[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005070798A - Optical isolator - Google Patents

Optical isolator Download PDF

Info

Publication number
JP2005070798A
JP2005070798A JP2004283554A JP2004283554A JP2005070798A JP 2005070798 A JP2005070798 A JP 2005070798A JP 2004283554 A JP2004283554 A JP 2004283554A JP 2004283554 A JP2004283554 A JP 2004283554A JP 2005070798 A JP2005070798 A JP 2005070798A
Authority
JP
Japan
Prior art keywords
substrate
magnet
composite element
adhesive
optical isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004283554A
Other languages
Japanese (ja)
Inventor
Akira Kashiwazaki
昭 柏崎
Gakushi Shoda
学史 庄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004283554A priority Critical patent/JP2005070798A/en
Publication of JP2005070798A publication Critical patent/JP2005070798A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein polarizers 2 and 4 crack and can not maintain stable characteristics against temperature variation owing to large stress since an adhesive 6 having not set yet enters the gap between the flank of a compound element 42 and the flank of a magnet 27 to possibly bond and fix the compound element 42 and magnet 27 and then a part where three members with different coefficients of linear expansion which are the compound element 42, a substrate 5, and the magnet 27 are joined with the same adhesive is formed to cause the large stress at the part. <P>SOLUTION: An optical isolator is constituted by arraying and fixing at least a 1st Faraday rotator 3, the compound element 42 having the 1st and 2nd polarizers 2 and 4, and the magnet 27 on the substrate 5, and the surface of the magnet 27 which comes into contact with the top of the substrate, the surface of the compound element 42 which comes into contact with the top of the substrate 5, and the top surface of the substrate 5 are so formed that no adhesive enters the gap between the compound element 42 and magnet 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光源から出射された光を各種光学素子や光ファイバに導入する際に生じる戻り光を除去するために用いられる光アイソレータに関するものである。   The present invention relates to an optical isolator used for removing return light generated when light emitted from a light source is introduced into various optical elements and optical fibers.

レーザー光源等の光源から出射した光は、各種光学素子や光ファイバに入射されるが、入射光の一部は各種光学素子、光ファイバを透過する際、反射や散乱を起こす。反射や散乱した光の一部は光源側に戻るが、この戻り光を遮断するため、光アイソレータが用いられる。   Light emitted from a light source such as a laser light source is incident on various optical elements and optical fibers, but some of the incident light is reflected and scattered when passing through the various optical elements and optical fibers. A part of the reflected or scattered light returns to the light source side, and an optical isolator is used to block this return light.

図6は従来の小型化された光アイソレータ41の構成を示す図である。   FIG. 6 is a diagram showing a configuration of a conventional miniaturized optical isolator 41.

図6に示すように、光アイソレータ41はファラデー回転子3と偏光子2、偏光子4を互いに接着一体化した光アイソレータ用素子42と、ファラデー回転子3に飽和磁界を印可するための磁石27を、基板5上に固定した構成となっている。光アイソレータ用素子42の基板5上への固定は、接着剤を用いられる。また、接着剤以外にも、半田を用いて固定する手段も用いられているが、その場合素子や磁石の半田が付く部分には、あらかじめメタライズしておく必要がある。   As shown in FIG. 6, the optical isolator 41 includes an optical isolator element 42 in which the Faraday rotator 3, the polarizer 2, and the polarizer 4 are bonded and integrated, and a magnet 27 for applying a saturation magnetic field to the Faraday rotator 3. Is fixed on the substrate 5. An adhesive is used to fix the optical isolator element 42 onto the substrate 5. In addition to the adhesive, means for fixing using solder is also used. In that case, it is necessary to metallize the element or magnet to the portion to be soldered.

ここで偏光子2、4は透過する光の一方向の偏波成分を吸収し、その偏波成分に直交する偏波成分を透過する機能を有し、また、ファラデー回転子3は、一般的には、希土類元素とビスマスを含む鉄ガーネットなどの単結晶が多く用いられており、飽和磁界強度において所定波長の光の偏波面を約45度回転する機能を有する。また2つの偏光子2、4は、それぞれの吸収あるいは透過偏波方向が約45度ずれるように配置されている。図中の矢印は透過偏波方向を表し、偏光子2の透過偏波方向は横方向であり、これに対し偏光子4の透過偏波方向は約45度傾いている。   Here, the polarizers 2 and 4 have a function of absorbing a polarization component in one direction of transmitted light and transmitting a polarization component orthogonal to the polarization component, and the Faraday rotator 3 is generally used. In many cases, a single crystal such as iron garnet containing rare earth elements and bismuth is used, and has a function of rotating the polarization plane of light of a predetermined wavelength by about 45 degrees at the saturation magnetic field strength. The two polarizers 2 and 4 are arranged so that their absorption or transmission polarization directions are deviated by about 45 degrees. The arrow in the figure indicates the transmission polarization direction, and the transmission polarization direction of the polarizer 2 is the horizontal direction, while the transmission polarization direction of the polarizer 4 is inclined by about 45 degrees.

光通信用のレーザー光源モジュールとしては、半導体レーザー素子と光アイソレータ、レンズなどをパッケージの中に組み込み全体を気密封止したものと、レーザー素子をキャンパッケージの中に設置密封し、そのキャンパッケージに光アイソレータ、レンズといった他の光学部品をアセンブリしたものとがある。   As a laser light source module for optical communication, a semiconductor laser element, an optical isolator, a lens, etc. are assembled in a package and the whole is hermetically sealed, and the laser element is installed and sealed in a can package, and the can package is used. Some optical assemblies such as optical isolators and lenses are assembled.

しかしながら図6に示す基板上に配置固定された従来の小型化された光アイソレータにおいては、磁石27の底部に接着剤6を塗布し、基板上5の主面上に設置した時に、硬化させる前の接着剤6が複合素子42の側面と磁石27の側面との間に、入りこんでしまい、複合素子42と磁石27を接着固定されてしまう事があり、その結果、複合素子42と基板5および磁石27の3つの線膨張係数の異なる部材が同一の接着剤により接合されている部分が出来てしまい、その部位には大きな応力が発生してしまうという問題があった。   However, in the conventional miniaturized optical isolator arranged and fixed on the substrate shown in FIG. 6, when the adhesive 6 is applied to the bottom of the magnet 27 and placed on the main surface of the substrate 5, before being cured. The adhesive 6 may enter between the side surface of the composite element 42 and the side surface of the magnet 27, and the composite element 42 and the magnet 27 may be bonded and fixed. As a result, the composite element 42 and the substrate 5 and There is a problem in that a portion where three members having different linear expansion coefficients of the magnet 27 are joined by the same adhesive is formed, and a large stress is generated in the portion.

基板と素子および磁石の線膨張係数は例えば、それぞれ70×10−7/℃、60×10−7/℃、100×10−7/℃と異なるため、光アイソレータを使用する環境の温度変化、特に低温環境になった場合、さらに素子に応力が付加される事になり特性が変化しやすく、そのため温度変化時に光学素子に加わる応力は大きくなり、その結果光学特性に劣化が生じやすく、場合によっては、基板5および磁石27と複合素子42の3つの部材が接合される部分から、素子特に偏光子2または偏光子4にクラックが発生する場合があり温度の変動に対して安定した特性を維持出来ないという問題点があった。   The linear expansion coefficients of the substrate, the element, and the magnet are different from, for example, 70 × 10 −7 / ° C., 60 × 10 −7 / ° C., and 100 × 10 −7 / ° C., respectively. In particular, when the environment becomes low temperature, stress is further applied to the element and the characteristics are likely to change. Therefore, the stress applied to the optical element at the time of temperature change increases, and as a result, the optical characteristics are likely to deteriorate. In this case, cracks may occur in the element, particularly the polarizer 2 or the polarizer 4 from the portion where the three members of the substrate 5 and the magnet 27 and the composite element 42 are joined, and the characteristics stable with respect to temperature fluctuations are maintained. There was a problem that it was not possible.

又、素子に応力が加わっている場合、ファラデー回転子の特性として消光比の劣化を生じやすく、その結果、光アイソレータ完成体における特性項目である光アイソレーション特性を劣化させてしまうという問題点があった。   In addition, when stress is applied to the element, the extinction ratio is likely to be deteriorated as a characteristic of the Faraday rotator, and as a result, the optical isolation characteristic which is a characteristic item in the optical isolator complete body is deteriorated. there were.

上記問題点を回避するためには、例えば複合素子42と磁石27との間に空隙部を設け、接合時に用いる接着剤が、複合素子42と磁石27との間の側面に入りこまないようにすれば良いが、空隙部を設けたために、形状が大きくなってしまうという問題点があった。   In order to avoid the above problems, for example, a gap is provided between the composite element 42 and the magnet 27 so that the adhesive used for joining does not enter the side surface between the composite element 42 and the magnet 27. However, there is a problem that the shape becomes large because the gap is provided.

本発明は上記従来の課題を解決するためになされたものであり、その目的は、小型で、作製が容易で、特性が均一な光アイソレータの構造を提供することにある。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide an optical isolator structure that is small in size, easy to manufacture, and uniform in characteristics.

本発明はこれらの課題を解決するためのものであり、少なくとも第1のファラデー回転子と、第1、第2の偏光子とを有した複合素子および磁石を基板上に搭載して接着剤で整列固定した光アイソレータにおいて、前記磁石の基板上に接する面、複合素子の基板上に接する面又は基板上面は、前記複合素子と磁石との間に接着剤がまわりこまないよう形成されていることを特徴とする。   The present invention is for solving these problems. A composite element and a magnet having at least a first Faraday rotator and first and second polarizers are mounted on a substrate and are bonded with an adhesive. In the optical isolator that is aligned and fixed, the surface that contacts the substrate of the magnet, the surface that contacts the substrate of the composite element, or the upper surface of the substrate is formed so that the adhesive does not flow between the composite element and the magnet. It is characterized by.

前記磁石または複合素子の基板上に接する面には、面取り部が形成されていることを特徴とする。   A chamfered portion is formed on a surface of the magnet or the composite element that contacts the substrate.

前記複合素子の底面は、基板から離間して固定されていることを特徴とする。   The bottom surface of the composite element is fixed apart from the substrate.

前記複合素子と磁石とが当接する部分の基板上に、溝が形成されていることを特徴とする。   A groove is formed on the substrate where the composite element and the magnet abut.

上記複合素子、磁石、基板の3つの部材の境界部に接着剤の存在しない空隙部を有することを特徴とする。   The composite element, the magnet, and the substrate have a gap where no adhesive is present at the boundary between the three members.

本発明によれば、少なくとも第1のファラデー回転子と、第1、第2の偏光子を接合した複合素子および磁石を基板上に搭載して整列固定した光アイソレータにおいて、前記磁石の基板上に接する面、複合素子の基板上に接する面又は基板上面は、前記複合素子と磁石との間に接着剤がまわりこまないよう形成されている事により、複合素子と磁石が、接合されていない構造となったため、複合素子に加わる応力を低減でき光学特性が良好な光アイソレータを安定して作製する事が可能になる。   According to the present invention, in an optical isolator in which at least a first Faraday rotator, a composite element in which first and second polarizers are joined, and a magnet are mounted and fixed on a substrate, the optical isolator is mounted on the substrate of the magnet. The structure in which the composite element and the magnet are not joined by forming the contact surface, the surface in contact with the substrate of the composite element or the upper surface of the substrate so that the adhesive does not flow between the composite element and the magnet. As a result, it is possible to stably produce an optical isolator that can reduce the stress applied to the composite element and has good optical characteristics.

以下に、本発明による光アイソレータおよびその製造方法について説明する。   The optical isolator according to the present invention and the manufacturing method thereof will be described below.

図1に本発明の光アイソレータの実施形態を示す。図1(a)はその平面図を示し、図1(b)はその正面図を示す。   FIG. 1 shows an embodiment of an optical isolator according to the present invention. FIG. 1A shows a plan view thereof, and FIG. 1B shows a front view thereof.

複合素子42は偏光子2および偏光子4とファラデー回転子3からなり、偏光子基板とファラデー回転子基板を接着一体後チップ状に切削加工されたものである。複合素子42はそれぞれの側面を基板5の主面に接着剤6を用いて接合し、整列固定されて、本発明の光アイソレータ41は構成される。   The composite element 42 is composed of the polarizer 2, the polarizer 4, and the Faraday rotator 3, and the polarizer substrate and the Faraday rotator substrate are bonded together and cut into a chip shape. The composite element 42 is bonded to the main surface of the substrate 5 using the adhesive 6 and aligned and fixed to constitute the optical isolator 41 of the present invention.

偏光子2および偏光子4は、例えば楕円体形の金属粒子がガラス内に分散された構造の偏光ガラスからなる。この偏光ガラスは長く延伸された金属粒子をガラス自身の中に一方向に配列させることにより偏光特性を持たせたガラスであり、金属粒子の延伸方向に垂直な偏波面を持つ光が透過し、平行な偏波面を持つ光は吸収される。ここで偏光子2の透過偏波方向は、基板5の主面に対し略平行に配置され、偏光子4の透過偏波方向は、基板5の主面に対し略45度の角度を持つように配置されている。   The polarizer 2 and the polarizer 4 are made of, for example, polarizing glass having a structure in which ellipsoidal metal particles are dispersed in glass. This polarizing glass is a glass having polarization characteristics by arranging long stretched metal particles in one direction in the glass itself, light having a polarization plane perpendicular to the stretch direction of the metal particles is transmitted, Light with a parallel polarization plane is absorbed. Here, the transmission polarization direction of the polarizer 2 is arranged substantially parallel to the main surface of the substrate 5, and the transmission polarization direction of the polarizer 4 has an angle of about 45 degrees with respect to the main surface of the substrate 5. Is arranged.

ファラデー回転子3は、例えばビスマス置換ガーネット結晶等で、その厚みは入射光線の偏光面が45度回転する様に設定する。一般に、偏波面を回転させるためには、入射光線の光軸L方向に十分な磁界を印可することが必要である。従って、複合素子42は、2つのほぼ同一形状をした磁石27の間に配置することにより光アイソレータとして動作する。2つの磁石27も複合素子42を固定したのと同じ接着剤6を用いて基板5の主面上に固定されている。   The Faraday rotator 3 is, for example, a bismuth-substituted garnet crystal, and the thickness thereof is set so that the polarization plane of incident light rotates 45 degrees. In general, in order to rotate the plane of polarization, it is necessary to apply a sufficient magnetic field in the direction of the optical axis L of incident light. Therefore, the composite element 42 operates as an optical isolator by being disposed between two magnets 27 having substantially the same shape. The two magnets 27 are also fixed on the main surface of the substrate 5 using the same adhesive 6 to which the composite element 42 is fixed.

基板5は平板状に加工されたセラミックやガラス、金属基板等が用いられる。   As the substrate 5, a ceramic, glass, metal substrate or the like processed into a flat plate shape is used.

また、接着剤6は、エポキシ樹脂等の樹脂類や、金属はんだ、低融点ガラスなどを用いることができる。 The adhesive 6 can be made of resin such as epoxy resin, metal solder, low melting point glass, or the like.

ここで用いている磁石27の形状は、基板5上への接合面となる底面にC面状の面取り部28を設けてある。従来、磁石27の底部に接着剤6を塗布し、基板上5の主面上に設置した時に、硬化させる前の接着剤6が複合素子42の側面と磁石27の側面との間に、入りこんでしまい、複合素子42と磁石27を接着固定されてしまう事があり、その結果、複合素子42と基板5および磁石27の3つの線膨張係数の異なる部材が同一の接着剤により接合されている部分が出来てしまい、その部位には大きな応力が発生しやすくなってしまう。そのため温度変化時に光学素子に加わる応力は大きくなり、その結果光学特性に劣化が生じやすく、場合によっては、基板5および磁石27と複合素子42の3つの部材が接合される部分から、素子、特に偏光子2または偏光子4にクラックが発生する場合があった。   As for the shape of the magnet 27 used here, a C-shaped chamfered portion 28 is provided on the bottom surface which becomes a bonding surface on the substrate 5. Conventionally, when the adhesive 6 is applied to the bottom of the magnet 27 and placed on the main surface of the substrate 5, the adhesive 6 before being cured enters between the side surface of the composite element 42 and the side surface of the magnet 27. As a result, the composite element 42 and the magnet 27 may be bonded and fixed, and as a result, the composite element 42 and the three members having different linear expansion coefficients of the substrate 5 and the magnet 27 are joined by the same adhesive. A part is formed, and a large stress is likely to be generated in the part. Therefore, the stress applied to the optical element at the time of temperature change increases, and as a result, the optical characteristics are likely to be deteriorated. In some cases, the element, particularly from the portion where the three members of the substrate 5 and the magnet 27 and the composite element 42 are joined, In some cases, cracks occurred in the polarizer 2 or the polarizer 4.

これに対し、本発明は、面取り部28を設けた事により、複合素子42、および磁石27との間には、基板5の主面上に接着材の介在しない空隙部7ができ接着剤がまわりこまないように形成されている。そのため、複合素子42と磁石27は一体に接着固定される事無くそれぞれに基板5の主面上に固定され、温度変化時の光学特性劣化や、クラックの発生を低減する事が可能となった。   On the other hand, in the present invention, by providing the chamfered portion 28, a gap portion 7 in which no adhesive is present is formed on the main surface of the substrate 5 between the composite element 42 and the magnet 27. It is formed so as not to get around. Therefore, the composite element 42 and the magnet 27 are fixed to the main surface of the substrate 5 without being bonded and fixed together, and it becomes possible to reduce the deterioration of optical characteristics and the occurrence of cracks when the temperature changes. .

以上述べてきたように、応力に起因する光アイソレータの光学特性劣化は、複合素子42、基板5および磁石27が同時に接着剤6によって固定されている部分があった場合、特に悪影響を及ぼす。したがって、そのよう固定部分が存在しないようにする事が重要となる。面取部28の大きさは、用いる接着剤6の粘性と複合素子42と磁石27との間の隙間の大きさによって異なるが、大きすぎる場合、磁石27が複合素子42の部分に与える磁界強度分布の高さ方向の非対称性が大きくなるため、複合素子42の高さの1/3以下の大きさが好ましい。   As described above, the optical characteristic degradation of the optical isolator due to stress has a particularly adverse effect when there is a portion where the composite element 42, the substrate 5 and the magnet 27 are simultaneously fixed by the adhesive 6. Therefore, it is important not to have such a fixed part. The size of the chamfered portion 28 varies depending on the viscosity of the adhesive 6 to be used and the size of the gap between the composite element 42 and the magnet 27, but if it is too large, the magnetic field strength that the magnet 27 gives to the portion of the composite element 42. Since the asymmetry in the height direction of the distribution is increased, a size of 1/3 or less of the height of the composite element 42 is preferable.

図2には、他の実施形態として磁石27の各稜線にR面状の面取部29を持たせ、C面と同様な機能を持たせている。図2(a)はその上面図を示し、図2(b)はその正面図を示す。磁石27の底面には、複合素子42との境界面に設けられた面取り部28、29の形状は必ずしもC面である必要はなく、接合固定時に接着剤などの接合材が磁石27と複合素子42との間に入りこまないような形状であれば良い。   In FIG. 2, as another embodiment, each ridge line of the magnet 27 is provided with a chamfered portion 29 having an R surface shape, and has the same function as the C surface. 2A shows a top view thereof, and FIG. 2B shows a front view thereof. On the bottom surface of the magnet 27, the shape of the chamfered portions 28 and 29 provided on the boundary surface with the composite element 42 is not necessarily the C surface, and a bonding material such as an adhesive is bonded to the magnet 27 and the composite element at the time of fixing. Any shape that does not enter the space 42 may be used.

また、上記実施例においては、磁石27にC面やR面を形成させているが、複合素子42にC面やR面の面取部を形成しても、同様の効果を得られる事は言うまでも無い。   In the above embodiment, the C surface and the R surface are formed on the magnet 27. However, even if a chamfered portion of the C surface or the R surface is formed on the composite element 42, the same effect can be obtained. Needless to say.

図3は、本発明の別の実施例を示す。図3(a)にはその上面図を示し、図3(b)にはその正面図を示す。偏光子2、4およびファラデー回転子3から成る複合素子42は、接着剤6を用いて磁石27に接合固定されている。複合素子42の大きさは、高さを磁石27の高さより小さくしてあり、複合素子42の底面21が基板5の上面51から離間した構造となっている。複合素子42の底面21と基板5の上面51との距離は0.05mm以上であることが好ましい。このような構成にする事で、複合素子42が接着剤6を介して接する部材は磁石27のみとなり、基板5の線膨張係数の違いによる温度変化時の応力の影響を直接受ける事が無くなる。このため線膨張係数が異なる部材を接合したことによる応力による光学特性の劣化を低減する事が可能となる。   FIG. 3 shows another embodiment of the present invention. FIG. 3A shows a top view and FIG. 3B shows a front view thereof. The composite element 42 including the polarizers 2 and 4 and the Faraday rotator 3 is bonded and fixed to the magnet 27 using the adhesive 6. The size of the composite element 42 is smaller than the height of the magnet 27, and the bottom surface 21 of the composite element 42 is separated from the top surface 51 of the substrate 5. The distance between the bottom surface 21 of the composite element 42 and the top surface 51 of the substrate 5 is preferably 0.05 mm or more. With such a configuration, the member to which the composite element 42 contacts via the adhesive 6 is only the magnet 27 and is not directly affected by the stress at the time of temperature change due to the difference in the linear expansion coefficient of the substrate 5. For this reason, it becomes possible to reduce the deterioration of the optical characteristics due to the stress caused by joining the members having different linear expansion coefficients.

図4は、本発明のさらに別の実施例を示す。複合素子42および磁石27は、ともに基板5に接着剤6で固定されているが、基板5上に溝9を設け、基板5上に接着剤6によって固定される複合素子42と磁石27との間に接着剤がまわりこまないようにしてある。溝9の大きさは、接着剤6の粘性や、接合する基板5や磁石28との濡れ性が関係し、一律に決める事は難しいが、好ましくは、溝深さ0.05mm以上、溝幅は0.1mm以上である事が好ましい。   FIG. 4 shows yet another embodiment of the present invention. The composite element 42 and the magnet 27 are both fixed to the substrate 5 with the adhesive 6. However, the groove 9 is provided on the substrate 5, and the composite element 42 and the magnet 27 are fixed on the substrate 5 with the adhesive 6. There is no adhesive in between. The size of the groove 9 is related to the viscosity of the adhesive 6 and the wettability with the substrate 5 and the magnet 28 to be joined, and is difficult to determine uniformly, but preferably the groove depth is 0.05 mm or more and the groove width Is preferably 0.1 mm or more.

図5は、本発明の別の実施形態で、磁石27の底面部にC面状の面取部28を設け、複合素子42の固定は、磁石27の側面部に接着剤6によって固定されている。面取部28を設ける事で、複合素子42の底面と基板5の上面との間に接着剤が回り込む事を防止する事が出来る。このような構造の場合、複合素子42は線膨張係数の異なる2つの部材、基板5と磁石27に接着剤6を介して固定されているが、磁石27の底部に面取部28が有るために、複合素子42、磁石27、基板5が同時に接着剤6を介して接合固定される部分が無いので、複合素子42に加わる応力を低減する事が出来る。   FIG. 5 shows another embodiment of the present invention, in which a C-shaped chamfer 28 is provided on the bottom surface of the magnet 27, and the composite element 42 is fixed to the side surface of the magnet 27 by the adhesive 6. Yes. By providing the chamfered portion 28, it is possible to prevent the adhesive from flowing between the bottom surface of the composite element 42 and the top surface of the substrate 5. In the case of such a structure, the composite element 42 is fixed to two members having different linear expansion coefficients, that is, the substrate 5 and the magnet 27 via the adhesive 6, but has a chamfered portion 28 at the bottom of the magnet 27. In addition, since there is no portion where the composite element 42, the magnet 27, and the substrate 5 are simultaneously bonded and fixed via the adhesive 6, the stress applied to the composite element 42 can be reduced.

本発明の光アイソレータの実施例として図1に示した光アイソレータの試作を行った。製造方法とその構成について以下に説明する。   As an example of the optical isolator of the present invention, the optical isolator shown in FIG. 1 was prototyped. A manufacturing method and its configuration will be described below.

光学的に透明なエポキシ系の熱硬化型樹脂を用いて2枚の偏光子基板とファラデー回転子基板を固定し、複合基板を作製した。2枚の偏光子基板の厚みは、それぞれ約0.5mm、ファラデー回転子基板の厚みは約0.4mmであった。2枚の偏光子基板はいずれも、ある1辺に平行な方向に透過偏波を有するガラス偏光子を使用した。ファラデー回転子基板はビスマス置換ガーネットを用い、飽和磁界強度中における偏波回転角は45.0度であった。   Two polarizer substrates and a Faraday rotator substrate were fixed using an optically transparent epoxy-based thermosetting resin to produce a composite substrate. The two polarizer substrates each had a thickness of about 0.5 mm, and the Faraday rotator substrate had a thickness of about 0.4 mm. As the two polarizer substrates, glass polarizers having transmission polarization in a direction parallel to a certain side were used. The Faraday rotator substrate was bismuth-substituted garnet, and the polarization rotation angle in the saturation magnetic field strength was 45.0 degrees.

複合基板をダイシング加工機で1辺に平行方向に切削加工し、偏光子2および4、およびファラデー回転子3から構成される、1.25mm角のチップ化された複合素子42を切り出した。   The composite substrate was cut by a dicing machine in a direction parallel to one side, and a 1.25 mm square composite element 42 composed of the polarizers 2 and 4 and the Faraday rotator 3 was cut out.

次にチップ化された複合素子42を基板5の上に実装した。基板5はサイズ2.0×4.0mmで厚み0.5mmのジルコニアのセラミクス板を用いた。基板5上への複合素子46と偏光子4の固定は、熱硬化型の接着剤6により固定した。   Next, the composite element 42 formed into a chip was mounted on the substrate 5. The substrate 5 was a zirconia ceramic plate having a size of 2.0 × 4.0 mm and a thickness of 0.5 mm. The composite element 46 and the polarizer 4 were fixed on the substrate 5 with a thermosetting adhesive 6.

次に、C面状の面取部28の形成されている磁石27を、基板6の上に固定した。C面の大きさは0.3mmとした。磁石27の底面に、熱硬化型の接着剤6をあらかじめ塗布した後、複合素子42の側面に複合素子42を挟むように基板上に設置し、過熱硬化を行った。接着剤6を底面に塗布した磁石42を基板5上に設置した時に、面取部28があるため、磁石27の側面と複合素子42の側面とのあいだに接着剤6が入りこむ事が無かった。また比較のため、上記複合素子42および基板5を用い図6に示される従来構造と同じように底部にC面をつけない構造の磁石を用い光アイソレータを作製した。複合素子42と磁石27との間には、わずかであるが毛細管現象により接着剤が回り込んでしまい、複合素子42側面と磁石27の側面の一部が接着剤6によって接合されていた。   Next, the magnet 27 on which the C-shaped chamfered portion 28 was formed was fixed on the substrate 6. The size of the C surface was 0.3 mm. After the thermosetting adhesive 6 was previously applied to the bottom surface of the magnet 27, it was placed on the substrate so that the composite element 42 was sandwiched between the side surfaces of the composite element 42, and overheated. When the magnet 42 coated with the adhesive 6 on the bottom surface is installed on the substrate 5, the chamfered portion 28 exists, so that the adhesive 6 does not enter between the side surface of the magnet 27 and the side surface of the composite element 42. . For comparison, an optical isolator was manufactured using the composite element 42 and the substrate 5 and using a magnet having a structure in which the C-surface is not attached to the bottom as in the conventional structure shown in FIG. The adhesive agent wraps around the composite element 42 and the magnet 27 by a slight capillary action, and the side face of the composite element 42 and a part of the side face of the magnet 27 are joined by the adhesive 6.

このようにして作製した本発明による光アイソレータと従来構造の光アイソレータの特性結果を表1に示す。

Figure 2005070798
Table 1 shows the result of the characteristics of the optical isolator according to the present invention and the optical isolator having the conventional structure.
Figure 2005070798

従来構造の光アイソレータの場合、アイソレーションが最大38dBから最小34dBと、特性が比較して悪くなっており、製品による特性のばらつきも大きかった。一方、本発明による光アイソレータの場合、接着剤硬化後も、複合素子42を構成する偏光子2、4およびファラデー回転子3にクラックが発生する事は無かった。この光アイソレータに飽和磁界を印可した後、光学特性を評価した結果、挿入損失が0.2dB以下、アイソレーションが40dB以上と、従来構造に比較して、良好で均一な特性を有することを確認した。   In the case of an optical isolator having a conventional structure, the isolation is worse than a maximum of 38 dB to a minimum of 34 dB, and the variation in characteristics due to products is large. On the other hand, in the case of the optical isolator according to the present invention, the polarizers 2 and 4 and the Faraday rotator 3 constituting the composite element 42 did not crack even after the adhesive was cured. After applying a saturation magnetic field to this optical isolator, the optical characteristics were evaluated. As a result, it was confirmed that the insertion loss was 0.2 dB or less and the isolation was 40 dB or more. did.

(a)は本発明による光アイソレータの実施形態の平面図を示し、(b)はその正面図を示す。(A) shows the top view of embodiment of the optical isolator by this invention, (b) shows the front view. (a)は本発明による光アイソレータの他の実施形態の平面図を示し、(b)はその正面図を示す。(A) shows the top view of other embodiment of the optical isolator by this invention, (b) shows the front view. (a)は本発明による光アイソレータの他の実施形態の平面図を示し、(b)はその正面図を示す。(A) shows the top view of other embodiment of the optical isolator by this invention, (b) shows the front view. (a)は本発明による光アイソレータの別な実施形態の上面図を示し、(b)はその正面図を示す。(A) shows the top view of another embodiment of the optical isolator by this invention, (b) shows the front view. (a)は本発明による光アイソレータの他の実施形態の上面図を示し、(b)はその正面図を示す。(A) shows the top view of other embodiment of the optical isolator by this invention, (b) shows the front view. 従来の光アイソレータを示す斜視図である。It is a perspective view which shows the conventional optical isolator.

符号の説明Explanation of symbols

2、4、:偏光子
3、:ファラデー回転子
5、7:基板
9:溝
6:接着剤
41:光アイソレータ
42:複合素子
27、28、29:磁石
2, 4,: Polarizer 3, Faraday rotator 5, 7: Substrate 9: Groove 6: Adhesive 41: Optical isolator 42: Composite elements 27, 28, 29: Magnet

Claims (5)

少なくとも第1のファラデー回転子と、第1、第2の偏光子とを有した複合素子および磁石を基板上に搭載して接着剤で整列固定した光アイソレータにおいて、前記磁石の基板上に接する面、複合素子の基板上に接する面又は基板上面は、前記複合素子と磁石との間に接着剤がまわりこまないよう形成されていることを特徴とする光アイソレータ。 In an optical isolator in which a composite element having at least a first Faraday rotator and first and second polarizers and a magnet are mounted on a substrate and aligned and fixed with an adhesive, the surface of the magnet contacting the substrate The optical isolator is characterized in that the surface of the composite element contacting the substrate or the upper surface of the substrate is formed so that an adhesive does not penetrate between the composite element and the magnet. 前記磁石または複合素子の基板上に接する面には、面取り部が形成されていることを特徴とする請求項1に記載の光アイソレータ。 The optical isolator according to claim 1, wherein a chamfered portion is formed on a surface of the magnet or the composite element that contacts the substrate. 前記複合素子の底面は、基板から離間して固定されていることを特徴とする請求項1に記載の光アイソレータ。 The optical isolator according to claim 1, wherein a bottom surface of the composite element is fixed apart from the substrate. 前記複合素子と磁石とが当接する部分の基板上に、溝が形成されていることを特徴とする請求項1に記載の光アイソレータ。 The optical isolator according to claim 1, wherein a groove is formed on a portion of the substrate where the composite element and the magnet abut. 上記複合素子、磁石、基板の3つの部材の境界部に接着剤の存在しない空隙部を有することを特徴とする請求項1〜4のいずれかに記載の光アイソレータ。 The optical isolator according to any one of claims 1 to 4, further comprising a gap portion where no adhesive is present at a boundary portion between the three members of the composite element, the magnet, and the substrate.
JP2004283554A 2004-09-29 2004-09-29 Optical isolator Pending JP2005070798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283554A JP2005070798A (en) 2004-09-29 2004-09-29 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283554A JP2005070798A (en) 2004-09-29 2004-09-29 Optical isolator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002052367A Division JP2003255269A (en) 2002-02-27 2002-02-27 Optical isolator

Publications (1)

Publication Number Publication Date
JP2005070798A true JP2005070798A (en) 2005-03-17

Family

ID=34420324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283554A Pending JP2005070798A (en) 2004-09-29 2004-09-29 Optical isolator

Country Status (1)

Country Link
JP (1) JP2005070798A (en)

Similar Documents

Publication Publication Date Title
US7259913B2 (en) Faraday rotator for high output lasers
JP4797733B2 (en) Polarization-independent optical isolator for high-power lasers
JP4968210B2 (en) Polarization-independent optical isolator
JP2003255269A (en) Optical isolator
JP2005070798A (en) Optical isolator
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JP4688024B2 (en) Faraday rotator manufacturing method and optical isolator incorporating the rotator
JP3973975B2 (en) Optical isolator
JP3739686B2 (en) Embedded optical isolator
JP2006208710A (en) Optical isolator element, its manufacturing method, and fiber with optical isolator
JP2005215328A (en) Optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JP2004354646A (en) Optical isolator and its assembly method
JPH10142558A (en) Optical isolator and its production
JP2006098493A (en) Compound optical component and optical isolator element
JP6226428B2 (en) A method of manufacturing a polarization maintaining fiber with an optical isolator.
JP2023005437A (en) Optical element and manufacturing method therefor, optical isolator, and optical transmission device
US6678459B1 (en) Method for bonding two optical parts and apparatus thereof
JP3990088B2 (en) Optical isolator
JP2005157010A (en) Optical isolator
JP2001125043A (en) Optical isolator
JP2002182155A (en) Optical isolator and method for manufacturing the same
JPH10123462A (en) Manufacture of optical isolator, optical isolator, polarizing element and faraday element
JP2000105354A (en) Element for optical isolator
JPH11183842A (en) Element for optical isolator and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041208

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Effective date: 20060731

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A02