressed and the durability of the fuel cell power generator can be improved.

なお、電子負荷8を停止してから、アノード21およびカソード22に供給するガスを停止するまでの間、電池電圧は開回路電圧になる。このときの開回路電圧は0.9V以上となり、カソード22の電位が高電位に曝されることになる。カソード22の電位が0.9V以上になると、白金の溶出およびシンタリングによる触媒反応面積の減少や、白金の酸化、酸化種の吸着による反応面積の減少などが起こるので、電子負荷8を停止してから、アノード21およびカソード22に供給するガスを停止するまでの時間は極力少なくして開回路電圧に保持する時間を短くするか、電子負荷8を停止したら開回路電圧にならないように、外部抵抗などにより電流を流し、電圧を低下させることが好ましい。   The battery voltage is an open circuit voltage from when the electronic load 8 is stopped until the gas supplied to the anode 21 and the cathode 22 is stopped. At this time, the open circuit voltage is 0.9 V or more, and the potential of the cathode 22 is exposed to a high potential. When the potential of the cathode 22 exceeds 0.9V, the catalytic reaction area decreases due to elution and sintering of platinum, and the reaction area decreases due to platinum oxidation and adsorption of oxidizing species. Until the gas supplied to the anode 21 and the cathode 22 is stopped as much as possible to shorten the time for maintaining the open circuit voltage, or when the electronic load 8 is stopped, so that the open circuit voltage is not generated. It is preferable to reduce the voltage by passing a current through a resistor or the like.

また、カソード22よりもアノード21に供給するガスを早く停止した場合、カソード22から拡散透過してくる酸素によりアノード21の電位が上昇する。アノードの電位が高電位に曝されると、触媒に含まれているルテニウムなどが溶出し、CO被毒性能が低下するので、アノード21の電位が上がらないよう、カソード22と同時もしくはカソード22を止めてからアノードを止めるのが好ましい。   When the gas supplied to the anode 21 is stopped earlier than the cathode 22, the potential of the anode 21 rises due to oxygen diffused and transmitted from the cathode 22. When the potential of the anode is exposed to a high potential, ruthenium contained in the catalyst is eluted, and CO poisoning performance is lowered. Therefore, the cathode 22 is connected simultaneously with the cathode 22 or the cathode 22 so that the potential of the anode 21 does not increase. It is preferable to stop the anode after stopping.

(実施の形態3)
図4は、実施の形態3における運転方法のフローチャートである。燃料電池5の停止時において、まず、電子負荷8を停止し(STEP21)、燃料ガスを供給したまま酸化剤ガスの供給を停止した(STEP22)。これにより、アノード21の水素が電解質1を介してカソード22へ拡散し、酸素と反応して水を生成し、カソード22中の酸素を消費するため、燃料電池5の電圧が徐々に低下した。電圧検出部9が燃料電池5の電圧を所定の電圧以下と検出したら(STEP23)、燃料電池5内に残留した酸化剤ガスを不活性ガスで置換して(STEP24)、さらに不活性ガスを燃料処理部7で生成した燃料ガスで置換し(STEP25)、アノード21およびカソード22の燃料ガスの供給を停止し(STEP26)、遮断弁121a、121b、122aおよび122bを閉じ、燃料ガスを燃料電池5内に封入した(STEP27)。
(Embodiment 3)
FIG. 4 is a flowchart of the operation method according to the third embodiment. When the fuel cell 5 was stopped, the electronic load 8 was first stopped (STEP 21), and the supply of the oxidant gas was stopped while the fuel gas was being supplied (STEP 22). As a result, hydrogen in the anode 21 diffuses to the cathode 22 through the electrolyte 1, reacts with oxygen to generate water, and consumes oxygen in the cathode 22, so that the voltage of the fuel cell 5 gradually decreases. When the voltage detector 9 detects that the voltage of the fuel cell 5 is equal to or lower than a predetermined voltage (STEP 23), the oxidant gas remaining in the fuel cell 5 is replaced with an inert gas (STEP 24), and the inert gas is further fueled. The fuel gas generated by the processing unit 7 is replaced (STEP 25), the supply of the fuel gas to the anode 21 and the cathode 22 is stopped (STEP 26), the shutoff valves 121a, 121b, 122a and 122b are closed, and the fuel gas is supplied to the fuel cell 5 It was enclosed in (STEP27).

実施の形態2の運転方法と異なるところは、まず酸化剤ガスを停止し、燃料電池5の電圧を所定の電圧まで下げてから、不活性ガスを介して、カソード22を燃料ガスで置換して、アノード21およびカソード22の燃料ガスの供給を停止する点である。   The difference from the operation method of the second embodiment is that the oxidant gas is first stopped, the voltage of the fuel cell 5 is lowered to a predetermined voltage, and then the cathode 22 is replaced with the fuel gas via an inert gas. The point is that the supply of fuel gas to the anode 21 and the cathode 22 is stopped.

燃料ガスを供給したままと酸化剤ガスの供給を停止することにより、水素が拡散によりカソード21へ透過しても、アノード21に水素が供給され続けるので、アノード21の基準電位が安定化し、カソード22の電位は運転方法2よりも早く低下し、カソード22をより活性化させることができる。   By stopping the supply of the oxidant gas while supplying the fuel gas, even if hydrogen permeates to the cathode 21 due to diffusion, hydrogen continues to be supplied to the anode 21, so that the reference potential of the anode 21 is stabilized and the cathode The electric potential of 22 falls earlier than the operation method 2, and the cathode 22 can be activated more.

また、カソード22の電位が早く低下するので、カソード22を開回路電圧のような高電位に保持される時間を短縮することができ、カソード22の劣化をさらに抑制することができる。   In addition, since the potential of the cathode 22 quickly decreases, the time for which the cathode 22 is held at a high potential such as an open circuit voltage can be shortened, and deterioration of the cathode 22 can be further suppressed.

(実施の形態4)
図5は、実施の形態4における運転方法のフローチャートである。燃料電池5の停止時において、まず、電子負荷8を停止し(STEP31)、燃料ガスを供給したまま酸化剤ガスの供給を停止した(STEP32)。次いで酸化剤ガスの供給を停止すると同時にカソード22側に不活性ガスを供給し、カソード22に残留した酸化剤ガスを不活性ガスで置換した(STEP33)。
(Embodiment 4)
FIG. 5 is a flowchart of the operation method according to the fourth embodiment. When the fuel cell 5 was stopped, first, the electronic load 8 was stopped (STEP 31), and the supply of the oxidant gas was stopped while supplying the fuel gas (STEP 32). Next, the supply of the oxidant gas was stopped, and at the same time, an inert gas was supplied to the cathode 22 side, and the oxidant gas remaining on the cathode 22 was replaced with the inert gas (STEP 33).

これにより、アノード21の水素が電解質1を介してカソード22へ拡散し、酸素と反応して水を生成し、カソード22中の酸素を消費するため、燃料電池5の電圧が瞬時に低下した。電圧検出部9が燃料電池5の電圧を所定の電圧以下と検出したら(STEP34)、カソード21の不活性ガスを燃料ガスで置換して(STEP35)、最後にアノード21およびカソード22の燃料ガスの供給を停止し(STEP36)、遮断弁121a、121b、122aおよび122bを閉じ、燃料ガスを燃料電池5内に封入した(STEP37)。   As a result, hydrogen in the anode 21 diffuses to the cathode 22 through the electrolyte 1, reacts with oxygen to generate water, and consumes oxygen in the cathode 22, so that the voltage of the fuel cell 5 decreases instantaneously. When the voltage detector 9 detects that the voltage of the fuel cell 5 is equal to or lower than the predetermined voltage (STEP 34), the inert gas at the cathode 21 is replaced with fuel gas (STEP 35), and finally the fuel gas at the anode 21 and the cathode 22 is changed. Supply was stopped (STEP 36), shut-off valves 121a, 121b, 122a and 122b were closed, and fuel gas was sealed in the fuel cell 5 (STEP 37).

実施の形態3の運転方法と異なるところは、酸化剤ガスを停止すると同時にカソード22に不活性ガスを供給し、燃料電池5の電圧を所定の電圧まで下げてから、さらに不活性ガスを燃料ガスに置換する点である。   The difference from the operation method of the third embodiment is that the oxidant gas is stopped and at the same time an inert gas is supplied to the cathode 22, the voltage of the fuel cell 5 is lowered to a predetermined voltage, and the inert gas is further converted into a fuel gas. It is a point to replace with.

燃料ガスを供給したまま酸化剤ガスを不活性ガスで置換することにより、カソード22の酸素を強制的に排出することができ、カソード22の電位は実施の形態3の運転方法よりもさらに早く低下し、より活性化させることができる。また、ガスを停止しただけでは置換できないガス拡散層などに残留した酸素も置換することができるので、さらに劣化を抑制することができる。   By replacing the oxidant gas with an inert gas while supplying the fuel gas, the oxygen of the cathode 22 can be forcibly discharged, and the potential of the cathode 22 is lowered more quickly than the operation method of the third embodiment. And more activated. Moreover, since oxygen remaining in the gas diffusion layer or the like that cannot be replaced only by stopping the gas can be replaced, deterioration can be further suppressed.

(実施の形態5)
図6は、実施の形態5における運転方法のフローチャートである。燃料電池5の停止時において、まず、電子負荷8を停止し(STEP41)、燃料ガスを供給したまま酸化剤ガスの供給を停止した(STEP42)。次いで酸化剤ガスの供給を停止すると同時にカソード22側に不活性ガスを供給し、カソード22に残留した酸化剤ガスを不活性ガスで置換した(STEP43)。
(Embodiment 5)
FIG. 6 is a flowchart of the operation method according to the fifth embodiment. When the fuel cell 5 was stopped, the electronic load 8 was first stopped (STEP 41), and the supply of the oxidant gas was stopped while the fuel gas was being supplied (STEP 42). Next, the supply of the oxidant gas was stopped, and at the same time, an inert gas was supplied to the cathode 22 side, and the oxidant gas remaining on the cathode 22 was replaced with the inert gas (STEP 43).

これにより、アノード21の水素が電解質1を介してカソード22へ拡散し、酸素と反応して水を生成し、カソード22中の酸素を消費するため、燃料電池5の電圧が瞬時に低下した。電圧検出部9が燃料電池5の電圧を所定の電圧以下と検出したら(STEP44)、さらにカソード22の不活性ガスを燃料ガスで置換して(STEP45)、アノード21およびカソード22の燃料ガスの供給を停止し(STEP46)、遮断弁121a、121b、122aおよび122bを閉じ、燃料ガスを燃料電池5内に封入した(STEP47)。   As a result, hydrogen in the anode 21 diffuses to the cathode 22 through the electrolyte 1, reacts with oxygen to generate water, and consumes oxygen in the cathode 22, so that the voltage of the fuel cell 5 decreases instantaneously. When the voltage detector 9 detects that the voltage of the fuel cell 5 is equal to or lower than a predetermined voltage (STEP 44), the inert gas of the cathode 22 is further replaced with the fuel gas (STEP 45), and the supply of the fuel gas of the anode 21 and the cathode 22 is performed. (STEP 46), the shut-off valves 121a, 121b, 122a and 122b were closed, and fuel gas was sealed in the fuel cell 5 (STEP 47).

そして、燃料電池5の起動直前になったら(STEP48)、遮断弁121a、121b、122aおよび122bを開け(STEP49)、カソード22内の燃料ガスを不活性ガスに置換し(STEP50)、その後アノード21およびカソード22にそれぞれ燃料ガスおよび酸化剤ガスを供給し(STEP51)、負荷を起動した(STEP52)。   Then, immediately before the start of the fuel cell 5 (STEP 48), the shut-off valves 121a, 121b, 122a and 122b are opened (STEP 49), the fuel gas in the cathode 22 is replaced with an inert gas (STEP 50), and then the anode 21 Fuel gas and oxidant gas were supplied to the cathode 22 and the cathode 22, respectively (STEP 51), and the load was started (STEP 52).

実施の形態4の運転方法と異なるところは、燃料電池5の起動直前に、再度カソード22に不活性ガスを供給する点である。   The difference from the operation method of the fourth embodiment is that the inert gas is again supplied to the cathode 22 immediately before the start of the fuel cell 5.

起動する直前に不活性ガスを一定時間供給することにより、停止中カソード22に封入していた燃料ガスに含まれる水素と、発電するために導入する酸化剤ガスに含まれる酸素が直接接触することがなくなり、燃焼など起こすことなく安全に燃料電池5を起動することができる。   By supplying an inert gas for a certain period of time immediately before starting, hydrogen contained in the fuel gas sealed in the cathode 22 during stoppage and direct contact between oxygen contained in the oxidant gas introduced for power generation The fuel cell 5 can be safely started without causing combustion or the like.

(実施の形態6)
図7は、実施の形態6における運転方法のフローチャートである。燃料電池5の停止時において、まず、電子負荷8を停止し(STEP61)、アノード21の燃料ガスを供給したまま酸化剤ガスの供給を停止した(STEP62)。次いで燃料ガスの流量をアノード21のガス流路の2〜5倍の体積まで絞り、酸化剤ガスの供給を停止すると同時にカソード22側に不活性ガスを供給し、カソード22に残留した酸化剤ガスを不活性ガスで置換した(STEP63)。
(Embodiment 6)
FIG. 7 is a flowchart of the operation method according to the sixth embodiment. When the fuel cell 5 was stopped, first, the electronic load 8 was stopped (STEP 61), and the supply of the oxidant gas was stopped while the fuel gas of the anode 21 was being supplied (STEP 62). Next, the flow rate of the fuel gas is reduced to 2 to 5 times the volume of the gas flow path of the anode 21, and the supply of the oxidant gas is stopped. At the same time, an inert gas is supplied to the cathode 22, and the oxidant gas remaining on the cathode 22 Was replaced with an inert gas (STEP 63).

これにより、アノード21の水素が電解質1を介してカソード22へ拡散し、酸素と反応して水を生成し、カソード22中の酸素を消費するため、燃料電池5の電圧が瞬時に低下した。電圧検出部9が燃料電池5の電圧を所定の電圧以下と検出したら(STEP64)、さらにカソード22の不活性ガスを燃料ガスで置換して(STEP65)、アノード21およびカソード22の燃料ガスの供給を停止し(STEP66)、遮断弁121a、121b、122aおよび122bを閉じ、燃料ガスを燃料電池5内に封入した(STEP67)。   As a result, hydrogen in the anode 21 diffuses to the cathode 22 through the electrolyte 1, reacts with oxygen to generate water, and consumes oxygen in the cathode 22, so that the voltage of the fuel cell 5 decreases instantaneously. When the voltage detector 9 detects that the voltage of the fuel cell 5 is equal to or lower than the predetermined voltage (STEP 64), the inert gas of the cathode 22 is further replaced with fuel gas (STEP 65), and the fuel gas of the anode 21 and cathode 22 is supplied. (STEP 66), the shut-off valves 121a, 121b, 122a and 122b were closed, and fuel gas was sealed in the fuel cell 5 (STEP 67).

そして、燃料電池5の起動直前になったら(STEP68)、遮断弁121a、121b、122aおよび122bを開け(STEP69)、カソード22内の燃料ガスを不活性ガスに置換し(STEP70)、その後アノード21およびカソード22にそれぞれ燃料ガスおよび酸化剤ガスを供給し(STEP71)、負荷を起動した(STEP72)。   Then, immediately before the start of the fuel cell 5 (STEP 68), the shut-off valves 121a, 121b, 122a and 122b are opened (STEP 69), the fuel gas in the cathode 22 is replaced with an inert gas (STEP 70), and then the anode 21 Fuel gas and oxidant gas were supplied to the cathode 22 and the cathode 22, respectively (STEP 71), and the load was started (STEP 72).

実施の形態5の運転方法と異なるところは、アノード21の燃料ガス流量を絞りながら、カソード22の酸化剤ガスの供給を停止して、酸化剤ガスを不活性ガスに置換する点である。   The difference from the operation method of the fifth embodiment is that the supply of the oxidant gas at the cathode 22 is stopped while the fuel gas flow rate at the anode 21 is reduced, and the oxidant gas is replaced with an inert gas.

燃料電池の停止時に、燃料ガスをガス流路の体積の2〜5倍の流量で供給したまま酸化剤ガスの供給を停止し、燃料電池内に残留した酸化剤ガスをガス流路の体積の2〜5倍の不活性ガスで置換した後、さらに不活性ガスをガス流路の体積の2〜5倍の燃料ガスで置換した後、遮断弁を閉じ、起動するまで燃料電池内に燃料ガスを封入することにより、必要最小限の燃焼ガス量でカソードを活性化することができる。   When the fuel cell is stopped, the supply of the oxidant gas is stopped while the fuel gas is supplied at a flow rate 2 to 5 times the volume of the gas flow path, and the oxidant gas remaining in the fuel cell is reduced to the volume of the gas flow path. After substituting with 2 to 5 times the inert gas, and further substituting the inert gas with the fuel gas 2 to 5 times the volume of the gas flow path, the shutoff valve is closed, and the fuel gas is put into the fuel cell until starting. By encapsulating the cathode, the cathode can be activated with a minimum amount of combustion gas.

本発明の燃料電池発電装置とその運転方法は、起動停止による劣化の抑制または耐久性の向上という効果を有し、高分子型固体電解質膜を用いた発電装置、デバイスに有用である。   INDUSTRIAL APPLICABILITY The fuel cell power generation device and the operation method thereof according to the present invention have an effect of suppressing deterioration due to start and stop or improving durability, and are useful for power generation devices and devices using a polymer solid electrolyte membrane.

また、不活性ガスに都市ガスなどの原料ガスを用いるので、定置用燃料電池コジェネレーションシステムに有用である。   Further, since a source gas such as city gas is used as the inert gas, it is useful for a stationary fuel cell cogeneration system.

本発明の実施の形態1〜6における燃料電池発電装置の構成図Configuration diagram of fuel cell power generator in Embodiments 1 to 6 of the present invention 本発明の実施の形態1における運転方法を示すフローチャートThe flowchart which shows the driving | running method in Embodiment 1 of this invention. 本発明の実施の形態2における運転方法を示すフローチャートThe flowchart which shows the driving | running method in Embodiment 2 of this invention. 本発明の実施の形態3における運転方法を示すフローチャートThe flowchart which shows the driving | running method in Embodiment 3 of this invention. 本発明の実施の形態4における運転方法を示すフローチャートThe flowchart which shows the driving | running method in Embodiment 4 of this invention. 本発明の実施の形態5における運転方法を示すフローチャートThe flowchart which shows the driving | running method in Embodiment 5 of this invention. 本発明の実施の形態6における運転方法を示すフローチャートThe flowchart which shows the driving | running method in Embodiment 6 of this invention. 従来の燃料電池発電装置の構成図Configuration diagram of conventional fuel cell power generator

符号の説明Explanation of symbols

1 電解質
21 電極(アノード)
22 電極(カソード)
41、42 セパレータ板
5 燃料電池
6 脱硫部
7 燃料処理部
9 電圧検出部
121a、121b、122a、122b 遮断弁
1 Electrolyte 21 Electrode (Anode)
22 electrode (cathode)
41, 42 Separator plate 5 Fuel cell 6 Desulfurization unit 7 Fuel processing unit 9 Voltage detection unit 121a, 121b, 122a, 122b Shut-off valve

Claims (9)

電解質と、前記電解質を挟む一対の電極と、前記電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、前記燃料電池の停止時に前記燃料電池内に残留した前記酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに前記不活性ガスの全部または一部を前記燃料ガスで置換するガス置換部とを備えてなる燃料電池発電装置。 A pair of electrodes having an electrolyte, a pair of electrodes sandwiching the electrolyte, and a gas flow path for supplying and discharging a fuel gas containing at least hydrogen to one of the electrodes and supplying and discharging an oxidizing gas containing at least oxygen to the other of the electrodes A fuel cell comprising at least one cell comprising a separator plate, and after replacing all or part of the oxidant gas remaining in the fuel cell when the fuel cell is stopped with an inert gas, A fuel cell power generator comprising a gas replacement unit that replaces all or part of the active gas with the fuel gas. 燃料ガスおよび酸化剤ガスの供給部および排出部に遮断弁を備え、燃料電池の停止時に、前記酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに前記不活性ガスの全部または一部を前記燃料ガスで置換して、前記遮断弁を閉じ、前記燃料ガスを前記燃料電池内に封入する請求項1に記載の燃料電池発電装置。 The fuel gas and oxidant gas supply unit and discharge unit are provided with shut-off valves, and when the fuel cell is stopped, all or part of the oxidant gas is replaced with inert gas, and then all or all of the inert gas or The fuel cell power generator according to claim 1, wherein a part of the fuel gas is replaced with the fuel gas, the shutoff valve is closed, and the fuel gas is sealed in the fuel cell. 電解質と、前記電解質を挟む一対の電極と、前記電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、前記燃料電池の停止時に前記燃料電池内に残留した前記酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに前記不活性ガスの全部または一部を前記燃料ガスで置換するガス置換部と、前記燃料電池の電圧を検出する電圧検出部とを備え、前記燃料電池の停止時に、前記燃料ガスと前記酸化剤ガスの供給を同時に停止し、前記電圧検出部が前記燃料電池の電圧を所定の電圧以下と検出した後、前記燃料電池内に残留した前記酸化剤ガスの全部または一部を前記不活性ガスで置換して、さらに前記不活性ガスの全部または一部を前記燃料ガスで置換する燃料電池発電装置の運転方法。 A pair of electrodes having an electrolyte, a pair of electrodes sandwiching the electrolyte, and a gas flow path for supplying and discharging a fuel gas containing at least hydrogen to one of the electrodes and supplying and discharging an oxidizing gas containing at least oxygen to the other of the electrodes A fuel cell comprising at least one cell comprising a separator plate, and after replacing all or part of the oxidant gas remaining in the fuel cell when the fuel cell is stopped with an inert gas, A gas replacement unit that replaces all or part of the active gas with the fuel gas; and a voltage detection unit that detects a voltage of the fuel cell, and when the fuel cell is stopped, the fuel gas and the oxidant gas The supply is stopped at the same time, and after the voltage detection unit detects the voltage of the fuel cell as a predetermined voltage or less, all or part of the oxidant gas remaining in the fuel cell is Replaced with inert gas, further operating method of the fuel cell power plant to replace all or part of the inert gas in the fuel gas. 電解質と、前記電解質を挟む一対の電極と、前記電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、前記燃料電池の停止時に前記燃料電池内に残留した前記酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに前記不活性ガスの全部または一部を前記燃料ガスで置換するガス置換部と、前記燃料電池の電圧を検出する電圧検出部とを備え、前記燃料電池の停止時に、前記燃料ガスを供給したまま前記酸化剤ガスの供給を停止し、前記電圧検出部が前記燃料電池の電圧を所定の電圧以下と検出した後、前記燃料電池内に残留した前記酸化剤ガスの全部または一部を前記不活性ガスで置換して、さらに前記不活性ガスの全部または一部を前記燃料ガスで置換する燃料電池発電装置の運転方法。 A pair of electrodes having an electrolyte, a pair of electrodes sandwiching the electrolyte, and a gas flow path for supplying and discharging a fuel gas containing at least hydrogen to one of the electrodes and supplying and discharging an oxidizing gas containing at least oxygen to the other of the electrodes A fuel cell comprising at least one cell comprising a separator plate, and after replacing all or part of the oxidant gas remaining in the fuel cell when the fuel cell is stopped with an inert gas, A gas replacement unit that replaces all or part of the active gas with the fuel gas; and a voltage detection unit that detects a voltage of the fuel cell, and the oxidation is performed while the fuel gas is supplied when the fuel cell is stopped. All or part of the oxidant gas remaining in the fuel cell after the supply of the oxidant gas is stopped and the voltage detection unit detects the voltage of the fuel cell to be equal to or lower than a predetermined voltage Said replaced with an inert gas, further operating method of the fuel cell power plant to replace all or part of the inert gas in the fuel gas. 電解質と、前記電解質を挟む一対の電極と、前記電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板とからなる少なくとも一つのセルを備えた燃料電池と、前記燃料電池の停止時に前記燃料電池内に残留した前記酸化剤ガスの全部または一部を不活性ガスで置換した後、さらに前記不活性ガスの全部または一部を前記燃料ガスで置換するガス置換部と、前記燃料電池の電圧を検出する電圧検出部とを備え、前記燃料電池の停止時に、前記燃料ガスを供給したまま前記酸化剤ガスの供給を停止し、前記燃料電池内に残留した前記酸化剤ガスの全部または一部を前記不活性ガスで置換して、前記電圧検出部が前記燃料電池の電圧を所定の電圧以下と検出した後、前記不活性ガスの全部または一部を前記燃料ガスで置換する燃料電池発電装置の運転方法。 A pair of electrodes having an electrolyte, a pair of electrodes sandwiching the electrolyte, and a gas flow path for supplying and discharging a fuel gas containing at least hydrogen to one of the electrodes and supplying and discharging an oxidizing gas containing at least oxygen to the other of the electrodes A fuel cell comprising at least one cell comprising a separator plate, and after replacing all or part of the oxidant gas remaining in the fuel cell when the fuel cell is stopped with an inert gas, A gas replacement unit that replaces all or part of the active gas with the fuel gas; and a voltage detection unit that detects a voltage of the fuel cell, and the oxidation is performed while the fuel gas is supplied when the fuel cell is stopped. The supply of the agent gas is stopped, all or part of the oxidant gas remaining in the fuel cell is replaced with the inert gas, and the voltage detection unit determines the voltage of the fuel cell. After detecting the following constant voltage, operating method of the fuel cell power plant to replace all or part of the inert gas in the fuel gas. 酸化剤ガスの供給部および排出部に遮断弁を備え、燃料電池の停止時に、前記燃料電池内に残留した前記酸化剤ガスの全部または一部を不活性ガスで置換して、さらに前記不活性ガスの全部または一部を燃料ガスで置換した後、前記遮断弁を閉じ、起動する直前に前記遮断弁を開け、前記燃料ガスの全部または一部を前記不活性ガスで置換する請求項3〜5のいずれか1項に記載の燃料電池発電装置の運転方法。 Provided with shutoff valves in the oxidant gas supply section and discharge section, when the fuel cell is stopped, all or part of the oxidant gas remaining in the fuel cell is replaced with an inert gas, and further the inert gas 4. After replacing all or part of the gas with fuel gas, close the shutoff valve, open the shutoff valve immediately before starting, and replace all or part of the fuel gas with the inert gas. 6. A method for operating the fuel cell power generator according to any one of claims 5 to 6. 燃料ガスおよび酸化剤ガスの供給部および排出部に遮断弁を備え、燃料電池の停止時に、前記燃料電池内に残留した前記酸化剤ガスをガス流路の体積の2〜5倍の不活性ガスで置換した後、さらに前記不活性ガスをガス流路の体積の2〜5倍の前記燃料ガスで置換し、前記遮断弁を閉じ、起動するまで前記燃料電池内に前記燃料ガスを封入する請求項3〜5のいずれか1項に記載の燃料電池発電装置の運転方法。 Provided with a shutoff valve in the fuel gas and oxidant gas supply section and discharge section, and when the fuel cell is stopped, the oxidant gas remaining in the fuel cell is 2 to 5 times the volume of the gas flow path. And replacing the inert gas with the fuel gas of 2 to 5 times the volume of the gas flow path, closing the shutoff valve, and sealing the fuel gas in the fuel cell until startup. Item 6. A method for operating a fuel cell power generator according to any one of Items 3 to 5. 燃料ガスおよび酸化剤ガスの供給部および排出部に遮断弁を備え、燃料電池の停止時に、前記燃料ガスをガス流路の体積の2〜5倍の体積で供給したまま前記酸化剤ガスの供給を停止し、前記燃料電池内に残留した前記酸化剤ガスをガス流路の体積の2〜5倍の不活性ガスで置換した後、さらに前記不活性ガスをガス流路の体積の2〜5倍の前記燃料ガスで置換した後、前記遮断弁を閉じ、起動するまで前記燃料電池内に前記燃料ガスを封入する請求項4または5に記載の燃料電池発電装置の運転方法。 A supply valve and a discharge portion for the fuel gas and the oxidant gas are provided with a shut-off valve, and when the fuel cell is stopped, the fuel gas is supplied in a volume 2 to 5 times the volume of the gas flow path. And the oxidant gas remaining in the fuel cell is replaced with an inert gas 2 to 5 times the volume of the gas flow path, and the inert gas is further replaced with 2 to 5 times the volume of the gas flow path. 6. The method of operating a fuel cell power generator according to claim 4, wherein the fuel gas is sealed in the fuel cell until the shut-off valve is closed and started after the fuel gas is replaced with twice the fuel gas. 原料ガスを脱硫する脱硫部と、脱硫した前記原料ガスから燃料ガスを生成する燃料処理部を備え、脱硫した前記原料ガスを不活性ガスとして用いる請求項1〜8のいずれか1項に記載の燃料電池発電装置の運転方法。 The desulfurization part which desulfurizes raw material gas and the fuel processing part which produces | generates fuel gas from the said desulfurized said raw material gas are used, The said desulfurized raw material gas is used as inert gas of any one of Claims 1-8. Operation method of fuel cell power generator.
JP2003303867A 2003-08-28 2003-08-28 Fuel cell power generator and its operation method Expired - Fee Related JP4613482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303867A JP4613482B2 (en) 2003-08-28 2003-08-28 Fuel cell power generator and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303867A JP4613482B2 (en) 2003-08-28 2003-08-28 Fuel cell power generator and its operation method

Publications (2)

Publication Number Publication Date
JP2005071949A true JP2005071949A (en) 2005-03-17
JP4613482B2 JP4613482B2 (en) 2011-01-19

Family

ID=34407711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303867A Expired - Fee Related JP4613482B2 (en) 2003-08-28 2003-08-28 Fuel cell power generator and its operation method

Country Status (1)

Country Link
JP (1) JP4613482B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122310A1 (en) * 2004-06-14 2005-12-22 Matsushita Electric Industrial Co., Ltd. Storing method and storably treated body of high polymer electrolyte fuel cell stack
WO2006041185A1 (en) * 2004-10-15 2006-04-20 Matsushita Electric Industrial Co., Ltd. Fuel cell system and operation method of the same
WO2006049299A1 (en) * 2004-11-08 2006-05-11 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2007149360A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Fuel cell power generation system
WO2011122019A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Fuel cell system and method for driving same
US8530104B2 (en) 2003-12-12 2013-09-10 Panasonic Corporation Method of operating a fuel cell system
JP2014036015A (en) * 2012-08-09 2014-02-24 Hyundai Motor Company Co Ltd Partial activation method of fuel cell stack
CN113228360A (en) * 2018-12-26 2021-08-06 本田技研工业株式会社 Activation method and activation device for fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975569A (en) * 1982-10-21 1984-04-28 Toshiba Corp Storing method of fuel cell
JPS62190660A (en) * 1986-02-17 1987-08-20 Mitsubishi Electric Corp Suspending method for fuel cell power generating plant
JPH076779A (en) * 1993-06-15 1995-01-10 Tokyo Gas Co Ltd Method and device for purging fuel battery device
JP2003229156A (en) * 2002-01-31 2003-08-15 Toyota Motor Corp Fuel cell generating system and purge method of fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975569A (en) * 1982-10-21 1984-04-28 Toshiba Corp Storing method of fuel cell
JPS62190660A (en) * 1986-02-17 1987-08-20 Mitsubishi Electric Corp Suspending method for fuel cell power generating plant
JPH076779A (en) * 1993-06-15 1995-01-10 Tokyo Gas Co Ltd Method and device for purging fuel battery device
JP2003229156A (en) * 2002-01-31 2003-08-15 Toyota Motor Corp Fuel cell generating system and purge method of fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530104B2 (en) 2003-12-12 2013-09-10 Panasonic Corporation Method of operating a fuel cell system
US8435657B2 (en) 2004-06-14 2013-05-07 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
WO2005122310A1 (en) * 2004-06-14 2005-12-22 Matsushita Electric Industrial Co., Ltd. Storing method and storably treated body of high polymer electrolyte fuel cell stack
US7976972B2 (en) 2004-06-14 2011-07-12 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US8137829B2 (en) 2004-06-14 2012-03-20 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
WO2006041185A1 (en) * 2004-10-15 2006-04-20 Matsushita Electric Industrial Co., Ltd. Fuel cell system and operation method of the same
US7811712B2 (en) 2004-10-15 2010-10-12 Panasonic Corporation Fuel cell system and operation method thereof
WO2006049299A1 (en) * 2004-11-08 2006-05-11 Matsushita Electric Industrial Co., Ltd. Fuel cell system
US8728675B2 (en) 2004-11-08 2014-05-20 Panasonic Corporation Fuel cell system
JP2007149360A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Fuel cell power generation system
JP5049413B2 (en) * 2010-03-30 2012-10-17 パナソニック株式会社 Fuel cell system and operation method thereof
WO2011122019A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Fuel cell system and method for driving same
JP2014036015A (en) * 2012-08-09 2014-02-24 Hyundai Motor Company Co Ltd Partial activation method of fuel cell stack
CN113228360A (en) * 2018-12-26 2021-08-06 本田技研工业株式会社 Activation method and activation device for fuel cell

Also Published As

Publication number Publication date
JP4613482B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
KR100538974B1 (en) Method of operating fuel cell system and fuel cell system
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
JP5049413B2 (en) Fuel cell system and operation method thereof
KR20080072058A (en) Fuel cell system
WO2010023949A1 (en) Fuel battery power generation system
CA2390293A1 (en) Method and device for improved catalytic activity in the purification of fluids
JP4613480B2 (en) Fuel cell power generator and its operation method
JP5109259B2 (en) Fuel cell system
JP2005093115A (en) Fuel cell power generating device and its operating method
JP5071254B2 (en) Fuel cell power generation system and operation method thereof
EP2475038B1 (en) Fuel cell power generation system and method for operating the same
JP4613482B2 (en) Fuel cell power generator and its operation method
JP4661055B2 (en) Fuel cell system and operation method
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP4872181B2 (en) Fuel cell system and operation method thereof
EP1659653A1 (en) Fuel cell system and method for starting operation of fuel cell system
JP2008186701A (en) Fuel cell power generation system and its operation method
JP4617647B2 (en) Fuel cell system and operation method thereof
JP5605106B2 (en) Fuel cell power generator
JP4772293B2 (en) Fuel cell system
JP2009070691A (en) Fuel cell system and operation method of fuel cell
JP2010267563A (en) Fuel cell power generation system
JP2005222883A (en) Fuel cell power generation system and cell module for fuel cell
JP2004342406A (en) Fuel cell system
JP5130627B2 (en) Fuel cell power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R151 Written notification of patent or utility model registration

Ref document number: 4613482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees