[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005060308A - Agent for enhancing and promoting production of adiponectin - Google Patents

Agent for enhancing and promoting production of adiponectin Download PDF

Info

Publication number
JP2005060308A
JP2005060308A JP2003292718A JP2003292718A JP2005060308A JP 2005060308 A JP2005060308 A JP 2005060308A JP 2003292718 A JP2003292718 A JP 2003292718A JP 2003292718 A JP2003292718 A JP 2003292718A JP 2005060308 A JP2005060308 A JP 2005060308A
Authority
JP
Japan
Prior art keywords
adiponectin
sample
curcumin
organic solvent
theophylline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003292718A
Other languages
Japanese (ja)
Inventor
Yukinae Yamazaki
幸苗 山崎
Yasuhiro Kono
泰広 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003292718A priority Critical patent/JP2005060308A/en
Publication of JP2005060308A publication Critical patent/JP2005060308A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe medicament having activities for promoting and enhancing the production of adiponectin in the body, and hardly providing side effects. <P>SOLUTION: The medicament for promoting or enhancing the production of the adiponectin in the body is obtained by using an extract extracted from a rhizome of turmeric with an organic solvent, or curcumin contained therein, or by using theophylline, caffeine or theobromine in combination therewith. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は ショウガ科ウコン属(Curcuma属)植物の抽出物を有効成分とする、動物脂肪細胞におけるアディポネクチンの産生増強・促進剤、及び該薬剤をさらに活性化する方法に関する。   The present invention relates to an adiponectin production enhancing / promoting agent in animal adipocytes, comprising an extract of a ginger family Curcuma plant as an active ingredient, and a method for further activating the agent.

細胞から放出され細胞間相互作用を媒介することにより生体の働きを制御するサイトカインの1つとして、最近アディポネクチンという蛋白質性因子が同定され、その不足が2型糖尿病や動脈硬化症等の生活習慣病の発症に密接に関連していることが明らかになった。 そして、直接的な注射投与や当該遺伝子を組みこんだアデノウイルスべクターの導入・発現で血中アディポネクチン濃度を増加させることにより、糖尿病モデルマウスの血糖値を低下させたり、動脈硬化につながる血管病変の形成を抑制できることが実験的に証明されている(非特許文献1〜3参照)。実際の応用でも、肥満の改善剤(特許文献1参照)、抗炎症剤、単球系細胞の増殖抑制剤(特許文献2参照)、肝繊維化抑制剤(特許文献3参照)等としてアディポネクチンを使用する方法が開発されている。このように、体外で生産されたアディポネクチンの投与も有用であるが、体内におけるその産生不良を改善したり、さらなる増強をはかることは、長期にわたる生活習慣病の予防と治療にとって非常に重要であると考えられる。   Recently, a protein factor called adiponectin has been identified as one of the cytokines that control the action of the living body by mediating cell-cell interactions that are released from cells, and the deficiency is related to lifestyle-related diseases such as type 2 diabetes and arteriosclerosis It became clear that it was closely related to the onset of the disease. And by increasing the adiponectin concentration in blood by direct injection and introduction / expression of adenovirus vector incorporating the gene, blood vessel lesions that reduce blood glucose levels in diabetic model mice or lead to arteriosclerosis It has been experimentally proven that the formation of can be suppressed (see Non-Patent Documents 1 to 3). In actual application, adiponectin is used as an agent for improving obesity (see Patent Document 1), an anti-inflammatory agent, a monocyte cell growth inhibitor (see Patent Document 2), a liver fibrosis inhibitor (see Patent Document 3), and the like. A method to use has been developed. In this way, administration of adiponectin produced in vitro is also useful, but it is very important for the prevention and treatment of lifestyle-related diseases over the long term to improve or further enhance its poor production in the body it is conceivable that.

アディポネクチンは主として脂肪組織の脂肪細胞により産生される。脂肪細胞は中胚葉由来の前駆脂肪細胞からさまざまなホルモンの影響下で分化して生じる。実験的な分化の誘導は、インスリンと糖質グルココルチコイドの存在下に、cAMP分解酵素阻害剤であるイソブチルメチルキサンチン(IBMX)(非特許文献4)、非ステロド系抗炎症剤のインドメタシン(非特許文献5参照)、2型糖尿病の治療薬であるチアゾリジンジオン類(TZD)(特許文献4、非特許文献6参照)、血管拡張剤のプロスタサイクリン(PGI2)(非特許文献7参照)等を作用させることにより行なわれるが、実際に分化した細胞によるアディポネクチンの産生が上記IBMXを用いたLoefflerらの研究やTZDを用いたMaedaらの研究において確認された。また、Maedaらの研究では糖尿病モデルマウスにおいてTZDを経口摂取させた群では摂取させていない群よりも血中アディポネクチン濃度が顕著に上昇したことが確認され、さらにヒトの場合でも耐糖能の低下している患者においてTZDの服用による血中アディポネクチン濃度の上昇が確認されている。   Adiponectin is mainly produced by adipocytes in adipose tissue. Adipocytes are differentiated from mesoderm-derived preadipocytes under the influence of various hormones. Induction of experimental differentiation was performed in the presence of insulin and carbohydrate glucocorticoid in the presence of cAMP-degrading enzyme inhibitor isobutylmethylxanthine (IBMX) (non-patent document 4), non-sterol anti-inflammatory agent indomethacin (non-patent document) Reference 5), thiazolidinediones (TZD) (see Patent Document 4 and Non-Patent Document 6), which are therapeutic agents for type 2 diabetes, and vasodilator prostacyclin (PGI2) (see Non-Patent Document 7) However, the production of adiponectin by actually differentiated cells was confirmed in the study of Loeffler et al. Using IBMX and the study of Maeda et al. Using TZD. In addition, Maeda et al. Confirmed that blood adiponectin levels were significantly increased in diabetic model mice in which TZD was orally ingested compared to those in which TZD was not orally consumed, and glucose tolerance decreased even in humans. Have increased blood adiponectin levels after taking TZD.

下村伊一郎他、実験医学、Vol.20,No.12,1762−1767(2002)Ichiro Shimomura et al., Experimental Medicine, Vol. 20, No. 12, 1762-1767 (2002) A.H.Berg et al., Nature Medicine,7,947−953(2001)A. H. Berg et al., Nature Medicine, 7, 947-953 (2001) Y.Okamoto,Circulation,106,2767−2770(2002)Y. Okamoto, Circulation, 106, 2767-2770 (2002) A.K.G.Loeffler,Horm.Metab.Res.,32,548−554(2000)A. K. G. Loeffler, Horm. Metab. Res. , 32, 548-554 (2000) H.Ye et al.,Biochem.J., 330,803−809(1998)H. Ye et al. Biochem. J., 330, 803-809 (1998) N.Maeda et al.,Diabetes,50,2094−2099(2001)N. Maeda et al. , Diabetes, 50, 2094-2099 (2001) R.Negrel et al.,Biochem.J., 257,399−405(1989)R. Negrel et al. Biochem. J., 257, 399-405 (1989) 米国出願公開2002/0132773号明細書US Application Publication No. 2002/0132773 特開2000−256208号公報JP 2000-256208 A 特開2002−363094号公報JP 2002-363094 A 米国特許第6153432号明細書US Pat. No. 6,153,432

上記のように、体内のアディポネクチンレベルを上昇させる医薬品がすでに知られているが、いずれも安全性や副作用の点で問題がある。すなわち、IBMXは医薬品として認可されたものではないし、TZDは肝毒性が強いため、服用は医師の厳重なコントロール下にされねばならず、さらにインドメタシンやプロスタサイクリン等も本来別の薬理活性を持つ医薬品であるため、生活習慣病の予防や軽い段階での治療に簡単に用いられるものではない。従って、糖尿病や動脈硬化が急増しその対策が社会問題となっている現在、これらの生活習慣病の予防、治療に手軽に利用できる薬剤として、アディポネクチンの体内産生を促進、増強する作用を持つ安全な物質の開発が求められている。   As described above, pharmaceuticals that increase the level of adiponectin in the body are already known, but all have problems in terms of safety and side effects. In other words, IBMX is not approved as a pharmaceutical product, and TZD is highly hepatotoxic, so it must be taken under the strict control of doctors, and indomethacin, prostacyclin, etc. also have other pharmacological activities. Therefore, it is not easily used for prevention of lifestyle-related diseases and treatment at a light stage. Therefore, as diabetes and arteriosclerosis are rapidly increasing and countermeasures have become a social problem, it is safe to promote and enhance the production of adiponectin in the body as a drug that can be easily used to prevent and treat these lifestyle-related diseases. Development of new materials is required.

かかる状況において、本発明者は鋭意検討の結果、ウコン根茎の有機溶媒抽出物に目的の生物活性を発見し、本発明を完成するに至った。
すなわち、本発明は以下の(1)〜(9)に係るものである。
(1) ショウガ科ウコン属(Curcuma属)植物の根茎を有機溶媒で抽出して得られる抽出物を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強・促進剤。
(2) ウコン属(Curcuma属)植物の根茎を水蒸気蒸留した残渣を有機溶媒で抽出して得られる抽出物を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。
(3) (1)又は(2)に記載の有機溶媒抽出物をさらに活性炭に吸着させ、ついで親水性有機溶媒を含む疎水性有機溶媒で溶離して得られる溶離成分を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。
(4) (1)又は(2)に記載の有機溶媒抽出物をシリカゲルに吸着させ、ついで親水性有機溶媒を含む疎水性有機溶媒で溶離して得られる溶離成分を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。
(5) 親水性有機溶媒がアセトンであり、疎水性有機溶媒がヘキサンである上記(3)又は(4)に記載の薬剤。
(6)クルクミンを有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強・促進剤。
(7) さらに、テオフィリン、カフェイン、もしくはテオブロミンのいずれか1種以上を含有することを特徴とする、上記(1)〜(5)のいずれかに記載の薬剤。
(8) クルクミンと、テオフィリン、カフェイン、もしくはテオブロミンのいずれか1種以上とを含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。
(9) 上記(1)〜(6)のいずれかに記載の薬剤におけるアディポネクチン産生促進、増強能をさらに活性化させる方法であって、これら薬剤と、テオフィリン、カフェイン、もしくはテオブロミンのいずれか1つ以上を併用することを特徴とする、上記方法
Under such circumstances, as a result of intensive studies, the present inventor has discovered the target biological activity in the organic solvent extract of turmeric rhizome and has completed the present invention.
That is, the present invention relates to the following (1) to (9).
(1) An adiponectin production enhancing / promoting agent in animal adipocytes, comprising an extract obtained by extracting a rhizome of a ginger family Curcuma plant with an organic solvent as an active ingredient.
(2) Enhancement and promotion of adiponectin production in animal adipocytes, characterized by containing as an active ingredient an extract obtained by extracting a residue obtained by steam distillation of the rhizomes of Turmeric (Curcuma) plants with an organic solvent Agent.
(3) The organic solvent extract according to (1) or (2) is further adsorbed on activated carbon, and then contains an elution component obtained by elution with a hydrophobic organic solvent including a hydrophilic organic solvent as an active ingredient. An adiponectin production enhancing or promoting agent in animal adipocytes, characterized by
(4) An elution component obtained by adsorbing the organic solvent extract according to (1) or (2) on silica gel and then elution with a hydrophobic organic solvent containing a hydrophilic organic solvent is contained as an active ingredient. An adiponectin production enhancing or promoting agent in animal adipocytes.
(5) The drug according to (3) or (4), wherein the hydrophilic organic solvent is acetone and the hydrophobic organic solvent is hexane.
(6) An adiponectin production enhancing / promoting agent in animal adipocytes, comprising curcumin as an active ingredient.
(7) The drug according to any one of (1) to (5) above, further comprising any one or more of theophylline, caffeine, or theobromine.
(8) An agent for enhancing and promoting adiponectin production in animal adipocytes, comprising curcumin and at least one of theophylline, caffeine, or theobromine.
(9) A method of further activating the adiponectin production promotion and enhancing ability in the drug according to any one of (1) to (6) above, and any one of these drugs and theophylline, caffeine, or theobromine The above method characterized by using two or more in combination

本発明のウコン抽出物あるいはその含有成分であるクルクミンは、動物脂肪細胞におけるアディポネクチンの産生を増強ないし促進する。
一方、アディポネクチンの産生増強物質として知られている上記したTZD等の物質は、安全性、副作用の問題を抱えているのに対し、ウコンは、従来から、カレー粉の原料として、あるいは健康増進剤として、喫食あるいは服用されていたものであり、本発明の薬剤は極めて安全性が高いものといえる。
さらに、上記したように、アディポネクチンは、インスリンが産生されているにもかかわらず血糖値が低下しないいわゆる生活習慣病の2型糖尿病を予防、治療する効果を有するが、これのみでなく動脈硬化につながる血管病変の抑制、肥満改善、抗炎症、単球系細胞の増殖抑制、肝繊維化抑制等、多くの重要な生理作用を有するものであり、本発明により提供される薬剤は、安全で極めて有用な薬剤である。
Curcumin, which is a turmeric extract of the present invention or a component thereof, enhances or promotes the production of adiponectin in animal adipocytes.
On the other hand, the above-mentioned substances such as TZD, which are known as adiponectin production enhancing substances, have problems of safety and side effects, whereas turmeric has traditionally been used as a raw material for curry powder or as a health promoter. It can be said that the drug of the present invention is extremely safe.
Furthermore, as described above, adiponectin has the effect of preventing and treating type 2 diabetes, a so-called lifestyle-related disease, in which blood glucose levels do not decrease despite the production of insulin. It has many important physiological actions such as suppression of connected vascular lesions, improvement of obesity, anti-inflammation, suppression of monocyte cell proliferation, suppression of liver fibrosis, etc. The drug provided by the present invention is safe and extremely It is a useful drug.

ウコン根茎はカレー粉の原料として世界的に広く食用とされ、さらに中国や我が国では薬用植物として古くから利用されてきたため、ウコン抽出物の安全性は高い。
本発明においてはウコン(学名Curcuma longa)の根茎あるいはその水蒸蒸留残渣をエチルアルコール等の有機溶媒で抽出したエキスはそれ単独で、もしくはテオフィリンやカフェインの共存下で、ヒトやマウスの前駆脂肪細胞の脂肪細胞への分化を促進し、それに伴いこれらの動物脂肪細胞におけるアディポネクチンの産生も促進・増強する。
このようなウコン抽出物のアディポネクチン産生増強作用は、粗抽出物を活性炭処理やシリカゲルカラムクロマトグラフィーの処理で分画することにより濃縮される。また、このような処理によって当該活性を阻害、抑制するような成分も除かれる。
Turmeric rhizome is widely used edible worldwide as a raw material for curry powder, and since it has long been used as a medicinal plant in China and Japan, the safety of turmeric extract is high.
In the present invention, the extract of curcuma longa rhizome or its hydrodistilled residue extracted with an organic solvent such as ethyl alcohol is used alone or in the presence of theophylline or caffeine, and is a precursor fat of humans and mice. It promotes the differentiation of cells into adipocytes, and accordingly promotes and enhances the production of adiponectin in these animal adipocytes.
Such an adiponectin production enhancing action of the turmeric extract is concentrated by fractionating the crude extract by activated carbon treatment or silica gel column chromatography treatment. In addition, components that inhibit or suppress the activity are also removed by such treatment.

このような本発明におけるウコン抽出物のアディポネクチン産生増強作用はテオフィリン、カフェイン、テオブロミン等、茶やコーヒーに通常含まれるキサンチン誘導体を併用することにより一層増大するが、これは本発明の重要なポイントの1つである。
これらキサンチン誘導体は平滑筋弛緩、中枢神経興奮、利尿など多彩な生理作用を示すが、生化学的には生体内セカンドメッセンジャーのcAMPを分解するホスホジエステラーゼを阻害することが知られている。アディポネクチン遺伝子のプロモーター部分にはC/EBP結合モチーフが多数存在する(Das et al.,Biochem.Biophys.Res.Commun.,280,1120−1129(2001);Schaeffler et al.,Biochem.Biochim.Acta,1399,187−197(1998);Saito et al.,Gene,229,67−73(1999))ことから考えて、C/EBPの発現増加と活性化に寄与するcAMPの分解を抑制し体内レベルを上昇させればアディポネクチン遺伝子の転写も促進されるのではないかと予想される。この発想に基づいて既知のcAMPホスホジエステラーゼ阻害剤の中で、通常の食物に含まれる化合物としてテオフィリン等を取り上げて検討した結果、これらのキサンチン誘導体とウコン抽出物の組み合わせが培養細胞におけるアディポネクチンの産生増強に著効を示すことを見出した。
The adiponectin production enhancing action of the turmeric extract in the present invention is further increased by using a xanthine derivative usually contained in tea or coffee, such as theophylline, caffeine, theobromine, etc., which is an important point of the present invention. One of them.
These xanthine derivatives exhibit various physiological actions such as smooth muscle relaxation, central nervous excitement, and diuresis, but are biochemically known to inhibit phosphodiesterase that degrades second messenger cAMP. There are many C / EBP binding motifs in the promoter part of the adiponectin gene (Das et al., Biochem. Biophys. Res. Commun., 280, 1120-1129 (2001); Schaeffler et al., Biochem. Biochim. Acta). , 1399, 187-197 (1998); Saito et al., Gene, 229, 67-73 (1999)), suppressing the degradation of cAMP, which contributes to increased expression and activation of C / EBP. Increasing the level is expected to promote transcription of the adiponectin gene. Based on this idea, among the known cAMP phosphodiesterase inhibitors, theophylline was taken up as a compound contained in normal food, and as a result, the combination of these xanthine derivatives and turmeric extract enhanced adiponectin production in cultured cells. It was found to show a marked effect.

一方、このエキスを各種のカラムクロマトグラフイーで分画したところ、マウス3T3−Ll細胞に対する脂肪蓄積促進活性は複数のフラクションに現れたが、その1つのフラクションにはクルクミン(ジフェルロイルメタン)が含まれていた。クルクミンはウコンやカレー粉の黄色のもとになる色素であるが、強力な抗酸化作用(特開2003−064360)を持つと共に、抗糖尿病・抗うつ病・抗腫瘍・抗炎症作用等を持つ生理活性物質であることが明らかにされ(特開2003−128539、特開2003−113117、特開2003−055202、Chan et al.,Biochem.Pharmacol.,55,1955−1962(1998))市販もされている。そこで、クルクミンの純品を用いて培養細胞におけるアディポネクチン産生促進作用を検討した結果、クルクミンとテオフィリンやカフェインの併用によりアディポネクチンの産生が増大することを見出し、課題を解決する手段の1つになることを明らかにした。ただし、ウコン抽出物に含まれるアディポネクチン産生増強活性はクルクミンのみによるものではなく、他の未知成分も関与している可能性が強い。   On the other hand, when this extract was fractionated by various column chromatography, fat accumulation promoting activity on mouse 3T3-Ll cells appeared in multiple fractions, one of which was curcumin (diferloylmethane). It was included. Curcumin is a pigment that forms the yellow color of turmeric and curry powder, but has a strong antioxidant effect (Japanese Patent Laid-Open No. 2003-064360) and also has anti-diabetic, anti-depressive, anti-tumor and anti-inflammatory effects. It is revealed that it is a physiologically active substance (JP 2003-128539, JP 2003-113117, JP 2003-055202, Chan et al., Biochem. Pharmacol., 55, 1955-1962 (1998)) Has been. Therefore, as a result of examining the adiponectin production promoting action in cultured cells using pure curcumin, we found that adiponectin production is increased by the combined use of curcumin, theophylline and caffeine, and it is one of the means to solve the problem It revealed that. However, the adiponectin production enhancing activity contained in the turmeric extract is not only due to curcumin, but is also likely to involve other unknown components.

本発明の原料となるウコン根茎としては、秋ウコンと称される狭義のウコン(Curcuma longa)の他、春ウコン(キョウオウ、Curcuma aromatica)、紫ウコン(ガジュツ、Curcuma zedoaria)等の根茎が用いられる。これらは亜熱帯地域や沖縄県などで商品作物として栽培されているが、本発明に用いる場合、産地はとくに限定されない。   As the turmeric rhizome used as the raw material of the present invention, rhizomes such as spring turmeric (Curcuma aromatica) and purple turmeric (Curcuma zedoaria) are used in addition to curcuma longa called autumn turmeric. . These are cultivated as commercial crops in subtropical areas, Okinawa Prefecture, and the like, but the production area is not particularly limited when used in the present invention.

また、これらの根茎の収穫時期は食用、薬用等の目的で従来収穫されてきた時期とする。収穫された新鮮根茎はそのままでもエタノール等で当該活性成分を抽出することができるが、薄切り後、陰干し等で乾燥させたものや、それをさらに細断・粉砕したものが抽出効率の点からは好適である。また、ウコン粉末等から水蒸気蒸留等で精油を採取した残渣も原料に用いることができる。抽出に用いる溶媒としてはエタノール、メタノール、アセトン、酢酸エチル等が挙げられ、これらを乾燥ウコン根茎スライス・粉末の1グラムあたり3 mlから30 ml程度添加し、攪拌もしくは密栓静置して抽出する。パーコレーター等の公知の抽出器具を用いることもよい。抽出時間は溶媒の種類、原料の形態、原料/溶媒の量比、攪拌の有無、温度等によりさまざまに異なり、場合に応じて適当な条件を選択する。例えば乾燥スライスを5倍量のエタノールに沈積して静置しておく場合、2週間程度で目的活性は十分に抽出される。また、乾燥粉末を10倍量のエタノールと共に室温で攪拌するなら一昼夜で抽出される。   In addition, the harvest time of these rhizomes is the time that has been conventionally harvested for the purposes of food and medicine. The harvested fresh rhizome can be extracted with ethanol etc. as it is, but from the point of extraction efficiency, it is thinly sliced and then dried in shade, etc., and further shredded and crushed Is preferred. Moreover, the residue which extract | collected essential oil from the turmeric powder by steam distillation etc. can also be used for a raw material. Examples of the solvent used for extraction include ethanol, methanol, acetone, ethyl acetate, and the like. These are added in an amount of 3 ml to 30 ml per gram of dried turmeric rhizome slices / powder, and the mixture is extracted by stirring or standing still tightly. A known extraction device such as a percolator may be used. The extraction time varies depending on the type of solvent, the form of the raw material, the raw material / solvent ratio, the presence / absence of stirring, the temperature, etc., and appropriate conditions are selected depending on the case. For example, when the dried slice is deposited in 5 times the amount of ethanol and allowed to stand, the target activity is sufficiently extracted in about 2 weeks. If the dry powder is stirred with 10 times the amount of ethanol at room temperature, it will be extracted overnight.

このようにして得られた抽出物はロータリーエバポレーター等で濃縮し、溶媒を減圧下に除く。この残液はこのままでもアディポネクチン産生促進・増強物質として用いられるが、より好ましくは活性炭処理やシリカゲルカラムクロマトグラフィー等の公知の手段で不要成分や活性阻害成分を除いてから用いるのがよい。例えば、粗抽出物の濃縮エキスを酢酸エチルとヘキサンの混合溶媒で再抽出し、活性炭に吸着させる。非吸着成分をヘキサンで洗い去り、吸着成分を5%から50%のアセトンを含むへキサンで溶離回収したものは粗抽出物よりも強い活性を示す。また、乾燥根茎粉末をあらかじめヘキサンで抽出後、5%から100%のアセトンやエタノールを含むヘキサンで抽出しても、阻害成分を除いて力価を高めたアディポネクチン産生増強物質が得られる。さらに、粗抽出物をシリカゲルに吸着させ、ヘキサンないしは数%のアセトンを含むヘキサンで洗浄後、吸着成分を5%から70%のアセトンを含むヘキサンで溶出させても力価を高めることができる。ただし、上述の精製法は例示であって、本発明はこれに限定されるものではない。   The extract thus obtained is concentrated by a rotary evaporator or the like, and the solvent is removed under reduced pressure. This residual solution is used as it is as a substance for promoting and enhancing adiponectin production, but more preferably after removing unnecessary components and activity-inhibiting components by known means such as activated carbon treatment or silica gel column chromatography. For example, the concentrated extract of the crude extract is re-extracted with a mixed solvent of ethyl acetate and hexane and adsorbed on activated carbon. Non-adsorbed components are washed away with hexane, and adsorbed components are eluted and recovered with hexane containing 5% to 50% acetone, which shows stronger activity than the crude extract. Further, even if the dried rhizome powder is extracted with hexane in advance and then extracted with hexane containing 5% to 100% acetone or ethanol, an adiponectin production-enhancing substance with an increased titer can be obtained by removing the inhibitory components. Furthermore, the titer can be increased by adsorbing the crude extract onto silica gel, washing with hexane or hexane containing several percent of acetone, and then eluting the adsorbed component with hexane containing 5% to 70% of acetone. However, the purification method described above is an exemplification, and the present invention is not limited to this.

これらの抽出物、溶出物は溶媒を減圧で除去後、アディポネクチンの産生増強に用いられるが、その方法として、エタノールに溶解し飲用水に添加する方法、適当なリン脂質等の界面活性剤を含む水に懸濁し飲用水や食物に添加する等の他、適当な補助剤と混合し錠剤の形で利用する方法等が挙げられる。これらのウコン抽出物に代え、その当該活性成分の1つであるクルクミンを用いる場合、クルクミンはウコン抽出物からクロマトグラフィー等公知の方法で製取することもできるし、公知の方法で化学合成も容易にできる。   These extracts and eluates are used to enhance the production of adiponectin after the solvent is removed under reduced pressure. The method includes dissolving in ethanol and adding it to drinking water, including surfactants such as appropriate phospholipids. In addition to suspending in water and adding to drinking water or food, there may be mentioned a method of mixing with an appropriate adjuvant and using it in the form of a tablet. When curcumin, which is one of the active ingredients, is used instead of these turmeric extracts, curcumin can be prepared from turmeric extracts by a known method such as chromatography, and chemical synthesis can also be performed by a known method. Easy to do.

一方、これらのウコン抽出物と組み合わせてアディポネクチンの産生をさらに増強するために使用するキサンチン誘導体はテオフィリン、カフェイン、もしくはテオブロミンのいずれか1つまたは2つ以上の混合物である。これらは茶葉やコーヒー豆、カカオ豆等から抽出できるし、公知の方法で容易に合成もできる。本発明に用いる場合、これらはウコン抽出物に混合してもよいし、単独で飲用水等に添加し、ウコン抽出物を含む飲用水等の摂取後、引き続いて飲用摂取することにより利用してもよい。本発明に用いる場合のウコン抽出物の添加量は精製の方法や程度により加減する。ウコン抽出物に代えて、その当該活性成分の1つであるクルクミンを利用する場合の添加量は飲用水の1 mlもしくは食物の1 gあたり1 mgから10 mg以下を目安にする。キサンチン誘導体の添加量については常用されるコーヒーや緑茶に含まれる濃度に準ずるものとする。すなわち、カフェインは飲用水の1 mlもしくは食物の1 gあたり0.1 mgから0.5 mg(約3 mM)、テオフィリンは飲用水の1 mlもしくは食物の1 gあたり0.01 mgから0.05 mg(約0.3 mM)、テオブロミンは飲用水の1 mlもしくは食物の1 gあたり0.1 mgから2 mg(約10 mM)等を目安にするが、総摂取量や摂取形態に応じて、生理的に安全な範囲内で適宜増減する。
次に、本発明を実施例に基づいてさらに詳細に説明する。
On the other hand, the xanthine derivative used to further enhance the production of adiponectin in combination with these turmeric extracts is any one or a mixture of two or more of theophylline, caffeine, or theobromine. These can be extracted from tea leaves, coffee beans, cacao beans, etc., and can be easily synthesized by known methods. When used in the present invention, these may be mixed with the turmeric extract, or added alone to drinking water, etc., and then used by drinking after drinking water containing turmeric extract. Also good. The amount of turmeric extract used in the present invention is adjusted depending on the purification method and degree. When using curcumin, which is one of its active ingredients, instead of turmeric extract, the amount of addition should be 1 mg to 10 mg or less per 1 ml of drinking water or 1 g of food. The amount of xanthine derivative added is in accordance with the concentration contained in commonly used coffee and green tea. That is, caffeine is 0.1 mg to 0.5 mg (about 3 mM) per 1 ml of drinking water or 1 g of food, and theophylline is 0.01 mg to 0 per 1 ml of drinking water or 1 g of food. .05 mg (about 0.3 mM), and theobromine is 0.1 mg to 2 mg (about 10 mM) per 1 ml of drinking water or 1 g of food. Accordingly, the dosage may be increased or decreased as appropriate within a physiologically safe range.
Next, the present invention will be described in more detail based on examples.

ウコン根茎の乾操スライス31 gをエタノール160 mlに浸漬し、1ヶ月暗所に静置した。エタノール溶液をデカンテーションで回収し、根茎を少量のエタノールで洗浄した。上記の溶液と洗液を合し、ロータリーエバポレーターで濃縮後、オイルポンプで減圧乾燥し、粗抽出物1.42 g(Sample1−1)を液体として得た。   31 g of dried turmeric rhizome slices were immersed in 160 ml of ethanol and allowed to stand in the dark for 1 month. The ethanol solution was collected by decantation, and the rhizome was washed with a small amount of ethanol. The above solution and washing solution were combined, concentrated with a rotary evaporator, and then dried under reduced pressure with an oil pump to obtain 1.42 g (Sample 1-1) of a crude extract as a liquid.

実施例1で得た粗抽出物の1.4 gを2 mlの酢酸エチルに溶解し、ヘキサン100 mlを加えた。沈殿を濾別し、濾液に1 gの活性炭と2 gのセライトを添加し、よく混合した。目の細かいガラスフィルターを用いて活性炭とセライトを含む固形分を濾集し、それを2%、20%、及び50%のアセトンを含むヘキサン各50 mlで順次抽出した。これらの濾液、抽出液をそれぞれロータリーエバポレーターで濃縮後、オイルポンプで減圧乾操し、油状物0.896 g(活性炭非吸着分、Sample2−1)、60 mg(2%アセトン溶出分、Sample 2−2)、119 mg(20%アセトン溶出分、Sample 2−3)、及び64 mg(50%アセトン溶出分、Sample2−4)をそれぞれ得た。   1.4 g of the crude extract obtained in Example 1 was dissolved in 2 ml of ethyl acetate, and 100 ml of hexane was added. The precipitate was filtered off, and 1 g of activated carbon and 2 g of celite were added to the filtrate and mixed well. Using a fine glass filter, the solids containing activated carbon and celite were collected by filtration and extracted successively with 50 ml of hexane containing 2%, 20% and 50% acetone. These filtrates and extracts were each concentrated with a rotary evaporator and then dried under reduced pressure with an oil pump. The oil was 0.896 g (active carbon non-adsorbed, Sample2-1), 60 mg (2% acetone-eluted, Sample 2). -2), 119 mg (20% acetone elution, Sample 2-3), and 64 mg (50% acetone elution, Sample 2-4) were obtained, respectively.

ウコン根茎の乾燥粉末10 gを50 mlのへキサンと混合し、マグネチックスターラーで室温において12時間攪拌した。ウコン粉末を濾集し、5%、10%、30%、及び50%のアセトンを含むへキサン50 mlづつで順次抽出した。これらの濾液、抽出液をそれぞれロータリーエバポレーターで濃縮後、オイルポンプで減圧乾燥し、油状物0.492 g(へキサンのみでの溶出分、Sample3−1)、56 mg(5%アセトン溶出分、Sample 3−2)、32 mg(10%アセトン溶出分、Sample 3−3)、49 mg(30%アセトン溶出分、Sample 3−4)、及び48 mg(50%アセトン溶出分、Sample 3−5)をそれぞれ得た。   10 g of dried turmeric rhizome powder was mixed with 50 ml of hexane and stirred at room temperature for 12 hours with a magnetic stirrer. Turmeric powder was collected by filtration and extracted sequentially with 50 ml of hexane containing 5%, 10%, 30% and 50% acetone. These filtrates and extracts were each concentrated with a rotary evaporator and then dried under reduced pressure with an oil pump, and 0.492 g of oily matter (elution with hexane only, Sample3-1), 56 mg (elution with 5% acetone, Sample 3-2), 32 mg (10% acetone elution, Sample 3-3), 49 mg (30% acetone elution, Sample 3-4), and 48 mg (50% acetone elution, Sample 3-5) ) Respectively.

春ウコン(キョウオウ)根茎の乾燥粉末20 gをエタノール100 mlと混合し、マグネチックスターラーで室温において36時間攪拌した。ウコン粉末を濾別しエタノール溶液をロータリーエバポレーターで濃縮後、オイルポンプで減圧乾燥し、粗抽出物1.09 g(Sample 4−1)を得た。この1.0 gを2 mlの酢酸エチルに溶解し、ヘキサン100 mlを加えた。沈殿を濾別し、濾液に0.75 gの活性炭と2 gのセライトを添加し、よく混合した。目の細かいガラスフィルターを用いて活性炭とセライトを含む固形分を濾集し、それを5%、20%、及び50%のアセトンを含むヘキサン各50 mlで順次抽出した。これらの濾液、抽出液をそれぞれロータリーエバポレーターで濃縮後、オイルポンプで減圧乾燥し、油状物259 mg(活性炭非吸着分、Sample4−2)、75 mg(5%アセトン溶出分、Sample4−3)、96 mg(20%アセトン溶出分、Sample4−4)、及び107 mg(50%アセトン溶出分、Sample4−5)をそれぞれ得た。   20 g of dried powder of spring turmeric rhizome was mixed with 100 ml of ethanol and stirred at room temperature for 36 hours with a magnetic stirrer. Turmeric powder was filtered off and the ethanol solution was concentrated with a rotary evaporator and then dried under reduced pressure with an oil pump to obtain 1.09 g (Sample 4-1) of a crude extract. 1.0 g of this was dissolved in 2 ml of ethyl acetate, and 100 ml of hexane was added. The precipitate was filtered off, and 0.75 g of activated carbon and 2 g of celite were added to the filtrate and mixed well. Using a fine glass filter, the solids containing activated carbon and celite were collected by filtration and extracted sequentially with 50 ml of hexane containing 5%, 20%, and 50% acetone. These filtrates and extracts were each concentrated with a rotary evaporator, and then dried under reduced pressure with an oil pump, and 259 mg of oil (active carbon non-adsorbed, Sample 4-2), 75 mg (5% acetone elution, Sample 4-3), 96 mg (20% acetone elution, Sample 4-4) and 107 mg (50% acetone elution, Sample 4-5) were obtained, respectively.

紫ウコン(ガジュツ)根茎の乾燥粉末20 gをエタノール100 mlと混合し、マグネチックスターラーで室温において36時間攪拌した。ウコン粉末を濾別しエタノール溶液をロータリーエバポレーターで濃縮後、オイルポンプで減圧乾燥し、粗抽出物0.66 g(Sample 5−1)を得た。この0.65 gを実施例4と同様に処理し、油状物152 mg(活性炭非吸着分、Sample5−2)、22 mg(5%アセトン溶出分、Sample 5−3)、45 mg(20%アセトン溶出分、Sample5−4)、及び50 mg(50%アセトン溶出分、Sample 5−5)をそれぞれ得た。   20 g of dry powder of purple turmeric rhizome was mixed with 100 ml of ethanol and stirred with a magnetic stirrer at room temperature for 36 hours. Turmeric powder was filtered off and the ethanol solution was concentrated with a rotary evaporator and then dried under reduced pressure with an oil pump to obtain 0.66 g of a crude extract (Sample 5-1). 0.65 g of this was treated in the same manner as in Example 4, and the oily substance 152 mg (active carbon non-adsorbed, Sample 5-2), 22 mg (5% acetone elution, Sample 5-3), 45 mg (20% Acetone elution, Sample 5-4), and 50 mg (50% acetone elution, Sample 5-5) were obtained, respectively.

ウコン根茎乾燥粉末を水蒸気蒸留した残渣10 gを50 mlのエタノールと混合し、室温においてマグネチックスターラーで6時間攪拌した。残渣を濾別しエタノール溶液をロータリーエバポレーターで濃縮後、オイルポンプで減圧乾燥し、粗抽出物0.92 g(Sample 6−1)を得た。この0.9 gを実施例4と同様に処理し、油状物767 mg(活性炭非吸着分、Sample 6−2)、92 mg(2%アセトン溶出分、Sample 6−3)、80 mg(20%アセトン溶出分、Sample 6−4)、28 mg(50%アセトン溶出分、Sample 6−5)、45 mg(100%アセトン溶出分、Sample 6−6)、及び25 mg(100%エタノール溶出分、Sample 6−7)をそれぞれ得た。   10 g of a residue obtained by steam distillation of dried turmeric rhizome powder was mixed with 50 ml of ethanol, and stirred at room temperature with a magnetic stirrer for 6 hours. The residue was filtered off and the ethanol solution was concentrated with a rotary evaporator and then dried under reduced pressure with an oil pump to obtain 0.92 g of a crude extract (Sample 6-1). 0.9 g of this was treated in the same manner as in Example 4, and 767 mg of oil (active carbon non-adsorbed, Sample 6-2), 92 mg (2% acetone elution, Sample 6-3), 80 mg (20 % Acetone elution, Sample 6-4), 28 mg (50% acetone elution, Sample 6-5), 45 mg (100% acetone elution, Sample 6-6), and 25 mg (100% ethanol elution) Sample 6-7) were obtained.

ウコン根茎乾燥粉末を水蒸気蒸留した残渣10 gを100 mlのへキサンと混合し、室温においてマグネチックスターラーで6時間攪拌した。残渣を濾集し、5%、10%、30%、及び50%のアセトンを含むヘキサン100 mlづつで順次抽出した。これらの濾液、抽出液をそれぞれロータリーエバポレーターで濃縮後、オイルポンプで減圧乾燥し、油状物1.0 g(へキサンのみでの溶出分、Sample 7−1)、115 mg(5%アセトン溶出分、Sample 7−2)、35 mg(10%アセトン溶出分、Sample 7−3)、70 mg(30%アセトン溶出分、Sample 7−4)、47 mg(50%アセトン溶出分、Sample 7−5)、及び24 mg(100%アセトン溶出分、Sample 7−6)をそれぞれ得た。   10 g of a residue obtained by steam-distilling the dried turmeric rhizome powder was mixed with 100 ml of hexane, and the mixture was stirred at room temperature with a magnetic stirrer for 6 hours. The residue was collected by filtration and extracted sequentially with 100 ml of hexane containing 5%, 10%, 30%, and 50% acetone. These filtrates and extracts were each concentrated with a rotary evaporator and dried under reduced pressure with an oil pump. 1.0 g of oily matter (elution with hexane only, Sample 7-1), 115 mg (elution with 5% acetone, Sample 7-2), 35 mg (10% acetone elution, Sample 7-3), 70 mg (30% acetone elution, Sample 7-4), 47 mg (50% acetone elution, Sample 7-5), And 24 mg (100% acetone elution, Sample 7-6) were obtained.

実施例7で得た30%アセトン溶出分(Sample 7−4)の57 mgをシリカゲルカラム(Wakogel C300、2 x15 cm)に吸着させ、10%から100%のアセトンを含むヘキサン50 mlづつで溶離した。溶出液は1/3づつフラスコに集め、ロータリーエバポレーターで濃縮乾固した。マウス3T3−Ll前駆脂肪細胞を用いたバイオアッセイ(後述)において脂肪蓄積活性の強かった50%アセトン溶出物の主成分である黄色化合物を薄層クロマトグラフィーで検討した結果(シリカゲル、アセトン:へキサン=2:3の混合溶媒で展開、Rf 0.55)、Rf値、波長365 nmのUVランプ照射下での黄色蛍光、10%濃硫酸を含むエタノール溶液をスプレー後、加熱した時の橙色蛍光等すべての点でクルクミンの純品[BIOMOL Research Inc. 社 (Plymouth Meeting, PA, U.S.A.)製]のスポットと一致したことにより、クルクミンと同定した。   57 mg of the 30% acetone elution (Sample 7-4) obtained in Example 7 was adsorbed on a silica gel column (Wakogel C300, 2 x15 cm) and eluted with 50 ml of hexane containing 10% to 100% acetone. did. The eluate was collected in 1/3 flasks and concentrated to dryness on a rotary evaporator. Results of a thin-layer chromatography study of yellow compounds, which are the main components of 50% acetone eluate with strong fat accumulation activity, in a bioassay using mouse 3T3-Ll preadipocytes (described later) (silica gel, acetone: hexane) = Developed with a mixed solvent of 2: 3, Rf 0.55), Rf value, yellow fluorescence under UV lamp irradiation of 365 nm wavelength, orange fluorescence when heated after spraying ethanol solution containing 10% concentrated sulfuric acid, etc. In this respect, it was identified as curcumin by matching with the spot of a pure product of curcumin [manufactured by BIOMOL Research Inc. (Plymouth Meeting, PA, USA)].

マウス3T3-L1前駆脂肪細胞株(大日本製薬株式会社より購入)を10%の牛胎仔血清を含むDMEM培地で3日間前培養後、EDTA-トリプシン液で回収し、8.3 x 104 cells/mlの懸濁液とし0.2 mlづつ96-wellのプレートに植え込んだ。5%のCO2存在下、37℃で2日間培養後、実施例6,7で得たウコン抽出物を50 mg/mlのエタノール溶液とし、2μl/wellで各ウェルに添加し、さらに12日間培養を継続した。培地をアスピレーターで吸引除去し、1%ホルムアルデヒドを含むPBSの0.1mlづつを各ウェルに入れ、細胞を固定した。室温で30分固定後、水洗し、次いで50%2−プロパノールで洗浄後(0.1 ml/well)、Oil Red O(ORO)溶液(Ramirez-Zacarias et al., Histochemistry, 97, 493 − 497 (1992))を入れ細胞内脂肪滴を染色した。1時間室温に放置後、色素液をアスピレーターで除去し、50%2−プロパノール含有水、次いで水で洗浄し、1時間風乾した。100% 2−プロパノールを0.1 ml/wellで添加し、細胞内脂肪滴に取り込まれたORO色素を抽出し、プレートリーダー(波長510nm)を用いて吸光度を測定した。結果を図1に示すが、脂肪細胞分化の指標となる細胞内脂肪の蓄積がウコン抽出物、粗精製物により促進されていることがわかる。 A mouse 3T3-L1 preadipocyte cell line (purchased from Dainippon Pharmaceutical Co., Ltd.) was pre-cultured in DMEM medium containing 10% fetal calf serum for 3 days, and then collected with EDTA-trypsin solution, 8.3 x 10 4 cells / ml As a suspension, 0.2 ml each was seeded on a 96-well plate. After culturing at 37 ° C. for 2 days in the presence of 5% CO 2 , the turmeric extract obtained in Examples 6 and 7 was made into a 50 mg / ml ethanol solution, added to each well at 2 μl / well, and further for 12 days. The culture was continued. The medium was removed by suction with an aspirator, and 0.1 ml of PBS containing 1% formaldehyde was added to each well to fix the cells. After fixing at room temperature for 30 minutes, followed by washing with water and then with 50% 2-propanol (0.1 ml / well), Oil Red O (ORO) solution (Ramirez-Zacarias et al., Histochemistry, 97, 493-497 (1992) )) And stained intracellular lipid droplets. After standing at room temperature for 1 hour, the dye solution was removed with an aspirator, washed with 50% 2-propanol-containing water, then with water, and air-dried for 1 hour. 100% 2-propanol was added at 0.1 ml / well, the ORO dye incorporated into the intracellular lipid droplets was extracted, and the absorbance was measured using a plate reader (wavelength: 510 nm). The results are shown in FIG. 1, and it can be seen that accumulation of intracellular fat, which is an index of adipocyte differentiation, is promoted by the turmeric extract and the crude product.

実施例9と同様にして前培養したマウス3T3−Ll前駆脂肪細胞を7 x 104 cells/mlの懸濁液とし、あらかじめコラーゲンコーティングを施した12−wellのマルチウェルプレートに1ウェルあたり2 ml植え込んだ。3日間培養後、培地(10%の牛胎仔血清を含むDMEM培地)の新鮮培地(2 ml/well)に交換し、実施例1〜7で得たウコン抽出物、粗精製物のうち、実施例9の結果に基づいて選択した代表的なサンプルのエタノール溶液(2〜5 μ1)を添加した。添加量は以下の通りである:実施例1のウコン抽出物(Sample l−1)、200 μg;実施例2の2%アセトン溶出分(Sample 2−2)、120 μg;実施例3の10%アセトン溶出分(Sample 3−3)、60 μg;実施例4の春ウコン抽出物(Sample 4−1)、44 μg;実施例4の5%アセトン溶出分(Sample 4−3)、35μg;実施例5の紫ウコン5%アセトン溶出分(Sample 5−3)、44μg;実施例6のウコン根茎水蒸気蒸留残渣抽出物の活性炭処理20%アセトン溶出分(Sample 6−4)、150μg;実施例7のウコン根茎水蒸気蒸留残渣30%アセトン溶出分(Sample 7−4)、180μg。 コントロールには純エタノールを2〜5 μ1添加した。7日間から10日間培養し、位相差顕微鏡による観察で細胞内脂肪球の発達が十分認められた段階で培地を捨て、PBS(1 ml/well)で2回洗浄後、各ウェルの細胞を1 mlのPBSと共にセルスクレーパーで剥がし、遠心分離(10000 rpm、6分)で集めた。上清を捨て、各チューブの細胞を1%のTween20を含む1ysis緩衝液の100 μ1と共にピペッティングし、次いでボルテックス処理で破壊・抽出した。これを遠心分離にかけ(12000 rpm、20分)上清を回収し、蛋白濃度を測定した。この上清中の蛋白濃度が1mg/mlになるようlysis緩衝液で希釈し、その50μlを2x SDS緩衝液の50μlとよく混和し、 95℃で5分間加熱しSDS処理を施した。このサンプルの5μlづつをポリアクリルアミドゲルによる電気泳動にかけ、常法によりウェスタンブロッティングでマウスのアディポネクチンを検出した。用いた1次抗体はケミコン社製のmouse anti−adiponectin,mouse monoclonal antibody (Catalog No.MAB3608)であり、2次抗体はZymed社製のrabbit anti−mouse Ig Gl−HRP conjugate(Catalog No.61−0120)である。バンドの検出にはPharmacia社製ECL測定キットを用いた。さらに、比較のためβ−アクチンもウェスタンブロッティングで検出したが、用いた1次抗体はSanta Cruz社製のanti-β-actin(C-11,sc-1615)であり、2次抗体はZymed社製のrabbit anti−goat Ig G(H+L)-HR conjugate(Catalog No.81−1620)である。結果を図2、図3、及び図4に示す。図2から各種ウコン属植物根茎抽出物やその粗精製物にマウス3T3−Ll前駆脂肪細胞より分化した脂肪細胞のアディポネクチン産生を増強する作用のあることがわかる。また、図3から当該産生増強作用は濃度依存性があり、実施例6で得た粗精製物(Sample 6−4、すなわち活性炭から20% acetone/hexane混合溶媒で溶出される分画)の場合には、75 μg/ml前後の濃度で添加することが適当であることがわかる。
さらに、図4から当該産生増強作用は時間依存性があり、前記Sample 6−4の場合には、サンプル添加・培養開始後11日目前後にアディポネクチンの産生は最高になることがわかる。
Mouse 3T3-Ll preadipocytes precultured in the same manner as in Example 9 was made into a suspension of 7 × 10 4 cells / ml, and 2 ml per well was added to a 12-well multiwell plate previously coated with collagen. Implanted. After culturing for 3 days, the medium (DMEM medium containing 10% fetal calf serum) was replaced with a fresh medium (2 ml / well), and the turmeric extract and crude product obtained in Examples 1 to 7 were used. A representative sample ethanol solution (2-5 μl) selected based on the results of Example 9 was added. Addition amounts are as follows: Turmeric extract of Example 1 (Sample l-1), 200 μg; 2% acetone eluate of Example 2 (Sample 2-2), 120 μg; 10 of Example 3 % Acetone elution (Sample 3-3), 60 μg; spring turmeric extract of Example 4 (Sample 4-1), 44 μg; 5% acetone elution of Example 4 (Sample 4-3), 35 μg; Example 5 Purple turmeric 5% acetone elution (Sample 5-3), 44 μg; Activated turmeric 20% acetone elution (Sample 6-4) of turmeric rhizome steam distillation residue extract of Example 6, 150 μg; Example 7 turmeric rhizome steam distillation residue 30% acetone elution (Sample 7-4), 180 μg. As a control, 2 to 5 μ1 of pure ethanol was added. Cultivate for 7 to 10 days, discard the medium when the intracellular fat globule has been sufficiently observed by phase-contrast microscopy, and wash twice with PBS (1 ml / well). The sample was removed with a cell scraper together with ml of PBS, and collected by centrifugation (10000 rpm, 6 minutes). The supernatant was discarded, and the cells in each tube were pipetted with 100 μl of 1ysis buffer containing 1% Tween 20, and then disrupted and extracted by vortexing. This was centrifuged (12000 rpm, 20 minutes), the supernatant was recovered, and the protein concentration was measured. The supernatant was diluted with lysis buffer so that the protein concentration was 1 mg / ml, 50 μl thereof was mixed well with 50 μl of 2 × SDS buffer, and heated at 95 ° C. for 5 minutes for SDS treatment. 5 μl of each sample was subjected to electrophoresis using polyacrylamide gel, and mouse adiponectin was detected by Western blotting in a conventional manner. The primary antibodies used were mouse anti-adiponectin and mouse monoclonal antibody (Catalog No. MAB3608) manufactured by Chemicon, and the secondary antibody was rabbit anti-mouse Ig G1-HRP conjugate (Catalog No. 61- manufactured by Zymed). 0120). For detection of the band, an ECL measurement kit manufactured by Pharmacia was used. For comparison, β-actin was also detected by Western blotting. The primary antibody used was anti-β-actin (C-11, sc-1615) manufactured by Santa Cruz, and the secondary antibody was Zymed. Rabbit anti-goat Ig G (H + L) -HR conjugate (Catalog No. 81-1620). The results are shown in FIG. 2, FIG. 3, and FIG. FIG. 2 shows that various rhizome plant rhizome extracts and crudely purified products thereof have an action of enhancing adiponectin production of adipocytes differentiated from mouse 3T3-Ll preadipocytes. In addition, the production enhancement effect is concentration-dependent from FIG. 3, and in the case of the crude product obtained in Example 6 (Sample 6-4, ie, fraction eluted from activated carbon with a 20% acetone / hexane mixed solvent). It can be seen that it is appropriate to add at a concentration of around 75 μg / ml.
Further, FIG. 4 shows that the production enhancing action is time-dependent, and in the case of Sample 6-4, the production of adiponectin reaches its maximum around 11 days after the addition of the sample and the start of culture.

アディポネクチン遺伝子発現の増強をRT−PCRで確認した。実施例9と同様にして前培養したマウス3T3−Ll前駆脂肪細胞を4 x 104 cells/mlの懸濁液とし、あらかじめコラーゲンコーティングを施した12−Wellのマルチウェルプレートに1ウェルあたり2 ml植え込んだ。3日間培養後、培地(10%の牛胎仔血清を含むDMEM培地)を新鮮な培地(2 ml/well)に交換し、実施例6で得たウコン根茎水蒸気蒸留残渣抽出物の活性炭処理20%アセトン溶出分のエタノール溶液(4μ1;抽出物106、159、212μg含有)を添加した。コントロールには純エタノールを4 μ1添加した。12日間培養し、位相差額微鏡による観察でサンプル添加ウェルにおいて細胞内脂肪球の発達を確認後培地を捨て、PBS(1ml/well)で1回洗浄後、各ウェルの細胞を0.3 mlのイソゲン(和光純薬製)と混和しRNAを抽出した。製造元から添付の説明書にしたがってDNAと蛋白質を除き、全RNAをイソプロピルアルコールで沈殿させ、エタノールで洗い、風乾後、10 μ1の水に溶かし、RNA量を260/280nmにおける吸光度から求めた。このRNAをプロメガ社の逆転写酵素システムでcDNAとし、このテンプレートを用いてアディポネクチン遺伝子発現をPCRで確認した。用いたプライマーは次の通りである:マウスアディポネクチン、5’一AAGGACAAGGCCGTTCTCT−3’及び5’−TATGGGTAGTTGCAGTCAGTTGG−3’;対照用のβ−アクチン、5’−GACGAGGCCCAGAGCAAGAGA−3’及び5’−TAGATGGGCACAGTGTGGGTGA−3’。PCRはアプライドシステムズ社製のAmpli Taq DNA Polymeraseを用い、添付のマニュアルに従って行なった。変性は94℃で1分、アニーリングは64℃で1分、重合は72℃で1分間行ない、全部で30回繰り返した。PCR産物の電気泳動結果を図5に示す。予想サイズ(アディポネクチンで219bp、アクチンで332bp)のバンドが見られ、サンプルを添加して培養した細胞では明らかにバンドの強度(アディポネクチン遺伝子の発現量)がコントロールよりも増加している。
次いでこの結果を定量PCRで確認した。コルベット社製のRotor−Gene 2000 Real−Time Cyclerを用い、Qiagen社製のQuantiTect SYBR Green PCRシステムでβ−アクチンに対するアディポネクチンの遺伝子の相対的な発現量を定量した。プライマーは上記と同様である。結果を図6に示す。サンプルの添加により、アディポネクチンの遺伝子発現は7倍ないしは40倍に増強されることがわかる。
Enhancement of adiponectin gene expression was confirmed by RT-PCR. Mouse 3T3-Ll preadipocytes precultured in the same manner as in Example 9 was made into a suspension of 4 × 10 4 cells / ml, and 2 ml per well was added to a 12-Well multiwell plate previously coated with collagen. Implanted. After culturing for 3 days, the medium (DMEM medium containing 10% fetal calf serum) was replaced with a fresh medium (2 ml / well), and the turmeric rhizome steam distillation residue extract obtained in Example 6 was treated with activated carbon 20% An ethanol solution (4 μl; containing extracts 106, 159, and 212 μg) for acetone elution was added. As a control, 4 μl of pure ethanol was added. After culturing for 12 days and confirming the development of intracellular fat globules in the sample-added well by observation with a phase contrast microscope, the medium is discarded, washed once with PBS (1 ml / well), and 0.3 ml of cells in each well is removed. RNA was extracted by mixing with Isogen (manufactured by Wako Pure Chemical Industries). DNA and protein were removed from the manufacturer according to the attached instructions, total RNA was precipitated with isopropyl alcohol, washed with ethanol, air-dried, dissolved in 10 μl of water, and the RNA amount was determined from the absorbance at 260/280 nm. This RNA was converted to cDNA using the Promega reverse transcriptase system, and adiponectin gene expression was confirmed by PCR using this template. The primers used were as follows: mouse adiponectin, 5′-one AAGGACAAGGCCGTTCTCT-3 ′ and 5′-TATGGGTAGTTGCAGTCAGTTGG-3 ′; β-actin for control, 5′-GACGAGGCCCAGAGCAAGAGA-3 ′ and 5′-TAGATGGGCACAGTGTGGGTGA-3 '. PCR was performed according to the attached manual using Ampli Taq DNA Polymerase manufactured by Applied Systems. Denaturation was performed at 94 ° C. for 1 minute, annealing was performed at 64 ° C. for 1 minute, and polymerization was performed at 72 ° C. for 1 minute, which was repeated 30 times in total. The electrophoresis result of the PCR product is shown in FIG. Bands of the expected size (219 bp for adiponectin and 332 bp for actin) are observed, and the intensity of the band (adiponectin gene expression level) is clearly higher than that of the control in cells cultured with the sample added.
This result was then confirmed by quantitative PCR. Using the Corvette Rotor-Gene 2000 Real-Time Cycler, the Qiagen QuantiTect SYBR Green PCR system was used to quantify the relative expression level of the adiponectin gene relative to β-actin. The primers are the same as described above. The results are shown in FIG. It can be seen that the adiponectin gene expression is enhanced 7 to 40 times by adding the sample.

マウス3T3−Ll前駆脂肪細胞株を10%の牛胎仔血清を含むDMEM培地で3日間前培養後、1.3 x 104個の細胞を含む0.2 mlづつの懸濁液を96−Wellプレートに植え込んだ。3日間培養後、培地を0、20、100、400μMのカフェイン、100、400μMのテオブロミン、もしくは100、400μMのテオフィリンを含む上記新鮮培地0.2 mlづつに交換し、次いで実施例2で得たウコン抽出粗精製物(50 mg/mlのエタノール溶液)を2 μ1/wellで各ウェルに添加し、さらに12日間培養を継続した。培地をアスピレーターで吸引除去し、1%ホルムアルデヒドを含むPBSの0.1 mlづつで細胞を固定後、Oil Red O(ORO)溶液で細胞内脂肪滴を染色し、さらに細胞核をギムザ試薬で染色した。染色された細胞の顕微鏡写真を図7に示す。脂肪細胞分化の指標となる脂肪蓄積促進作用がウコン抽出物に加えて100μM以上のカフェイン、テオブロミン、もしくはテオフィリンを加えるとさらに一層増強されることがわかる。
The mouse 3T3-Ll preadipocyte cell line was pre-cultured in DMEM medium containing 10% fetal bovine serum for 3 days, and then 0.2 ml of each suspension containing 1.3 × 10 4 cells was added to 96-well. Implanted in a plate. After culturing for 3 days, the medium was changed to 0.2 ml each of the above fresh medium containing 0, 20, 100, 400 μM caffeine, 100, 400 μM theobromine, or 100, 400 μM theophylline, and then obtained in Example 2. Turmeric extracted crude product (50 mg / ml ethanol solution) was added to each well at 2 μ1 / well, and the culture was further continued for 12 days. Aspirate the medium with an aspirator, fix the cells with 0.1 ml of PBS containing 1% formaldehyde, stain intracellular lipid droplets with Oil Red O (ORO) solution, and stain cell nuclei with Giemsa reagent. . A micrograph of the stained cells is shown in FIG. It can be seen that the fat accumulation promoting action as an index of adipocyte differentiation is further enhanced by adding 100 μM or more of caffeine, theobromine, or theophylline in addition to the turmeric extract.

実施例9と同様にして10%の牛胎仔血清を含むDMEM培地を用いて前培養したマウス3T3−Ll前駆脂肪細胞を7 x 104 cells/mlの懸濁液とし、あらかじめコラーゲンコーティングを施した12−Wellのマルチウェルプレートに1ウェルあたり2 ml植え込んだ。3日間培養後、培地を400μMのテオフィリンを含む新鮮培地もしくは含まない新鮮培地(2 ml/well)に交換し、次いで10、20、又は30 nmolのクルクミンを含むエタノール溶液もしくは実施例4で得た粗抽出物を11 mg/mlで含むエタノール溶液を4μlづつ添加した。コントロールには純エタノールを4μ1添加した。10日間培養後、実施例10と同様に細胞を回収し、1ysis緩衝液で抽出した蛋白質をSDS処理、ポリアクリルアミドゲルによる電気泳動を行いウェスタンブロッティングでアディポネクチンを検出した。結果を図8に示すが、テオフィリンがウコン抽出物やクルクミンによるアディポネクチン産生増強をさらに強化することがわかる。
Mouse 3T3-Ll preadipocytes pre-cultured using DMEM medium containing 10% fetal calf serum in the same manner as in Example 9 was made into a suspension of 7 × 10 4 cells / ml, and collagen coating was applied in advance. 2 ml per well was seeded in 12-Well multiwell plates. After culturing for 3 days, the medium was replaced with fresh medium with or without 400 μM theophylline (2 ml / well), then ethanol solution with 10, 20, or 30 nmol of curcumin or obtained in Example 4 4 μl of an ethanol solution containing the crude extract at 11 mg / ml was added. For control, 4 μl of pure ethanol was added. After culturing for 10 days, cells were collected in the same manner as in Example 10, and the protein extracted with 1ysis buffer was subjected to SDS treatment and electrophoresis through polyacrylamide gel, and adiponectin was detected by Western blotting. The results are shown in FIG. 8, and it can be seen that theophylline further enhances the enhancement of adiponectin production by turmeric extract and curcumin.

正常ヒト前駆脂肪細胞(三光純薬製)を10%のFBSと2 mMグルタミンを添加したPBM培地(PBM増殖培地、PBMは三光純薬製)で4日間前培養後、細胞をEDTA−トリプシン液で回収し、PBM増殖培地に4 x 104 cells/mlの割合で懸濁し、あらかじめコラーゲンでコートした12−wellプレートに2 mlづつ植え込んだ。5%のCO2存在下、37℃で3日間培養後、培地をPBM分化培地[PBM増殖培地にインスリン(10 μg/ml)とデキサメタゾン(0.1 μM)を添加した培地]に交換した(2 ml/well)。この培養物に20 mMのテオフィリン水溶液を最終濃度500μMになるように添加し、次いで実施例1で得たウコン粗抽出物(Sample l−1、200 μg)、実施例2又は6で得た粗精製物(Sample 2−2、100 μg又はSample 6−4、212 μg)、またはクルクミン(20 nmol)を4μ1のエタノール溶液として添加した。コントロールには4 μ1のエタノールのみを添加した。また、別なウェルにはテオフィリンを入れず、同量の水(50μ1)を入れ、後は上記と同様にサンプルを添加した。14日間インキュベート後、テオフィリンに加えてサンプルまたはクルクミンを添加したウェルでは細胞内に著明な脂肪球が形成されていることを位相差顕微鏡で確認した。顕微鏡写真を図9に示す。同様の条件下で96-wellプレートで培養・処理した細胞をホルマリン固定後ORO試薬とGiemsa試薬で染色したサンプルの顕微鏡写真(図10)からも、テオフィリンとクルクミンを同時に添加した場合に脂肪細胞が顕著に増加していることが確認された。次いで12-wellプレートの培養物について培地を吸引除去し、PBSで2回洗浄後、実施例10と同様にして細胞を回収し、1ysis緩衝液で抽出処理した。抽出液は蛋白濃度を測定後、蛋白質として約1 mg/ml(図11のレーン1〜9用サンプルの場合)又は0.7 mg/ml(同図のレーン10〜12用サンプルの場合)の濃度でSDS処理し、それらのサンプルの5μlづつをポリアクリルアミドゲルによる電気泳動にかけ、ウェスタンブロッティングでアディポネクチンとβ−アクチンを検出した。1次抗体としてケミコン社製のhuman anti−adiponectin,mouse monoclonal antibody (Catalog No.MAB3604)を用いた以外は実施例10と同じ抗体を用いた。結果を図11に示す。テオフィリンに加えてウコン抽出サンプルまたはクルクミンを添加した場合にアディポネクチンの産生が増強されている。 Normal human preadipocytes (manufactured by Sanko Junyaku) are pre-cultured for 4 days in PBM medium (PBM growth medium, PBM is Sanko Junyaku) supplemented with 10% FBS and 2 mM glutamine. And suspended in PBM growth medium at a rate of 4 × 10 4 cells / ml, and each 2 ml was implanted in a 12-well plate previously coated with collagen. After culturing at 37 ° C for 3 days in the presence of 5% CO 2 , the medium was replaced with PBM differentiation medium [PBM growth medium supplemented with insulin (10 μg / ml) and dexamethasone (0.1 μM)] (2 ml / well). To this culture, 20 mM theophylline aqueous solution was added to a final concentration of 500 μM, and then the crude turmeric extract obtained in Example 1 (Sample l-1, 200 μg) and the crude product obtained in Example 2 or 6 were used. The purified product (Sample 2-2, 100 μg or Sample 6-4, 212 μg) or curcumin (20 nmol) was added as a 4 μl ethanol solution. Only 4 μl of ethanol was added to the control. In another well, the theophylline was not added, but the same amount of water (50 μ1) was added, and then the sample was added in the same manner as described above. After incubation for 14 days, it was confirmed with a phase-contrast microscope that significant fat globules were formed in the cells in the wells to which the sample or curcumin was added in addition to theophylline. A photomicrograph is shown in FIG. A micrograph (Fig. 10) of a sample obtained by staining cells cultured and treated in a 96-well plate under the same conditions with formalin and then stained with ORO reagent and Giemsa reagent shows that when theophylline and curcumin are added simultaneously, It was confirmed that it increased remarkably. Next, the culture medium in the 12-well plate was removed by aspiration, washed twice with PBS, and the cells were collected in the same manner as in Example 10 and extracted with 1ysis buffer. After measuring the protein concentration of the extract, the protein concentration is about 1 mg / ml (in the case of samples for lanes 1 to 9 in FIG. 11) or 0.7 mg / ml (in the case of samples for lanes 10 to 12 in FIG. 11). After SDS treatment, 5 μl of each sample was subjected to electrophoresis on polyacrylamide gel, and adiponectin and β-actin were detected by Western blotting. The same antibody as in Example 10 was used except that human anti-adiponectin and mouse monoclonal antibody (Catalog No. MAB3604) manufactured by Chemicon were used as the primary antibody. The results are shown in FIG. Adiponectin production is enhanced when a turmeric extract or curcumin is added in addition to theophylline.

正常ヒト前駆脂肪細胞を用い、テオフィリンの代わりに500 μMのカフェインを用いた以外には実施例14と同様に実験を行ない、カフェインの共存下におけるウコン抽出物またはクルクミンによるアディポネクチン産生増強を確認した。結果を図12に示す。なお、本図の電気泳動において添加したサンプル量は蛋白質として7.5μg(レーン3〜8)又は5μg(レーン1、2、9〜14)である。また、カフェインの濃度を100 μMに下げて同様の実験を行ない、この濃度においてもカフェインとクルクミンの共存によりアディポネクチンの産生が増強されることを確認した。結果を図13に示す。本図の電気泳動において添加したサンプル量は蛋白質として各レーン5μgである。さらに、クルクミンの濃度を3、10、15 μMの3段階として実験を行ない、カフェインの共存下において、アディポネクチン産生増強はクルクミン濃度に依存するが、10 μM前後が最も適当であることを確認した。結果を図14に示す。本図の電気泳動において添加したサンプル量は蛋白質として各レーン3.8μgである。なお、図14の実験では異なる濃度においてもクルクミンとカフェインに相乗効果のあることが確認される。   Experiments were conducted in the same manner as in Example 14 except that normal human preadipocytes were used instead of theophylline and 500 μM caffeine was used, and adiponectin production enhancement by turmeric extract or curcumin in the presence of caffeine was confirmed. did. The results are shown in FIG. In addition, the sample amount added in the electrophoresis of this figure is 7.5 micrograms (lanes 3-8) or 5 micrograms (lanes 1, 2, 9-14) as a protein. The same experiment was conducted with the caffeine concentration lowered to 100 μM, and it was confirmed that adiponectin production was enhanced by the coexistence of caffeine and curcumin even at this concentration. The results are shown in FIG. The amount of sample added in the electrophoresis of this figure is 5 μg of each lane as protein. Furthermore, the experiment was conducted with the curcumin concentration of 3, 10, and 15 μM in three stages, and in the presence of caffeine, it was confirmed that the enhancement of adiponectin production depends on the curcumin concentration, but about 10 μM is the most appropriate. . The results are shown in FIG. The amount of sample added in the electrophoresis of this figure is 3.8 μg of each lane as protein. In the experiment of FIG. 14, it is confirmed that curcumin and caffeine have a synergistic effect even at different concentrations.

正常ヒト前駆脂肪細胞を用い、PBM分化培地にデキサメタゾンの代りにコルチゾール(別名ヒドロコーチゾン、0.1μM)を添加した以外には実施例14と同様に実験を行ない、蛋白質として4μgづつのサンプルを電気泳動にかけ、ウコン抽出物またはクルクミンによるアディポネクチン産生増強を確認した。結果を図15に示す。   Experiments were performed in the same manner as in Example 14 except that normal human preadipocytes were used and cortisol (also known as hydrocortisone, 0.1 μM) was added to the PBM differentiation medium instead of dexamethasone. It was subjected to electrophoresis, and the enhancement of adiponectin production by turmeric extract or curcumin was confirmed. The results are shown in FIG.

正常ヒト前駆脂肪細胞を実施例14と同様に4日間前培養後、細胞をEDTA−トリプシン液で回収し、PBM増殖培地に4x104 cells/mlの割合で懸濁し、あらかじめコラーゲンでコートした96−wellプレートに0.2 mlづつ植え込んだ。3日間培養後、培地をPBM増殖培地にインスリン(10 μg/ml)と0.1 μMのデキサメタゾン又はヒドロコーチゾン、及び500 μMのカフェイン又はテオブロミンを添加した培地に交換した(0.2 ml/well)。これらの培養物に実施例2で得た活性炭処理2%アセトン溶出分のエタノール溶液(5 mg/ml)、クルクミン(1 mM、エタノール溶液)またはエタノールを2 μ1づつ添加した。12日間インキュベート後、サンプルまたはクルクミンを添加したウェルでは細胞内に著明な脂肪球が形成されていることを位相差顕微鏡で確認した。次いで、培地を吸引除去後、1%ホルムアルデヒド−PBS(++)溶液で固定、0.2%Triton X 100−PBS(++)溶液で細胞膜透過性処理、2% BSA−10%正常ヤギ血清入りPBS(++)でブロッキング処理を順次行なった後、anti−human adiponectin入り2% BSA−PBS(++)で1次抗体反応を37℃において1時間行なった。細胞をPBS(++)で繰返し洗浄後、Sigma社製のFITC−Conjugated anti−mouse IgG (Catalog No. F0257)を含む2% BSA−PBS(++)で2次抗体反応を1時間行い、洗浄後、蛍光顕微鏡で観察した。顕微鏡写真を図16に示す。サンプルをテオフィリン、カフェインまたはテオブロミンと共に添加した湯合に脂肪蓄積細胞が出現するが、それらの細胞が抗体を介して結合したFITCによる強い緑色蛍光を発していることから、アディポネクチンを発現していることが確認された。 Normal human preadipocytes were pre-cultured for 4 days in the same manner as in Example 14, and the cells were collected with EDTA-trypsin solution, suspended in PBM growth medium at a rate of 4 × 10 4 cells / ml, and coated with collagen in advance 96- 0.2 ml was planted in each well plate. After culturing for 3 days, the medium was changed to a medium supplemented with PBM growth medium supplemented with insulin (10 μg / ml), 0.1 μM dexamethasone or hydrocortisone, and 500 μM caffeine or theobromine (0.2 ml / ml). well). To these cultures, the activated carbon-treated 2% acetone-eluted ethanol solution (5 mg / ml), curcumin (1 mM, ethanol solution) or ethanol obtained in Example 2 was added in an amount of 2 μl. After incubating for 12 days, it was confirmed with a phase contrast microscope that marked fat globules were formed in the cells in the wells to which the sample or curcumin was added. Next, the medium was removed by suction, fixed with 1% formaldehyde-PBS (++) solution, cell membrane permeabilized with 0.2% Triton X 100-PBS (++) solution, PBS containing 2% BSA-10% normal goat serum. After sequentially performing blocking treatment with (++), a primary antibody reaction was performed at 37 ° C. for 1 hour with 2% BSA-PBS (++) containing anti-human adiponectin. The cells were washed repeatedly with PBS (++), followed by a secondary antibody reaction with 2% BSA-PBS (++) containing FITC-Conjugated anti-mouse IgG (Catalog No. F0257) manufactured by Sigma for 1 hour, and after washing. And observed with a fluorescence microscope. A photomicrograph is shown in FIG. Adipose-accumulating cells appear when the sample is added with theophylline, caffeine, or theobromine, but the cells emit strong green fluorescence due to FITC bound through antibodies, and thus adiponectin is expressed. It was confirmed.

正常ヒト前駆脂肪細胞を用い、PBM増殖培地にインスリン(10 μg/ml)と0.1μMのデキサメタゾンを添加した基本分化培地にさらに下記の化合物、サンプルを添加した培地中で13日間培養した。培地を除去、洗浄後、各ウェルの細胞をイソゲン0.3 mlで抽出した。実施例11と同様にRNAを精製、RT-PCRを行ないアディポネクチン遺伝子の発現を確認した。ヒトアディポネクチンのプライマーは文献(Yokota et al., J. Clin. Invest., 109, 1303 − 1310 (2002))に記載の5‘−TGTTGCTGGGAGCTGTTCTATG−3’及び5‘−ATGTCTCCCTTAGGACCAATAAG−3’を用い、β−アクチンのプライマーは実施例11と同じもの(マウス、ヒト共通部分)を用いた。PCRの条件は、アディポネクチンについてアニーリングを60℃で行ない、35回増幅を繰返した以外は実施例11に記載したところと同様である。PCR産物を電気泳動で分析した結果を図17に示す。培養時に基本分化培地に添加した化合物・サンプルは以下の通りである:レーン1と2、 200μMインドメタシン+500μM IBMX(ポジティブコントロールとして使用);レーン3と4、500μMカフェイン+エタノール(2μl);レーン5と6、500μMカフェイン+10μMクルクミン;レーン7と8、エタノール(コントロール用、2μl);レーン9と10、10μMクルクミン;レーン11と12、エタノール(コントロール用、2μl);レーン13と14、10μMクルクミン;レーン15と16、500μMテオフィリン+エタノール(2μl);レーン17と18、500μMテオフィリン+10μMクルクミン。この結果からクルクミンとカフェイン又はテオフィリンの相乗作用によりヒトアディポネクチン遺伝子の発現が促進・増強されていることがわかる。さらに、実施例11と同様にこの結果を定量PCRで確認した。コルベット社製のRotor−Gene 2000 Real−Time Cyclerを用い、Qiagen社製のQuantiTect SYBR Green PCRシステムでβ−アクチンに対するアディポネクチンの遺伝子の相対的な発現量を定量した。プライマーは上記と同様である。その結果、アディポネクチンの遺伝子発現はコントロール(レーン11と12に相当)に比べて、10μMクルクミンの添加で2倍ないしは4.2倍に、500μMカフェインと10μMクルクミンの同時添加で12.6倍、500μMテオフィリンと10μMクルクミンの同時添加で36.6倍に増強されることを確認した。
Normal human preadipocytes were cultured for 13 days in a medium in which the following compounds and samples were further added to a basic differentiation medium in which insulin (10 μg / ml) and 0.1 μM dexamethasone were added to a PBM growth medium. After removing the medium and washing, the cells in each well were extracted with 0.3 ml of isogen. RNA was purified and RT-PCR was performed in the same manner as in Example 11 to confirm the expression of the adiponectin gene. As primers for human adiponectin, 5′-TGTTGCTGGGAGCTGTTCTATG-3 ′ and 5′-ATGTCTCCCTTAGGACCAATAAG-3 ′ described in the literature (Yokota et al., J. Clin. Invest., 109, 1303-1310 (2002)) were used. -The actin primer used was the same as in Example 11 (mouse, human common part). The PCR conditions were the same as described in Example 11 except that the adiponectin was annealed at 60 ° C. and the amplification was repeated 35 times. The result of analyzing the PCR product by electrophoresis is shown in FIG. The compounds and samples added to the basic differentiation medium at the time of culture are as follows: Lanes 1 and 2, 200 μM indomethacin + 500 μM IBMX (used as a positive control); Lanes 3 and 4, 500 μM caffeine + ethanol (2 μl); Lane 5 And 6, 500 μM caffeine + 10 μM curcumin; lanes 7 and 8, ethanol (for control, 2 μl); lanes 9 and 10, 10 μM curcumin; lanes 11 and 12, ethanol (for control, 2 μl); lanes 13 and 14, 10 μM curcumin Lanes 15 and 16, 500 μM theophylline + ethanol (2 μl); Lanes 17 and 18, 500 μM theophylline + 10 μM curcumin. This result shows that the expression of the human adiponectin gene is promoted / enhanced by the synergistic action of curcumin and caffeine or theophylline. Furthermore, this result was confirmed by quantitative PCR as in Example 11. Using the Corvette Rotor-Gene 2000 Real-Time Cycler, the Qiagen QuantiTect SYBR Green PCR system was used to quantify the relative expression level of the adiponectin gene relative to β-actin. The primers are the same as described above. As a result, the gene expression of adiponectin was doubled or 4.2-fold when 10 μM curcumin was added, and 12.6 times when 500 μM caffeine and 10 μM curcumin were added simultaneously, and 500 μM theophylline and 10 μM compared to the control (corresponding to lanes 11 and 12). It was confirmed that it was enhanced 36.6 times with the simultaneous addition of curcumin.

正常ヒト前駆脂肪細胞を、PBM増殖培地にインスリン(10μg/ml)と0.1μMのデキサメタゾン又は0.1μMのヒドロコーチゾンを添加した基本分化培地にさらに下記の化合物、サンプルを添加した培地中で14日間培養した。培地を除去、洗浄後、各ウェルの細胞をイソゲン0.3mlで抽出し、実施例18と同様にアディポネクチン遺伝子の発現をRT-PCRで確認した。結果を図18に示す。培養時に基本分化培地に添加した化合物・サンプル:レーン1と2、 500μMテオフィリン+エタノール(コントロール用、3μl);レーン3と4、500μMテオフィリン+10μMクルクミン;レーン5と6、200μMインドメタシン+500μM IBMX(ポジティブコントロール);レーン7と8、500μMテオフィリン+エタノール(3μl);レーン9と10、500μMテオフィリン+実施例6で得た粗精製物(Sample6-4、75μg/ml)。ただし、グルココルチコイドとしてはレーン1、2、3、4の細胞には0.1μMのヒドロコーチゾン、その他のレーンの細胞には0.1μMのデキサメタゾンを使用した。図18の結果から、グルココルチコイドがヒドロコーチゾンの場合にもクルクミンとテオフィリンの併用によりヒトアディポネクチン遺伝子の発現が促進、増強されることがわかる。また、ウコンの粗抽出物でも同様にヒトアディポネクチン遺伝子の発現を促進、増強することが確認された。   Normal human preadipocytes are cultured for 14 days in a medium supplemented with the following compounds and samples in a basic differentiation medium supplemented with insulin (10 μg / ml) and 0.1 μM dexamethasone or 0.1 μM hydrocortisone in a PBM growth medium. did. After removing and washing the medium, the cells in each well were extracted with 0.3 ml of isogen, and the expression of the adiponectin gene was confirmed by RT-PCR as in Example 18. The results are shown in FIG. Compounds and samples added to basal differentiation medium during culture: Lanes 1 and 2, 500 μM theophylline + ethanol (for control, 3 μl); Lanes 3 and 4, 500 μM theophylline +10 μM curcumin; Lanes 5 and 6, 200 μM indomethacin +500 μM IBMX (positive control) Lanes 7 and 8, 500 μM theophylline + ethanol (3 μl); lanes 9 and 10, 500 μM theophylline + crude product obtained in Example 6 (Sample 6-4, 75 μg / ml). However, as the glucocorticoid, 0.1 μM hydrocortisone was used for cells in lanes 1, 2, 3, and 4, and 0.1 μM dexamethasone was used for cells in other lanes. From the results of FIG. 18, it is understood that the expression of the human adiponectin gene is promoted and enhanced by the combined use of curcumin and theophylline even when the glucocorticoid is hydrocortisone. Similarly, it was confirmed that the crude extract of turmeric also promotes and enhances the expression of the human adiponectin gene.

マウス3T3−Ll前駆脂肪細胞に実施例6と7で得られたウコン抽出物またはその粗精製物を添加して培養した時の細胞内脂肪蓄積量をORO法で測定した結果を示すグラフである。Controlには溶媒(エタノール)のみ添加した。サンプルの番号についての説明は実施例6と7に記載のところと同様である。It is a graph which shows the result of having measured the amount of intracellular fat accumulation by the ORO method when the turmeric extract obtained in Example 6 and 7 or its crudely purified product was added to mouse 3T3-Ll preadipocytes and cultured. . Only solvent (ethanol) was added to Control. The explanation of the sample numbers is the same as described in Examples 6 and 7. マウス3T3−Ll前駆脂肪細胞に実施例1から7で得られたサンプルを添加して培養した時のアディポネクチンの産生をウェスタンブロット法で検出した結果を示す写真である。同一のサンプルについてβ−アクチンを検出した結果を上段に、アディポネクチンの検出結果を下段に示す。用いたサンプルの1はコントロールとして溶媒のエタノール、2と3はそれぞれ実施例4で得た粗抽出物(Sample 4−1)と活性炭吸着・5%アセトン溶出分(Sample 4−3)、4は実施例5で得たSample 5−3、5は実施例1で得た粗抽出物(Sample1-1)、6は実施例2で得たSample 2−2、7は実施例3で得たSample 3−3、8は実施例6で得たSample 6−4、9は実施例7で得たSample 7−4である。It is a photograph which shows the result of having detected the production of adiponectin by adding the sample obtained in Example 1 to 7 to mouse 3T3-Ll preadipocytes and culturing it by Western blotting. The result of detecting β-actin for the same sample is shown in the upper part, and the detection result of adiponectin is shown in the lower part. Sample 1 used was ethanol as a solvent as a control, 2 and 3 were the crude extract obtained in Example 4 (Sample 4-1), activated carbon adsorbed and 5% acetone eluate (Sample 4-3), 4 was Samples 5-3 and 5 obtained in Example 5 are the crude extract obtained in Example 1 (Sample1-1), 6 is Samples 2-2 and 7 obtained in Example 2, and Samples obtained in Example 3 3-3 and 8 are Sample 6-4 obtained in Example 6, and 9 is Sample 7-4 obtained in Example 7. マウス3T3−Ll前駆脂肪細胞に実施例6で得たSample 6−4を濃度を変えて添加し培養した時のアディポネクチンの産生をウェスタンブロット法で検出した結果を示す写真である。濃度は図中に示してある。各濃度について3つづつのウェルを使用して実験した。ただし、濃度0はコントロールとしてエタノールのみ(3μ1)を添加した。各ウェルのサンプルについてβ−アクチンを検出した結果を上段に、アディポネクチンの検出結果を下段に示してある。It is a photograph which shows the result of having detected the production of adiponectin by Western blotting when Sample 6-4 obtained in Example 6 was added to mouse 3T3-Ll preadipocytes at different concentrations and cultured. The concentration is shown in the figure. Experiments were performed using triplicate wells for each concentration. However, at a concentration of 0, ethanol alone (3 μ1) was added as a control. The result of detecting β-actin in the sample of each well is shown in the upper part, and the detection result of adiponectin is shown in the lower part. マウス3T3−Ll前駆脂肪細胞に実施例6で得たSample 6−4を添加して培養し、7、11、14、及び21日日に細胞を回収してアディポネクチンの産生をウェスタンブロット法で検出した結果を示す写真である。コントロール(エタノールのみ3μ1を添加)とサンプル(3μ1エタノール溶液添加)につき、各日に3つづつのウェルを使用して実験した。各ウェルのサンプル中のβ−アクチンを検出した結果を右側に、対応するアディポネクチンの検出結果を左側にやや下げて示してある。Sample 6-4 obtained in Example 6 was added to mouse 3T3-Ll preadipocytes and cultured, and cells were collected on days 7, 11, 14, and 21 to detect adiponectin production by Western blotting. It is a photograph which shows the result. Experiments were performed using 3 wells each day for control (added 3 μl ethanol only) and sample (added 3 μl ethanol solution). The result of detecting β-actin in the sample of each well is shown on the right side, and the detection result of the corresponding adiponectin is shown slightly down on the left side. マウス3T3−Ll前駆脂肪細胞に実施例6で得たSample 6−4又はコントロールとしてエタノールのみを添加し12日間培養後、RNAを抽出し、β−アクチンとアディポネクチンのmRNAをRT−PCR法で増幅し、PCR産物(それぞれ長さ332bp及び219bpと予測)を寒天ゲル電気泳動で検出した結果を示す写真である。+は逆転写酵素(RT)を添加して反応を行ない、−は同酵素を添加せずに反応を行なったことを示す。Sample 6-4 obtained in Example 6 was added to mouse 3T3-Ll preadipocytes or ethanol alone as a control and cultured for 12 days, RNA was extracted, and mRNA of β-actin and adiponectin was amplified by RT-PCR 2 is a photograph showing the results of detection of PCR products (predicted to be 332 bp and 219 bp, respectively) by agar gel electrophoresis. + Indicates that the reaction was performed with the addition of reverse transcriptase (RT), and − indicates that the reaction was performed without the addition of the enzyme. マウス3T3−Ll前駆脂肪細胞に実施例6で得たSample 6−4を濃度を変えて添加し(濃度0はコントロールとしてエタノールのみを添加)、12日間培養後、定量PCR法でβ−アクチンに対するアディポネクチン遺伝子の相対的な発現量を求めた結果を示すグラフである。コントロールと各濃度のサンプルについて3つづつのウェルを用いて実験した。棒グラフは平均値、エラーバーは標準備差である。Sample 6-4 obtained in Example 6 was added to mouse 3T3-Ll preadipocytes at different concentrations (concentration 0 was added only ethanol as a control), and cultured for 12 days. It is a graph which shows the result of having calculated | required the relative expression level of the adiponectin gene. Experiments were performed using triplicate wells for the control and each concentration sample. The bar graph is the average value, and the error bar is the standard deviation. 実施例2で得たSample2−2(50μg/ml)に加えてカフェイン、テオブロミン、もしくはテオフィリンを濃度を変えてマウス3T3−Ll前駆脂肪細胞に添加し、12日間培養後、細胞内脂肪球をORO(赤)で、次いで細胞核をギムザ(赤紫)で染色した標本の顕微鏡写真である(倍率57倍)。カフェイン、テオブロミン、テオフィリンの濃度は図中に示してある。In addition to Sample 2-2 (50 μg / ml) obtained in Example 2, caffeine, theobromine, or theophylline was added to mouse 3T3-Ll preadipocytes at different concentrations and cultured for 12 days. It is a photomicrograph of a specimen stained with ORO (red) and then cell nuclei with Giemsa (red purple) (magnification 57 times). The concentrations of caffeine, theobromine and theophylline are shown in the figure. 実施例4で得たSample4-1(44μg/ml)又はクルクミン(0〜15μM)に加えてテオフィリン(0、100、又は400μM)をマウス3T3−Ll前駆脂肪細胞に添加し10日間培養後、細胞を回収し、アディポネクチンの産生をウェスタンブロット法で検出した結果を示す写真である。同一のサンプルについて標準のβ−アクチンを検出した結果を右側に、対応するアディポネクチンの検出結果を左側にやや下げて示してある。In addition to Sample4-1 (44 μg / ml) or curcumin (0-15 μM) obtained in Example 4, theophylline (0, 100, or 400 μM) was added to mouse 3T3-Ll preadipocytes and cultured for 10 days. Is a photograph showing the results of detecting adiponectin production by Western blotting. The result of detecting standard β-actin for the same sample is shown on the right side, and the detection result of the corresponding adiponectin is shown slightly on the left side. 正常ヒト前駆脂肪細胞にインスリンとデキサメタゾンの存在下において、テオフィリンとサンプル(A〜D)またはテオフィリンなしにサンプルのみ(E〜H)を添加、13日間培養後、生じた細胞内脂肪球を位相差顕微鏡で観察・記録した顕微鏡写真である(倍率60倍)。AとEはコントロール(エタノールのみ添加)であり、BとFには実施例1で得たウコン粗抽出物(Sample 1−1、100 μg/ml)、CとGには実施例2で得た粗精製物(Sample 2−2、50μg/ml)、DとHには10 μMのクルクミンを添加した。Normal human preadipocytes in the presence of insulin and dexamethasone, theophylline and sample (A to D) or sample without theophylline (E to H) are added, and the resulting intracellular fat globule is phase-shifted after 13 days of culture. It is the microscope picture observed and recorded with the microscope (magnification 60 times). A and E are controls (only ethanol is added), B and F are crude turmeric extracts obtained in Example 1 (Sample 1-1, 100 μg / ml), and C and G are obtained in Example 2. To the crude product (Sample 2-2, 50 μg / ml), D and H were added 10 μM curcumin. 正常ヒト前駆脂肪細胞を96-wellプレートでインスリンとデキサメタゾンの存在下に、テオフィリン及び/又はクルクミンを添加、培養し、13日後に細胞内脂肪球をOROで染色した細胞の顕微鏡写真である(倍率約45倍)。ORO染色後、全体をギムザで染色した。Aは10μMクルクミン、Bはコントロールとしてクルクミン溶液と同量(2μl)のエタノールのみ添加、Cは10μMクルクミンと500μMのテオフィリンを添加、Dは500μMのテオフィリンとエタノール(2μl)を添加した。A normal human preadipocyte is a micrograph of cells in which theophylline and / or curcumin was added and cultured in a 96-well plate in the presence of insulin and dexamethasone, and after 13 days, intracellular fat globules were stained with ORO. About 45 times). After ORO staining, the whole was stained with Giemsa. A was added with 10 μM curcumin, B was added with the same amount (2 μl) of ethanol as the control, C was added with 10 μM curcumin and 500 μM theophylline, and D was added with 500 μM theophylline and ethanol (2 μl). 正常ヒト前駆脂肪細胞にインスリン(10 μg/ml)と0.1μMのデキサメタゾンの存在下において、サンプル及び/又はテオフィリン(500μM)を添加し13日間培養後、細胞を回収しアディポネクチンの生成をウェスタンブロット法で検出した結果を示す写真である。添加物:1、エタノール(4μl、コントロール);2、実施例6で得た粗精製物(Sample 6-4、4μl、最終濃度106 μg/ml);3、10μMのクルクミン;4〜6、500μMテオフィリン+エタノール(4μl);7〜9、500μMテオフィリン+Sample 6-4;10〜12、500μMテオフィリン+10 μMのクルクミン。各ウェルのサンプルについてβ−アクチンを検出した結果を上段に、アディポネクチンの検出結果を下段に示してある。Samples and / or theophylline (500 μM) are added to normal human preadipocytes in the presence of insulin (10 μg / ml) and 0.1 μM dexamethasone, cultured for 13 days, and the cells are collected to produce adiponectin by Western blotting It is a photograph which shows the result detected by. Additives: 1, ethanol (4 μl, control); 2, crude product obtained in Example 6 (Sample 6-4, 4 μl, final concentration 106 μg / ml); 3, 10 μM curcumin; 4-6, 500 μM Theophylline + ethanol (4 μl); 7-9, 500 μM theophylline + Sample 6-4; 10-12, 500 μM theophylline + 10 μM curcumin. The results of detecting β-actin for the samples in each well are shown in the upper part, and the results of detecting adiponectin are shown in the lower part. 正常ヒト前駆脂肪細胞にインスリン(10μg/ml)と0.1μMのデキサメタゾンの存在下に、サンプル及び/又はカフェイン(500μM)を添加し13日間培養後、細胞を回収しアディポネクチンの生成をウェスタンブロット法で検出した結果を示す写真である。添加物:1、エタノール(3μl、コントロール);2、500μMカフェイン+エタノール(3μl);3と4、実施例2で得た粗精製物(Sample 2-2、3μl、最終濃度50μg/ml);5〜8、500μMカフェイン+Sample 2-2;9と10、10μMクルクミン;11〜14、500μMカフェイン+10μMクルクミン。各ウェルのサンプルについてβ−アクチンを検出した結果を上段に、アディポネクチンの検出結果を下段に示してある。Samples and / or caffeine (500 μM) are added to normal human preadipocytes in the presence of insulin (10 μg / ml) and 0.1 μM dexamethasone, cultured for 13 days, and the cells are collected to produce adiponectin by Western blotting It is a photograph which shows the result detected by. Additives: 1, ethanol (3 μl, control); 2,500 μM caffeine + ethanol (3 μl); 3 and 4, crude product obtained in Example 2 (Sample 2-2, 3 μl, final concentration 50 μg / ml) 5-8, 500 μM caffeine + Sample 2-2; 9 and 10, 10 μM curcumin; 11-14, 500 μM caffeine + 10 μM curcumin. The result of detecting β-actin in the sample of each well is shown in the upper part, and the detection result of adiponectin is shown in the lower part. 正常ヒト前駆脂肪細胞にインスリン(10μg/ml)と0.1μMのデキサメタゾンの存在下に、3〜15μMのクルクミン及び/又はカフェイン(500μM)を添加し13日間培養後、細胞を回収しアディポネクチンの生成をウェスタンブロット法で検出した結果を示す写真である。添加物:1、エタノール(3μl、コントロール);2と3、100μMカフェイン+エタノール(2μl);4と5、500μMカフェイン+エタノール(3μl);6と7、10μMクルクミン;8〜10、100μMカフェイン+10μMクルクミン;11〜13、500μMカフェイン+10μMクルクミン。各ウェルのサンプルについてβ−アクチンを検出した結果を上段に、アディポネクチンの検出結果を下段に示してある。Normal human preadipocytes are supplemented with 3-15 μM curcumin and / or caffeine (500 μM) in the presence of insulin (10 μg / ml) and 0.1 μM dexamethasone, cultured for 13 days, and the cells are recovered to produce adiponectin It is a photograph which shows the result of having detected by Western blotting. Additives: 1, ethanol (3 μl, control); 2 and 3, 100 μM caffeine + ethanol (2 μl); 4 and 5, 500 μM caffeine + ethanol (3 μl); 6 and 7, 10 μM curcumin; 8-10, 100 μM Caffeine + 10 μM curcumin; 11-13, 500 μM caffeine + 10 μM curcumin. The result of detecting β-actin in the sample of each well is shown in the upper part, and the detection result of adiponectin is shown in the lower part. 正常ヒト前駆脂肪細胞にインスリン(10μg/ml)と0.1μMのデキサメタゾンの存在下に、3〜15μMのクルクミン及び/又はカフェイン(500μM)を添加し13日間培養後、細胞を回収しアディポネクチンの生成をウェスタンブロット法で検出した結果を示す写真である。添加物:1、エタノール(2μl、コントロール);2、3μMクルクミン;3と4、10μMクルクミン;5と6、15μMクルクミン;7、500μMカフェイン+エタノール(2μl);8と9、3μMクルクミン+500μMカフェイン;10と11、10μMクルクミン+500μMカフェイン;12と13、15μMクルクミン+500μMカフェイン。各ウェルのサンプルについてβ−アクチンを検出した結果を上段に、アディポネクチンの検出結果を下段に示してある。Normal human preadipocytes are supplemented with 3-15 μM curcumin and / or caffeine (500 μM) in the presence of insulin (10 μg / ml) and 0.1 μM dexamethasone, cultured for 13 days, and the cells are recovered to produce adiponectin It is a photograph which shows the result of having detected by Western blotting. Additives: 1, ethanol (2 μl, control); 2, 3 μM curcumin; 3 and 4, 10 μM curcumin; 5 and 6, 15 μM curcumin; 7, 500 μM caffeine + ethanol (2 μl); 8 and 9, 3 μM curcumin + 500 μM cafe In; 10 and 11, 10 μM curcumin + 500 μM caffeine; 12 and 13, 15 μM curcumin + 500 μM caffeine. The result of detecting β-actin in the sample of each well is shown in the upper part, and the detection result of adiponectin is shown in the lower part. 正常ヒト前駆脂肪細胞にインスリン(10μg/ml)、0.1μMのコルチゾール(ヒドロコーチゾン)及び500μMテオフィリンの存在下においてサンプルを添加し14日間培養後、細胞を回収しアディポネクチンの生成をウェスタンブロット法で検出した結果を示す写真である。添加物:1、エタノール(3μl、コントロール);2と3、実施例6で得た粗精製物(Sample6-4、75μg/ml);4、10μMクルクミン。各ウェルのサンプルについてβ−アクチンを検出した結果を上段に、アディポネクチンの検出結果を下段に示してある。Samples were added to normal human preadipocytes in the presence of insulin (10 μg / ml), 0.1 μM cortisol (hydrocortisone) and 500 μM theophylline, cultured for 14 days, and the cells were recovered and the production of adiponectin was detected by Western blotting It is a photograph which shows the result. Additives: 1, ethanol (3 μl, control); 2 and 3, crude product obtained in Example 6 (Sample 6-4, 75 μg / ml); 4, 10 μM curcumin. The result of detecting β-actin in the sample of each well is shown in the upper part, and the detection result of adiponectin is shown in the lower part. 正常ヒト前駆脂肪細胞にインスリンの存在下で下記の化合物と10μMのクルクミンを添加し12日間培養後、細胞を固定しアディポネクチンを蛍光ラベルした抗体で染色した。これを蛍光顕微鏡で観察・記録するとともに(A、C、E、G)、同一視野内の細胞内脂肪球を位相差顕微鏡で観察・記録した顕微鏡写真(B、D、F、H)である(倍率約60倍)。AとB、CとD、EとF、及びGとHは同一視野の写真であり、それぞれ10μMのクルクミンに加えて500μMテオフィリン+0.1μM デキサメタゾン、500μMテオブロミン+0.1μMヒドロコーチゾン、500μMテオブロミン+0.1μMデキサメタゾン、500μMカフェイン+0.1μMヒドロコーチゾンを添加して培養した。The following compounds and 10 μM curcumin were added to normal human preadipocytes in the presence of insulin and cultured for 12 days. The cells were fixed and stained with an adiponectin fluorescently labeled antibody. While observing and recording this with a fluorescence microscope (A, C, E, G), microscopic photographs (B, D, F, H) of intracellular fat globules in the same visual field observed and recorded with a phase contrast microscope. (Approximately 60 times magnification). A and B, C and D, E and F, and G and H are photographs of the same field of view. In addition to 10 μM curcumin, 500 μM theophylline + 0.1 μM dexamethasone, 500 μM theobromine + 0.1 μM hydrocortisone, 500 μM theobromine + 0. 1 μM dexamethasone, 500 μM caffeine + 0.1 μM hydrocortisone were added and cultured. 正常ヒト前駆脂肪細胞にインスリンとデキサメタゾンの存在下に500μMのカフェインもしくはテオフィリン及び/又は10μMクルクミン(10 mMエタノール溶液、2μl/well)を添加、13日間培養後、RNAを抽出し、β−アクチンとアディポネクチンのmRNAをRT−PCR法で増幅し、PCR産物(それぞれ長さ332bp及び235bpと予測)を寒天ゲル電気泳動で検出した結果を示す写真である。培養において添加したサンプル、化合物は以下の通りである:1と2、 200μMインドメタシン+500μM IBMX(ポジティブコントロール);3と4、500μMカフェイン+エタノール(2μl);5と6、500μMカフェイン+10μMクルクミン;7と8、エタノール(コントロール、2μl);9と10、10μMクルクミン;11と12、エタノール(コントロール、2μl);13と14、10μMクルクミン;15と16、500μMテオフィリン+エタノール(2μl);17と18、500μMテオフィリン+10μMクルクミン。なお、+は逆転写酵素(RT)を添加して反応を行ない、−は同酵素を添加せずに反応を行なったことを示す。Normal human preadipocytes are supplemented with 500 μM caffeine or theophylline and / or 10 μM curcumin (10 mM ethanol solution, 2 μl / well) in the presence of insulin and dexamethasone, cultured for 13 days, RNA extracted, and β-actin And adiponectin mRNA are amplified by RT-PCR, and PCR products (predicted to be 332 bp and 235 bp in length, respectively) are detected by agar gel electrophoresis. Samples and compounds added in the culture are as follows: 1 and 2, 200 μM indomethacin + 500 μM IBMX (positive control); 3 and 4, 500 μM caffeine + ethanol (2 μl); 5 and 6, 500 μM caffeine + 10 μM curcumin; 7 and 8, ethanol (control, 2 μl); 9 and 10, 10 μM curcumin; 11 and 12, ethanol (control, 2 μl); 13 and 14, 10 μM curcumin; 15 and 16, 500 μM theophylline + ethanol (2 μl); 18, 500 μM theophylline + 10 μM curcumin. Here, + indicates that the reaction was performed by adding reverse transcriptase (RT), and − indicates that the reaction was performed without adding the enzyme. 正常ヒト前駆脂肪細胞にインスリンとヒドロコーチゾン又はデキサメタゾンの存在下に10μMクルクミン又は実施例6で得たウコン抽出精製物(Sample6-4)を下記の化合物と共に添加し、14日間培養後、RNAを抽出し、β−アクチンとアディポネクチンのmRNAをRT−PCR法で増幅、PCR産物を寒天ゲル電気泳動で検出した結果を示す写真である。培養において添加したサンプル、化合物は以下の通りである:1と2、 エタノール(3μl)+0.1μMヒドロコーチゾン+500μMテオフィリン;3と4、10μMクルクミン+0.1μMヒドロコーチゾン+500μMテオフィリン;5と6、200μMインドメタシン+500μM IBMX(ポジティブコントロール);7と8、エタノール(3μl)+0.1μMデキサメタゾン+500μMテオフィリン;9と10、実施例6で得た粗精製物(Sample6-4、75μg/ml) +0.1μMデキサメタゾン+500μMテオフィリン。なお、+は逆転写酵素(RT)を添加して反応を行ない、−は同酵素を添加せずに反応を行なったことを示す。To normal human preadipocytes, 10 μM curcumin or turmeric extract purified product obtained in Example 6 (Sample 6-4) in the presence of insulin and hydrocortisone or dexamethasone is added together with the following compound, and after 14 days of culture, RNA is extracted. 2 is a photograph showing the results of amplification of β-actin and adiponectin mRNA by RT-PCR and detection of PCR products by agar gel electrophoresis. Samples and compounds added in culture are as follows: 1 and 2, ethanol (3 μl) +0.1 μM hydrocortisone + 500 μM theophylline; 3 and 4, 10 μM curcumin + 0.1 μM hydrocortisone + 500 μM theophylline; 5 and 6, 200 μM indomethacin +500 μM IBMX (positive control); 7 and 8, ethanol (3 μl) +0.1 μM dexamethasone + 500 μM theophylline; 9 and 10, crude product obtained in Example 6 (Sample 6-4, 75 μg / ml) +0.1 μM dexamethasone + 500 μM theophylline . Here, + indicates that the reaction was performed by adding reverse transcriptase (RT), and − indicates that the reaction was performed without adding the enzyme.

Claims (9)

ショウガ科ウコン属(Curcuma属)植物の根茎を有機溶媒で抽出して得られる抽出物を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強・促進剤。   An adiponectin production enhancing / promoting agent in animal adipocytes, comprising as an active ingredient an extract obtained by extracting a rhizome of a ginger family Curcuma plant with an organic solvent. ウコン属(Curcuma属)植物の根茎を水蒸気蒸留した残渣を有機溶媒で抽出して得られる抽出物を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。   An agent for enhancing and promoting adiponectin production in animal adipocytes, comprising, as an active ingredient, an extract obtained by extracting a residue obtained by steam distillation of a rhizome of a turmeric genus (Curcuma genus) plant with an organic solvent. 請求項1又は2に記載の有機溶媒抽出物をさらに活性炭に吸着させ、ついで親水性有機溶媒を含む疎水性有機溶媒で溶離して得られる溶離成分を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。   The organic solvent extract according to claim 1 or 2 is further adsorbed on activated carbon, and then contains an elution component obtained by elution with a hydrophobic organic solvent containing a hydrophilic organic solvent as an active ingredient, Adiponectin production enhancer and promoter in animal adipocytes. 請求項1又2に記載の有機溶媒抽出物をシリカゲルに吸着させ、ついで親水性有機溶媒を含む疎水性有機溶媒で溶離して得られる溶離成分を有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。   An elution component obtained by adsorbing the organic solvent extract according to claim 1 or 2 on silica gel and then elution with a hydrophobic organic solvent containing a hydrophilic organic solvent is contained as an active ingredient. Adiponectin production enhancer and promoter in adipocytes. 親水性有機溶媒がアセトンであり、疎水性有機溶媒がヘキサンである請求項3又は4に記載の薬剤。   The drug according to claim 3 or 4, wherein the hydrophilic organic solvent is acetone and the hydrophobic organic solvent is hexane. クルクミンを有効成分として含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。   A potentiator and enhancer of adiponectin production in animal adipocytes, comprising curcumin as an active ingredient. さらに、テオフィリン、カフェイン、もしくはテオブロミンのいずれか1種以上を含有することを特徴とする、請求項1〜5のいずれかに記載の薬剤。   Furthermore, any 1 or more types of theophylline, caffeine, or theobromine are contained, The chemical | medical agent in any one of Claims 1-5 characterized by the above-mentioned. クルクミンと、テオフィリン、カフェイン、もしくはテオブロミンのいずれか1種以上とを含有することを特徴とする、動物脂肪細胞におけるアディポネクチンの産生増強、促進剤。   A potentiator and enhancer of adiponectin production in animal adipocytes, comprising curcumin and at least one of theophylline, caffeine, or theobromine. 請求項1〜6のいずれかに記載の薬剤の動物脂肪細胞におけるアディポネクチン産生促進、増強能をさらに活性化させる方法であって、これら薬剤と、テオフィリン、カフェイン、もしくはテオブロミンのいずれか1つ以上を併用することを特徴とする、上記方法   A method of further activating the adiponectin production promotion and enhancement ability of animal drugs in animal adipocytes according to any one of claims 1 to 6, wherein any one or more of these drugs and theophylline, caffeine, or theobromine In combination with the above-mentioned method
JP2003292718A 2003-08-13 2003-08-13 Agent for enhancing and promoting production of adiponectin Pending JP2005060308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292718A JP2005060308A (en) 2003-08-13 2003-08-13 Agent for enhancing and promoting production of adiponectin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292718A JP2005060308A (en) 2003-08-13 2003-08-13 Agent for enhancing and promoting production of adiponectin

Publications (1)

Publication Number Publication Date
JP2005060308A true JP2005060308A (en) 2005-03-10

Family

ID=34369941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292718A Pending JP2005060308A (en) 2003-08-13 2003-08-13 Agent for enhancing and promoting production of adiponectin

Country Status (1)

Country Link
JP (1) JP2005060308A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131603A (en) * 2005-11-14 2007-05-31 Kaneka Corp L-carnitine synthesis system enzyme gene transcription-promoting composition
JP2007197427A (en) * 2005-12-27 2007-08-09 National Institute Of Advanced Industrial & Technology Adiponectin production enhancing agent
JP2007262050A (en) * 2005-12-16 2007-10-11 National Institute Of Advanced Industrial & Technology Adiponectin production promotor
WO2008029505A1 (en) 2006-09-04 2008-03-13 Snow Brand Milk Products Co., Ltd. Agent for accelerating the increase in and/or preventing the decrease in blood adiponectin level, and visceral fat accumulation inhibitor
WO2009057604A1 (en) 2007-10-29 2009-05-07 Snow Brand Milk Products Co., Ltd. Agent for promoting the secretion of adiponectin and/or inhibiting the decrease in the secretion of adiponectin
WO2009110646A1 (en) 2008-03-07 2009-09-11 Snow Brand Milk Products Co., Ltd. Agents for promoting secretion and/or suppressing decrease of adiponectin
JP2009286729A (en) * 2008-05-29 2009-12-10 Kagome Co Ltd Adiponectin production promoter
US8207131B2 (en) 2006-04-28 2012-06-26 Megmilk Snow Brand Co., Ltd. Peptide
JP2012188450A (en) * 2012-06-07 2012-10-04 Antony Benny Composition for improving bioavailability of curcumin
WO2017119416A1 (en) * 2016-01-06 2017-07-13 綿引 一 Synoviolin activity inhibitor comprising engelhardtiachrysolepis roxburghiana leaves or extract of e. roxburgiana leaves as active ingredient
CN114288231A (en) * 2018-11-21 2022-04-08 青海晶珠藏药高新技术产业股份有限公司 Preparation method of capsule for beautifying and removing freckles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131603A (en) * 2005-11-14 2007-05-31 Kaneka Corp L-carnitine synthesis system enzyme gene transcription-promoting composition
JP2007262050A (en) * 2005-12-16 2007-10-11 National Institute Of Advanced Industrial & Technology Adiponectin production promotor
JP2007197427A (en) * 2005-12-27 2007-08-09 National Institute Of Advanced Industrial & Technology Adiponectin production enhancing agent
US8207131B2 (en) 2006-04-28 2012-06-26 Megmilk Snow Brand Co., Ltd. Peptide
WO2008029505A1 (en) 2006-09-04 2008-03-13 Snow Brand Milk Products Co., Ltd. Agent for accelerating the increase in and/or preventing the decrease in blood adiponectin level, and visceral fat accumulation inhibitor
WO2009057604A1 (en) 2007-10-29 2009-05-07 Snow Brand Milk Products Co., Ltd. Agent for promoting the secretion of adiponectin and/or inhibiting the decrease in the secretion of adiponectin
WO2009110646A1 (en) 2008-03-07 2009-09-11 Snow Brand Milk Products Co., Ltd. Agents for promoting secretion and/or suppressing decrease of adiponectin
US9750776B2 (en) 2008-03-07 2017-09-05 Megmilk Snow Brand Co., Ltd. Agents for promoting secretion and/or suppressing decrease of adiponectin
JP2009286729A (en) * 2008-05-29 2009-12-10 Kagome Co Ltd Adiponectin production promoter
JP2012188450A (en) * 2012-06-07 2012-10-04 Antony Benny Composition for improving bioavailability of curcumin
WO2017119416A1 (en) * 2016-01-06 2017-07-13 綿引 一 Synoviolin activity inhibitor comprising engelhardtiachrysolepis roxburghiana leaves or extract of e. roxburgiana leaves as active ingredient
CN114288231A (en) * 2018-11-21 2022-04-08 青海晶珠藏药高新技术产业股份有限公司 Preparation method of capsule for beautifying and removing freckles

Similar Documents

Publication Publication Date Title
Samarghandian et al. Crocin attenuate Tumor Necrosis Factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta
Abdel-Rahman et al. Antihypertensive effects of roselle‐olive combination in L‐NAME‐induced hypertensive rats
TWI300352B (en) Water soluble extract from plant of solanum genus and the preparation process thereof, and pharmaceutical composition containing the water soluble extract
JP2005060308A (en) Agent for enhancing and promoting production of adiponectin
JP5004153B2 (en) Adiponectin production promoter
Shady et al. Hyphaene thebaica (doum)-derived extract alleviates hyperglycemia in diabetic rats: A comprehensive in silico, in vitro and in vivo study
JP5186628B2 (en) Method for preparing medicinal composition
JP4834824B2 (en) Adiponectin production enhancer
Khalil et al. Nano-encapsulated form of citrus medica for osteoporosis treatment in animal model
CN111356468B (en) Composition for preventing or treating fibrotic diseases comprising Rhus succedanea extract as active ingredient
Ghanim et al. Ecballium elaterium improved stimulatory effects of tissue-resident NK cells and ameliorated liver fibrosis in a thioacetamide mice model
Kale et al. Acridocarpus smeathmannii (DC.) Guill. & Perr. Root enhanced reproductive behavior and sexual function in male wistar rats: Biochemical and pharmacological mechanisms
US10568918B2 (en) Composition comprising chlorella extract for preventing or treating liver disease
JP2005225872A (en) Adiponectin production promotor
US10272127B2 (en) Composition containing stilbene glycoside and preparation and uses thereof for treating diabetes
JP6638161B2 (en) Food and beverage composition for inhibiting fat accumulation, food and beverage composition for preventing or treating fatty liver, and food and beverage composition for inhibiting fatty acid synthase
KR101971438B1 (en) A pharmaceutical composition for preventing or treating vascular inflammation diseases comprising an Lespedeza cuneata ultrasound extract as an active ingredient
JP2009102288A (en) Fat accumulation inhibitor
TWI630914B (en) PREPARATIONS OF ROSA LAEVIGATA EXTRACTS AND USES THEREOF FOR REGULATION OF CD36, ApoA1, AND SRB1
Mengue Ngadena et al. Estrogenic and Antioxidant Activities of Pterocarpus soyauxii (Fabaceae) Heartwood Aqueous Extract in Bilateral Oophorectomized Wistar Rat
JP2009203209A (en) Composition for blood sugar reduction and/or anti-obesity containing material originated from bark of acacia
Zeng et al. Specneuzhenide ameliorate complete Freund adjuvant induced arthritis in rats: involvement of NF-κB and HO-1/Nrf-2 pathway
Rajesh et al. Fatty acids and its derivatives of Acorus calamus Linn. rhizome induce stem cell-mediated cell division in plants and animals
JP4863327B2 (en) Adiponectin production enhancer
Torabi et al. The effect of ginger extract on expression of Gli1 and Patched-1 genes involved in breast cancer signaling pathway under in vitro condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310