[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005055553A - Mirror, mirror with temperature adjustment mechanism, and exposure apparatus - Google Patents

Mirror, mirror with temperature adjustment mechanism, and exposure apparatus Download PDF

Info

Publication number
JP2005055553A
JP2005055553A JP2003206760A JP2003206760A JP2005055553A JP 2005055553 A JP2005055553 A JP 2005055553A JP 2003206760 A JP2003206760 A JP 2003206760A JP 2003206760 A JP2003206760 A JP 2003206760A JP 2005055553 A JP2005055553 A JP 2005055553A
Authority
JP
Japan
Prior art keywords
mirror
temperature
substrate
effective area
adjustment mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003206760A
Other languages
Japanese (ja)
Inventor
Tetsuya Oshino
哲也 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003206760A priority Critical patent/JP2005055553A/en
Publication of JP2005055553A publication Critical patent/JP2005055553A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make the whole of the mirror light in weight and compact while securing the rigidity of the mirror, and to suppress the holding deformation and thermal distortion of the mirror. <P>SOLUTION: An effective region 12A to which light is applied during mirror use time and a non-effective region 12B to which light is not applied during the mirror use time are disposed on the reflective surface 12 of the mirror 11. The minimum value TB of substrate thickness on the non-effective region 12B part is smaller than the minimum value TA of substrate thickness on the effective region 12A part. Further, beams 15a-15c are formed on the surface (back surface) of the opposite side to the reflective surface 12 so as to connect part of the effective region 12A from the holding parts 16a-16c to an optical barrel of the mirror. According to the mirror 11, the whole of the mirror is made lightweight and also the distortion of the mirror is suppressed while securing the rigidity in the effective region 12A. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、露光装置の光学系などに用いられるミラー、ならびに、温度調整機構付きミラーに関する。さらに、それらのようなミラーを備える露光装置に関する。
【0002】
【背景技術】
近年のリソグラフィ技術においては、デバイスパターンの微細化に伴い、光の回折限界によって制限される投影光学系の解像力をさらに向上させることが望まれている。そのため、次世代露光技術の一つとして、軟X線又はEUV光(Extreme Ultra Violet光:極端紫外光)と呼ばれる数nm〜数10nm(例えば13nm程度)の波長のX線を使用したリソグラフィ技術の開発が進められている。
【0003】
この技術は、光露光の延長上にある波長190nm程度の紫外線を用いた光リソグラフィでは実現不可能な、70nm以下の解像力を得られる技術として期待されている。このEUV光は、ほとんどの物質に吸収されるため、EUVL露光装置の光学系では、透過型投影レンズ系を用いる光ステッパー等とは異なり、反射型投影レンズ系が用いられる。
【0004】
図7は、EUVL露光装置の投影光学系に用いられる凹面型の反射ミラーの代表的な例を示す図である。(A)は模式的な側面図であり、(B)は平面図である。
図7に示す反射ミラー100は、側面の3箇所の保持部103、104、105を介して投影光学系鏡筒(図示されず)内に保持される。この反射ミラー100は、低熱膨張ガラス等から成形されている。反射ミラー100の反射面101には、ミラー使用時にEUV光の照射される有効領域101A、及び、ミラー使用時にEUV光の照射されない非有効領域101Bが設けられている。この反射ミラー100では、有効領域101Aはミラー中心側に設けられており、非有効領域101Bは有効領域101Aを囲んで外側に設けられている。
【0005】
反射ミラー100では、保持部103〜105の保持力が加わることに伴い、反射面101の形状精度が悪化する場合がある。そこで、この形状精度の悪化を極力低減するため、ミラー100の外形を大きくしたり厚さを厚くしたりし、ミラー自身の剛性を高めるようにしている。さらに、ミラー100の変形は、保持部103〜105の保持力が加わる個所で顕著に現れるため、保持部103〜105をミラー100の側面に設けている。つまり、ミラー100の外形を大きくして非有効領域101Bを広くし、保持部103〜105をミラー100の側面に設けることで、ミラー100の有効領域101Aと保持部103〜105との距離を長くし、保持部103〜105における変形の影響が反射面101の有効領域101Aに極力伝わらないようにしている。
【0006】
ところで、反射ミラー100の反射面101には、EUV光の反射率を向上するためのMo/Si多層膜(一例)がコートされている。しかしながら、現状では、反射面101に多層膜をコートしたとしても100%近い反射率は得られず(例えば反射率約65%)、EUV光100のエネルギの一部(残りの約35%)はミラー100自身に吸収される。そして、その際に吸収される熱量によってミラー100の温度が上昇して熱変形し、反射面101の形状精度が悪化(熱変形)するおそれがある。そこで、ミラー100の裏面あるいは側面に冷却機構を設け、ミラー100の温度上昇を抑制することが行われている。
【0007】
【発明が解決しようとする課題】
前述したように、ミラー100の外形や板厚を大きくすることは、剛性を高める上では有効であるが、ミラー100全体の重量が大きくなるという欠点がある。これに対し、ミラー100を軽量化するため、ミラー100の一部を薄肉化したとすると、ミラー100の剛性が低下してしまう。そして、ミラー100の剛性が低下すると、ミラー100にEUV光が照射された際の熱の吸収により、ミラー100が変形し易くなるという問題が起こる。
【0008】
あるいは、ガラス製のミラーは熱伝導率が低いため、冷却機構でミラーの側面や裏面を冷却しても、EUV光が直接照射される反射面の温度上昇を充分に抑制しきれず、冷却効率を高めにくいという問題もある。特に、ミラーの外形や板厚を大きくする場合には、ミラー側面・裏面(冷却面)とミラー反射面(温度上昇面)との距離が長くなるため、冷却効率が一層悪化するという問題が起こる。そして、ミラーの冷却効率が低く、熱変形が生じ易いとなると、投影光学系の波面収差の劣化等が引き起こされるという問題がある。
【0009】
本発明は、このような課題に鑑みてなされたものであって、ミラーの剛性を確保しつつミラー全体を軽量化・コンパクト化できる、あるいは、ミラーの保持変形・熱変形を抑制できる等の利点を有するミラー等を提供することを目的とする。さらに、そのようなミラーを備える露光装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
前記課題を解決するため、本発明のミラーは、基板及びその一方の面に形成された反射面を有するミラーであって、 該反射面には、ミラー使用時に光の照射される有効領域、及び、ミラー使用時に光の照射されない非有効領域が設けられており、 該非有効領域の部分の基板の厚さの最小値が、前記有効領域の部分の基板の厚さの最小値よりも薄くなるよう構成されており、 ミラー外周域には、該ミラーを光学鏡筒に保持する部分が設けられており、 前記基板の反射面とは反対側の面(裏面)に、前記保持部分から前記有効領域の部分を結ぶように梁が形成されていることを特徴とする。
【0011】
このミラーによれば、非有効領域の部分の基板の厚さの最小値が、有効領域の部分の基板の厚さの最小値よりも薄くなるよう構成されているので、ミラーの有効領域の剛性を確保しつつ、ミラー全体の軽量化を実現できる。それでいて、保持部分から有効領域の部分を結ぶ梁の部分ではミラーの厚さが大きくなるので、ミラーの変形を抑制することもできる。
なお、前記梁は、その中心線がミラーの有効領域の重心位置附近を通過するように形成することが好ましい。こうすることにより、ミラーの保持変形を抑制し易くなる利点がある。
【0012】
本発明の温度調整機構付きミラーは、基板及びその一方の面に形成された反射面を有するミラーであって、 該反射面には、ミラー使用時に光の照射される有効領域、及び、ミラー使用時に光の照射されない非有効領域が設けられており、
該非有効領域の部分の基板の厚さの最小値が、前記有効領域の部分の基板の厚さの最小値よりも薄くなるよう構成されており、 ミラー外周域には、該ミラーを光学鏡筒に保持する部分が設けられており、 前記有効領域の部分の基板の裏面及び側面に、温度調整機構が設けられていることを特徴とする。
【0013】
この温度調整機構付きミラーによれば、非有効領域の部分の基板の厚さの最小値が、有効領域の部分の基板の厚さの最小値よりも薄くなっているので(つまり、非有効領域の部分の厚さが薄いので)、非有効領域の部分では、温度調整機構の設けられる裏面と反射面の距離が短い。また、有効領域の部分の裏面に段部ができる場合には、その段部の側面を冷やすこともできる。そのため、温度調整機構によるミラーの冷却効率を向上することができる。あるいは、非有効領域の部分の板厚を薄くすることによって生じたスペースに温度調整機構の一部を配置することができるので、ミラー全体をコンパクト化できる利点もある。
【0014】
本発明の温度調整機構付きミラーにおいては、前記反射面の有効領域の温度をT1、前記有効領域の部分の基板の側面の温度をT2、前記有効領域の部分の基板の裏面の温度をT3とすると、
T1≧T3>T2
となるように前記温度調整機構が作動することができる。
この場合、ミラー内部において、等温線がミラー軸(基板の厚さ方向)と平行に近くなるような温度分布を生じさせることができる。その結果、ミラー厚さ方向の温度分布が小さくなるので、ミラーが厚さ方向に開く形態の変形を抑制できる(詳しくは図5を参照しつつ後述する)。なお、ミラーの半径方向の温度勾配によって生じる変形は、横方向への膨張にしかならないので、ミラー面形状の誤差に与える影響は比較的少なくて済む。このようにして、ミラーの熱変形を抑制できることで、光学系の波面収差の劣化等を抑制できる。
【0015】
本発明の温度調整機構付きミラーにおいては、前記温度調整機構により、前記有効領域の部分の基板内に、基板厚さ方向に等温線が延び、その直角方向に温度勾配が生じる温度分布が形成されるものとすることができる。
このような温度分布によれば、ミラーの変形をより一層抑制できるので、光学系の波面収差の劣化等を一層抑制できる。
【0016】
本発明の温度調整機構付きミラーにおいては、前記温度調整機構が、前記有効領域の部分の基板の裏面及び側面近傍に配置される複数の輻射板を有し、これら輻射板がそれぞれ個別に制御可能となっていることも好ましい。
この場合、ミラーの細部ごとに応じた温度制御が可能となる。
【0017】
本発明の露光装置は、光学鏡筒と、 該鏡筒の外面に固定されるミラーと、を具備し、 前記ミラーが、前記請求項1記載のミラー、あるいは、前記請求項2〜5いずれか1項記載の温度調整機構付きミラーからなることを特徴とする。
なお、本発明における光学系に用いられるエネルギ線は特に限定されない。
【0018】
【発明の実施の形態】
以下、図面を参照しつつ説明する。
図1は、本発明の一実施の形態に係る凹面ミラーを示す図である。(A)は模式的な側面図であり、(B)は裏面図である。
図2は、本発明の他の実施の形態に係るミラー(回転非対称型)を示す図である。(A)は上面図であり、(B)は模式的な側面図であり、(C)は裏面図である。
図3は、本発明の他の実施の形態に係る温度調整機構付きミラー(回転非対称型)を示す図である。(A)は側面断面図であり、(B)は裏面図である。
図4は、本発明に係る温度調整機構付きミラーを用いたEUVL露光装置の6枚投影系の構成を示す模式図である。
【0019】
図1に示すミラー1の本体(基板)は低熱膨張ガラス製であり、凹面状の反射面2を備えている。このミラー1の反射面2には、ミラー使用時にEUV光の照射される有効領域2A、及び、ミラー使用時にEUV光の照射されない非有効領域2Bが設けられている。このミラー1では、有効領域2Aはミラー中心側に設けられており、非有効領域2Bは有効領域の外側に設けられている。反射面2には、EUV光の反射率を向上するためのMo/Si多層膜がコートされている。
【0020】
ミラー1の裏面側(反射面2と反対側)において、有効領域2Aの部分に対応する箇所には、円柱状の突部3が一体形成されている。このミラー1においては、非有効領域2Bの部分の基板の厚さの最小値TBが、有効領域2Aの部分の基板の厚さの最小値TAよりも薄くなるよう構成されている(図1(A)参照)。
ミラー1の非有効領域2Bの裏側2′及び突部3の側面3′間には、この例での側面3′からミラー1外周に向けて放射状に張り出した梁5a〜5cが形成されている。各梁5a〜5cの先端において、ミラー1側面には保持部6a〜6cが形成されている。これらの保持部6a〜6cは、ミラー1を露光装置の光学鏡筒に保持する際に用いられる。
【0021】
図2に示すミラー11も低熱膨張ガラス製である。このミラー11は、回転非対称ミラーであって、側面の一部に切り欠き部11aが形成されており、非球面軸に対して反射面12の有効領域12Aが偏心している点で、図1のミラー1と大きく異なる。ミラー11の裏面側の突部13は、有効領域12Aの偏心形状に対応した断面を有する形状となっている(図2(C)参照)。
【0022】
図2(B)に示すように、このミラー11の有効領域12Aの最小厚さはTA=45mmに設定されており、非有効領域12Bの最小厚さはTB=15mmに設定されている。このミラー11にも、前述と同様に3つの梁15a〜15cが設けられている。各梁15a〜15cの厚さTCは、それぞれ15mmとなっている。図2(C)に示すように、各梁15a〜15cの中心線は、反射面12の有効領域12Aの重心Cを通過するように設定されている。こうすることにより、ミラー11側面の保持部16a〜16c附近に生じるミラー11の保持変形を抑制し易くなる。
【0023】
図3に示す温度調整機構付きミラーは、図2を用いて前述したミラー11において、突部13の側面及び裏面の近傍に、複数枚に分割された輻射板28S(側面側)、28B(裏面側)が配置されたものである。各輻射板28S、28Bは、厚さ3mm程度の、輻射率の高い石英板からなる。各輻射板28S、28Bには、それぞれ個別に液冷ジャケット、ヒートパイプ、ペルチエ素子等の温度調整部材29S、29Bに接続されており、個別に温度制御可能となっている。これら輻射板28S、28Bと液冷ジャケット等により、温度調整機構が構成される。
なお、この温度調整機構を用いた温度制御の具体例は、後に図5及び図6を用いて詳細に説明する。
【0024】
図4には、本発明に係るミラーを用いたEUVL露光装置の投影光学系鏡筒40の内部構成が模式的に描かれている。
図4に示す投影光学系鏡筒40内には、計6枚のミラーM1〜M6が配置されている。各ミラーは、上流側から順に、第1ミラーM1(凹球面ミラー)、第2ミラーM2(凸球面ミラー)、第3ミラーM3(回転非対称凹面ミラー)、第4ミラーM4(回転非対称凹面ミラー)、第5ミラーM5(回転非対称凸面ミラー)、第6ミラーM6(回転非対称凹面ミラー)からなる。各ミラーM1〜M6には、図3を用いて前述したような輻射板(+液冷ジャケット等)からなる温度調整機構C1S〜C6S(側面側)、及び、C1B〜C6B(裏面側)が設けられている。
【0025】
この投影光学系鏡筒40の上流側にはレチクル(パターン原版)Rが配置されており、下流側にはウェハ(感応基板)Wが配置されている。レチクルRには、図示せぬ照明光学系からEUV光eが照射される。このEUV光eは、レチクルRのパターン面で反射して投影光学系鏡筒40内に入射し、各ミラーM1〜M6の反射面で反射した後、ウェハW上面に導かれる。
なお、本実施の形態では投影光学系鏡筒40のみについて説明しているが、照明光学系鏡筒内においても同様に行うことができる。
【0026】
次に、本発明に係るミラーの温度制御例について説明する。
図5は、本発明に係る温度調整機構付きミラーの温度制御例を説明するための説明図である。(A)は本発明に係る温度調整機構付きミラーの断面図であり、(B)及び(C)はミラーの温度と距離との関係を示すグラフ(縦軸:温度、横軸:距離)であり、(D)はミラーの変形の形態を模式的に示す図である。
図6は、現状の温度調整機構付きミラーの温度制御例を説明するための説明図である。(A)は現状の温度調整機構付きミラーの断面図であり、(B)及び(C)はミラーの温度と距離との関係を示すグラフ(縦軸:温度、横軸:距離)であり、(D)はミラーの変形の形態を模式的に示す図である。
なお、以下の説明におけるX方向及びY方向は、図5(A)あるいは図6(A)に示す矢印方向を指すものとする。
【0027】
図5(A)に示す本発明に係るミラー51は、図1〜図3を用いて前述したように、裏面側の有効領域52Aの部分に対応する箇所に突部53が一体形成されており、非有効領域52Bの部分の基板の厚さの最小値が、有効領域52Aの部分の基板の厚さの最小値TAよりも薄くなっている。そして、突部53の側面及び裏面の近傍には、輻射板(+液冷ジャケット等)の温度調整機構58S、58Bが配置されている。突部53と温度調整機構58S、58Bとの間には若干の隙間が存在する。この隙間により、温度冷却機構58S、58Bから突部53に力が加わらないようになっている。
【0028】
このミラー51において、反射面の有効領域52Aの温度をT1とし、突部53の側面の温度をT2とし、突部53の裏面の温度をT3とする。反射面の有効領域52Aの温度T1は、光の入射によって上昇する。一方、突部53の側面の温度T2、及び、突部53の裏面の温度T3は、それぞれ温度調整機構58S、58Bによって個別に温度制御可能である。そこで、これらの各温度T1、T2、T3が、
T1≧T3>T2
を満たすように、各温度調整機構58S、58Bを作動させる。例えば、突部53の裏面の温度調整機構58Bを加熱作動して、突部53の裏面の温度T3が反射面の有効領域52Aの温度T1近くになるようにし、突部53の側面の温度調整機構T2を冷却作動して、突部53の側面の温度T2が突部53の裏面の温度T3よりも低くなるようにする。
【0029】
このような温度制御を行うと、ミラー51内部において、等温線(図中点線で示す)がミラー軸(一点鎖線で示す:基板の厚さ方向)と平行になるような温度分布を生じさせることができる。その結果、ミラー厚さ方向(Y方向)の温度分布が小さくなるので、図5(C)に示すように、Y方向の変形量はほとんど変化しない。一方、ミラー半径方向(X方向)には、図5(B)に示す温度勾配によって変形が生じるが、これはX方向への膨張にしかならない。したがって、ミラー51には、図5(D)に2点差線で示すような形態の熱変形(径方向に単に大きくなる形態)しか起こらず、ミラー51が厚さ方向に開く形態の変形を抑制できる。
【0030】
これに対し、図6(A)に示す現状のミラー61は、ミラー本体の厚さを設定せず、側面及び裏面のそれぞれに単に温度調整機構68S、68Bを配置したのみの構成である。このような構成において温度調整機構68S、68Bを作動させてミラー61の側面や裏面を冷却しても、有効領域62Aの温度上昇を充分に抑制しきれず、冷却効率を高めにくい。そのため、ミラー61の内部では、反射面側が高温で且つ側面・裏面が低温の、ミラー軸(基板の厚さ方向)に弧状に広がった温度分布が生じることとなる(図6(A)参照)。その結果、ミラー厚さ方向(Y方向)には図6(C)に示すような温度勾配に伴う変形が生じ、ミラー半径方向(X方向)には図6(B)に示す温度勾配に伴う変形が生じる。したがって、ミラー61には、図6(D)に示すような、厚さ方向に開く形態の変形が生じてしまう。
【0031】
前述した図4の投影光学系鏡筒40内の各ミラーM1〜M6についても、図5を参照しつつ述べた通り、
T1≧T3>T2
の関係を満たすように各温度調整機構C1S〜C6S、C1B〜C6Bを作動させる。具体的には、例えば第1ミラーM1について、裏面側の温度調整機構C1Bの温度を温度T3よりも約5度高く設定し、側面側の温度調整機構C1Sの温度を温度T2よりも約8度低く設定した場合、露光時の第1ミラーM1の反射面の温度上昇を最大で約0.5度に抑えることができた。
【0032】
さらに、温度T3が温度T1と概ね同じ温度となるように温度調整機構C1B〜C6Bを作動させて、ミラー表裏の温度差が概ね0となるように維持し、温度T2が約0・3度低下するように温度調整機構C1S〜C6Sを作動させて、ミラー内部の平均温度上昇量が約0度となるように制御すると、ミラーの熱変形に伴う波面収差の悪化等を最小限に抑えることができた。
【0033】
【発明の効果】
以上の説明から明らかなように、本発明によれば、ミラーの剛性を確保しつつミラー全体を軽量化・コンパクト化できる、あるいは、ミラーの保持変形・熱変形を抑制できる等の利点を有するミラー、温度調整機構付きミラー等を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る凹面ミラーを示す図である。(A)は模式的な側面図であり、(B)は裏面図である。
【図2】本発明の他の実施の形態に係るミラー(回転非対称型)を示す図である。(A)は上面図であり、(B)は模式的な側面図であり、(C)は裏面図である。
【図3】本発明の他の実施の形態に係る温度調整機構付きミラー(回転非対称型)を示す図である。(A)は側面断面図であり、(B)は裏面図である。
【図4】本発明に係る温度調整機構付きミラーを用いたEUVL露光装置の6枚投影系の構成を示す模式図である。
【図5】本発明に係る温度調整機構付きミラーの温度制御例を説明するための説明図である。(A)は本発明に係る温度調整機構付きミラーの断面図であり、(B)及び(C)はミラーの温度と距離との関係を示すグラフ(縦軸:温度、横軸:距離)であり、(D)はミラーの変形の形態を模式的に示す図である。
【図6】現状の温度調整機構付きミラーの温度制御例を説明するための説明図である。(A)は現状の温度調整機構付きミラーの断面図であり、(B)及び(C)はミラーの温度と距離との関係を示すグラフ(縦軸:温度、横軸:距離)であり、(D)はミラーの変形の形態を模式的に示す図である。
【図7】EUVL露光装置の投影光学系に用いられる凹面型の反射ミラーの代表的な例を示す図である。(A)は模式的な側面図であり、(B)は平面図である。
【符号の説明】
1 ミラー 2 反射面
2A 有効領域 2B 非有効領域
3 突部 5a〜5c 梁
6a〜6c 保持部
11 ミラー 12 反射面
12A 有効領域 12B 非有効領域
13 突部 15a〜15c 梁
16a〜16c 保持部 28S、28B 輻射板
29S、29B 温度調整部材
40 投影光学系鏡筒 M1〜M6 ミラー
C1S〜C6S、C1B〜C6B 温度調整機構
R レチクル(パターン原版) W ウェハ(感応基板)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mirror used in an optical system of an exposure apparatus and the like, and a mirror with a temperature adjustment mechanism. Furthermore, it is related with the exposure apparatus provided with such a mirror.
[0002]
[Background]
In recent lithography techniques, it is desired to further improve the resolution of a projection optical system limited by the diffraction limit of light as the device pattern becomes finer. Therefore, as one of the next-generation exposure technologies, a lithography technology using X-rays having a wavelength of several nm to several tens of nm (for example, about 13 nm) called soft X-rays or EUV light (Extreme Ultra Violet light: extreme ultraviolet light). Development is underway.
[0003]
This technique is expected as a technique capable of obtaining a resolution of 70 nm or less, which cannot be realized by optical lithography using ultraviolet light having a wavelength of about 190 nm, which is an extension of light exposure. Since this EUV light is absorbed by almost all substances, a reflective projection lens system is used in an optical system of an EUVL exposure apparatus, unlike an optical stepper using a transmission projection lens system.
[0004]
FIG. 7 is a view showing a typical example of a concave reflection mirror used in the projection optical system of the EUVL exposure apparatus. (A) is a schematic side view, and (B) is a plan view.
The reflection mirror 100 shown in FIG. 7 is held in a projection optical system lens barrel (not shown) via three holding portions 103, 104, and 105 on the side surface. The reflection mirror 100 is formed from low thermal expansion glass or the like. The reflection surface 101 of the reflection mirror 100 is provided with an effective area 101A that is irradiated with EUV light when the mirror is used, and an ineffective area 101B that is not irradiated with EUV light when the mirror is used. In this reflection mirror 100, the effective area 101A is provided on the mirror center side, and the non-effective area 101B is provided outside the effective area 101A.
[0005]
In the reflecting mirror 100, the shape accuracy of the reflecting surface 101 may deteriorate as the holding force of the holding units 103 to 105 is applied. Therefore, in order to reduce the deterioration of the shape accuracy as much as possible, the outer shape of the mirror 100 is increased or the thickness is increased to increase the rigidity of the mirror itself. Further, since the deformation of the mirror 100 appears prominently at the place where the holding force of the holding parts 103 to 105 is applied, the holding parts 103 to 105 are provided on the side surface of the mirror 100. That is, by increasing the outer shape of the mirror 100 to widen the non-effective area 101B and providing the holding portions 103 to 105 on the side surfaces of the mirror 100, the distance between the effective area 101A of the mirror 100 and the holding portions 103 to 105 is increased. In addition, the influence of deformation in the holding portions 103 to 105 is prevented from being transmitted to the effective area 101 </ b> A of the reflecting surface 101 as much as possible.
[0006]
Incidentally, the reflecting surface 101 of the reflecting mirror 100 is coated with a Mo / Si multilayer film (one example) for improving the reflectance of EUV light. However, at present, even if the reflective surface 101 is coated with a multilayer film, a reflectance of nearly 100% cannot be obtained (for example, a reflectance of about 65%), and a part of the energy of the EUV light 100 (the remaining about 35%) is It is absorbed by the mirror 100 itself. Then, the temperature of the mirror 100 rises due to the amount of heat absorbed at that time, causing thermal deformation, and the shape accuracy of the reflecting surface 101 may deteriorate (thermal deformation). Therefore, a cooling mechanism is provided on the back surface or side surface of the mirror 100 to suppress the temperature rise of the mirror 100.
[0007]
[Problems to be solved by the invention]
As described above, increasing the outer shape and the plate thickness of the mirror 100 is effective in increasing the rigidity, but has the disadvantage that the weight of the entire mirror 100 increases. On the other hand, if the mirror 100 is thinned in order to reduce the weight of the mirror 100, the rigidity of the mirror 100 is lowered. When the rigidity of the mirror 100 is lowered, there is a problem that the mirror 100 is easily deformed due to heat absorption when the mirror 100 is irradiated with EUV light.
[0008]
Alternatively, since glass mirrors have low thermal conductivity, even if the cooling mechanism cools the side and back of the mirror, the temperature rise of the reflecting surface directly irradiated with EUV light cannot be sufficiently suppressed, and cooling efficiency is improved. There is also a problem that it is difficult to raise. In particular, when the outer shape and the plate thickness of the mirror are increased, the distance between the mirror side surface / back surface (cooling surface) and the mirror reflecting surface (temperature rise surface) becomes longer, resulting in a problem that cooling efficiency is further deteriorated. . If the cooling efficiency of the mirror is low and thermal deformation is likely to occur, there is a problem that the wavefront aberration of the projection optical system is deteriorated.
[0009]
The present invention has been made in view of such a problem, and it is possible to reduce the weight and size of the entire mirror while ensuring the rigidity of the mirror, or to suppress the holding deformation and thermal deformation of the mirror. An object of the present invention is to provide a mirror having Furthermore, it aims at providing the exposure apparatus provided with such a mirror.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the mirror of the present invention is a mirror having a substrate and a reflection surface formed on one surface thereof, and the reflection surface has an effective area irradiated with light when the mirror is used, and A non-effective area that is not irradiated with light when the mirror is used is provided, and the minimum value of the substrate thickness in the non-effective area part is smaller than the minimum value of the substrate thickness in the effective area part. In the outer peripheral area of the mirror, a portion for holding the mirror in the optical barrel is provided, and on the surface (back surface) opposite to the reflecting surface of the substrate, the effective area extends from the holding portion. A beam is formed so as to connect the portions.
[0011]
According to this mirror, since the minimum value of the substrate thickness in the non-effective area portion is configured to be thinner than the minimum value of the substrate thickness in the effective area portion, the rigidity of the effective area of the mirror is configured. It is possible to reduce the weight of the entire mirror while securing the above. Nevertheless, since the thickness of the mirror increases at the beam portion connecting the holding portion and the effective area portion, the deformation of the mirror can be suppressed.
The beam is preferably formed so that its center line passes near the center of gravity of the effective area of the mirror. By doing so, there is an advantage that the holding deformation of the mirror can be easily suppressed.
[0012]
The mirror with a temperature adjusting mechanism of the present invention is a mirror having a substrate and a reflecting surface formed on one surface thereof, and the reflecting surface has an effective area irradiated with light when the mirror is used, and the mirror is used. Sometimes there is an ineffective area that is not irradiated with light,
The minimum value of the thickness of the substrate in the portion of the ineffective area is configured to be thinner than the minimum value of the thickness of the substrate in the portion of the effective area. And a temperature adjusting mechanism is provided on the back surface and side surface of the substrate in the effective area portion.
[0013]
According to this mirror with a temperature adjustment mechanism, the minimum value of the substrate thickness in the non-effective region portion is thinner than the minimum value of the substrate thickness in the effective region portion (that is, the non-effective region). Therefore, the distance between the back surface on which the temperature adjustment mechanism is provided and the reflecting surface is short in the non-effective region portion. In addition, when a step is formed on the back surface of the effective area, the side surface of the step can be cooled. Therefore, the mirror cooling efficiency by the temperature adjustment mechanism can be improved. Alternatively, since a part of the temperature adjustment mechanism can be arranged in a space generated by reducing the thickness of the portion of the ineffective area, there is an advantage that the entire mirror can be made compact.
[0014]
In the mirror with a temperature adjustment mechanism of the present invention, the temperature of the effective area of the reflecting surface is T1, the temperature of the side surface of the substrate in the effective area is T2, and the temperature of the back surface of the substrate in the effective area is T3. Then
T1 ≧ T3> T2
The temperature adjusting mechanism can be operated so that
In this case, a temperature distribution can be generated in the mirror so that the isotherm is nearly parallel to the mirror axis (the thickness direction of the substrate). As a result, since the temperature distribution in the mirror thickness direction becomes small, deformation of the form in which the mirror opens in the thickness direction can be suppressed (details will be described later with reference to FIG. 5). In addition, since the deformation caused by the temperature gradient in the radial direction of the mirror only expands in the lateral direction, the influence on the error of the mirror surface shape is relatively small. In this way, since the thermal deformation of the mirror can be suppressed, deterioration of the wavefront aberration of the optical system can be suppressed.
[0015]
In the mirror with a temperature adjusting mechanism of the present invention, the temperature adjusting mechanism forms a temperature distribution in the substrate of the effective area portion in which an isothermal line extends in the substrate thickness direction and a temperature gradient is generated in a direction perpendicular thereto. Can be.
According to such a temperature distribution, the deformation of the mirror can be further suppressed, so that the deterioration of the wavefront aberration of the optical system can be further suppressed.
[0016]
In the mirror with a temperature adjustment mechanism of the present invention, the temperature adjustment mechanism has a plurality of radiation plates arranged in the vicinity of the back surface and side surface of the substrate in the effective area portion, and these radiation plates can be individually controlled. It is also preferable that
In this case, temperature control according to the details of the mirror is possible.
[0017]
The exposure apparatus of the present invention comprises an optical barrel and a mirror fixed to the outer surface of the barrel, and the mirror is the mirror according to claim 1 or any one of claims 2 to 5. It consists of a mirror with the temperature control mechanism of 1 description.
In addition, the energy beam used for the optical system in the present invention is not particularly limited.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, it demonstrates, referring drawings.
FIG. 1 is a diagram showing a concave mirror according to an embodiment of the present invention. (A) is a schematic side view, (B) is a back view.
FIG. 2 is a view showing a mirror (rotational asymmetric type) according to another embodiment of the present invention. (A) is a top view, (B) is a schematic side view, and (C) is a back view.
FIG. 3 is a view showing a mirror with a temperature adjustment mechanism (rotational asymmetric type) according to another embodiment of the present invention. (A) is side surface sectional drawing, (B) is a back view.
FIG. 4 is a schematic diagram showing a configuration of a six-projection system of an EUVL exposure apparatus using a mirror with a temperature adjusting mechanism according to the present invention.
[0019]
The main body (substrate) of the mirror 1 shown in FIG. 1 is made of low thermal expansion glass and includes a concave reflecting surface 2. The reflecting surface 2 of the mirror 1 is provided with an effective area 2A that is irradiated with EUV light when the mirror is used, and an ineffective area 2B that is not irradiated with EUV light when the mirror is used. In this mirror 1, the effective area 2A is provided on the mirror center side, and the non-effective area 2B is provided outside the effective area. The reflective surface 2 is coated with a Mo / Si multilayer film for improving the reflectance of EUV light.
[0020]
On the back side of the mirror 1 (the side opposite to the reflecting surface 2), a cylindrical protrusion 3 is integrally formed at a location corresponding to the effective area 2A. The mirror 1 is configured such that the minimum value TB of the substrate in the non-effective region 2B is thinner than the minimum value TA of the substrate in the effective region 2A (FIG. 1). A)).
Between the back side 2 'of the ineffective area 2B of the mirror 1 and the side surface 3' of the protrusion 3, beams 5a to 5c are formed so as to project radially from the side surface 3 'to the outer periphery of the mirror 1 in this example. . Holding portions 6a to 6c are formed on the side surfaces of the mirror 1 at the tips of the beams 5a to 5c. These holding portions 6a to 6c are used when holding the mirror 1 in the optical barrel of the exposure apparatus.
[0021]
The mirror 11 shown in FIG. 2 is also made of low thermal expansion glass. This mirror 11 is a rotationally asymmetric mirror, and has a notch portion 11a formed in a part of the side surface, and the effective area 12A of the reflecting surface 12 is decentered with respect to the aspherical axis. Very different from mirror 1. The protrusion 13 on the back surface side of the mirror 11 has a shape having a cross section corresponding to the eccentric shape of the effective region 12A (see FIG. 2C).
[0022]
As shown in FIG. 2B, the minimum thickness of the effective area 12A of the mirror 11 is set to TA = 45 mm, and the minimum thickness of the non-effective area 12B is set to TB = 15 mm. The mirror 11 is also provided with three beams 15a to 15c as described above. The thickness TC of each beam 15a-15c is 15 mm, respectively. As shown in FIG. 2C, the center line of each beam 15 a to 15 c is set so as to pass through the center of gravity C of the effective area 12 </ b> A of the reflecting surface 12. By doing so, it becomes easy to suppress the holding deformation of the mirror 11 that occurs in the vicinity of the holding portions 16a to 16c on the side surface of the mirror 11.
[0023]
The mirror with a temperature adjusting mechanism shown in FIG. 3 has a plurality of radiation plates 28S (side surfaces) and 28B (back surface) divided in the vicinity of the side surface and the back surface of the protrusion 13 in the mirror 11 described above with reference to FIG. Side) is arranged. Each of the radiation plates 28S and 28B is made of a quartz plate having a thickness of about 3 mm and a high radiation rate. The radiation plates 28S and 28B are individually connected to temperature adjusting members 29S and 29B such as a liquid cooling jacket, a heat pipe, and a Peltier element, and can be individually controlled in temperature. These radiation plates 28S and 28B, a liquid cooling jacket, and the like constitute a temperature adjustment mechanism.
A specific example of temperature control using this temperature adjustment mechanism will be described in detail later with reference to FIGS.
[0024]
FIG. 4 schematically shows the internal configuration of the projection optical system barrel 40 of the EUVL exposure apparatus using the mirror according to the present invention.
A total of six mirrors M1 to M6 are arranged in the projection optical system column 40 shown in FIG. The respective mirrors are, in order from the upstream side, a first mirror M1 (concave spherical mirror), a second mirror M2 (convex spherical mirror), a third mirror M3 (rotational asymmetric concave mirror), and a fourth mirror M4 (rotational asymmetric concave mirror). , A fifth mirror M5 (rotationally asymmetric convex mirror) and a sixth mirror M6 (rotationally asymmetric concave mirror). Each of the mirrors M1 to M6 is provided with a temperature adjustment mechanism C1S to C6S (side surface side) and C1B to C6B (back surface side) composed of a radiation plate (+ liquid cooling jacket or the like) as described above with reference to FIG. It has been.
[0025]
A reticle (pattern original plate) R is disposed on the upstream side of the projection optical system barrel 40, and a wafer (sensitive substrate) W is disposed on the downstream side. The reticle R is irradiated with EUV light e from an illumination optical system (not shown). The EUV light e is reflected by the pattern surface of the reticle R, enters the projection optical system barrel 40, is reflected by the reflecting surfaces of the mirrors M1 to M6, and is then guided to the upper surface of the wafer W.
Although only the projection optical system barrel 40 has been described in the present embodiment, the same can be done in the illumination optical system barrel.
[0026]
Next, an example of temperature control of the mirror according to the present invention will be described.
FIG. 5 is an explanatory diagram for explaining an example of temperature control of the mirror with a temperature adjusting mechanism according to the present invention. (A) is sectional drawing of the mirror with the temperature control mechanism which concerns on this invention, (B) and (C) are the graphs (vertical axis: temperature, horizontal axis: distance) which show the relationship between the temperature and distance of a mirror. (D) is a figure which shows typically the deformation | transformation form of a mirror.
FIG. 6 is an explanatory diagram for explaining a temperature control example of the current mirror with the temperature adjusting mechanism. (A) is a cross-sectional view of a mirror with a current temperature adjustment mechanism, (B) and (C) are graphs (vertical axis: temperature, horizontal axis: distance) showing the relationship between mirror temperature and distance, (D) is a figure which shows typically the deformation | transformation form of a mirror.
Note that the X direction and the Y direction in the following description refer to the arrow directions shown in FIG. 5 (A) or FIG. 6 (A).
[0027]
As described above with reference to FIGS. 1 to 3, the mirror 51 according to the present invention shown in FIG. 5A has a protrusion 53 integrally formed at a position corresponding to the effective area 52 </ b> A on the back side. The minimum value of the substrate thickness in the non-effective area 52B is smaller than the minimum value TA of the substrate in the effective area 52A. In the vicinity of the side surface and the back surface of the protrusion 53, temperature adjusting mechanisms 58S and 58B of a radiation plate (+ liquid cooling jacket or the like) are arranged. There is a slight gap between the protrusion 53 and the temperature adjustment mechanisms 58S and 58B. Due to this gap, no force is applied to the protrusion 53 from the temperature cooling mechanisms 58S, 58B.
[0028]
In this mirror 51, the temperature of the effective area 52A of the reflection surface is T1, the temperature of the side surface of the projection 53 is T2, and the temperature of the back surface of the projection 53 is T3. The temperature T1 of the effective area 52A of the reflecting surface rises with the incidence of light. On the other hand, the temperature T2 on the side surface of the protrusion 53 and the temperature T3 on the back surface of the protrusion 53 can be individually controlled by the temperature adjustment mechanisms 58S and 58B. Therefore, each of these temperatures T1, T2, T3 is
T1 ≧ T3> T2
Each temperature adjustment mechanism 58S, 58B is operated so as to satisfy. For example, the temperature adjustment mechanism 58B on the back surface of the protrusion 53 is heated so that the temperature T3 on the back surface of the protrusion 53 is close to the temperature T1 of the effective area 52A of the reflection surface, and the temperature adjustment of the side surface of the protrusion 53 is performed. The mechanism T2 is cooled so that the temperature T2 on the side surface of the protrusion 53 is lower than the temperature T3 on the back surface of the protrusion 53.
[0029]
When such temperature control is performed, a temperature distribution is generated in the mirror 51 so that the isotherm (indicated by the dotted line in the figure) is parallel to the mirror axis (indicated by the alternate long and short dash line: the thickness direction of the substrate). Can do. As a result, since the temperature distribution in the mirror thickness direction (Y direction) becomes small, the amount of deformation in the Y direction hardly changes as shown in FIG. On the other hand, in the mirror radial direction (X direction), deformation occurs due to the temperature gradient shown in FIG. 5B, but this is only expansion in the X direction. Therefore, the mirror 51 only undergoes thermal deformation in the form shown by the two-dotted line in FIG. 5D (form that simply increases in the radial direction), and suppresses deformation in the form in which the mirror 51 opens in the thickness direction. it can.
[0030]
On the other hand, the current mirror 61 shown in FIG. 6A has a configuration in which the thickness of the mirror main body is not set and the temperature adjustment mechanisms 68S and 68B are simply arranged on the side surface and the back surface, respectively. In such a configuration, even if the temperature adjustment mechanisms 68S and 68B are operated to cool the side surfaces and the back surface of the mirror 61, the temperature rise in the effective region 62A cannot be sufficiently suppressed, and it is difficult to increase the cooling efficiency. Therefore, inside the mirror 61, a temperature distribution is generated in which the reflecting surface side is hot and the side surfaces and the back surface are cold, spreading in an arc shape on the mirror axis (thickness direction of the substrate) (see FIG. 6A). . As a result, deformation accompanying the temperature gradient shown in FIG. 6C occurs in the mirror thickness direction (Y direction), and accompanying the temperature gradient shown in FIG. 6B in the mirror radial direction (X direction). Deformation occurs. Therefore, the mirror 61 is deformed so as to open in the thickness direction as shown in FIG.
[0031]
As described with reference to FIG. 5, the mirrors M1 to M6 in the projection optical system barrel 40 of FIG.
T1 ≧ T3> T2
The temperature adjustment mechanisms C1S to C6S and C1B to C6B are operated so as to satisfy the relationship. Specifically, for example, for the first mirror M1, the temperature of the temperature adjustment mechanism C1B on the back surface side is set to be about 5 degrees higher than the temperature T3, and the temperature of the temperature adjustment mechanism C1S on the side surface side is about 8 degrees than the temperature T2. When set low, the temperature rise of the reflecting surface of the first mirror M1 during exposure could be suppressed to about 0.5 degrees at the maximum.
[0032]
Further, the temperature adjustment mechanisms C1B to C6B are operated so that the temperature T3 is substantially the same as the temperature T1, and the temperature difference between the mirror front and back is maintained to be approximately 0, and the temperature T2 is decreased by about 0.3 degree. If the temperature adjusting mechanisms C1S to C6S are operated so that the average temperature rise inside the mirror is about 0 degrees, the deterioration of the wavefront aberration caused by the thermal deformation of the mirror can be minimized. did it.
[0033]
【The invention's effect】
As is apparent from the above description, according to the present invention, the mirror has advantages such as being able to reduce the weight and size of the entire mirror while ensuring the rigidity of the mirror, or to suppress holding deformation and thermal deformation of the mirror. In addition, a mirror with a temperature adjusting mechanism can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a concave mirror according to an embodiment of the present invention. (A) is a schematic side view, (B) is a back view.
FIG. 2 is a view showing a mirror (rotationally asymmetric type) according to another embodiment of the present invention. (A) is a top view, (B) is a schematic side view, and (C) is a back view.
FIG. 3 is a view showing a mirror with a temperature adjustment mechanism (rotational asymmetric type) according to another embodiment of the present invention. (A) is side surface sectional drawing, (B) is a back view.
FIG. 4 is a schematic diagram showing a configuration of a six-projection system of an EUVL exposure apparatus using a mirror with a temperature adjustment mechanism according to the present invention.
FIG. 5 is an explanatory diagram for explaining a temperature control example of a mirror with a temperature adjustment mechanism according to the present invention. (A) is sectional drawing of the mirror with the temperature control mechanism which concerns on this invention, (B) and (C) are the graphs (vertical axis: temperature, horizontal axis: distance) which show the relationship between the temperature and distance of a mirror. (D) is a figure which shows typically the deformation | transformation form of a mirror.
FIG. 6 is an explanatory diagram for explaining an example of temperature control of a current mirror with a temperature adjustment mechanism. (A) is a cross-sectional view of a mirror with a current temperature adjustment mechanism, (B) and (C) are graphs (vertical axis: temperature, horizontal axis: distance) showing the relationship between mirror temperature and distance, (D) is a figure which shows typically the deformation | transformation form of a mirror.
FIG. 7 is a view showing a typical example of a concave reflection mirror used in a projection optical system of an EUVL exposure apparatus. (A) is a schematic side view, and (B) is a plan view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mirror 2 Reflective surface 2A Effective area 2B Ineffective area 3 Protrusion 5a-5c Beam 6a-6c Holding part 11 Mirror 12 Reflecting surface 12A Effective area 12B Ineffective area 13 Protrusion 15a-15c Beam 16a-16c Holding part 28S, 28B Radiation plates 29S, 29B Temperature adjustment member 40 Projection optical system barrel M1-M6 Mirrors C1S-C6S, C1B-C6B Temperature adjustment mechanism R Reticle (pattern original) W Wafer (sensitive substrate)

Claims (6)

基板及びその一方の面に形成された反射面を有するミラーであって、
該反射面には、ミラー使用時に光の照射される有効領域、及び、ミラー使用時に光の照射されない非有効領域が設けられており、
該非有効領域の部分の基板の厚さの最小値が、前記有効領域の部分の基板の厚さの最小値よりも薄くなるよう構成されており、
ミラー外周域には、該ミラーを光学鏡筒に保持する部分が設けられており、
前記基板の反射面とは反対側の面(裏面)に、前記保持部分から前記有効領域の部分を結ぶように梁が形成されていることを特徴とするミラー。
A mirror having a substrate and a reflective surface formed on one surface thereof,
The reflective surface is provided with an effective area that is irradiated with light when the mirror is used, and an ineffective area that is not irradiated with light when the mirror is used,
The minimum value of the substrate thickness of the portion of the ineffective area is configured to be thinner than the minimum value of the thickness of the substrate of the portion of the effective area,
In the outer peripheral area of the mirror, a portion for holding the mirror in the optical barrel is provided,
A mirror, wherein a beam is formed on a surface (back surface) opposite to the reflecting surface of the substrate so as to connect the portion of the effective area from the holding portion.
基板及びその一方の面に形成された反射面を有するミラーであって、
該反射面には、ミラー使用時に光の照射される有効領域、及び、ミラー使用時に光の照射されない非有効領域が設けられており、
該非有効領域の部分の基板の厚さの最小値が、前記有効領域の部分の基板の厚さの最小値よりも薄くなるよう構成されており、
ミラー外周域には、該ミラーを光学鏡筒に保持する部分が設けられており、
前記有効領域の部分の基板の裏面及び側面に、温度調整機構が設けられていることを特徴とする温度調整機構付きミラー。
A mirror having a substrate and a reflective surface formed on one surface thereof,
The reflective surface is provided with an effective area that is irradiated with light when the mirror is used, and an ineffective area that is not irradiated with light when the mirror is used,
The minimum value of the substrate thickness of the portion of the ineffective area is configured to be thinner than the minimum value of the thickness of the substrate of the portion of the effective area,
In the outer peripheral area of the mirror, a portion for holding the mirror in the optical barrel is provided,
A mirror with a temperature adjustment mechanism, wherein a temperature adjustment mechanism is provided on a back surface and a side surface of the substrate in the effective area portion.
前記反射面の有効領域の温度をT1、前記有効領域の部分の基板の側面の温度をT2、前記有効領域の部分の基板の裏面の温度をT3とすると、
T1≧T3>T2
となるように前記温度調整機構が作動することを特徴とする請求項2記載の温度調整機構付きミラー。
When the temperature of the effective area of the reflecting surface is T1, the temperature of the side surface of the substrate in the effective area portion is T2, and the temperature of the back surface of the substrate in the effective area portion is T3,
T1 ≧ T3> T2
The mirror with a temperature adjusting mechanism according to claim 2, wherein the temperature adjusting mechanism is operated so that
前記温度調整機構により、前記有効領域の部分の基板内に、基板厚さ方向に等温線が延び、その直角方向に温度勾配が生じる温度分布が形成されることを特徴とする請求項2又は3記載の温度調整機構付きミラー。The temperature adjustment mechanism forms a temperature distribution in the substrate in the effective area portion so that an isothermal line extends in the substrate thickness direction and a temperature gradient is generated in a direction perpendicular thereto. Mirror with temperature adjustment mechanism described. 前記温度調整機構が、前記有効領域の部分の基板の裏面及び側面近傍に配置される複数の輻射板を有し、これら輻射板がそれぞれ個別に制御可能となっていることを特徴とする請求項2〜4いずれか1項記載の温度調整機構付きミラー。The temperature adjustment mechanism has a plurality of radiation plates arranged near the back surface and side surface of the substrate in the effective area portion, and these radiation plates can be individually controlled. A mirror with a temperature adjusting mechanism according to any one of claims 2 to 4. 光学鏡筒と、
該鏡筒の外面に固定されるミラーと、
を具備し、
前記ミラーが、前記請求項1記載のミラー、あるいは、前記請求項2〜5いずれか1項記載の温度調整機構付きミラーからなることを特徴とする露光装置。
An optical column;
A mirror fixed to the outer surface of the barrel;
Comprising
An exposure apparatus comprising the mirror according to claim 1 or the mirror with a temperature adjusting mechanism according to any one of claims 2 to 5.
JP2003206760A 2003-08-08 2003-08-08 Mirror, mirror with temperature adjustment mechanism, and exposure apparatus Withdrawn JP2005055553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206760A JP2005055553A (en) 2003-08-08 2003-08-08 Mirror, mirror with temperature adjustment mechanism, and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206760A JP2005055553A (en) 2003-08-08 2003-08-08 Mirror, mirror with temperature adjustment mechanism, and exposure apparatus

Publications (1)

Publication Number Publication Date
JP2005055553A true JP2005055553A (en) 2005-03-03

Family

ID=34363504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206760A Withdrawn JP2005055553A (en) 2003-08-08 2003-08-08 Mirror, mirror with temperature adjustment mechanism, and exposure apparatus

Country Status (1)

Country Link
JP (1) JP2005055553A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130895A (en) * 2006-11-22 2008-06-05 Nikon Corp Exposure equipment, method for fabricating device, and exposure method
JP2009508150A (en) * 2005-09-13 2009-02-26 カール・ツァイス・エスエムティー・アーゲー Microlithography projection optics, method for manufacturing an instrument, method for designing an optical surface
US7999917B2 (en) 2007-07-17 2011-08-16 Carl Zeiss Smt Gmbh Illumination system and microlithographic projection exposure apparatus including same
US8018650B2 (en) 2007-01-17 2011-09-13 Carl Zeiss Smt Gmbh Imaging optical system
US8027022B2 (en) 2007-07-24 2011-09-27 Carl Zeiss Smt Gmbh Projection objective
JP2011204947A (en) * 2010-03-26 2011-10-13 Komatsu Ltd Mirror device
US8094380B2 (en) 2006-03-27 2012-01-10 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
JP2013504218A (en) * 2009-09-08 2013-02-04 カール・ツァイス・エスエムティー・ゲーエムベーハー Surface outline (SURFACEFIGURE) optical element with little deformation
US8934085B2 (en) 2007-09-21 2015-01-13 Carl Zeiss Smt Gmbh Bundle-guiding optical collector for collecting the emission of a radiation source
US8970819B2 (en) 2006-04-07 2015-03-03 Carl Zeiss Smt Gmbh Microlithography projection optical system, tool and method of production
US9207541B2 (en) 2010-09-28 2015-12-08 Carl Zeiss Smt Gmbh Arrangement for mirror temperature measurement and/or thermal actuation of a mirror in a microlithographic projection exposure apparatus
US9500957B2 (en) 2011-09-21 2016-11-22 Carl Zeiss Smt Gmbh Arrangement for thermal actuation of a mirror in a microlithographic projection exposure apparatus
WO2021246402A1 (en) * 2020-06-03 2021-12-09 富士フイルム株式会社 Reflective film, laminated glass production method, and laminated glass

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967817B2 (en) 2001-05-25 2015-03-03 Carl Zeiss Smt Gmbh Imaging optical system with at most 11.6% of the illuminated surfaces of the pupil plane being obscured
JP2012008574A (en) * 2005-09-13 2012-01-12 Carl Zeiss Smt Gmbh Microlithography projection optical system, method for manufacturing device, and method for designing optical surface
JP2009508150A (en) * 2005-09-13 2009-02-26 カール・ツァイス・エスエムティー・アーゲー Microlithography projection optics, method for manufacturing an instrument, method for designing an optical surface
JP2010107988A (en) * 2005-09-13 2010-05-13 Carl Zeiss Smt Ag Microlithography projection optical system, method for manufacturing device, and method to design optical surface
US7719772B2 (en) 2005-09-13 2010-05-18 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
JP2013210647A (en) * 2005-09-13 2013-10-10 Carl Zeiss Smt Gmbh Microlithography projection optical system, method for manufacturing apparatus, and method for designing optical surface
US9465300B2 (en) 2005-09-13 2016-10-11 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8169694B2 (en) 2005-09-13 2012-05-01 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8094380B2 (en) 2006-03-27 2012-01-10 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8810927B2 (en) 2006-03-27 2014-08-19 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8970819B2 (en) 2006-04-07 2015-03-03 Carl Zeiss Smt Gmbh Microlithography projection optical system, tool and method of production
US9482961B2 (en) 2006-04-07 2016-11-01 Carl Zeiss Smt Gmbh Microlithography projection optical system, tool and method of production
JP2008130895A (en) * 2006-11-22 2008-06-05 Nikon Corp Exposure equipment, method for fabricating device, and exposure method
US8208200B2 (en) 2007-01-17 2012-06-26 Carl Zeiss Smt Gmbh Imaging optical system
US8018650B2 (en) 2007-01-17 2011-09-13 Carl Zeiss Smt Gmbh Imaging optical system
US8810903B2 (en) 2007-01-17 2014-08-19 Carl Zeiss Smt Gmbh Imaging optical system
US9298100B2 (en) 2007-01-17 2016-03-29 Carl Zeiss Smt Gmbh Imaging optical system
US7999917B2 (en) 2007-07-17 2011-08-16 Carl Zeiss Smt Gmbh Illumination system and microlithographic projection exposure apparatus including same
US8027022B2 (en) 2007-07-24 2011-09-27 Carl Zeiss Smt Gmbh Projection objective
US8934085B2 (en) 2007-09-21 2015-01-13 Carl Zeiss Smt Gmbh Bundle-guiding optical collector for collecting the emission of a radiation source
US9366976B2 (en) 2009-09-08 2016-06-14 Carl Zeiss Smt Gmbh Optical element with low surface figure deformation
JP2013504218A (en) * 2009-09-08 2013-02-04 カール・ツァイス・エスエムティー・ゲーエムベーハー Surface outline (SURFACEFIGURE) optical element with little deformation
JP2011204947A (en) * 2010-03-26 2011-10-13 Komatsu Ltd Mirror device
US9207541B2 (en) 2010-09-28 2015-12-08 Carl Zeiss Smt Gmbh Arrangement for mirror temperature measurement and/or thermal actuation of a mirror in a microlithographic projection exposure apparatus
US9500957B2 (en) 2011-09-21 2016-11-22 Carl Zeiss Smt Gmbh Arrangement for thermal actuation of a mirror in a microlithographic projection exposure apparatus
WO2021246402A1 (en) * 2020-06-03 2021-12-09 富士フイルム株式会社 Reflective film, laminated glass production method, and laminated glass

Similar Documents

Publication Publication Date Title
JP6318200B2 (en) Optical element temperature control device
JP5487110B2 (en) Microlithography projection exposure apparatus
TWI464542B (en) Illumination system of a microlithographic projection exposure apparatus
US20030235682A1 (en) Method and device for controlling thermal distortion in elements of a lithography system
JP6186623B2 (en) Microlithography projection exposure apparatus
JP6222594B2 (en) Microlithography projection exposure apparatus
KR102572139B1 (en) Method for manufacturing a mirror for a lithographic apparatus
US20150168674A1 (en) Mirror arrangement for an euv projection exposure apparatus, method for operating the same, and euv projection exposure apparatus
JP2005055553A (en) Mirror, mirror with temperature adjustment mechanism, and exposure apparatus
JP2004095993A (en) Method for cooling optical component, apparatus for cooling optical component, and euv exposure system employing the apparatus
JP2002118058A (en) Projection aligner and projection exposure method
WO2009152959A1 (en) Projection exposure apparatus for semiconductor lithography comprising a device for the thermal manipulation of an optical element
US9366977B2 (en) Semiconductor microlithography projection exposure apparatus
JP2004247438A (en) Cooling apparatus
JP2004029314A (en) Device for cooling optical element, method of cooling optical element and exposure device
JP2003172858A (en) Optical component holding unit and aligner
US7102727B2 (en) Optical system for use in exposure apparatus and device manufacturing method using the same
JP2006177740A (en) Multilayer film mirror and euv exposure apparatus
TW202209010A (en) Optical system and method of operating an optical system
US20230324648A1 (en) Optical system, and method for operating an optical system
US7295284B2 (en) Optical system, exposure apparatus using the same and device manufacturing method
US7360366B2 (en) Cooling apparatus, exposure apparatus, and device fabrication method
JP4273813B2 (en) Optical element holding and cooling apparatus and exposure apparatus
JP2004336026A (en) Thermostat, exposure device having the same, and manufacturing method of device
JP2005024818A (en) Optical element cooling device and exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090402