[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005054244A - Substrate tray of film deposition system - Google Patents

Substrate tray of film deposition system Download PDF

Info

Publication number
JP2005054244A
JP2005054244A JP2003287138A JP2003287138A JP2005054244A JP 2005054244 A JP2005054244 A JP 2005054244A JP 2003287138 A JP2003287138 A JP 2003287138A JP 2003287138 A JP2003287138 A JP 2003287138A JP 2005054244 A JP2005054244 A JP 2005054244A
Authority
JP
Japan
Prior art keywords
substrate
mask
tray
substrate tray
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003287138A
Other languages
Japanese (ja)
Other versions
JP4318504B2 (en
Inventor
Hitoshi Nakakawara
均 中河原
Seiichi Igawa
誠一 井川
Takayuki Moriwaki
崇行 森脇
Tomoyasu Saito
友康 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP2003287138A priority Critical patent/JP4318504B2/en
Publication of JP2005054244A publication Critical patent/JP2005054244A/en
Application granted granted Critical
Publication of JP4318504B2 publication Critical patent/JP4318504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate tray with which the cracks of a glass substrate is less liable to occur by reducing a temperature difference between a mask part and a film deposition part in the glass substrate. <P>SOLUTION: The substrate tray is carried into a film deposition system in a state of holding a substrate, and is arranged oppositely to a thin film material source. A mask for depositing a thin film into a prescribed shape is arranged between the tray having an opening through which thin film material grains pass and the substrate, and the emissivity of both the surface of the mask is controlled to ≥0.2. Further, ruggedness is formed on both the surfaces of the mask. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、成膜装置の基板トレイに係り、特にプラズマディスプレイパネルのMgO保護膜等を所定のパターンに形成するために用いる基板トレイに関する。   The present invention relates to a substrate tray of a film forming apparatus, and more particularly to a substrate tray used for forming a MgO protective film or the like of a plasma display panel in a predetermined pattern.

プラズマディスプレイパネル(PDP)は、液晶パネルと共に薄型壁掛けテレビとして年々その需要が増大し、パネルの大型化・高性能化とともに、歩留まり、スループット等生産性の向上を図るべく成膜装置及び成膜方法の検討が行われている。
例えば、PDPのMgO保護膜を形成する工程では、ガラス基板は基板トレイに載置され、真空蒸着装置内の蒸着源上に搬送されてMgO膜が形成される。この際、貼り合わせシール部又は配線引き出し部となるガラス基板周辺部等には薄膜が堆積しないように、所定の形状のマスクを配置して蒸着する。
The demand for plasma display panels (PDPs) is increasing year by year as a thin wall-mounted television together with a liquid crystal panel. Along with increasing the size and performance of the panel, a film forming apparatus and a film forming method are intended to improve productivity such as yield and throughput. Is being studied.
For example, in the process of forming the MgO protective film of the PDP, the glass substrate is placed on the substrate tray and transported onto the vapor deposition source in the vacuum vapor deposition apparatus to form the MgO film. At this time, a mask having a predetermined shape is disposed and vapor-deposited so that a thin film is not deposited on the peripheral portion of the glass substrate that becomes the bonded seal portion or the wiring drawing portion.

図6及び7に、従来の基板トレイ1のトレイ2とマスク4の構成例を示す。
図6(a)の分解斜視図及び図6(b)の断面図に示すように、開口を有するトレイ2上に、平板4角枠状のマスク4が取り付けられ、その上に基板5が載置される。ここで、マスク4は、平板状のみならず、例えば図6(c)の断面図に示すように、基板の位置決め等のために断面構造をL字型にした形状のもの等も用いることができる。
また、図7の基板トレイ1は、トレイ機能とマスク機能とを一体化した構造のものであり、マスク部4がトレイ2本体に一体形成されている。なお、図7において、(a)は分解斜視図、(b)は断面図、(c)は部分拡大図である。
6 and 7 show a configuration example of the tray 2 and the mask 4 of the conventional substrate tray 1.
As shown in the exploded perspective view of FIG. 6A and the cross-sectional view of FIG. 6B, a flat plate rectangular frame-shaped mask 4 is mounted on the tray 2 having openings, and the substrate 5 is mounted thereon. Placed. Here, the mask 4 is not limited to a flat plate shape, and for example, as shown in the cross-sectional view of FIG. it can.
Further, the substrate tray 1 of FIG. 7 has a structure in which the tray function and the mask function are integrated, and the mask portion 4 is formed integrally with the tray 2 body. 7A is an exploded perspective view, FIG. 7B is a sectional view, and FIG. 7C is a partially enlarged view.

しかしながら、このような従来の基板トレイを用いて薄膜形成を行う場合、成膜速度を上げるために蒸発源への投入パワーを増加させると、成膜中にガラス基板が破損し易くなるという問題が起こり、基板の大型化及び投入パワーの増加とともにこの傾向が一層顕著になることが分かった。基板には完成まで種々の処理が施され、またガラス基板のハンドリング、基板トレイ(基板ホルダ)間での基板の移載、搬送が行われることから、これらの工程において基板が大型化するほど微小な傷が入りやすく、割れやすいという事情がある。   However, when thin film formation is performed using such a conventional substrate tray, there is a problem that if the input power to the evaporation source is increased in order to increase the film formation speed, the glass substrate is easily damaged during film formation. As a result, it has been found that this tendency becomes more remarkable as the substrate becomes larger and the input power increases. Various processes are performed on the substrate until completion, and the glass substrate is handled, and the substrate is transferred and transported between substrate trays (substrate holders). There is a situation that it is easy to enter and to break easily.

本発明者らは、この原因を追求すべく種々の検討を行ったところ、ガラス基板のマスク部と成膜部間で温度が異なり、蒸着源への投入パワーの増加とともにこの温度差(△T)が増加し、(1)式で示されるようにガラス基板に発生する熱応力σが増大して、ガラス基板が割れやすくなるためと考えた。ここで、αは熱膨張係数、Eはヤング率、νはポアソン比である。
σ=α×E×△T/(1−ν) (1)
The inventors of the present invention conducted various studies in order to pursue this cause. As a result, the temperature differs between the mask portion and the film forming portion of the glass substrate, and this temperature difference (ΔT ) Increases, and the thermal stress σ generated in the glass substrate increases as shown by the equation (1), and the glass substrate is easily broken. Here, α is a thermal expansion coefficient, E is a Young's modulus, and ν is a Poisson's ratio.
σ = α × E × ΔT / (1-ν) (1)

この基板内温度差ΔTに帰因するガラス破損を防止する方策として、例えば、実際に要求される基板よりも大きめの基板を用い、薄膜形成領域の他に、余分な領域に開口を設けたマスクが提案されている。このような構造のマスクを用いることにより、余分な領域に薄膜が堆積し基板温度も上昇するため、マスク部と成膜部での温度差が減少し、結果として基板の歪みや割れによる歩留まり低下が防止できるとされている。なお、余分な領域は、切断して廃棄される。
特開2001−152318
As a measure for preventing glass breakage caused by the temperature difference ΔT in the substrate, for example, a mask larger than the actually required substrate is used, and a mask provided with an opening in an extra region in addition to the thin film formation region Has been proposed. By using a mask with such a structure, a thin film is deposited in an extra area and the substrate temperature rises, so the temperature difference between the mask part and the film formation part decreases, resulting in a decrease in yield due to distortion and cracking of the substrate. Can be prevented. The extra area is cut and discarded.
JP 2001-152318 A

しかしながら、上記方策は、ガラス割れ等の問題はある程度解消されるものの、必要以上の大きさの基板を用いしかも余分な部分を後工程で切断する必要があるため、生産性が逆に低下し、またコスト高になるという問題があった。さらに、成膜装置自体も大型化してしまうという問題があった。   However, although the above-mentioned measures can solve some problems such as glass cracking to some extent, it is necessary to cut an excessive part in a subsequent process using a substrate larger than necessary, and thus productivity is reduced. There was also a problem of high costs. Furthermore, there has been a problem that the film forming apparatus itself is also increased in size.

そこで、本発明者は、以上の問題が起こることがなく、しかも成膜部とマスク部の基板温度差ΔTをできるだけ小さく抑えるために、成膜方法やマスク構造について種々検討を行った。例えば、基板裏側にヒータを配置してその輻射熱によって基板を裏側から加熱することにより、ガラス基板内で温度差を低減することができるが、所望の膜質を得るためには、通常、薄膜に応じて所定の温度範囲に設定する必要があることから、より汎用的な解決策が要求される。一方、種々の材料のマスクを用いて成膜実験を行ったところ、材質及び表面状態によりガラス基板の温度差ΔTが変化することが分かった。また、従来、ガラス基板との接触部は基板に傷を付けないために平坦面とするのが一般的であったが、あえてマスクの両面にブラスト処理等の表面処理を施して表面に粗さをつけたところ、上記温度差ΔTがさらに低下するのが分かった。   Therefore, the present inventor has made various studies on the film forming method and the mask structure in order to suppress the substrate temperature difference ΔT between the film forming part and the mask part as much as possible without causing the above problems. For example, by placing a heater on the back side of the substrate and heating the substrate from the back side with its radiant heat, the temperature difference in the glass substrate can be reduced. A more general solution is required. On the other hand, when a film formation experiment was performed using masks of various materials, it was found that the temperature difference ΔT of the glass substrate changed depending on the material and the surface state. Conventionally, the contact portion with the glass substrate is generally a flat surface so as not to damage the substrate. However, the surface of the mask is roughened by subjecting it to surface treatment such as blasting. As a result, it was found that the temperature difference ΔT was further reduced.

本発明は、かかる知見を基にさらに検討を加えて完成したものであり、上記従来の問題点を解決し、ガラス基板のマスク部及び成膜部との温度差を低減し、熱応力に帰因する基板割れが生じ難い基板トレイを提供することを目的とする。   The present invention has been completed by further studies based on such knowledge, solves the above-mentioned conventional problems, reduces the temperature difference between the mask part and the film forming part of the glass substrate, and returns to the thermal stress. It is an object of the present invention to provide a substrate tray that is less susceptible to substrate cracking.

本発明の基板トレイは、成膜装置の内部に、基板を保持して搬送され、薄膜材料源と対向して配置される基板トレイであって、薄膜材料粒子が通過する開口を有するトレイと基板との間に、所定の形状に薄膜を形成するためのマスクを配置する構成とし、該マスクの両表面の放射率を0.2以上としたことを特徴とする。
このように放射率が0.2以上の材質又は表面状態のマスクを用いることにより、成膜時におけるガラス基板のマスク部と成膜部とでの温度差を低減することができるため、より高速の薄膜形成が可能となり生産性を向上させることができる。
The substrate tray of the present invention is a substrate tray that is transported while holding the substrate inside the film forming apparatus and is disposed to face the thin film material source, and has a tray and a substrate having openings through which the thin film material particles pass. A mask for forming a thin film in a predetermined shape is arranged between and the emissivity of both surfaces of the mask is 0.2 or more.
By using a mask having a material or surface state with an emissivity of 0.2 or more in this way, the temperature difference between the mask portion and the film forming portion of the glass substrate during film formation can be reduced, so that higher speed can be achieved. The thin film can be formed and the productivity can be improved.

また、前記マスク両表面に凹凸を形成するのが好ましく、さらにその凹凸を表面粗さRaで3〜10μmとするのが好ましい。即ち、凹凸をつけることにより、放射率をさらに大きくすることができ基板温度差を一層低減することが可能となり、表面粗さRaを3〜10μmとすることにさらに高い放射率が得られしかもガラス基板への傷の発生を実質的に抑えることが可能となる。   Further, it is preferable that irregularities are formed on both surfaces of the mask, and the irregularities are preferably 3 to 10 μm in terms of surface roughness Ra. That is, by providing the unevenness, the emissivity can be further increased, the substrate temperature difference can be further reduced, and even higher emissivity can be obtained by setting the surface roughness Ra to 3 to 10 μm. It is possible to substantially suppress the occurrence of scratches on the substrate.

なお、表面の凹凸の形成には、酸処理若しくはブラスト処理が好適に用いられ、例えば、ブラスト処理では粒子の材料、径及びエネルギにより所望の粗さの凹凸を形成すれば良い。また、同様に、種々の材質、径の粒子を用いて溶射法で凹凸層を形成しても良い。   In addition, acid treatment or blast treatment is preferably used for the formation of the surface irregularities. For example, in the blast treatment, irregularities with a desired roughness may be formed by the material, diameter and energy of the particles. Similarly, the uneven layer may be formed by thermal spraying using particles of various materials and diameters.

さらに、前記マスクと前記トレイとは部分的に接触する構成とするのが好ましく、即ち、マスクとトレイとを熱的に分離することにより熱容量の大きなトレイへ熱がマスクから逃げるのを抑制する。その結果、マスク裏面の基板温度の低下をさらに抑え、マスク部と成膜部の温度差をさらに低減することができる。さらに、前記マスクと前記トレイとの間に絶縁物を配置することにより、トレイへの熱の逃げをさらに抑制することができる。   Furthermore, it is preferable that the mask and the tray are in partial contact with each other, that is, by thermally separating the mask and the tray, heat is prevented from escaping from the mask to the tray having a large heat capacity. As a result, it is possible to further suppress a decrease in the substrate temperature on the back surface of the mask and further reduce the temperature difference between the mask portion and the film forming portion. Furthermore, by disposing an insulator between the mask and the tray, the escape of heat to the tray can be further suppressed.

なお、本発明において、前記マスクの厚さとして0.1〜5mm、より好ましくは0.5mm〜3.0mmのものが用いられる。この範囲のマスクを用いることにより、より大型のガラス基板であっても、基板内の温度差がより抑えられガラス割れを防止することができる。   In the present invention, the thickness of the mask is 0.1 to 5 mm, more preferably 0.5 to 3.0 mm. By using a mask in this range, even in a larger glass substrate, the temperature difference in the substrate can be further suppressed and glass breakage can be prevented.

本発明により、マスク表面の放射率を0.2以上とすることにより、成膜時の基板温度分布、若しくは基板の熱応力を低減することができ、結果として蒸着源等に投入するパワーを増加してもガラス基板割れを防止することができるため、成膜速度を増大し、スループットを改善することができる。   According to the present invention, by setting the emissivity of the mask surface to 0.2 or more, the substrate temperature distribution at the time of film formation or the thermal stress of the substrate can be reduced, and as a result, the power supplied to the evaporation source or the like is increased. However, since the glass substrate can be prevented from cracking, the deposition rate can be increased and the throughput can be improved.

本発明の実施の形態を図に基づいて説明する。
図1は、本発明の基板トレイの一構成例を示す模式図であり、(a)分解斜視図、(b)断面図、(c)部分拡大図、(d)平面図である。
本実施形態の基板トレイ1は、図に示すように、開口を有するトレイ2とマスク4とからなり、マスクは開口部の内周壁部に設けられた複数のマスク支持部材3上に載置される。ガラス基板5はこのマスク上に置かれ、基板トレイ全体が各処理室間を搬送される。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing a configuration example of a substrate tray of the present invention, (a) an exploded perspective view, (b) a sectional view, (c) a partially enlarged view, and (d) a plan view.
As shown in the figure, the substrate tray 1 of this embodiment includes a tray 2 having an opening and a mask 4, and the mask is placed on a plurality of mask support members 3 provided on the inner peripheral wall portion of the opening. The The glass substrate 5 is placed on this mask, and the entire substrate tray is transported between the processing chambers.

トレイ2には、通常、厚さ3〜10mm程度のSUS板が用いられ、ガラス基板の大きさに応じた開口が形成される。また、マスク支持部材3は、トレイとマスクとの熱的分離性能を高め、マスクの熱がトレイに逃げてマスク裏面の基板温度低下を防止するために、マスク支持性能を損なわない範囲で接触面積をできるだけ小さくする。例えば、個々の支持部材の大きさは、幅3〜10mm程度とし、長さはマスク幅の2/3程度とするのが好ましい。また、熱的分離をさらに高めるため、マスク支持部材の材質は熱伝導率の小さな材質(例えば、ガラス、ポリマー等)を用いるのが好ましい。このようにして、ガラス基板のマスク部と成膜部との温度差をより小さくすることができ、より大きなパワーでの蒸着が可能となり、一層の高スループット化を達成することができる。   For the tray 2, a SUS plate having a thickness of about 3 to 10 mm is usually used, and an opening corresponding to the size of the glass substrate is formed. Further, the mask support member 3 improves the thermal separation performance between the tray and the mask, and prevents the mask heat from escaping to the tray to prevent the substrate temperature on the back side of the mask from being lowered. Make it as small as possible. For example, the size of each support member is preferably about 3 to 10 mm in width, and the length is preferably about 2/3 of the mask width. In order to further enhance the thermal separation, it is preferable to use a material having a low thermal conductivity (for example, glass, polymer, etc.) as the material of the mask support member. In this manner, the temperature difference between the mask portion and the film forming portion of the glass substrate can be further reduced, vapor deposition with a larger power can be performed, and higher throughput can be achieved.

マスクは、表面の放射率が0.2以上となる材料又は表面状態が選択される。材質としては、例えば、アルミニウム、ニッケル、タングステン、銅、チタン、モリブデン、タンタル及び鉄並びにこれらの合金若しくは酸化物、さらにカーボン、グラファイト、アルミナ、シリカ、ジルコニア、SiC,TiC、AlN,SiN等、種々の金属や絶縁物等を用いことができる。放射率が0.2より小さい材質のものについては、酸処理やブラスト処理等により表面を粗して放射率を0.2以上として用いても良いし、溶射等によりコーティングしてもよい。さらにはこれらを組み合わせても良い。通常、表面粗さとしてRaで3〜10μmが好適に用いられ、マスク部の基板温度上昇を助けるとともに、ガラス基板への傷の発生を抑制する。   For the mask, a material or surface state in which the surface emissivity is 0.2 or more is selected. As materials, for example, aluminum, nickel, tungsten, copper, titanium, molybdenum, tantalum and iron and alloys or oxides thereof, carbon, graphite, alumina, silica, zirconia, SiC, TiC, AlN, SiN, etc. Metals or insulators can be used. For materials having an emissivity of less than 0.2, the surface may be roughened by acid treatment, blast treatment, or the like, and the emissivity may be 0.2 or more, or may be coated by thermal spraying or the like. Furthermore, these may be combined. Usually, Ra of 3 to 10 μm is suitably used as the surface roughness, which helps increase the substrate temperature of the mask portion and suppresses the generation of scratches on the glass substrate.

図1の構成のマスクの厚さとしては、通常0.1〜5mm(より好ましくは、0.5〜3.0mm)が用いられる。なお、図1ではマスクの形状として四角の枠形状のものを用いているが、例えば、最終的にガラス基板を切断して2枚取りする場合は、例えば中心部で橋渡した形状のマスクが用いられる。   The thickness of the mask having the configuration shown in FIG. 1 is usually 0.1 to 5 mm (more preferably 0.5 to 3.0 mm). In FIG. 1, a rectangular frame shape is used as the mask shape. However, for example, when the glass substrate is finally cut to obtain two pieces, a mask having a shape bridged at the center is used, for example. It is done.

本発明において、マスクの放射率は、次のようにして測定する。即ち、あらかじめ熱電対を取り付けたマスクをヒータで加熱し、マスクが300℃になるようにヒータを調節する。続いて、放射温度計で該マスクの温度を測定し、放射温度計の読みが300℃となるように放射率を調整し、このときの値をマスクの放射率とする。   In the present invention, the emissivity of the mask is measured as follows. That is, a mask to which a thermocouple is attached in advance is heated with a heater, and the heater is adjusted so that the mask becomes 300 ° C. Subsequently, the temperature of the mask is measured with a radiation thermometer, the emissivity is adjusted so that the reading of the radiation thermometer becomes 300 ° C., and the value at this time is set as the emissivity of the mask.

以上の基板トレイを用いて、ガラス基板を連続して搬送し、MgO膜を連続的に形成する蒸着装置を図2に示す。
蒸着装置は、基板トレイロード室10、蒸着室11及び基板トレイアンロード室12がゲートバルブ16,17を介して連結され、これらの両側に基板トレイ1に基板5を載置又は取り出しを行うためのプラットホーム13,14がゲートバルブ15,18を介して配設されている。プラットホーム13,14及び各室10,11,12の内部には、基板トレイの搬送に一般に用いられる、搬送コロ30(例えば特開平9−279341公報)が取り付けられている。また各室10,11,12はそれぞれバルブ19,20,21を介して排気装置22,23,24に連結され、所定の真空度に制御されている。
さらに蒸着室11の搬送コロ30の下方には、蒸着源が取り付けられている。図の例では、例えば蒸着材料28を収納するリングハース27と蒸着材料に電子ビームを照射し蒸発させるプラズマガン25とが配置されている。なお、プラズマガンの代わりに、電子銃を用いても良い。
A vapor deposition apparatus that continuously conveys a glass substrate and continuously forms an MgO film using the above substrate tray is shown in FIG.
In the vapor deposition apparatus, the substrate tray loading chamber 10, the vapor deposition chamber 11, and the substrate tray unload chamber 12 are connected via gate valves 16 and 17, and the substrate 5 is placed on or taken out from the substrate tray 1 on both sides thereof. The platforms 13 and 14 are arranged via gate valves 15 and 18. Inside the platforms 13 and 14 and the chambers 10, 11, and 12, a conveyance roller 30 (for example, Japanese Patent Application Laid-Open No. 9-279341) that is generally used for conveyance of a substrate tray is attached. The chambers 10, 11, and 12 are connected to exhaust devices 22, 23, and 24 through valves 19, 20, and 21, respectively, and controlled to a predetermined degree of vacuum.
Further, a vapor deposition source is attached below the conveyance roller 30 in the vapor deposition chamber 11. In the example shown in the figure, for example, a ring hearth 27 for storing the vapor deposition material 28 and a plasma gun 25 for irradiating the vapor deposition material with an electron beam and evaporating it are disposed. An electron gun may be used instead of the plasma gun.

まず、プラットホーム13でマスクが取り付けられた基板トレイ1上にガラス基板5(例えば、1.5m角、2.8mm厚)を載置する。ゲートバルブ15を開け、搬送コロ30を駆動して基板トレイ1をロード室10に搬送する。ゲートバルブ15を閉じ、内部を例えば10Pa程度に排気した後、ヒータ(不図示)により基板を100〜200℃程度に加熱する。
その後、ゲートバルブ16を開けて基板トレイ1を蒸着室11に移動する。内部を10−1〜10−2Paに排気し、基板トレイ1の裏面側に配置されたヒータ(不図示)により基板を100〜200℃程度に加熱する。流量100〜200cc/分程度の酸素ガスを導入しながら蒸着室11内のプラズマガン25を駆動し電子ビーム26をリングハース27内の蒸発材料28に照射・加熱する。蒸着材料は蒸発し、基板トレイの開口を通ってガラス基板5に到達し、表面に膜が高速成長する。所望の膜厚のMgO膜が形成された時点でプラズマガンの駆動及び酸素ガスの導入を停止する。
蒸着終了後、基板トレイ1はアンロード室12に送られ所定の温度に冷却した後、ゲートバルブ18を開け、プラットホーム14に搬出される。処理済みの基板が取り出された基板トレイ1はプラットホーム13に運ばれ、未処理基板を載置して、再びロードロック室10に搬送されて同様にしてMgO膜が形成される。
First, a glass substrate 5 (for example, 1.5 m square, 2.8 mm thickness) is placed on the substrate tray 1 to which a mask is attached on the platform 13. The gate valve 15 is opened and the transport roller 30 is driven to transport the substrate tray 1 to the load chamber 10. After closing the gate valve 15 and evacuating the interior to about 10 Pa, for example, the substrate is heated to about 100 to 200 ° C. by a heater (not shown).
Thereafter, the gate valve 16 is opened and the substrate tray 1 is moved to the vapor deposition chamber 11. The inside is exhausted to 10 −1 to 10 −2 Pa, and the substrate is heated to about 100 to 200 ° C. by a heater (not shown) disposed on the back side of the substrate tray 1. While introducing oxygen gas at a flow rate of about 100 to 200 cc / min, the plasma gun 25 in the vapor deposition chamber 11 is driven to irradiate and heat the evaporating material 28 in the ring hearth 27 with the electron beam 26. The vapor deposition material evaporates, reaches the glass substrate 5 through the opening of the substrate tray, and a film grows on the surface at high speed. When the MgO film having a desired thickness is formed, the driving of the plasma gun and the introduction of oxygen gas are stopped.
After the deposition is completed, the substrate tray 1 is sent to the unload chamber 12 and cooled to a predetermined temperature. Then, the gate valve 18 is opened and the substrate tray 1 is carried out to the platform 14. The substrate tray 1 from which the processed substrate has been taken out is transported to the platform 13, an unprocessed substrate is placed thereon, and the substrate tray 1 is transported again to the load lock chamber 10 to form an MgO film in the same manner.

以上のようにして、MgO膜の形成を繰り返し行ったところ、例えばステンレス鋼のマスクの両表面にブラスト処理して種々の凹凸を形成し、300℃における放射率を0.2以上とすることにより、ガラス基板の破損事故が低減することが確認された。
一例として、3mm厚、20mm幅のSUS板の両面をブラスト処理し、表面粗さ(Ra)を6.0μmとしたマスクを用い、1.5m角、2.8mm厚のガラス基板に通常の2倍の成膜速度でMgO膜を形成したときのマスク部のガラス基板の温度変化を図3に、マスク部と成膜部との温度差の経持変化を図4に示した(実施例)。ここで、熱電対は、基板の裏面側で、基板の中心及びマスク幅の中心部に取り付けた。また、マスク支持部材には、幅5mm、長さ15mmのものを用い、ほぼ100mm間隔で取り付けた。
As described above, when the MgO film was repeatedly formed, for example, blasting was performed on both surfaces of a stainless steel mask to form various irregularities, and the emissivity at 300 ° C. was set to 0.2 or more. It was confirmed that the glass substrate damage accident was reduced.
As an example, a SUS plate with a thickness of 3 mm and a width of 20 mm is blasted on both sides and a mask with a surface roughness (Ra) of 6.0 μm is used. FIG. 3 shows the temperature change of the glass substrate in the mask portion when the MgO film is formed at a double film formation rate, and FIG. 4 shows the change in temperature difference between the mask portion and the film formation portion (Example). . Here, the thermocouple was attached to the center of the substrate and the center of the mask width on the back side of the substrate. In addition, the mask support member having a width of 5 mm and a length of 15 mm was used, and the mask support members were attached at intervals of about 100 mm.

なお、比較のため、ブラスト処理していないSUS板(Ra<1μm)を用いた場合も同様にして温度変化を測定し、その結果を図3及び4に併せて示した(比較例)。
なお、比較例及び実施例のマスクは、あらかじめマスクに固定した熱電対にで温度をモニタしながらホットプレート上で300℃に加熱し、放射温度計(株式会社チノー製広帯域放射温度計IR−BHT11)で熱電対の接触部近傍での測定値が300℃になるように、放射温度計の放射率を調整して求めた。このようにして測定した放射率はそれぞれ0.07及び0.4であった。
For comparison, a temperature change was measured in the same manner when using a blasted SUS plate (Ra <1 μm), and the results are shown in FIGS. 3 and 4 (comparative example).
The masks of the comparative example and the example were heated to 300 ° C. on a hot plate while monitoring the temperature with a thermocouple fixed in advance to the mask, and a radiation thermometer (broadband radiation thermometer IR-BHT11 manufactured by Chino Co., Ltd.). ) And adjusting the emissivity of the radiation thermometer so that the measured value in the vicinity of the contact portion of the thermocouple is 300 ° C. The emissivity measured in this way was 0.07 and 0.4, respectively.

図3から明らかなように、実施例のマスク部における基板温度は、比較例に比べ高温に加熱されていることが分かる。また、図4が示すように、基板のマスク部と成膜部との温度差ΔTは、本実施例では比較例の値と比べて20℃以上も小さくなり、本実施例の基板トレイを用いることにより熱応力をより小さくできることが分かる。   As can be seen from FIG. 3, the substrate temperature in the mask portion of the example is heated to a higher temperature than in the comparative example. Further, as shown in FIG. 4, the temperature difference ΔT between the mask portion and the film forming portion of the substrate is 20 ° C. or more smaller than the value of the comparative example in this embodiment, and the substrate tray of this embodiment is used. This shows that the thermal stress can be further reduced.

即ち、本実施例では、放射率が0.4のマスクを用い、しかもマスクとトレイとの接触部を小さくしてマスクの熱がトレイ側に逃げるのを抑制しているため、成膜時における蒸発源からの輻射熱は効率よくマスクを加熱し、その裏面に配置されたガラス基板の温度をより高温にすることができる。この結果、マスク部と成膜部とで基板の温度差は小さくなり、ガラス破損頻度を小さくすることが可能となる。即ち、蒸着源に投入するパワーを増加させても、ガラス基板のマスク部と成膜部との温度差を小さく保つことが可能となる。結果として、ガラスの破損を引き起こすことなく高速成膜が可能となり、より一層の高スループット化を実現することができる。   That is, in this embodiment, a mask having an emissivity of 0.4 is used, and the contact portion between the mask and the tray is made small so that the heat of the mask is prevented from escaping to the tray side. Radiant heat from the evaporation source efficiently heats the mask, and the temperature of the glass substrate disposed on the back surface can be increased. As a result, the temperature difference of the substrate between the mask portion and the film forming portion is reduced, and the glass breakage frequency can be reduced. That is, even if the power input to the vapor deposition source is increased, the temperature difference between the mask portion and the film forming portion of the glass substrate can be kept small. As a result, high-speed film formation is possible without causing breakage of the glass, and higher throughput can be realized.

次に本発明の他の実施形態を図5に示す。
図5は、基板トレイの(a)分解斜視図、(b)平面図及び(c)断面図を示す。
本実施例のマスクは図1のような枠状のものでなく、板状のものをトレイに固定した構成としたものである。即ち、トレイ2開口の各辺部に対応して板状マスク4を例えばねじその他の治具等を用いて端部を固定する。なお、図5の場合のようにマスクを重ねて用いる場合、強度及び蒸着粒子の回り込み防止の観点から、通常0.1〜3.0mm(好ましくは0.5〜1.5mm)の厚さのマスクが用いられる。
また、マスクとトレイとの間に絶縁体を配置するのが好ましく、マスクの材質、表面状態は、上述したとおりである。
Next, another embodiment of the present invention is shown in FIG.
5A is an exploded perspective view of the substrate tray, FIG. 5B is a plan view, and FIG. 5C is a cross-sectional view.
The mask of the present embodiment is not a frame-shaped mask as shown in FIG. 1, but a plate-shaped mask is fixed to the tray. That is, the end portions of the plate-like mask 4 corresponding to each side of the opening of the tray 2 are fixed using, for example, screws or other jigs. In addition, when using it by overlapping a mask like the case of FIG. 5, from a viewpoint of intensity | strength and prevention of the wraparound of a vapor deposition particle, it is 0.1-3.0 mm (preferably 0.5-1.5 mm) in thickness normally. A mask is used.
Moreover, it is preferable to arrange | position an insulator between a mask and a tray, and the material and surface state of a mask are as having mentioned above.

本発明の基板トレイの一例を示す模式図である。It is a schematic diagram which shows an example of the board | substrate tray of this invention. PDPのMgO保護膜製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the MgO protective film manufacturing apparatus of PDP. 基板のマスク部温度の時間変化を示すグラフである。It is a graph which shows the time change of the mask part temperature of a board | substrate. 基板のマスク部と成膜部との温度差の時間変化を示すグラフである。It is a graph which shows the time change of the temperature difference of the mask part of a board | substrate, and the film-forming part. 本発明の基板トレイの他の例を示す模式図である。It is a schematic diagram which shows the other example of the board | substrate tray of this invention. 従来の基板トレイの一例を示す模式図である。It is a schematic diagram which shows an example of the conventional board | substrate tray. 従来の基板トレイの他の例を示す模式図である。It is a schematic diagram which shows the other example of the conventional board | substrate tray.

符号の説明Explanation of symbols

1 基板トレイ、
2 トレイ、
3 マスク支持部材、
4 マスク、
5 ガラス基板、
10 基板トレイロード室、
11 蒸着室、
12 基板トレイアンロード室、
13 基板投入用プラットホーム、
14 基板取り出し用プラットホーム、
15〜18 ゲートバルブ、
19〜21 バルブ、
22〜24 排気装置、
25 プラズマガン、
26 電子ビーム、
27 リングハース、
28 蒸着材料、
29 蒸発粒子、
30 搬送コロ。
1 substrate tray,
2 trays,
3 mask support member,
4 mask,
5 glass substrate,
10 Substrate tray loading chamber,
11 Deposition chamber,
12 Substrate tray unloading chamber,
13 Substrate for board loading,
14 Substrate removal platform,
15-18 gate valve,
19-21 valves,
22-24 exhaust system,
25 Plasma gun,
26 electron beam,
27 Ringhaas,
28 Vapor deposition material,
29 evaporated particles,
30 Transport roller.

Claims (7)

成膜装置の内部に、基板を保持して搬送され、薄膜材料源と対向して配置される基板トレイであって、薄膜材料粒子が通過する開口を有するトレイと基板との間に、所定の形状に薄膜を形成するためのマスクを配置する構成とし、該マスクの両表面の放射率を0.2以上としたことを特徴とする基板トレイ。   A substrate tray that is transported while holding the substrate inside the film forming apparatus and disposed opposite the thin film material source, and has a predetermined gap between the tray and the substrate having an opening through which the thin film material particles pass. A substrate tray characterized in that a mask for forming a thin film in a shape is disposed, and the emissivity of both surfaces of the mask is 0.2 or more. 前記マスク両表面に凹凸を形成したことを特徴とする請求項1に記載の基板トレイ。   The substrate tray according to claim 1, wherein irregularities are formed on both surfaces of the mask. 前記凹凸は、表面粗さRaが3〜10μmであることを特徴とする請求項2に記載の基板トレイ。   The substrate tray according to claim 2, wherein the unevenness has a surface roughness Ra of 3 to 10 μm. 前記凹凸は、ブラスト処理により形成したことを特徴とする請求項2又は3に記載の基板トレイ。   4. The substrate tray according to claim 2, wherein the unevenness is formed by blasting. 前記凹凸は、溶射により形成したことを特徴とする請求項2又は3に記載の基板トレイ。   4. The substrate tray according to claim 2, wherein the unevenness is formed by thermal spraying. 前記マスクと前記トレイとは部分的に接触する構成としたことを特徴とする請求項1〜5のいずれか1項に記載の基板トレイ。   The substrate tray according to claim 1, wherein the mask and the tray are in partial contact with each other. 前記マスクと前記トレイとの間に絶縁体を配置したことを特徴とする請求項1〜6のいずれか1項に記載の基板トレイ。   The substrate tray according to claim 1, wherein an insulator is disposed between the mask and the tray.
JP2003287138A 2003-08-05 2003-08-05 Deposition equipment substrate tray Expired - Fee Related JP4318504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287138A JP4318504B2 (en) 2003-08-05 2003-08-05 Deposition equipment substrate tray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287138A JP4318504B2 (en) 2003-08-05 2003-08-05 Deposition equipment substrate tray

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009108830A Division JP2009174060A (en) 2009-04-28 2009-04-28 Substrate tray of film deposition apparatus

Publications (2)

Publication Number Publication Date
JP2005054244A true JP2005054244A (en) 2005-03-03
JP4318504B2 JP4318504B2 (en) 2009-08-26

Family

ID=34366229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287138A Expired - Fee Related JP4318504B2 (en) 2003-08-05 2003-08-05 Deposition equipment substrate tray

Country Status (1)

Country Link
JP (1) JP4318504B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290477A (en) * 2005-04-06 2006-10-26 Ulvac Japan Ltd Glass substrate handling method in vacuum atmosphere
JP2006291243A (en) * 2005-04-06 2006-10-26 Ulvac Japan Ltd Mechanism for handling glass substrate in inline-type treatment apparatus
JP2006303158A (en) * 2005-04-20 2006-11-02 Tosoh Corp Component for vacuum apparatus
WO2007023559A1 (en) * 2005-08-26 2007-03-01 Fujitsu Hitachi Plasma Display Limited Film forming process, mask for film formation, and film forming unit
WO2007023535A1 (en) * 2005-08-24 2007-03-01 Fujitsu Hitachi Plasma Display Limited Method of film formation, mask for film formation and film formation apparatus
JP2007113058A (en) * 2005-10-19 2007-05-10 Ulvac Japan Ltd Film deposition material feeding device
WO2008004594A1 (en) * 2006-07-07 2008-01-10 Canon Anelva Corporation Substrate tray and film forming apparatus
JP2008013850A (en) * 2006-07-05 2008-01-24 Toppoly Optoelectronics Corp Evaporation device and transport system thereof
JP2008101254A (en) * 2006-10-20 2008-05-01 Mitsubishi Heavy Ind Ltd Vapor deposition apparatus and vapor deposition method
JP2008130407A (en) * 2006-11-22 2008-06-05 Ulvac Japan Ltd Plasma display panel, method of manufacturing plasma display panel, and film forming device
JP2008277614A (en) * 2007-05-01 2008-11-13 Ihi Corp Substrate carrier
JP2009019243A (en) * 2007-07-12 2009-01-29 Hitachi Displays Ltd Vapor deposition method and apparatus
JP2009228050A (en) * 2008-03-21 2009-10-08 Sumitomo Heavy Ind Ltd Supporting mechanism of substance for film deposition
WO2012122253A2 (en) * 2011-03-10 2012-09-13 Applied Materials, Inc. Substrate carrier with multiple emissivity coefficients for thin film processing
US9076827B2 (en) 2010-09-14 2015-07-07 Applied Materials, Inc. Transfer chamber metrology for improved device yield
KR20220031519A (en) * 2020-09-04 2022-03-11 캐논 톡키 가부시키가이샤 Carrier, film forming apparatus, film forming method, and manufacturing method of electronic device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291243A (en) * 2005-04-06 2006-10-26 Ulvac Japan Ltd Mechanism for handling glass substrate in inline-type treatment apparatus
JP2006290477A (en) * 2005-04-06 2006-10-26 Ulvac Japan Ltd Glass substrate handling method in vacuum atmosphere
JP4613089B2 (en) * 2005-04-06 2011-01-12 株式会社アルバック Glass substrate handling mechanism in inline processing equipment
JP2006303158A (en) * 2005-04-20 2006-11-02 Tosoh Corp Component for vacuum apparatus
WO2007023535A1 (en) * 2005-08-24 2007-03-01 Fujitsu Hitachi Plasma Display Limited Method of film formation, mask for film formation and film formation apparatus
WO2007023559A1 (en) * 2005-08-26 2007-03-01 Fujitsu Hitachi Plasma Display Limited Film forming process, mask for film formation, and film forming unit
JP2007113058A (en) * 2005-10-19 2007-05-10 Ulvac Japan Ltd Film deposition material feeding device
JP2008013850A (en) * 2006-07-05 2008-01-24 Toppoly Optoelectronics Corp Evaporation device and transport system thereof
WO2008004594A1 (en) * 2006-07-07 2008-01-10 Canon Anelva Corporation Substrate tray and film forming apparatus
JP4576370B2 (en) * 2006-10-20 2010-11-04 三菱重工業株式会社 Vapor deposition apparatus and vapor deposition method
JP2008101254A (en) * 2006-10-20 2008-05-01 Mitsubishi Heavy Ind Ltd Vapor deposition apparatus and vapor deposition method
JP2008130407A (en) * 2006-11-22 2008-06-05 Ulvac Japan Ltd Plasma display panel, method of manufacturing plasma display panel, and film forming device
JP2008277614A (en) * 2007-05-01 2008-11-13 Ihi Corp Substrate carrier
JP2009019243A (en) * 2007-07-12 2009-01-29 Hitachi Displays Ltd Vapor deposition method and apparatus
JP2009228050A (en) * 2008-03-21 2009-10-08 Sumitomo Heavy Ind Ltd Supporting mechanism of substance for film deposition
US9076827B2 (en) 2010-09-14 2015-07-07 Applied Materials, Inc. Transfer chamber metrology for improved device yield
US10103288B2 (en) 2010-09-14 2018-10-16 Applied Materials, Inc. Transfer chamber metrology for improved device yield
WO2012122253A2 (en) * 2011-03-10 2012-09-13 Applied Materials, Inc. Substrate carrier with multiple emissivity coefficients for thin film processing
WO2012122253A3 (en) * 2011-03-10 2012-11-15 Applied Materials, Inc. Substrate carrier with multiple emissivity coefficients for thin film processing
KR20220031519A (en) * 2020-09-04 2022-03-11 캐논 톡키 가부시키가이샤 Carrier, film forming apparatus, film forming method, and manufacturing method of electronic device
KR102591418B1 (en) 2020-09-04 2023-10-19 캐논 톡키 가부시키가이샤 Carrier, film forming apparatus, film forming method, and manufacturing method of electronic device

Also Published As

Publication number Publication date
JP4318504B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4318504B2 (en) Deposition equipment substrate tray
JPH1064888A (en) Etching using improved gas disseminating plate
JPH0892739A (en) Composition of shield for vacuum chamber
JPH03120362A (en) Apparatus and method for plasma treatment
JP2006303013A (en) Load lock equipment and processing method
US10262838B2 (en) Deposition system with integrated cooling on a rotating drum
JP2009239289A (en) Substrate support, substrate processing apparatus and method of manufacturing semiconductor device
CN101106070A (en) Process gas introducing mechanism and plasma processing device
JPWO2008123111A1 (en) Substrate heat treatment apparatus and substrate heat treatment method
JP6140539B2 (en) Vacuum processing equipment
JP2009174060A (en) Substrate tray of film deposition apparatus
US8361549B2 (en) Power loading substrates to reduce particle contamination
JP4473410B2 (en) Sputtering apparatus and film forming method
CN104995727A (en) Processing arrangement with temperature conditioning arrangement and method of processing a substrate
JP2011202190A (en) Sputtering apparatus and sputtering method
JP5334984B2 (en) Sputtering apparatus, thin film forming method, and field effect transistor manufacturing method
JPH10223538A (en) Vertical heat-treating apparatus
JPH07194965A (en) Method and apparatus for forming film
JP2004059990A (en) Film deposition apparatus
EP1802947A1 (en) High-emissivity radiator
JP7326119B2 (en) Substrate stage and vacuum processing equipment
JP3935642B2 (en) Plasma processing apparatus and method
US12057297B2 (en) Deposition system with integrated cooling on a rotating drum
JP4503713B2 (en) Substrate cooling method for vacuum film formation
JPH0831751A (en) Plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees