[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005060773A - Special brass and method for increasing strength of the special brass - Google Patents

Special brass and method for increasing strength of the special brass Download PDF

Info

Publication number
JP2005060773A
JP2005060773A JP2003292653A JP2003292653A JP2005060773A JP 2005060773 A JP2005060773 A JP 2005060773A JP 2003292653 A JP2003292653 A JP 2003292653A JP 2003292653 A JP2003292653 A JP 2003292653A JP 2005060773 A JP2005060773 A JP 2005060773A
Authority
JP
Japan
Prior art keywords
strength
special brass
brass
special
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003292653A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
洋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003292653A priority Critical patent/JP2005060773A/en
Publication of JP2005060773A publication Critical patent/JP2005060773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy composition of special brass and a method for increasing strength thereof which realize an increase in the strength required to the material for electrical and electronic components such as a connector. <P>SOLUTION: The special brass has a composition comprising, by weight, 18 to 32% zinc, 0.01 to 0.1% phosphorous, 0.6 to 2.5% tin and 0.02 to 0.5% of one or more kinds of metals selected from among iron, nickel and cobalt, and the balance copper with inevitable impurities. In the method for increasing its strength, the special brass is hot-worked, is cold-worked, is heat-treated for distortion removal annealing and precipitation hardening, is further cold-worked, is annealed so as to control the grain size to <3 μm by recrystallization, and is subjected to finish cold working. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

従来にない高力化特殊黄銅及びその高力化特殊黄銅の製造方法に関する。特に、本件発明に係る高力化特殊黄銅は、コネクタ、ばね等の電気電子部品用材料として好適な強度及び導電性を有するものである。   The present invention relates to an unprecedented high-strength special brass and a method for producing the high-strength special brass. In particular, the high-strength special brass according to the present invention has strength and conductivity suitable as materials for electrical and electronic parts such as connectors and springs.

黄銅は銅を主成分とする銅−亜鉛合金であり、真鍮とも呼ばれるものである。最も広く普及しているのは70−30黄銅(所謂7−3黄銅)と呼ばれる30wt%亜鉛の合金であるが、板や棒材では亜鉛を38wt%〜43wt%含む60−40黄銅(所謂6−4黄銅)が広く用いられてきた。   Brass is a copper-zinc alloy mainly composed of copper, and is also called brass. The most widespread is an alloy of 30 wt% zinc called 70-30 brass (so-called 7-3 brass), but 60-40 brass (so-called 6) containing 38 wt% to 43 wt% of zinc in a plate or bar. -4 brass) has been widely used.

そして、近年は機械的加工性の改善、耐蝕性の改善、高力化する目的で、第3元素として鉛、スズ、鉄、ニッケル、マンガン、アルミニウム等を2〜3wt%添加した特殊黄銅が用いられるようになってきた。   In recent years, special brass added with 2 to 3 wt% of lead, tin, iron, nickel, manganese, aluminum, etc. as the third element has been used for the purpose of improving mechanical workability, improving corrosion resistance, and increasing strength. Has come to be.

中でも、コネクタ若しくはバネ用とされる銅合金条材又は線材は、端子類の小型化に伴い薄肉化若しくは細線化してきた為、特に高力化したものが要求されるようになっている。例えば、非特許文献1及び非特許文献2等に開示されているように、フォークコンタクト、クリンプターミナル等の断面接触方式を採用する小型高密度実装用コンタクト材に限ってみれば、一般的に700MPa〜800MPaの0.2%耐力が求められ、最近では1000MPa以上の0.2%耐力が要求されてきている。以下、その他の技術水準を示す文献を列挙しておくこととする。   Among them, copper alloy strips or wires used for connectors or springs have been required to have particularly high strength because they have become thinner or thinner with the miniaturization of terminals. For example, as disclosed in Non-Patent Document 1 and Non-Patent Document 2, etc., if it is limited to a small and high-density mounting contact material that adopts a cross-sectional contact method such as a fork contact or a crimp terminal, it is generally 700 MPa. A 0.2% proof stress of ˜800 MPa is required, and recently, a 0.2% proof stress of 1000 MPa or more has been required. In the following, documents showing other technical levels are listed.

伸銅技術研究会誌第36巻第1号第21頁〜第24頁(1997)Journal of Copper Technology Research Vol. 36, No. 1, pp. 21-24 (1997) 伸銅技術研究会誌第40巻第1号第22頁〜第27頁(2001)Journal of Copper Technology Research Vol. 40, No. 1, pp. 22-27 (2001) 伸銅品データブック 日本伸銅協会 第98頁Copper Products Data Book Japan Copper and Brass Association, page 98 りん青銅の基礎と応用 日刊工業新聞社 第81頁〜第87頁Basics and application of phosphor bronze Nikkan Kogyo Shimbun, pages 81-87 銅と銅合金 第41巻第1号第197頁〜第203頁(2002)Copper and copper alloys Vol. 41, No. 1, pages 197-203 (2002) 銅と銅合金 第41巻第1号第29頁〜第34頁(2002)Copper and copper alloys Vol. 41, No. 1, pp. 29-34 (2002) 特開2002−88428号公報JP 2002-88428 A 特公昭58−21018号公報Japanese Patent Publication No.58-21018

しかしながら、コネクタ材として用いられてきた黄銅やリン青銅、ばね材として用いられてきたリン青銅では、現在の高力化の要求には応えられないものとなっている。以下に、これらの問題点を列挙してみることとする。   However, brass or phosphor bronze that has been used as a connector material, or phosphor bronze that has been used as a spring material cannot meet the current demand for higher strength. The following is a list of these problems.

この内、黄銅の代表である所謂7−3黄銅は、加工度90%の強加工を施して加工硬化させても0.2%耐力は680MPaまでしか上昇しないことが非特許文献3に開示されている。しかも、90%の強加工で塑性変形させると端割れが酷く、工業的に採用できる加工条件ではない。従って、通常の黄銅に対し、必要な機械的強度を得ようとして加工硬化法を採用することは賢明とは言えないのである。   Among them, so-called 7-3 brass, which is representative of brass, is disclosed in Non-Patent Document 3 that the 0.2% proof stress only rises up to 680 MPa even if it is subjected to strong processing with a workability of 90% and work hardening. ing. Moreover, when the plastic deformation is performed with 90% strong processing, the end cracking is severe, and it is not a processing condition that can be adopted industrially. Therefore, it is not wise to adopt the work hardening method to obtain the required mechanical strength for normal brass.

一方、リン青銅は、銅合金の中でもベリリウム銅と並んで高力化された合金として知られており、バネ材として多用され、強度的には0.2%耐力で700MPa程度をクリアすることができるが、非特許文献4にあるように導電率が13%程度と低く、接点などの電子部品材料として不利である。   Phosphor bronze, on the other hand, is known as a high-strength alloy along with beryllium copper among copper alloys, and is widely used as a spring material. In terms of strength, it can clear about 700 MPa with 0.2% proof stress. However, as disclosed in Non-Patent Document 4, the conductivity is as low as about 13%, which is disadvantageous as a material for electronic parts such as contacts.

アドミラルティー合金(C44500)は、コンデンサー材料として広く用いられているが、展延性に欠けるため条材又は線材に加工されることはないのである。更に、近年、このアドミラルティー合金の新品種としてC44250が、非特許文献5に開示ているが、やはり高力化の面では不十分である。   Admiralty alloy (C44500) is widely used as a capacitor material, but it is not processed into a strip or wire because it lacks ductility. Furthermore, in recent years, C44250 is disclosed in Non-Patent Document 5 as a new type of this admiralty alloy, but it is still insufficient in terms of increasing the strength.

また、Siを含んだ銅合金であり、結晶中に珪素化合物を析出させたものが特許文献1に開示されているが、やはり強度的な面では不十分である。更に、特許文献2に開示されているSn成分を含む黄銅であっても、スズ成分が不足しているので、その機械的強度レベルが低く、近年の小型高密度実装用コンタクト材の用途には不向きである。   Moreover, although it is the copper alloy containing Si, and the thing which precipitated the silicon compound in the crystal | crystallization is disclosed by patent document 1, it is still inadequate in terms of intensity | strength. Furthermore, even the brass containing the Sn component disclosed in Patent Document 2 has a low mechanical strength level because it lacks the tin component. It is unsuitable.

以上のことから、コネクタ等の電気、電子部品用材料に要求される高力化を達成し、且つ、国際的な価格競争を勝ち抜ける安価な特殊黄銅が求められてきたのである。   In view of the above, there has been a demand for inexpensive special brass that achieves the high strength required for materials for electrical and electronic parts such as connectors, and that can survive international price competition.

そこで、本件発明に発明者等が、鋭意研究を行った結果、以下に述べる特殊黄銅を開発するに到ったのである。黄銅とは、銅を主成分とする銅−亜鉛合金であることが基本である。従って、本件発明では、鋳造性、展伸性、高力化を目的として添加するその他の元素を第3元素と称し、その合金は特殊黄銅と称することとする。以下、本件発明に関し、特殊黄銅と高力化方法とに分けて説明する。   Thus, as a result of intensive studies by the inventors of the present invention, the following special brass has been developed. Brass is basically a copper-zinc alloy mainly composed of copper. Therefore, in this invention, the other element added for the purpose of castability, extensibility, and high strength is referred to as the third element, and the alloy is referred to as special brass. Hereinafter, the present invention will be described by being divided into special brass and a strengthening method.

<本件発明に係る特殊黄銅>
本件発明に係る特殊黄銅は、「複数種の第3元素を含む特殊黄銅であって、亜鉛18wt%〜32wt%、リン0.01wt%〜0.1wt%、スズ0.6wt%〜2.5wt%、及び鉄、ニッケル、コバルトから選ばれる1種又は2種以上を0.02wt%〜0.5wt%を含み、残部銅及び不可避不純物であることを特徴とする特殊黄銅。」である。
<Special brass according to the present invention>
The special brass according to the present invention is “special brass containing a plurality of third elements, zinc 18 wt% to 32 wt%, phosphorus 0.01 wt% to 0.1 wt%, tin 0.6 wt% to 2.5 wt%. %, And one or more selected from iron, nickel, and cobalt, 0.02 wt% to 0.5 wt%, and the remaining copper and inevitable impurities are special brass.

まず、最初に亜鉛の含有量に関して説明する。ここでは亜鉛含有量は、18wt%〜32wt%としている。この亜鉛量は、実用黄銅の内、丹銅3種、丹銅4種、7−3黄銅に相当する亜鉛量の範囲を採用しているのである。黄銅での合金元素としての亜鉛は、合金としての鋳造性、加工性を改善するために加えられるものである。ここで採用した亜鉛量の範囲は、平衡状態図から判断して、その結晶組織が銅と亜鉛との加工性に富む面心立方格子のα固溶体を広く形成する範囲のものである。本件発明に係る特殊黄銅は、後述する高力化処理を施すことで、従来にないレベルの高力化が可能なものであるから、ある程度の加工硬化性が要求される。即ち、亜鉛量が18wt%を未満とすると、高力化処理に必要な加工硬化性が得られなくなるのである。   First, the zinc content will be described first. Here, the zinc content is 18 wt% to 32 wt%. This zinc amount employs a range of zinc amounts corresponding to three types of brass, four types of brass, and 7-3 brass among practical brasses. Zinc as an alloy element in brass is added to improve castability and workability as an alloy. The range of the amount of zinc adopted here is a range in which the α-solid solution of the face-centered cubic lattice whose crystal structure is rich in the workability of copper and zinc is widely determined as judged from the equilibrium diagram. The special brass according to the present invention is required to have a certain degree of work curability because it is possible to increase the strength at an unprecedented level by applying a strengthening process described later. That is, if the amount of zinc is less than 18 wt%, the work curability necessary for the high-strength treatment cannot be obtained.

亜鉛は、特殊黄銅としての機械的強度の上昇に寄与し、安価であるためコスト的に有利となるが、含有量が32%を超えると、以下に述べるスズが共存することで熱間加工性を著しく低下させることもある。従って、亜鉛の含有量の範囲は、一定レベルの機械的強度を確保して熱間加工性を良好に保つという観点から考え、23wt%〜29wt%の範囲を採用することが最も好ましいのである。   Zinc contributes to an increase in mechanical strength as a special brass and is advantageous in terms of cost because it is inexpensive. However, when the content exceeds 32%, hot workability is achieved by the coexistence of tin described below. May be significantly reduced. Therefore, it is most preferable to adopt a range of 23 wt% to 29 wt% from the viewpoint of ensuring a certain level of mechanical strength and maintaining good hot workability.

次に、第3元素の一つであり、本件発明に係る特殊黄銅では必須のものであるスズ含有量に関して説明する。当業者が、上記スズ含有量を見れば、特殊黄銅の一種であるスズ入り黄銅の組成がベースにあることが理解できると思われる。黄銅組織に固溶する範囲内でスズを用いれば耐食性を改善し、機械的強度の向上にも寄与するものとなる。このスズの固溶限は、亜鉛の含有量により左右されるものであるが、亜鉛量が多いほど、スズの含有量も多くできるのである。一般に、7−3黄銅ではスズを1.5wt%〜2.0wt%固溶することが可能で、スズ1.0wt%のものが耐海水性を備えたアドミラルティー合金と称されている。そして、6−4黄銅の場合は、スズを2.5wt%〜3.0wt%固溶することが知られ、スズ1.0wt%のものがネーバル合金と称されている。そこで、本件発明では、亜鉛含有量との関係において0.6wt%〜2.5wt%のスズ含有量を採用しているのである。スズ含有量が0.6wt%未満の場合には、耐食性及び機械的強度の改善が出来ないのである。これに対し、スズ含有量が2.5wt%を超えるとスズが固溶しない場合が生じ、機械的強度がむしろ劣化し出すのである。また、スズ含有量が高い程、導電率が下がるため2.5wt%までとすることが好ましいのである。更に、極めて良好な熱間加工性を得て、しかも市場で求められる導電率20%IACSを確保することを考え合わせると、スズ含有量の上限値は1.4%とすることが望ましいのである。   Next, the tin content, which is one of the third elements and is essential in the special brass according to the present invention, will be described. If a person skilled in the art sees the above tin content, it can be understood that the composition of brass containing tin, which is a kind of special brass, is based. If tin is used within a range in which it dissolves in the brass structure, the corrosion resistance is improved and the mechanical strength is improved. The solid solubility limit of tin depends on the zinc content, but the higher the zinc content, the higher the tin content. In general, 7-3 brass can dissolve 1.5 to 2.0 wt% of tin, and 1.0 wt% of tin is called an admiralty alloy having seawater resistance. In the case of 6-4 brass, it is known that 2.5 wt% to 3.0 wt% of solid solution of tin, and 1.0 wt% of tin is called a naval alloy. Therefore, in the present invention, a tin content of 0.6 wt% to 2.5 wt% is employed in relation to the zinc content. If the tin content is less than 0.6 wt%, the corrosion resistance and mechanical strength cannot be improved. On the other hand, when the tin content exceeds 2.5 wt%, tin may not be dissolved, and the mechanical strength starts to deteriorate rather. Moreover, since electrical conductivity falls, so that tin content is high, it is preferable to set it as 2.5 wt%. Furthermore, considering the extremely good hot workability and securing the required electrical conductivity of 20% IACS, it is desirable that the upper limit of tin content is 1.4%. .

続いて、その他の第3元素であるリン、鉄、ニッケル、コバルトに関して説明する。ここで言うリンは、0.01wt%〜0.1wt%の範囲の含有量を採用するのである。そして、鉄、ニッケル、コバルトは、その内の1種又は2種以上を用いて0.02wt%〜0.5wt%の範囲の含有量を採用するのである。本件発明において、このリンと、鉄、ニッケル、コバルトの群の合金元素との関係が非常に重要な役割を果たすのである。   Subsequently, other third elements, such as phosphorus, iron, nickel, and cobalt, will be described. The phosphorus used here adopts a content in the range of 0.01 wt% to 0.1 wt%. And iron, nickel, and cobalt employ | adopt content of the range of 0.02 wt%-0.5 wt% using the 1 type (s) or 2 or more types. In the present invention, the relationship between this phosphorus and the alloy elements of the group of iron, nickel and cobalt plays a very important role.

合金元素としてのリンは、バネ用リン青銅に見られるように10wt%以下のスズと、0.3wt%〜1.5wt%のリンとを共存させることにより強化を図ることの出来るものである。そして、リンの同組織中への固溶を考えると、少量のリンであれば固溶するが、リン量が増加すると固くて脆い銅のリン化物であるCuPが生じ、機械的強度を劣化させるため好ましくないのである。即ち、本件発明では、リンと鉄、ニッケル、コバルトの群の合金元素とのリン化物を析出させるのに必要なリン量を確保し、過剰量となると生ずる不具合を避けることができる範囲として、リンの含有量を定めたのである。本件発明においてリンの含有量が0.01wt%未満の場合には、後述する鉄、ニッケル、コバルトの群の合金元素の添加量との関係において、リン化物形成が良好に行えず、再結晶粒の微細化ができず機械的強度の向上に寄与できないのである。そして、リンの含有量が0.1wt%を超える場合には、加工性が劣化し、耐応力腐食割れ性の低下がおこるのである。 Phosphorus as an alloy element can be strengthened by coexistence of 10 wt% or less of tin and 0.3 wt% to 1.5 wt% of phosphorus as seen in phosphor bronze for springs. Then, considering the solid solution of phosphorus in the same structure, a small amount of phosphorus dissolves, but as the amount of phosphorus increases, Cu 3 P, which is a hard and brittle copper phosphide, is generated, and the mechanical strength is reduced. It is not preferable because it deteriorates. That is, in the present invention, the amount of phosphorus necessary for precipitating a phosphide of phosphorus and an alloy element of the group of iron, nickel, and cobalt is secured, and as a range in which a problem that occurs when the amount becomes excessive can be avoided, The content of is determined. In the present invention, when the phosphorus content is less than 0.01 wt%, phosphide formation cannot be performed well in relation to the amount of addition of an alloy element of the iron, nickel, and cobalt group described later, and recrystallized grains Therefore, it cannot be refined and cannot contribute to improvement of mechanical strength. And when phosphorus content exceeds 0.1 wt%, workability will deteriorate and stress corrosion cracking resistance will fall.

鉄、ニッケル、コバルトは、その内の1種又は2種以上を用いて0.02wt%〜0.5wt%の範囲の含有量を採用している。この種の第3元素は、高力黄銅の代表格である6−4黄銅を基礎としたマンガン青銅に使用されてきた。従来から使用されてきたのは、鉄、マンガン、ニッケル、アルミニウム等である。このうち鉄、マンガン、アルミニウムは結晶粒を微細化し、マンガン青銅においては微細なβ層を析出させ機械強度の向上及び耐食性の向上に寄与している。ニッケルも同様の作用を示すものであるが、ニッケルはその含有率が高いほど、各種特性を向上させるが、高価な合金元素であることが難点となる。   Iron, nickel, and cobalt employ a content in the range of 0.02 wt% to 0.5 wt% using one or more of them. This type of third element has been used in manganese bronze based on 6-4 brass, a representative of high strength brass. Conventionally used are iron, manganese, nickel, aluminum and the like. Among these, iron, manganese, and aluminum refine crystal grains, and in manganese bronze, a fine β layer is deposited to contribute to improvement in mechanical strength and corrosion resistance. Nickel also exhibits the same action, but nickel improves various properties as its content increases, but it is difficult to be an expensive alloy element.

しかしながら、本件発明に係る特殊黄銅では、アルミニウムは合金元素から除外している。そして、特徴的なことは、コバルトを合金元素として用いることが出来る点である。本件発明に係る特殊黄銅において、鉄、ニッケル、コバルトは、やはり結晶粒を微細化し、機械強度の向上及び耐食性の向上に寄与すべく用いているのである。これらの第3元素は、合金元素であるリンと微細なリン化物を形成し、そのリン化物が組織内に均一に分散することで、結晶粒の微細化を図ることが可能となるのである。   However, in the special brass according to the present invention, aluminum is excluded from the alloy elements. And what is characteristic is that cobalt can be used as an alloy element. In the special brass according to the present invention, iron, nickel, and cobalt are used to refine the crystal grains and contribute to improvement of mechanical strength and corrosion resistance. These third elements form a fine phosphide with phosphorus, which is an alloy element, and the phosphide is uniformly dispersed in the structure, so that the crystal grains can be made finer.

上述した鉄、ニッケル、コバルトは、その内の1種又は2種以上を用いることが可能である。即ち、それぞれの元素が同様の作用をするのである。そして、本件発明に係る特殊黄銅においては、ここに述べた鉄系の元素を用いたリン化物が最も良好な分散性を示し結晶粒の微細化に寄与するようであり、鉄系元素を有効に活用することが好ましい。従って、鉄系合金元素をベースにして0.02wt%〜0.5wt%の範囲の含有量を採用することが好ましいのである。これらの合金元素の含有量が0.02wt%未満の場合には、十分な量のリン化物が出来ず、結晶粒の微細化効果は得られないのである。一方、当該合金元素の含有量が0.5wt%を超えると、組織内に分散するリン化物の存在量が多くなりすぎ、靱性が劣化しだすため塑性加工性能が劣るようになるのである。   Among the above-described iron, nickel, and cobalt, one or more of them can be used. That is, each element has the same effect. And, in the special brass according to the present invention, the phosphide using the iron-based element described here seems to contribute to the refinement of crystal grains by showing the best dispersibility, effectively using the iron-based element. It is preferable to utilize. Therefore, it is preferable to employ a content in the range of 0.02 wt% to 0.5 wt% based on the iron-based alloy element. When the content of these alloy elements is less than 0.02 wt%, a sufficient amount of phosphide cannot be formed, and the effect of refining crystal grains cannot be obtained. On the other hand, when the content of the alloy element exceeds 0.5 wt%, the amount of phosphide dispersed in the structure is excessively increased, and the toughness starts to deteriorate, so that the plastic working performance is deteriorated.

その他、本件発明に係る特殊黄銅は、硫黄成分の固溶量が多くなると脆化し靱性が損なわれるため、不可避不純物として含まれる可能性のある硫黄成分を、望ましくは30ppm以下とすることが好ましいのである。従って、本件発明に係る特殊黄銅の製造時に用いる原料にも十分に配慮し、スクラップ原料の使用に当たっては、定法に従いSの混入を可能な限り抑制すべきである。   In addition, since the special brass according to the present invention is brittle and the toughness is impaired when the solid solution amount of the sulfur component is increased, the sulfur component that may be included as an inevitable impurity is desirably 30 ppm or less. is there. Therefore, sufficient consideration should be given to the raw material used in the production of the special brass according to the present invention, and when using the scrap raw material, the incorporation of S should be suppressed as much as possible according to a standard method.

以上に述べてきた特殊黄銅は、良好な導電性を備えながらも、後述する高力化法で高力特殊黄銅としての性能が付与されるのであるが、高力化処理した後の本件発明に係る特殊黄銅は、以下にしめすような特性を持つものとなるのである。   The special brass described above is provided with performance as a high-strength special brass by the high-strength method described later, while having good conductivity, but in the present invention after high-strength processing Such special brass has the following characteristics.

本件発明に係る特殊黄銅は、中間工程でリン化物を析出させているので、加工及び熱処理による結晶粒の微細化効果を得やすく、結晶粒径を所望の範囲に調整することが容易である。そして、結晶粒径を3μm未満の範囲とすることで、非常に良好な加工性を備え、更に、従来の特殊黄銅では得られなかった機械的特性を得ることが可能なのである。   In the special brass according to the present invention, since the phosphide is precipitated in an intermediate step, it is easy to obtain a crystal grain refinement effect by processing and heat treatment, and it is easy to adjust the crystal grain size to a desired range. By setting the crystal grain size to a range of less than 3 μm, it is possible to obtain very good workability and to obtain mechanical properties that could not be obtained with conventional special brass.

また、本件発明に係る特殊黄銅は、合金元素として用いた鉄、ニッケル、コバルトのいずれかと微細なリン化物を形成し、そのリン化物が組織内に均一に分散することで、再結晶粒の成長を抑制し、結晶粒の微細化を図っているのである。   In addition, the special brass according to the present invention forms fine phosphides with any of iron, nickel, and cobalt used as alloy elements, and the phosphides are uniformly dispersed in the structure to grow recrystallized grains. Therefore, the crystal grains are made finer.

そして、機械的物性の面から本件発明に係る特殊黄銅を特定すると、圧延加工した後に展伸方向に採取した試料(以下、「MD試料」と称する。)で引張試験をしたときの、加工上がりの0.2%耐力が760MPa以上という高い耐力を持つことができるのである。ここで、「加工上がり」とは圧延加工後何ら熱処理等を行わずにの意である。   When the special brass according to the present invention is specified from the viewpoint of mechanical properties, the processing finish when a tensile test is performed on a sample (hereinafter referred to as “MD sample”) taken in the extending direction after rolling. The 0.2% proof stress can be as high as 760 MPa or higher. Here, “processing finish” means that no heat treatment or the like is performed after the rolling process.

更に、本件発明に係る特殊黄銅は、適正な熱履歴のもとで圧延加工することにより高力化処理を施し、更に低温焼鈍し、MD試料で引張試験をしたときの0.2%耐力が800MPa以上という極めて高い耐力を持つ特殊黄銅と言えるのである。前記した加工上がりの0.2%耐力と比較すると、0.2%耐力が向上している。即ち、本件発明に係る特殊黄銅は、適正な熱履歴の元で加工を加えることで、結晶粒の微細化効果が極めて効率的に得られる特殊黄銅であると言えるのであり、低温焼鈍による高力化効果を得やすい特殊黄銅であるとも言えるのである。   Furthermore, the special brass according to the present invention has a 0.2% proof stress when subjected to a high strength treatment by rolling under an appropriate heat history, further annealed at a low temperature, and subjected to a tensile test with an MD sample. It can be said that it is a special brass having an extremely high yield strength of 800 MPa or more. Compared to the 0.2% proof stress of the above-described processing, the 0.2% proof stress is improved. In other words, the special brass according to the present invention can be said to be a special brass that can be obtained with extremely efficient crystal grain refinement effects by applying processing under an appropriate thermal history. It can be said that it is a special brass that can easily achieve a crystallization effect.

<本件発明に係る特殊黄銅の高力化方法>
黄銅の高力化は、単に合金元素の組成だけでは達成できず、鋳塊から製品を得るための過程で、前記特殊黄銅に施される加工及び熱処理により、より高い機械的強度が付与され、名実共に高力化特殊黄銅となるのである。以上述べてきた特殊黄銅の高力化を行うためには、以下に述べる高力化方法を採用することが好ましいのである。なお、念のために記載しておくが、上述した特殊黄銅は、溶解鋳造法を用いて合金元素量を調整して得られるものであるが、鋳造に縦型連続鋳造法を用いる等も可能で、特に限定はない。
<Method for strengthening special brass according to the present invention>
Higher strength of brass cannot be achieved simply by the composition of the alloy elements, and in the process of obtaining a product from the ingot, higher mechanical strength is imparted by processing and heat treatment applied to the special brass, Both name and reality become high strength special brass. In order to increase the strength of the special brass described above, it is preferable to employ a method for increasing the strength described below. It should be noted that the special brass described above is obtained by adjusting the amount of alloy elements using a melting casting method, but it is also possible to use a vertical continuous casting method for casting, etc. There is no particular limitation.

本件発明に係る特殊黄銅の高力化方法の一連のフローを述べると、「前記特殊黄銅を熱間加工し、続いて冷間加工し、450〜550℃の温度で歪み取りとリン化物の析出とを目的とした熱処理をし、更に冷間加工を加え、250〜320℃の温度で再結晶粒の粒径が3μm未満となるよう再結晶化焼鈍し、仕上げ冷間加工を行うことを特徴とする特殊黄銅の高力化方法。」ということができる。以下、工程に従って説明する。   The flow of the high-strength method for special brass according to the present invention is described as follows: “The special brass is hot-worked and then cold-worked, and the strain is removed and the phosphide is precipitated at a temperature of 450 to 550 ° C. Heat treatment for the purpose of, and further cold work, recrystallization annealing at a temperature of 250-320 ℃ so that the grain size of recrystallized grains is less than 3μm, and finish cold work It can be said that the special brass has a high strength. Hereinafter, it demonstrates according to a process.

最初に、特殊黄銅の鋳塊を熱間加工することに始まる。この熱間加工は、鋳塊を線材、板材若しくは条材へとするための成形加工であり、熱間加工時の加熱温度は900℃以下とする。当該温度が900℃を超えると熱間割れが発生しやすくなり、より好ましくは870℃以下の温度を採用するのである。そして、この熱間加工後に、必要に応じて面削し、その後冷間加工でのクラック発生を防止することも有用である。   First, it starts with hot working a special brass ingot. This hot working is a forming process for turning the ingot into a wire, plate or strip, and the heating temperature during hot working is 900 ° C. or lower. When the said temperature exceeds 900 degreeC, it will become easy to generate | occur | produce a hot crack, More preferably, the temperature of 870 degrees C or less is employ | adopted. Then, after this hot working, it is also useful to chamfer as necessary, and then prevent the occurrence of cracks in the cold working.

次に、冷間加工が施されるが、この冷間加工は製品形状へのさらなる変形と加工による結晶粒の微細化が期待できる操作である。このときの冷間加工の加工率は、次のリン化物の析出工程での析出を微細且つ均一なものとするため50%以上とすることが望ましいのである。   Next, cold working is performed, and this cold working is an operation that can be expected to further deform the product shape and refine the crystal grains by the working. The processing rate of the cold working at this time is desirably 50% or more in order to make the precipitation in the next phosphide precipitation step fine and uniform.

次には、450〜550℃の温度で歪み取りと析出硬化とを目的とした熱処理が施されるのである。このときの熱処理は、リン化物の析出に適した450℃〜550℃の温度範囲を採用するのである。450℃未満の温度ではリン化物の析出が起こりにくく、550℃を超える温度で行うと、リン化物の析出粒が粗大化するとともに、歪み取りだけでなく、無用な結晶粒の成長が起こり出すのである。   Next, heat treatment for the purpose of strain removal and precipitation hardening is performed at a temperature of 450 to 550 ° C. The heat treatment at this time employs a temperature range of 450 ° C. to 550 ° C. suitable for precipitation of phosphide. Precipitation of phosphides is unlikely to occur at temperatures below 450 ° C., and if performed at temperatures exceeding 550 ° C., the precipitates of phosphides are coarsened, and not only are distortions removed, but unnecessary crystal grain growth occurs. is there.

上記熱処理が終了すると、再度、冷間加工を行うのである。このときの冷間加工は、結晶粒を塑性変形させ微細化すると同時に、結晶に内蔵される転位密度を上昇させ再結晶化を起こしやすくためのものである。従って、この冷間加工の加工率は、次の再結晶処理での再結晶粒の生成サイトを増加させ、再結晶化後の結晶粒を微細で且つ均一するため、60%以上の加工とすることが望ましいのである。例えば、結晶組織内に析出粒のない7−3黄銅のような場合に、同様の手法で微細結晶粒を得ようとすると92%と言う極めて高い加工率が求められることが、上記非特許文献6に記載されているが、本件発明に係る特殊黄銅の場合には、そこまでの強加工は必要としない。その結果、この段階の冷間加工に圧延加工を採用する場合には、端ワレ不良の発生を避けることが可能となるのである。   When the heat treatment is completed, cold working is performed again. The cold working at this time is for making the crystal grains plastically deformed and miniaturized, and at the same time, increasing the dislocation density built into the crystal to easily cause recrystallization. Therefore, the processing rate of this cold working is set to 60% or more in order to increase the generation site of recrystallized grains in the next recrystallization process and make the crystal grains after recrystallization fine and uniform. It is desirable. For example, in the case of 7-3 brass having no crystal grains in the crystal structure, if it is attempted to obtain fine crystal grains by the same method, a very high processing rate of 92% is required. Although it is described in 6, in the case of the special brass according to the present invention, strong processing up to that point is not required. As a result, when a rolling process is adopted for the cold working at this stage, it is possible to avoid the occurrence of edge cracking defects.

再度の冷間加工が終了すると、再結晶焼鈍を行うのである。この再結晶焼鈍では、250℃〜320℃の温度範囲を採用して行うのである。焼鈍温度が250℃未満では再緒晶させるための焼鈍時間が非常に長くなり工業的に使用できるものでは無いのである。一方、焼鈍温度が上がるにつれ、再結晶粒として得られる結晶粒径が大きくなり、焼鈍温度が320℃を超える温度では短時間の焼鈍でも、再結晶粒が3μm以上となるのである。   When the cold working is completed again, recrystallization annealing is performed. In this recrystallization annealing, a temperature range of 250 ° C. to 320 ° C. is adopted. If the annealing temperature is less than 250 ° C., the annealing time for recrystallization is very long and cannot be used industrially. On the other hand, as the annealing temperature rises, the crystal grain size obtained as recrystallized grains increases, and even when annealing temperature exceeds 320 ° C., the recrystallized grains become 3 μm or more even if annealing is performed for a short time.

そして、最後に仕上げの冷間加工を行うのである。この仕上げ冷間加工は、本件発明に係る特殊黄銅に、目的とする強度を付与するために行うものである。このときの加工率は、再結晶焼鈍後の結晶粒径を考慮して定めるものであり、再結晶焼鈍後の結晶粒径に応じて調整の出来る工程であるとも言える。例えば、再結晶粒が十分に小さいと判断できる場合には十分な機械的強度を既に備えているため加工率40%程度を採用し、再結晶粒が意図していたよりも大きいと考える場合には加工率70%を採用する等である。本件発明に係る特殊黄銅の高力化方法の場合には、前工程で再結晶粒を3μm未満に抑え、既に歪み取りと結晶粒の微細化を図っているので、冷間加工性が良好である。従って、その冷間加工に、冷間圧延で高加工率を採用しても端割れ等のクラックを発生しにくいものとなる。以上に述べた手順で、本件発明に係る特殊黄銅の高力化が可能で、特にコネクタ用合金として最適なものとなる。   Finally, the finish cold work is performed. This finish cold work is performed in order to give the intended strength to the special brass according to the present invention. The processing rate at this time is determined in consideration of the crystal grain size after recrystallization annealing, and can be said to be a process that can be adjusted according to the crystal grain size after recrystallization annealing. For example, when it can be determined that the recrystallized grains are sufficiently small, since a sufficient mechanical strength is already provided, a processing rate of about 40% is adopted, and the recrystallized grains are considered larger than intended. For example, a processing rate of 70% is adopted. In the case of the method for enhancing the strength of the special brass according to the present invention, the recrystallized grains are suppressed to less than 3 μm in the previous process, and the distortion removal and the refinement of the crystal grains have already been attempted. is there. Therefore, even if a high working rate is adopted in the cold working for the cold working, cracks such as end cracks are hardly generated. With the procedure described above, it is possible to increase the strength of the special brass according to the present invention, and it is particularly suitable as an alloy for connectors.

なお、本件発明に係る特殊黄銅で、高力化を図りつつ、極薄板物、極細線材を生産する場合等には、上記工程に加えて、さらに焼鈍と冷間加工とが必要となる場合があるが、この際の焼鈍に用いる条件は、上述した250℃〜320℃の間で行う再結晶焼鈍条件を用いればよいのである。   In addition, when special ultra brass according to the present invention is used to produce ultra-thin plates and ultra-fine wires while achieving high strength, annealing and cold working may be required in addition to the above steps. However, the conditions used for annealing at this time may be the recrystallization annealing conditions performed between 250 ° C. and 320 ° C. described above.

上述した高力化方法を施した高力特殊黄銅を更に高力化して、バネ材として用いようとするときには、更に低温焼鈍処理を行うことで機械的強度及びスプリング特性を向上させることが好ましい。この低温焼鈍処理は、焼なまし温度に150℃〜300℃、より好ましくは180℃〜250℃の温度範囲を採用するのである。ここに述べた温度範囲外では十分なスプリング特性向上効果が得られないのである。また、防錆等を目的としたメッキ処理が施されている場合には、メッキ層の劣化を防ぐため200℃未満で、それ以外の場合は200℃以上の温度で焼なまし処理することが望ましいのである。   When the high-strength special brass subjected to the above-described high-strength method is further strengthened and used as a spring material, it is preferable to further improve the mechanical strength and spring characteristics by performing a low-temperature annealing treatment. This low-temperature annealing treatment employs a temperature range of 150 ° C. to 300 ° C., more preferably 180 ° C. to 250 ° C., as the annealing temperature. Outside the temperature range described here, a sufficient spring characteristic improvement effect cannot be obtained. In addition, when plating treatment is performed for the purpose of rust prevention or the like, annealing treatment may be performed at a temperature of less than 200 ° C. to prevent deterioration of the plating layer, and at a temperature of 200 ° C. or more in other cases. It is desirable.

本発明に係る特殊黄銅は、従来のスズ入り黄銅等と比較して、高力化処理の効果が顕著に得られ、0.2%耐力が極めて高いものとなる。従って、コネクタ等の電気、電子部品の小型化に必要な機械的強度及び要求される導電率を十分に満足するものとなるのである。また、本件発明に係る特殊黄銅にとって、上述した高力化方法は最適のものであり、安定した高力化特性を引き出すことが出来るのである。   The special brass according to the present invention has a remarkable effect of high-strength treatment as compared with conventional tin-containing brass and the like, and has an extremely high 0.2% proof stress. Therefore, the mechanical strength required for miniaturization of electrical and electronic parts such as connectors and the required conductivity are sufficiently satisfied. Moreover, for the special brass according to the present invention, the above-described strengthening method is optimal, and a stable strengthening characteristic can be obtained.

以下、本件発明の実施例を示し、比較例と対比することで、本件発明に係る特殊黄銅の高力化を説明する。   Hereinafter, examples of the present invention will be shown and compared with comparative examples to explain the enhancement of special brass according to the present invention.

最初に、表1に示す合金組成を持つ特殊黄銅1〜4を、150mm×100mm×30mmの内寸を持つ金型に鋳込むことで鋳塊を製造した。そして、その鋳塊を、850℃に加熱し、熱間圧延して13mmの板材とした。また、同時に比較例1及び比較例2として、表1に示す合金組成のものを用いて対比用にしている。   First, ingots were manufactured by casting special brasses 1 to 4 having an alloy composition shown in Table 1 into a mold having an internal size of 150 mm × 100 mm × 30 mm. The ingot was heated to 850 ° C. and hot-rolled to obtain a 13 mm plate. At the same time, Comparative Examples 1 and 2 are used for comparison using the alloy compositions shown in Table 1.

Figure 2005060773
Figure 2005060773

熱間圧延が終了すると、表面研摩を行い、加工率50%以上の冷間圧延を加え、500℃で1時間の熱処理を施し、リン化物を結晶組織内に析出させた。その後、加工率70〜80%の冷間圧延を行い、再結晶焼鈍処理を行った。この再結晶焼鈍温度及び得られた再結晶後の結晶粒の大きさを表2に示している。   When hot rolling was completed, surface polishing was performed, cold rolling with a processing rate of 50% or more was added, and heat treatment was performed at 500 ° C. for 1 hour to precipitate a phosphide in the crystal structure. Then, cold rolling with a processing rate of 70 to 80% was performed, and a recrystallization annealing process was performed. Table 2 shows the recrystallization annealing temperature and the obtained crystal grain size after recrystallization.

Figure 2005060773
Figure 2005060773

続いて、表2に掲載したように冷間圧延を加え、0.2%耐力を測定した。また、表2には、必要に応じて加えた低温焼鈍の温度と、そのときの0.2%耐力の測定値を示している。この表2に示した結果から明らかとなるように、本発明にかかわる特殊黄銅1〜特殊黄銅4では、高い0.2%耐力が得られている。これに対し、比較例1の場合はSn含有量が低くて十分な0.2%耐力が得られず高力化できていないことが分かる。また、比較例2の場合は、再結晶温度が高いため再結晶後の結晶粒が3μmと大きくなり、結晶粒の微細化効果が得られず十分な強度が得られていないと考えられるのである。   Subsequently, cold rolling was applied as shown in Table 2, and 0.2% yield strength was measured. Table 2 shows the temperature of the low-temperature annealing added as necessary and the measured value of 0.2% proof stress at that time. As will be apparent from the results shown in Table 2, the special brass 1 to the special brass 4 according to the present invention have a high 0.2% yield strength. On the other hand, in the case of the comparative example 1, it turns out that Sn content is low and sufficient 0.2% yield strength cannot be obtained, but it has not been made high-strength. Further, in the case of Comparative Example 2, since the recrystallization temperature is high, the crystal grain after recrystallization becomes as large as 3 μm, and it is considered that the crystal grain refinement effect cannot be obtained and sufficient strength is not obtained. .

なお、本件発明に係る特殊黄銅を、冷間圧延したときの展伸方向と直角方向に試料(以下、「TD試料」と称する。)を採取して引張試験を行うと、引張強さおよび耐力は平行方向に採取した場合に比べ、より高い値が得られる。例えば、低温焼鈍をした特殊黄銅1の場合のMD試料とTD試料とでは、表3に示したように引張強さと0.2%耐力とに大きな差が生じている。しかも、TD試料の耐力は1000MPaを越すという黄銅ベ−スの合金としては驚異的な高力化が実現している。また、導電率は23%IACSであり、バネ用りん青銅の13%IACSに比べ非常に良好なものとなっている。   In addition, when the special brass according to the present invention is sampled in a direction perpendicular to the extension direction when cold-rolled (hereinafter referred to as “TD sample”) and subjected to a tensile test, tensile strength and yield strength are obtained. Is higher than that obtained in the parallel direction. For example, as shown in Table 3, there is a large difference between the tensile strength and the 0.2% proof stress between the MD sample and the TD sample in the case of the special brass 1 subjected to low temperature annealing. In addition, the strength of the TD sample is over 1000 MPa. As a brass-based alloy, a tremendous increase in strength has been realized. The electrical conductivity is 23% IACS, which is very good compared to 13% IACS of spring phosphor bronze.

Figure 2005060773
Figure 2005060773

以上に述べてきた本発明に係る特殊黄銅は、高力化処理の効果が顕著に得られ、0.2%耐力が従来の特殊黄銅の中でも極めて高いものとなる。従って、コネクタ等の電気、電子部品の小型化に必要な機械的強度及び要求される導電率を十分に満足するものとなるのである。しかも、合金組成に極めて高価な金属を多用していないため、良好な導電特性を備えつつも、安価な特殊黄銅として市場に供給することが可能で、この特殊黄銅を用いる電気及び電子部品の高品質化を容易に達成できるのである。   The special brass according to the present invention described above has a remarkable effect of high-strength treatment, and the 0.2% proof stress is extremely high among conventional special brasses. Therefore, the mechanical strength required for miniaturization of electrical and electronic parts such as connectors and the required conductivity are sufficiently satisfied. Moreover, since an extremely expensive metal is not used in the alloy composition, it can be supplied to the market as an inexpensive special brass while having good conductive properties. Quality can be easily achieved.

また、本件発明に係る特殊黄銅を用いた高力化方法は、本件発明に係る特殊黄銅にとって最良の高力化方法となる。しかも、この高力化処理に当たって、特殊な手法を用いることなく加工硬化と再結晶とによる結晶粒微細化による強化が容易に得られるのである。   Further, the strengthening method using the special brass according to the present invention is the best strengthening method for the special brass according to the present invention. Moreover, in this high-strength treatment, strengthening by crystal grain refinement by work hardening and recrystallization can be easily obtained without using a special technique.

Claims (7)

複数種の第3元素を含む特殊黄銅であって、
亜鉛18wt%〜32wt%、リン0.01wt%〜0.1wt%、スズ0.6wt%〜2.5wt%、及び鉄、ニッケル、コバルトから選ばれる1種又は2種以上を0.02wt%〜0.5wt%を含み、残部銅及び不可避不純物であることを特徴とする特殊黄銅。
Special brass containing a plurality of third elements,
18 wt% to 32 wt% zinc, 0.01 wt% to 0.1 wt% phosphorus, 0.6 wt% to 2.5 wt% tin, and 0.02 wt% to one or more selected from iron, nickel, and cobalt Special brass containing 0.5 wt%, remaining copper and inevitable impurities.
結晶粒径が3μm未満である請求項1に記載の特殊黄銅。 The special brass according to claim 1, wherein the crystal grain size is less than 3 µm. 結晶組織内にリン化物が析出したものである請求項1又は請求項2に記載の特殊黄銅。 The special brass according to claim 1 or 2, wherein a phosphide is precipitated in the crystal structure. 圧延加工した後に展伸方向で引張試験をしたときの、加工上がりの0.2%耐力が760MPa以上である請求項1〜請求項3のいずれかに記載の高力化した特殊黄銅。 The special brass with high strength according to any one of claims 1 to 3, wherein a 0.2% proof stress after processing is 760 MPa or more when a tensile test is performed in the extending direction after rolling. 圧延加工プロセスにより高力化処理した後に、展伸方向で引張試験をしたときの低温焼鈍後の0.2%耐力が800MPa以上である請求項1〜請求項4のいずれかに記載の高力化した特殊黄銅。 The high strength according to any one of claims 1 to 4, wherein the 0.2% proof stress after low-temperature annealing is 800 MPa or more when subjected to a tensile test in the extending direction after performing a high-strength treatment by a rolling process. Specialized brass. 請求項1〜請求項5のいずれかに記載の特殊黄銅の高力化を図るための方法であって、
前記高力特殊黄銅を熱間加工し、続いて冷間加工し、450〜550℃の温度で歪み取り焼鈍とリン化物析出とを目的とした熱処理をし、更に冷間加工を加え、250〜320℃の温度で再結晶粒の粒径が3μm未満となるよう再結晶化焼鈍し、仕上げ冷間加工を行うことを特徴とする特殊黄銅の高力化方法。
A method for increasing the strength of the special brass according to any one of claims 1 to 5,
Hot working the high-strength special brass, followed by cold working, heat treatment for the purpose of strain relief annealing and phosphide precipitation at a temperature of 450-550 ° C., adding further cold working, 250- A method for enhancing the strength of special brass, characterized in that recrystallization annealing is performed at a temperature of 320 ° C. so that the grain size of the recrystallized grains is less than 3 μm, and finish cold working is performed.
請求項6に記載の高力化方法を施した高力特殊黄銅を、更に低温焼鈍処理を行うことで機械的強度及びスプリング特性を向上させたバネ材用の特殊黄銅の高力化方法。 A method for enhancing the strength of special brass for a spring material, in which the high strength special brass subjected to the strengthening method according to claim 6 is further subjected to a low temperature annealing treatment to improve mechanical strength and spring characteristics.
JP2003292653A 2003-08-12 2003-08-12 Special brass and method for increasing strength of the special brass Pending JP2005060773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292653A JP2005060773A (en) 2003-08-12 2003-08-12 Special brass and method for increasing strength of the special brass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292653A JP2005060773A (en) 2003-08-12 2003-08-12 Special brass and method for increasing strength of the special brass

Publications (1)

Publication Number Publication Date
JP2005060773A true JP2005060773A (en) 2005-03-10

Family

ID=34369900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292653A Pending JP2005060773A (en) 2003-08-12 2003-08-12 Special brass and method for increasing strength of the special brass

Country Status (1)

Country Link
JP (1) JP2005060773A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283060A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Copper alloy material and manufacturing method thereof
US20100284852A1 (en) * 2007-09-11 2010-11-11 Graham Hugh Cross Equestrian bit mouthpiece from copper alloy
WO2012096237A1 (en) * 2011-01-13 2012-07-19 三菱マテリアル株式会社 Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
WO2013023717A3 (en) * 2011-08-13 2013-06-20 Wieland-Werke Ag Copper zinc alloy
WO2013023718A3 (en) * 2011-08-13 2013-08-29 Wieland-Werke Ag Use of a copper alloy for breeding marine animals
JP5501495B1 (en) * 2013-03-18 2014-05-21 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP2014101571A (en) * 2012-10-26 2014-06-05 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive part and terminal for electronic and electrical equipment
JP2014118595A (en) * 2012-12-14 2014-06-30 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and electroconductive component for electronic and electrical equipment and terminal
JP2014145096A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal
JP2014145095A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal
JP2014167160A (en) * 2013-01-31 2014-09-11 Mitsubishi Materials Corp Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, part and terminal for electronic and electrical device
JP2014167161A (en) * 2013-01-31 2014-09-11 Mitsubishi Materials Corp Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, part and terminal for electronic and electrical device
WO2014147861A1 (en) * 2013-03-18 2014-09-25 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
JP2014205903A (en) * 2013-03-18 2014-10-30 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy thin film for electronic and electrical equipment, conductive part for electronic and electrical equipment and terminal
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
JP2015034332A (en) * 2013-07-10 2015-02-19 三菱マテリアル株式会社 Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment
EP2759612A4 (en) * 2011-09-20 2015-06-24 Mitsubishi Shindo Kk COPPER ALLOY SHEET AND PROCESS FOR PRODUCING COPPER ALLOY SHEET
KR20150101455A (en) * 2012-12-28 2015-09-03 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
KR20150109378A (en) * 2013-01-28 2015-10-01 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, electroconductive component and terminal for electronic/electric device
EP3020837A4 (en) * 2013-07-10 2017-02-15 Mitsubishi Materials Corporation Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
EP3020838A4 (en) * 2013-07-10 2017-04-19 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
CN118086717A (en) * 2024-04-23 2024-05-28 中铝科学技术研究院有限公司 Corrosion-resistant brass alloy, and preparation method and application thereof

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283060A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Copper alloy material and manufacturing method thereof
US20100284852A1 (en) * 2007-09-11 2010-11-11 Graham Hugh Cross Equestrian bit mouthpiece from copper alloy
CN103282525A (en) * 2011-01-13 2013-09-04 三菱综合材料株式会社 Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
WO2012096237A1 (en) * 2011-01-13 2012-07-19 三菱マテリアル株式会社 Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
JP2012158829A (en) * 2011-01-13 2012-08-23 Mitsubishi Materials Corp Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
US9493858B2 (en) 2011-08-13 2016-11-15 Wieland-Werke Ag Copper alloy
WO2013023718A3 (en) * 2011-08-13 2013-08-29 Wieland-Werke Ag Use of a copper alloy for breeding marine animals
CN103732769A (en) * 2011-08-13 2014-04-16 威兰德-沃克公开股份有限公司 Copper zinc alloy
WO2013023717A3 (en) * 2011-08-13 2013-06-20 Wieland-Werke Ag Copper zinc alloy
US9702027B2 (en) 2011-08-13 2017-07-11 Wieland-Werke Ag Copper alloy
JP2014527578A (en) * 2011-08-13 2014-10-16 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Copper alloy
EP2759612A4 (en) * 2011-09-20 2015-06-24 Mitsubishi Shindo Kk COPPER ALLOY SHEET AND PROCESS FOR PRODUCING COPPER ALLOY SHEET
EP3284835A3 (en) * 2012-01-06 2018-02-28 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
EP2801630A4 (en) * 2012-01-06 2015-10-07 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRONIC / ELECTRICAL DEVICE, COPPER ALLOY THIN PLATE FOR ELECTRONIC / ELECTRICAL DEVICE, COPPER ALLOY MANUFACTURING METHOD FOR ELECTRONIC / ELECTRICAL DEVICE, CONDUCTIVE PART AND TERMINAL FOR ELECTRONIC / ELECTRICAL DEVICE
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
JP2014101571A (en) * 2012-10-26 2014-06-05 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive part and terminal for electronic and electrical equipment
JP2014118595A (en) * 2012-12-14 2014-06-30 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and electroconductive component for electronic and electrical equipment and terminal
KR20150101455A (en) * 2012-12-28 2015-09-03 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
KR102042883B1 (en) 2012-12-28 2019-11-08 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
JP2014145095A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal
EP2949769A4 (en) * 2013-01-28 2016-12-28 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRONIC / ELECTRICAL DEVICE, COPPER ALLOY THIN PLATE FOR ELECTRONIC / ELECTRICAL DEVICE, ELECTROCONDUCTIVE COMPONENT, AND TERMINAL FOR ELECTRONIC / ELECTRICAL DEVICE
KR102042885B1 (en) 2013-01-28 2019-11-08 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, electroconductive component and terminal for electronic/electric device
KR20150109378A (en) * 2013-01-28 2015-10-01 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, electroconductive component and terminal for electronic/electric device
JP2014145096A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal
JP2014167161A (en) * 2013-01-31 2014-09-11 Mitsubishi Materials Corp Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, part and terminal for electronic and electrical device
JP2014167160A (en) * 2013-01-31 2014-09-11 Mitsubishi Materials Corp Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, part and terminal for electronic and electrical device
EP2977476A4 (en) * 2013-03-18 2016-12-28 Mitsubishi Materials Corp COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC EQUIPMENT, COPPER ALLOY THIN SHEET FOR ELECTRICAL AND ELECTRONIC EQUIPMENT, AND CONDUCTIVE COMPONENT AND TERMINAL FOR ELECTRICAL AND ELECTRONIC EQUIPMENT
WO2014147862A1 (en) * 2013-03-18 2014-09-25 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
JP2014181362A (en) * 2013-03-18 2014-09-29 Mitsubishi Materials Corp Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment
KR20150129719A (en) * 2013-03-18 2015-11-20 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
US20160300634A1 (en) * 2013-03-18 2016-10-13 Mitsubishi Shindoh Co., Ltd. Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
KR102093532B1 (en) 2013-03-18 2020-03-25 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
KR102087470B1 (en) 2013-03-18 2020-03-10 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
JP2014205903A (en) * 2013-03-18 2014-10-30 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy thin film for electronic and electrical equipment, conductive part for electronic and electrical equipment and terminal
KR20150129780A (en) * 2013-03-18 2015-11-20 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
JP5501495B1 (en) * 2013-03-18 2014-05-21 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2014147861A1 (en) * 2013-03-18 2014-09-25 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
JP2015034332A (en) * 2013-07-10 2015-02-19 三菱マテリアル株式会社 Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment
US10190194B2 (en) 2013-07-10 2019-01-29 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
EP3020838A4 (en) * 2013-07-10 2017-04-19 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
EP3020837A4 (en) * 2013-07-10 2017-02-15 Mitsubishi Materials Corporation Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
CN118086717A (en) * 2024-04-23 2024-05-28 中铝科学技术研究院有限公司 Corrosion-resistant brass alloy, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2005060773A (en) Special brass and method for increasing strength of the special brass
JP4809602B2 (en) Copper alloy
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
CN101270423B (en) Cu-Ni-Si based copper alloy for electronic material
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP5619389B2 (en) Copper alloy material
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2011508081A (en) Copper-nickel-silicon alloy
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP2010270355A (en) Copper alloy sheet and manufacturing method thereof
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP4804266B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same
JP4494258B2 (en) Copper alloy and manufacturing method thereof
CN111868276B (en) Copper alloy sheet and method for producing same
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP6029296B2 (en) Cu-Zn-Sn-Ca alloy for electrical and electronic equipment
KR100878165B1 (en) Cu-Ni-Si-based copper alloy for electronic materials, new products using this copper alloy, and electronic device parts using this copper alloy
JP2011190469A (en) Copper alloy material, and method for producing the same
JP2010236029A (en) Cu-Si-Co alloy for electronic materials and method for producing the same
JP3864965B2 (en) Manufacturing method of copper alloy for terminals and connectors
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment