[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005048747A - Combustion control device for internal combustion engine - Google Patents

Combustion control device for internal combustion engine Download PDF

Info

Publication number
JP2005048747A
JP2005048747A JP2003284311A JP2003284311A JP2005048747A JP 2005048747 A JP2005048747 A JP 2005048747A JP 2003284311 A JP2003284311 A JP 2003284311A JP 2003284311 A JP2003284311 A JP 2003284311A JP 2005048747 A JP2005048747 A JP 2005048747A
Authority
JP
Japan
Prior art keywords
combustion
exhaust
main
fuel injection
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003284311A
Other languages
Japanese (ja)
Inventor
Yasuhisa Kitahara
靖久 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003284311A priority Critical patent/JP2005048747A/en
Priority to US10/895,335 priority patent/US20050022513A1/en
Publication of JP2005048747A publication Critical patent/JP2005048747A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly change combustion modes without causing a fire. <P>SOLUTION: In changing a normal combustion mode into an air-fuel ratio enriching combustion mode by raising exhaust temperature in regeneration of an exhaust emission control device or the like, fuel injection is executed in fuel injection quantity for preliminary combustion at fuel injection timing for preliminary combustion. It is then changed into fuel injection timing for main combustion with retard. Specifically, they are gradually changed, taking several cycles till target main injection timing is reached. For the fuel injection quantity for main injection, generation torque is reduced as the fuel injection timing is retarded. For maintaining the torque, increasing quantity is corrected in accordance with retard. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の燃焼制御装置に関する。   The present invention relates to a combustion control device for an internal combustion engine.

従来、特許文献1に開示されているように、ディーゼルエンジンの燃料噴射装置において、触媒の昇温を促す時などに、エンジンの要求トルクに対応する基本燃料噴射量の燃料を、燃料噴射弁により、各気筒の圧縮上死点近傍で3回に分割して噴射することが知られている。これに併せて、燃料噴射量を増量することも知られている。
特開2000−320386号公報
Conventionally, as disclosed in Patent Document 1, in a fuel injection device for a diesel engine, when a temperature rise of a catalyst is urged, fuel of a basic fuel injection amount corresponding to a required torque of the engine is supplied by a fuel injection valve. In addition, it is known to divide and inject three times near the compression top dead center of each cylinder. In conjunction with this, it is also known to increase the fuel injection amount.
JP 2000-320386 A

しかしながら、特許文献1に記載の装置においては、分割噴射された燃料の燃焼が継続するように燃料を噴射しているため、最初に噴射された燃料の火炎中に燃料を噴射していくこととなり、2回目以降に噴射された燃料が拡散燃焼主体の燃焼となってしまう。このような燃焼状態で空燃比をリッチ化していくと、スモークの大幅な悪化は避けられない。
本発明は、このような実情を踏まえ、排気温度を上昇させるときなどに、空燃比をリッチ化しても、スモークの悪化を招くことのない燃焼を実現することを目的とする。また、燃焼を切換える際に、トルク変化を生じさせることなく、目標とする空燃比を実現できるようにすることを目的とする。
However, in the apparatus described in Patent Document 1, since the fuel is injected so that the combustion of the separately injected fuel continues, the fuel is injected into the flame of the initially injected fuel. The fuel injected after the second time becomes the combustion mainly of diffusion combustion. If the air-fuel ratio is enriched in such a combustion state, a significant deterioration of smoke is inevitable.
In view of such circumstances, the present invention has an object of realizing combustion that does not cause smoke deterioration even when the air-fuel ratio is enriched, for example, when the exhaust gas temperature is increased. Another object of the present invention is to realize a target air-fuel ratio without causing a torque change when switching combustion.

このため、本発明は、内燃機関の排気通路に備えられた排気浄化装置の状態に基づく所定の条件のときに、主トルクを発生させる主燃焼と、主燃焼に先立ってなされる少なくとも1回の予備燃焼とを行わせ、前記予備燃焼は、少なくとも1つが圧縮上死点近傍で起こるように、また、前記主燃焼は、前記予備燃焼が終了した後に開始するように、機関への燃料噴射を制御する燃焼制御を行う一方、前記燃焼制御をその前に行われていた燃焼から切り替える際は、前記予備燃焼の切り替え後、主燃焼の切り替えを遅延して行う構成とした。   For this reason, the present invention provides a main combustion for generating a main torque under a predetermined condition based on the state of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine, and at least one time performed prior to the main combustion. Pre-combustion is performed, and at least one of the pre-combustion occurs near the compression top dead center, and the main combustion is injected after the pre-combustion is completed. While the combustion control to be controlled is performed, when the combustion control is switched from the combustion performed previously, the switching of the main combustion is delayed after the switching of the preliminary combustion.

かかる構成によると、予備燃焼が終了した後に主燃焼が開始することで、前記主燃焼を予混合燃焼主体の燃焼とすることができ、リッチ化によるスモークの悪化を抑制できる。
また、予備燃焼により筒内温度が高められるので、主燃焼の発生時期をリタードすることができ、これにより排気温度を高くできる。
従って、前記燃焼モードに切り換えることで、排気空燃比のリッチ化及び/又は昇温による排気浄化装置の再生を、スモークを悪化させることなく、実現できる。
According to such a configuration, the main combustion starts after the pre-combustion is completed, whereby the main combustion can be made pre-mixed combustion main combustion, and the deterioration of smoke due to enrichment can be suppressed.
In addition, since the in-cylinder temperature is increased by the preliminary combustion, it is possible to retard the generation timing of the main combustion, thereby increasing the exhaust temperature.
Therefore, by switching to the combustion mode, the exhaust air-fuel ratio can be enriched and / or the exhaust purification device can be regenerated by raising the temperature without deteriorating the smoke.

ここで、上記所定条件が成立して上記燃焼に切り替えるときに、吸気系の変動を伴っても、圧縮上死点近傍で行う予備燃焼については、吸気系変動の影響を受け難いので、直ぐに目標値に切り替えることができるが、圧縮行程後での主燃焼は吸気系変動の影響を受けやすく、直ぐに目標値まで切り替えると着火が不安定となって失火し燃焼不成立となりやすい。   Here, when switching to the combustion when the predetermined condition is satisfied, the preliminary combustion performed in the vicinity of the compression top dead center is hardly affected by the intake system fluctuations even if the intake system fluctuations occur. Although it can be switched to the value, the main combustion after the compression stroke is easily affected by fluctuations in the intake system, and if it is immediately switched to the target value, the ignition becomes unstable and misfires and the combustion is not established.

そこで、まず予備燃焼の切り替えを行って主燃焼を可能とする圧縮端温度を確保した上で、主燃焼の切り替えを遅延して行うことにより、吸気系変動が小さくなってから主燃焼へ切り替えられるので、主燃焼を安定して成立させることができ、スムースな燃焼制御の切り替えを行える。   Therefore, by switching the preliminary combustion first to ensure the compression end temperature that enables the main combustion, the main combustion switching is delayed, so that the intake system fluctuation is reduced and then the main combustion can be switched to. Therefore, the main combustion can be established stably, and the smooth combustion control can be switched.

以下、図面に基づき、本発明の実施形態について説明する。
図1は、車両用内燃機関としてのディーゼルエンジン1の燃焼制御装置を示すシステム構成図である。
エンジン1の吸気通路2の上流に、ターボチャージャ3のコンプレッサ3aが配置され、吸入空気は、前記コンプレッサ3aによって過給された後、インタークーラ4で冷却され、吸気絞り弁5を通過した後、コレクタ6を経て各気筒の燃焼室内へ流入する。燃料は、燃料噴射ポンプ7により高圧化されてコモンレール8に送られ、各気筒の燃料噴射弁9から燃焼室内へ直接噴射される。燃焼室内に流入した空気と噴射された燃料とは、ここで圧縮着火により燃焼し、排気は排気通路10へ流出する。前記燃料噴射ポンプ7,コモンレール8及び燃料噴射弁9によって、コモンレール式燃料噴射装置が構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram showing a combustion control device of a diesel engine 1 as an internal combustion engine for a vehicle.
A compressor 3a of the turbocharger 3 is disposed upstream of the intake passage 2 of the engine 1, and the intake air is supercharged by the compressor 3a, then cooled by the intercooler 4, and after passing through the intake throttle valve 5, It flows into the combustion chamber of each cylinder through the collector 6. The fuel is increased in pressure by the fuel injection pump 7 and sent to the common rail 8 and is directly injected into the combustion chamber from the fuel injection valve 9 of each cylinder. The air that has flowed into the combustion chamber and the injected fuel are combusted by compression ignition, and the exhaust gas flows out into the exhaust passage 10. The fuel injection pump 7, the common rail 8, and the fuel injection valve 9 constitute a common rail fuel injection device.

排気通路10へ流出した排気の一部は、EGRガスとして、EGR通路11によりEGR弁12を介して吸気側へ還流される。排気の残りは、ターボチャージャ3の排気タービン3bを通り、これを駆動する。
ここで、排気通路10の排気タービン下流には、排気浄化のため、排気空燃比がリーンのときに排気中のNOxをトラップし、トラップしたNOxを排気空燃比がリッチのときに脱離浄化することのできるNOxトラップ触媒13を配置してある。また、このNOxトラップ触媒13には、酸化触媒(貴金属)を担持させて、流入する排気成分(HC、CO)を酸化する機能を持たせてある。
Part of the exhaust gas flowing into the exhaust passage 10 is recirculated to the intake side via the EGR valve 12 through the EGR passage 11 as EGR gas. The remainder of the exhaust passes through the exhaust turbine 3b of the turbocharger 3 and drives it.
Here, downstream of the exhaust turbine in the exhaust passage 10, for exhaust purification, NOx in the exhaust is trapped when the exhaust air-fuel ratio is lean, and the trapped NOx is desorbed and purified when the exhaust air-fuel ratio is rich. A possible NOx trap catalyst 13 is arranged. Further, the NOx trap catalyst 13 carries an oxidation catalyst (noble metal) and has a function of oxidizing the exhaust components (HC, CO) flowing in.

更に、このNOxトラップ触媒13の下流には、排気中の粒子状物質であるPM(Particulate Matter)を捕集するディーゼルパティキュレートフィルタ(以下DPFという)14を配置してある。また、このDPF14にも、酸化触媒(貴金属)を担持させて、流入する排気成分(HC、CO)を酸化する機能を持たせてある。尚、NOxトラップ触媒13とDPF14とは、逆に配置してもよいし、DPFにNOxトラップ触媒を担持させて一体に構成してもよい。   Further, a diesel particulate filter (hereinafter referred to as DPF) 14 for collecting PM (Particulate Matter), which is particulate matter in the exhaust gas, is disposed downstream of the NOx trap catalyst 13. The DPF 14 also has a function of supporting an oxidation catalyst (noble metal) and oxidizing exhaust components (HC, CO) flowing in. Note that the NOx trap catalyst 13 and the DPF 14 may be disposed in reverse, or may be configured integrally by supporting the NOx trap catalyst on the DPF.

コントロールユニット20には、エンジン1の制御のため、エンジン回転速度Ne検出用の回転速度センサ21、アクセル開度APO検出用のアクセル開度センサ22、吸入空気量Qac検出用のエアフローメータ23、エンジン冷却水温Tw検出用の水温センサ24から、信号が入力されている。
また、NOxトラップ触媒13の温度(触媒温度)を検出する触媒温度センサ25、排気通路10のDPF14入口側にて排気圧力を検出する排気圧力センサ26、DPF14の温度(DPF温度)を検出するDPF温度センサ27、更に排気通路10のDPF14出口側にて排気空燃比(以下排気λといい、数値としては空気過剰率で表す)を検出する空燃比センサ28が設けられ、これらの信号もコントロールユニット20に入力されている。但し、NOxトラップ触媒13の温度やDPF14の温度はこれらの下流側などに排気温度センサを設けて、排気温度より間接的に検出するようにしてもよい。
The control unit 20 includes a rotational speed sensor 21 for detecting the engine rotational speed Ne, an accelerator opening sensor 22 for detecting the accelerator opening APO, an air flow meter 23 for detecting the intake air amount Qac, and an engine for controlling the engine 1. A signal is input from the water temperature sensor 24 for detecting the cooling water temperature Tw.
Further, a catalyst temperature sensor 25 for detecting the temperature of the NOx trap catalyst 13 (catalyst temperature), an exhaust pressure sensor 26 for detecting the exhaust pressure on the DPF 14 inlet side of the exhaust passage 10, and a DPF for detecting the temperature of the DPF 14 (DPF temperature). A temperature sensor 27 and an air / fuel ratio sensor 28 for detecting an exhaust air / fuel ratio (hereinafter referred to as exhaust λ, which is expressed as an excess air ratio) are provided on the outlet side of the DPF 14 in the exhaust passage 10. 20 is input. However, the temperature of the NOx trap catalyst 13 and the temperature of the DPF 14 may be indirectly detected from the exhaust temperature by providing an exhaust temperature sensor on the downstream side thereof.

コントロールユニット20は、これらの入力信号に基づいて、燃料噴射弁9による燃料噴射の燃料噴射量及び噴射時期制御のための燃料噴射弁9への燃料噴射指令信号、吸気絞り弁5への開度指令信号、EGR弁12への開度指令信号等を出力する。
ここにおいて、コントロールユニット20では、DPF14に捕集されて堆積したPMの燃焼除去によるDPF14の再生、NOxトラップ触媒13にトラップされたNOxの脱離浄化、NOxトラップ触媒13のS(硫黄)被毒解除を含む、排気浄化制御を行うようにしており、かかる排気浄化制御について、以下に詳細に説明する。
Based on these input signals, the control unit 20 controls the fuel injection amount of the fuel injection by the fuel injection valve 9 and the fuel injection command signal to the fuel injection valve 9 for injection timing control, and the opening to the intake throttle valve 5. A command signal, an opening command signal to the EGR valve 12, and the like are output.
Here, in the control unit 20, regeneration of the DPF 14 by combustion removal of the PM collected and deposited in the DPF 14, desorption purification of NOx trapped in the NOx trap catalyst 13, S (sulfur) poisoning of the NOx trap catalyst 13. Exhaust gas purification control including cancellation is performed, and the exhaust gas purification control will be described in detail below.

図2〜図12はコントロールユニット20にて実行される排気浄化制御のフローチャートである。
先ず図2のフローに沿って説明する。
S1では、各種センサ信号を読込み、エンジン回転速度Ne、アクセル開度APO、吸入空気量Qac、触媒温度、DPF入口側排気圧力、DPF温度、DPF出口側排気λを検出する。
2 to 12 are flowcharts of exhaust purification control executed by the control unit 20.
First, a description will be given along the flow of FIG.
In S1, various sensor signals are read, and the engine speed Ne, the accelerator opening APO, the intake air amount Qac, the catalyst temperature, the DPF inlet side exhaust pressure, the DPF temperature, and the DPF outlet side exhaust λ are detected.

S2では、排気系のNOxトラップ触媒の暖機(活性)・冷機(未活性)状態を判定する。触媒温度がその活性温度であるT5以下の場合は、冷機状態(未活性状態)と判定して、後述する図12の暖機促進モードの制御へ移行する。また、暖機状態(暖機完了後の活性状態)と判定した場合は、S3へ進む。なお、NOxトラップ触媒の活性状態を触媒出口のHC,COの少なくとも一方の濃度に基づいて判断する構成としてもよい。すなわち、HC,COの少なくとも一方の濃度がしきい値より大きい場合は、触媒が未活性状態と判断する。また、このHC,COの濃度判定は、前記空燃比センサ28の出力レベルで判定することもできる(リッチ度合いが高いときほどHC,COの濃度が高いと推定する)。   In S2, a warm-up (active) / cool-down (inactive) state of the NOx trap catalyst of the exhaust system is determined. When the catalyst temperature is equal to or lower than the activation temperature T5, it is determined that the engine is in the cold state (inactive state), and the control proceeds to the warm-up promotion mode control in FIG. If it is determined that the warm-up state (the active state after completion of warm-up), the process proceeds to S3. The active state of the NOx trap catalyst may be determined based on the concentration of at least one of HC and CO at the catalyst outlet. That is, when the concentration of at least one of HC and CO is larger than the threshold value, it is determined that the catalyst is in an inactive state. The determination of the HC and CO concentrations can also be performed based on the output level of the air-fuel ratio sensor 28 (it is estimated that the higher the rich degree, the higher the HC and CO concentrations).

S3では、NOxトラップ触媒にトラップされて堆積したNOx堆積量を計算する。例えば特許第2600492号公報第6頁に記載されているNOx吸収量の計算のようにエンジン回転速度の積算値から推測してもよいし、走行距離から推測してもよい。尚、積算値を用いる場合は、NOx脱離浄化が完了した時点(S被毒解除の実施によりNOx脱離浄化が同時になされた時点も含む)で、その積算値をリセットする。   In S3, the NOx deposition amount trapped and deposited on the NOx trap catalyst is calculated. For example, it may be estimated from the integrated value of the engine speed as in the calculation of the NOx absorption amount described in Japanese Patent No. 2600492, page 6, or may be estimated from the travel distance. When the integrated value is used, the integrated value is reset at the time when NOx desorption purification is completed (including the time when NOx desorption purification is simultaneously performed by performing the S poison removal).

S4では、NOxトラップ触媒にS被毒により堆積したS堆積量を計算する。ここでも、上記NOx堆積量の計算と同様に、エンジン回転速度積算値や走行距離から推測すればよい。尚、積算値を用いる場合は、S被毒解除が完了した時点で、その積算値をリセットする。
S5では、DPFに捕集されて堆積しているPM堆積量を次のように計算する。DPFのPM堆積量が増えれば、当然DPF入口側排気圧力が上昇することから、排気圧力センサにより、DPF入口側排気圧力を検出し、現在の運転状態(エンジン回転速度、負荷)での基準排気圧力との比較により、PM堆積量を推定する。尚、前回のDPF再生からのエンジン回転速度積算値や走行距離と、排気圧力とを組み合わせて、PM堆積量を推定するようにしてもよい。
In S4, the S deposition amount deposited on the NOx trap catalyst due to S poisoning is calculated. Here, similarly to the calculation of the NOx accumulation amount, it may be estimated from the engine rotation speed integrated value and the travel distance. When the integrated value is used, the integrated value is reset when the S poisoning release is completed.
In S5, the PM deposition amount collected and deposited in the DPF is calculated as follows. If the amount of accumulated PM in the DPF increases, the exhaust pressure on the DPF inlet side naturally increases, so the exhaust pressure sensor detects the exhaust pressure on the DPF inlet side, and the reference exhaust in the current operating state (engine speed, load). The amount of PM deposition is estimated by comparison with the pressure. Note that the PM accumulation amount may be estimated by combining the engine rotation speed integrated value or travel distance from the previous DPF regeneration and the exhaust pressure.

S6では、DPF再生モード中であることを示すregフラグが立っているか否かを判定する。regフラグ=1の場合は、後述する図3のDPF再生モードの制御へ進む。
S7では、NOxトラップ触媒のS被毒解除モード中であることを示すdesulフラグが立っているか否かを判定する。desulフラグ=1の場合は、後述する図4のS被毒解除モードの制御へ進む。
In S6, it is determined whether or not a reg flag indicating that the DPF regeneration mode is in effect is set. When the reg flag = 1, the process proceeds to the DPF regeneration mode control shown in FIG.
In S7, it is determined whether or not a desul flag indicating that the NO poisoning release mode of the NOx trap catalyst is being set is set. When the desul flag = 1, the process proceeds to the control of the S poison release mode of FIG. 4 described later.

S8では、NOxトラップ触媒のNOx脱離浄化のためのリッチスパイクモード中であることを示すspフラグが立っているか否かを判定する。spフラグ=1の場合は、後述する図5のリッチスパイクモードの制御へ進む。
S9では、DPF再生及びS被毒解除後の溶損防止モード中であることを示すrecフラグが立っているか否かを判定する。recフラグ=1の場合は、後述する図6の溶損防止モードの制御へ進む。
In S8, it is determined whether or not the sp flag indicating that the NOx trap catalyst is in the rich spike mode for NOx desorption purification is set. If the sp flag = 1, the control proceeds to the rich spike mode control of FIG.
In S9, it is determined whether or not a rec flag indicating that the melting prevention mode is in effect after the DPF regeneration and the S-poisoning release is set. When the rec flag = 1, the process proceeds to the control of the flaw prevention mode shown in FIG.

S10では、DPF再生要求が出ていることを示すrq−DPFフラグが立っているか否かを判定する。DPF再生要求が出ていてrq−DPFフラグ=1の場合は、後述する図7のフローへ進み、DPF再生要求が出ている場合の再生の優先順位を決定する。
S11では、S被毒解除要求が出ていることを示すrq−desulフラグが立っているか否かを判定する。S被毒解除要求が出ていてrq−desulフラグ=1の場合は、後述する図8のフローへ進み、S被毒解除要求が出ている場合の再生の優先順位を決定する。
In S10, it is determined whether or not an rq-DPF flag indicating that a DPF regeneration request has been issued is set. When the DPF regeneration request is issued and the rq-DPF flag = 1, the process proceeds to the flow of FIG. 7 described later, and the priority of regeneration when the DPF regeneration request is issued is determined.
In S11, it is determined whether or not an rq-desul flag indicating that an S poison release request has been issued is set. When the S poison removal request is issued and the rq-desul flag = 1, the process proceeds to the flow of FIG. 8 described later, and the priority of regeneration when the S poison removal request is issued is determined.

S12では、S5で計算したDPFのPM堆積量が所定量PM1に達して、DPF再生時期になったか否かを判定する。
PM堆積量>PM1で、DPF再生時期と判定された場合は、図9のフローへ進み、S701でrq−DEFフラグを1にして、DPF再生要求を出す。
S13では、S4で計算したNOxトラップ触媒のS堆積量が所定量S1に達して、S被毒解除時期になったか否かを判定する。
In S12, it is determined whether or not the PM accumulation amount of the DPF calculated in S5 has reached the predetermined amount PM1 and the DPF regeneration time has come.
If it is determined that the PM accumulation amount> PM1 and the DPF regeneration timing is reached, the flow proceeds to the flow of FIG. 9, and the rq-DEF flag is set to 1 in S701 to issue a DPF regeneration request.
In S13, it is determined whether or not the S accumulation amount of the NOx trap catalyst calculated in S4 has reached a predetermined amount S1 and the S poisoning release time has come.

S堆積量>S1で、NOxトラップ触媒のS被毒解除時期と判定された場合は、図10のフローへ進み、S801でrq−desulフラグを1にして、S被毒解除要求を出す。
S14では、S3で計算したNOxトラップ触媒のNOx堆積量が所定量NOx1に達して、NOx脱離浄化時期になったか否かを判定する。
If the S accumulation amount> S1 and it is determined that the NO poisoning release timing of the NOx trap catalyst is reached, the flow proceeds to the flow of FIG. 10, and the rq-desul flag is set to 1 in S801, and an S poison removal request is issued.
In S14, it is determined whether or not the NOx trap amount of the NOx trap catalyst calculated in S3 has reached a predetermined amount NOx1 and the NOx desorption purification time has come.

NOx堆積量>NOx1で、NOxトラップ触媒のNOx脱離浄化時期と判定された場合は、図11のフローへ進み、S901でrq−spフラグを1にして、NOx脱離浄化要求(リッチスパイク要求)を出す。
次に図3のDPF再生モードの制御について説明する。PM堆積量が所定量PM1に達してrq−DPFフラグ=1となり、これを受けて後述する図7のフローによりregフラグ=1となると、図3のフローが開始される。
If NOx accumulation amount> NOx1 and NOx desorption purification time of the NOx trap catalyst is determined, the process proceeds to the flow of FIG. 11 and the rq-sp flag is set to 1 in S901 to request NOx desorption purification (rich spike request). ).
Next, control of the DPF regeneration mode in FIG. 3 will be described. When the PM accumulation amount reaches the predetermined amount PM1, the rq-DPF flag = 1 is set, and when the reg flag = 1 is set by the flow of FIG. 7 described later, the flow of FIG. 3 is started.

S101では、DPFの再生のため、エンジンの燃焼を、通常のリーン燃焼から、本発明に係る分割リタード燃焼に切換える。
ここで、本発明に係る分割リタード燃焼について説明する。尚、本燃焼はDPF再生の他、S被毒解除、NOx脱離浄化(リッチスパイク)、暖機促進にも用いられる。
DPFの再生を行う場合、排気λを1〜1.4 の間で制御し、且つDPFの温度を600℃以上にする必要がある。また、S被毒解除を行う場合、λ≦1、且つ排温≧600℃を実現する必要がある。
In S101, the engine combustion is switched from the normal lean combustion to the split retard combustion according to the present invention for regeneration of the DPF.
Here, the split retard combustion according to the present invention will be described. In addition to DPF regeneration, this combustion is used for S poison release, NOx desorption purification (rich spike), and warm-up promotion.
When the DPF is regenerated, the exhaust λ needs to be controlled between 1 and 1.4 and the temperature of the DPF needs to be 600 ° C. or higher. In addition, when performing S poisoning cancellation, it is necessary to realize λ ≦ 1 and exhaust temperature ≧ 600 ° C.

リーン条件の常用運転領域では、通常、パイロット噴射を行っており、パイロット噴射時期は40〜10°BTDC、パイロット噴射量は1〜3mm3/st、主噴射時期は10〜−5°BTDC程度で、パイロット噴射と主噴射との間隔は10〜30°CA程度の設定である。
通常の運転から、DPF再生やS被毒解除等の低λで且つ高排温を実現するためには、吸気量を絞る必要がある。ところが、吸気量を絞った場合、筒内の圧縮端温度が低下してしまうことから、燃焼が不安定となり、通常のリーン燃焼と同じようなパイロット噴射の設定では、主噴射の噴射時期を進角する必要がある(図13;参考例(1))。このような燃料噴射量と噴射時期の設定では、排温を上げるために噴射時期をリタードさせたくとも、燃焼が不安定になってしまうことから、リタードにも限界があり、低λ、高排温を実現することは難しい。
In the normal operation region under lean conditions, pilot injection is usually performed, the pilot injection timing is 40 to 10 ° BTDC, the pilot injection amount is 1 to 3 mm 3 / st, and the main injection timing is about 10 to −5 ° BTDC. The interval between the pilot injection and the main injection is set to about 10 to 30 ° CA.
In order to achieve low λ and high exhaust temperature, such as DPF regeneration and S-poisoning release, from normal operation, it is necessary to reduce the intake air amount. However, if the intake air amount is reduced, the compression end temperature in the cylinder will decrease, and the combustion will become unstable. With the pilot injection setting similar to normal lean combustion, the injection timing of the main injection will be advanced. It is necessary to make an angle (FIG. 13; Reference Example (1)). With such fuel injection amount and injection timing settings, even if you want to retard the injection timing in order to raise the exhaust temperature, the combustion becomes unstable, so there is a limit to retard, and low λ, high emission It is difficult to achieve temperature.

そこで特許文献1では、主噴射を分割することで噴射時期のリタード限界を広げ、低λ、高排温の実現を図っている(図14;参考例(2))。
しかしながら、前に吹いた燃料の燃焼が活発な状態で次の燃料を噴射しているため、燃焼は図14に示すように連続したものとなる。すなわち、主燃焼のために分割された燃料は、前に噴かれた燃焼の火炎中に噴射されることから、噴射されるや否や燃焼が開始し、拡散燃焼割合が増え、部分的な当量比は非常にリッチとなり、スモークが大幅に悪化してしまう。
Therefore, in Patent Document 1, the main injection is divided to widen the retard limit of the injection timing to achieve low λ and high exhaust temperature (FIG. 14; Reference Example (2)).
However, since the next fuel is injected while the combustion of the fuel blown before is active, the combustion is continuous as shown in FIG. That is, since the fuel divided for main combustion is injected into the flame of the previously injected combustion, combustion starts as soon as it is injected, the diffusion combustion ratio increases, and the partial equivalent ratio Will be very rich and smoke will be significantly worse.

そこで、本発明では、図15に示すように、主トルクを発生させる主燃焼と、主燃焼に先立ってなされる予備燃焼とを行わせ、前記予備燃焼は、圧縮上死点(TDC)近傍で起き、また、前記主燃焼は、前記予備燃焼が終了した後に開始するように、燃料噴射(a、b)を制御する。
すなわち、圧縮行程でまず燃料を噴射し(a)、TDC近傍での筒内温度(圧縮端温度)を高めるための予備燃焼を行う。運転条件に応じて、予備燃焼の熱発生が起こる噴射量は異なるが、少なくとも予備燃焼の熱発生が確認でき、主燃焼のための燃料噴射時の筒内温度が自己着火可能な温度を上回るために必要な量の燃料を噴射する。また、各運転条件において予想される圧縮端温度に応じて予備燃焼のための燃料噴射量、及び時期を変えることで、予備燃焼の安定性を向上できる。
Therefore, in the present invention, as shown in FIG. 15, the main combustion for generating the main torque and the preliminary combustion performed prior to the main combustion are performed, and the preliminary combustion is performed near the compression top dead center (TDC). Wake up and the main combustion controls the fuel injection (a, b) to start after the pre-combustion ends.
That is, fuel is first injected in the compression stroke (a), and preliminary combustion for increasing the in-cylinder temperature (compression end temperature) in the vicinity of TDC is performed. Depending on the operating conditions, the amount of pre-combustion heat generation differs, but at least the pre-combustion heat generation can be confirmed, and the in-cylinder temperature during fuel injection for main combustion exceeds the temperature at which self-ignition is possible. The required amount of fuel is injected. Further, the stability of the preliminary combustion can be improved by changing the fuel injection amount and the timing for the preliminary combustion according to the compression end temperature expected in each operation condition.

続いて、予備燃焼が終了してから、主燃焼が開始するように、主燃焼のための燃料をTDC以降に噴射する(b)。
つまり、予備燃焼によって筒内温度を高めることで、主燃焼のリタード限界を広げて、目標温度への制御性を向上させる一方、予備燃焼が確実に終了した後に主燃焼の燃料を噴射することで、主燃焼のための着火遅れ期間を確保し、主燃焼の予混合燃焼割合を高くして、スモークの排出を抑制する。
Subsequently, after the preliminary combustion is completed, fuel for main combustion is injected after TDC so that main combustion starts (b).
In other words, by increasing the in-cylinder temperature by pre-combustion, the retard limit of main combustion is expanded and the controllability to the target temperature is improved, while the fuel of main combustion is injected after the pre-combustion is finished reliably. The ignition delay period for main combustion is secured, the premixed combustion ratio of main combustion is increased, and smoke emission is suppressed.

予備燃焼の開始時期から主燃焼の開始時期までの間隔は、エンジン回転速度にもよるが、少なくとも20°CA以上は離れていないと、予備燃焼(予備燃焼による熱発生)が完全には終了しない。このような間隔の設定により、主燃焼の悪化を抑制して、スモークの悪化を防ぐことができる。また、膨張行程で主燃焼が開始することから、燃焼速度は非常に遅く、主燃焼の燃焼終了は50°ATDC以降となる。主燃焼の終了時期をできるだけ遅くすることで、主燃焼が緩慢になり、燃焼騒音の悪化を抑制できる。   Although the interval from the start timing of the pre-combustion to the start timing of the main combustion depends on the engine rotation speed, the pre-combustion (heat generation by the pre-combustion) is not completely completed unless it is separated by at least 20 ° CA or more. . By setting such an interval, deterioration of main combustion can be suppressed, and deterioration of smoke can be prevented. In addition, since the main combustion starts in the expansion stroke, the combustion speed is very slow, and the main combustion ends after 50 ° ATDC. By making the end timing of the main combustion as late as possible, the main combustion becomes slow and the deterioration of the combustion noise can be suppressed.

本発明に係る分割リタード燃焼を実現すれば、図16の(3)に示すように、参考例(1)、(2)と比較して、リッチ条件を実現した際にも、高排温で、且つ低スモークな燃焼が実現できている。更に、HCについても非常に低い値を示している。
また、予備燃焼によって主燃焼のリタード限界が広がることから、主噴射の噴射時期をリタードしても低λ条件での燃焼は安定し、高い排気温度の実現が可能となった。
If the split retard combustion according to the present invention is realized, as shown in (3) of FIG. 16, compared with the reference examples (1) and (2), even when the rich condition is realized, the exhaust gas temperature is high. In addition, low smoke combustion can be realized. Further, HC also shows a very low value.
In addition, since the retard limit of main combustion is widened by pre-combustion, combustion under a low λ condition is stable even when the injection timing of main injection is retarded, and a high exhaust temperature can be realized.

図17を参照し、主燃焼の時期がリタードすれば、主燃焼の予混合割合が増えるため、λが小さい条件であってもリタードすればするだけ、スモークが抑制されている。また、主燃焼の時期がリタードすれば、より高い排気温度を実現でき、主燃焼のための燃料噴射時期を変えることで、排気温度を制御できる。
図18は、エンジン運転条件(エンジン回転速度Ne、負荷Q)をパラメータとして、予備燃焼のための目標燃料噴射時期を示している。
Referring to FIG. 17, if the timing of main combustion is retarded, the premixing ratio of main combustion is increased, so that smoke is suppressed only by retarding even when λ is small. Further, if the timing of the main combustion is retarded, a higher exhaust temperature can be realized, and the exhaust temperature can be controlled by changing the fuel injection timing for the main combustion.
FIG. 18 shows the target fuel injection timing for the preliminary combustion using the engine operating conditions (engine rotational speed Ne, load Q) as parameters.

図19は、エンジン運転条件(エンジン回転速度Ne、負荷Q)をパラメータとして、予備燃焼のための目標燃料噴射量を示している。
図20は、エンジン運転条件(エンジン回転速度Ne、負荷Q)をパラメータとして、ある目標排気温度を実現するための、主燃焼のための目標燃料噴射時期(主噴射時期)を示している。
FIG. 19 shows the target fuel injection amount for the preliminary combustion using the engine operating conditions (engine rotational speed Ne, load Q) as parameters.
FIG. 20 shows a target fuel injection timing (main injection timing) for main combustion for realizing a certain target exhaust temperature using engine operating conditions (engine rotation speed Ne, load Q) as parameters.

尚、負荷が低い状態では、目標排温を達成するための主燃焼の燃焼時期が非常にリタードするため、予備燃焼が一度だけでは主燃焼の噴射時期の筒内温度を高く維持できない場合もある。その場合は図21に示すように予備燃焼を複数回行い、それぞれの熱発生が重ならないようにすることで、低負荷条件であっても低スモークと高排温の両立を図ることができる。   Note that when the load is low, the combustion timing of the main combustion for achieving the target exhaust temperature is very retarded, so that the in-cylinder temperature at the injection timing of the main combustion may not be maintained high only once in the preliminary combustion. . In that case, as shown in FIG. 21, preliminary combustion is performed a plurality of times so that the respective heat generations do not overlap, so that both low smoke and high exhaust temperature can be achieved even under low load conditions.

以上から、DPF再生やS被毒解除などで、低λ、高排温が要求される場合は、本発明に係る分割リタード燃焼への切換えを行う。
具体的には、図22のフローチャートに示すように行われる。図22(A)に示す実施例において、S1101では、予備燃焼のための燃料噴射時期(図18)に、予備燃焼のための燃料噴射量(図19)で、燃料噴射を行う。
From the above, when low λ and high exhaust temperature are required for DPF regeneration, S poison removal, etc., switching to split retard combustion according to the present invention is performed.
Specifically, this is performed as shown in the flowchart of FIG. In the embodiment shown in FIG. 22A, in S1101, fuel injection is performed at the fuel injection timing for preliminary combustion (FIG. 18) at the fuel injection amount for preliminary combustion (FIG. 19).

S1102では、主燃焼のための燃料噴射を、燃料噴射時期をリタードさせて行うが、前記予備燃焼の燃料噴射時期は一気に切り替えるのに対し、主燃焼の燃料噴射時期は遅れを持たせて切り替えられ、具体的には、図20に示される目標主噴射時期まで数サイクルで徐々に切り替える。また、主噴射の燃料噴射量は、燃料噴射時期をリタードするほど発生トルクが減少するのでトルクを維持するようにリタード分に合わせて徐々に増量補正する。   In S1102, the fuel injection for main combustion is performed by retarding the fuel injection timing. However, the fuel injection timing for the preliminary combustion is switched at once, whereas the fuel injection timing for the main combustion is switched with a delay. Specifically, the switching is gradually performed in several cycles until the target main injection timing shown in FIG. The fuel injection amount of the main injection is gradually increased and corrected in accordance with the retard amount so as to maintain the torque because the generated torque decreases as the fuel injection timing is retarded.

すなわち、DPFやNOxトラップ触媒の再生等を目的として、通常燃焼から本発明に係る分割リタード燃焼に切り替えるときは、目標λの変更などにより新気量やEGR量も同時に変更するので吸気系の変動を伴う。既述したように、圧縮上死点近傍で行う予備燃焼については、吸気系変動の影響を受け難いので、直ぐに目標値に切り替えることができるが、圧縮行程後での主燃焼は吸気系変動の影響を受けやすく、直ぐに目標値まで切り替えると着火が不安定となって失火しやすい。   That is, when switching from normal combustion to split retard combustion according to the present invention for the purpose of regeneration of DPF or NOx trap catalyst, the amount of fresh air and EGR are also changed simultaneously by changing the target λ, etc. Accompanied by. As described above, the preliminary combustion performed near the compression top dead center is not easily affected by the intake system fluctuation, so it can be immediately switched to the target value, but the main combustion after the compression stroke is the intake system fluctuation. It is easily affected, and if it is immediately switched to the target value, ignition becomes unstable and misfire is likely to occur.

より詳細に説明すると、燃焼切り替えに伴う目標λの変更に応じて、スロットル操作を行ったときの新気量の変化とEGRガスの挙動が主燃焼に影響を与える。すなわち、スロットル開度が目標に直ちに追従して絞られるのに対し、スロットル前後差圧が該目標スロットル開度に応じた差圧に発達するのに遅れを生じるので、新気量が過度に減少してしまうことがあり、その場合、圧縮端温度が過度に低下し、最悪の場合は主燃焼が失火する。同様にEGR弁前後差圧が過渡時は安定しないため、EGRが過度に増大する場合があり、この場合は、着火遅れが増大し、最悪の場合は主燃焼が失火する。さらに、これら新気量とEGRの悪影響が重なって主燃焼の失火傾向が増大する場合も考えられる。   More specifically, the change in the fresh air amount and the behavior of the EGR gas when the throttle operation is performed according to the change in the target λ accompanying the combustion switching affects the main combustion. In other words, while the throttle opening is throttled immediately following the target, a delay occurs in the development of the differential pressure across the throttle to a differential pressure corresponding to the target throttle opening. In this case, the compression end temperature is excessively lowered, and in the worst case, the main combustion is misfired. Similarly, since the differential pressure across the EGR valve is not stable during the transition, the EGR may increase excessively. In this case, the ignition delay increases, and in the worst case, the main combustion is misfired. Furthermore, there may be a case where the misfire tendency of the main combustion increases due to the adverse effects of the fresh air amount and EGR.

そこで、上記のように、まず予備燃焼の切り替えを行って主燃焼を可能とする圧縮端温度を確保した上で、主燃焼の切り替えは徐々に行うことにより、吸気系変動が小さくなってから主燃焼へ切り替えられるようにする。
これにより、主燃焼を安定して成立させることができ、スムースな燃焼制御の切り替えを行える。
Therefore, as described above, first, the pre-combustion is switched to ensure the compression end temperature at which the main combustion is possible, and then the main combustion is gradually switched, so that the main system is changed after the intake system fluctuation becomes small. Be able to switch to combustion.
Thereby, main combustion can be established stably and smooth combustion control can be switched.

前記主燃焼の切り替え速度は、吸気系の遅れ要素(コレクタ容量:2〜3サイクル分)実λ(新気量,EGRの変動)に応じて、設定すればよく、例えば、1サイクル毎に目標主噴射時期までのリタード分を1/3ずつリタードさせて3サイクルで切り替え完了するような設定とする。
また、別の実施例を図22(B)に示す。
The main combustion switching speed may be set according to the delay element of the intake system (collector capacity: 2 to 3 cycles) actual λ (new air amount, fluctuation of EGR). The setting is made such that the retarded amount until the main injection timing is retarded by 1/3 and the switching is completed in 3 cycles.
Another embodiment is shown in FIG.

S1111では、燃焼切り替え後の目標λに応じて吸気系(新気量やEGR量)の過渡変動が収束するまでの遅延時間を設定する(マップ等を設定して検索すればよい)。
S1112では、上記S1101と同様に、予備燃焼を制御する。
S1113では、吸気系の操作による新気量及びEGRガスの過渡変動が収束するまでの時間経過を待つ。この待機時間は、予め実験的に求めておいた収束時間以上に設定すればよい。
In S1111, a delay time until the transient fluctuation of the intake system (new air amount or EGR amount) converges is set in accordance with the target λ after the combustion switching (searching may be performed by setting a map or the like).
In S1112, pre-combustion is controlled as in S1101.
In S1113, the process waits for the time until the new air amount and the EGR gas transient fluctuations due to the operation of the intake system converge. This waiting time may be set to be equal to or longer than the convergence time obtained experimentally in advance.

上記収束時間の経過を待ってS1114では、主燃焼の制御を行う。
このようにしても、新気量及びEGRガスの過渡変動が収束してスロットル弁及びEGR弁の前後差圧が安定してから主燃焼を切り替えるので、主燃焼を安定して成立させることができ、スムースな燃焼制御の切り替えを行える。
図3に戻って、S101でDPF再生のためにエンジンの燃焼を通常のリーン燃焼から本発明に係る分割リタード燃焼に切換えた後は、S102へ進む。
In step S1114, the main combustion is controlled after the convergence time has elapsed.
Even in this case, the main combustion is switched after the transient fluctuations of the fresh air amount and the EGR gas are converged and the differential pressure across the throttle valve and the EGR valve is stabilized, so that the main combustion can be established stably. Smooth combustion control can be switched.
Returning to FIG. 3, after switching the engine combustion from the normal lean combustion to the split retard combustion according to the present invention for DPF regeneration in S101, the process proceeds to S102.

S102では、排気λを目標値に制御する。DPFの再生では排気λの目標値はPM堆積量によって異なる。従って、DPF入口側排気圧力を検出し、現在の運転状態(エンジン回転速度、負荷)での基準排気圧力との比較により、PM堆積量を推定し、図23に示すPM堆積量に対応した目標λを設定して、制御する。
ここでは、S101において上記分割リタード燃焼への切換えを行った後、吸気絞り弁6及び/又はEGR弁19による新気量の調整によって前記目標空燃比に制御する。具体的には、目標吸入空気量とするため、目標λに図24に示すマップの値を乗じた目標吸入空気量(λ=1の運転のための目標吸入空気量)となるように吸気絞り弁6により制御した後、空燃比が目標値から乖離した場合は、吸気絞り弁6及び/又はEGR弁19によって目標λに調整する。
In S102, the exhaust λ is controlled to a target value. In the regeneration of the DPF, the target value of the exhaust λ varies depending on the PM accumulation amount. Accordingly, the DPF inlet side exhaust pressure is detected, and the PM accumulation amount is estimated by comparison with the reference exhaust pressure in the current operation state (engine speed, load), and the target corresponding to the PM accumulation amount shown in FIG. λ is set and controlled.
Here, after switching to the split retard combustion in S101, the target air-fuel ratio is controlled by adjusting the amount of fresh air by the intake throttle valve 6 and / or the EGR valve 19. Specifically, in order to obtain the target intake air amount, the intake throttle is set so that the target intake air amount is obtained by multiplying the target λ by the value of the map shown in FIG. 24 (target intake air amount for the operation of λ = 1). If the air-fuel ratio deviates from the target value after being controlled by the valve 6, the intake throttle valve 6 and / or the EGR valve 19 adjusts the target λ.

ただし、上記分割リタード燃焼に切り換える際は、燃料噴射時期が大幅にリタードすることから、上記吸気量の制御に加え、切換時のトルク変動を抑制するため図25に示す目標噴射時期(主噴射時期)に従ったトルク補正係数K1で前記図24の目標吸入空気量及び燃料噴射量を補正する。
更に、目標空燃比が理論空燃比もしくはそれに近い値まで小さくなった場合は、吸気絞りによるポンピングロスが生じるため、図26に示すように目標λに応じたトルク補正係数K2で目標吸入空気量及び主燃焼のための燃料噴射量を補正する。
However, when switching to the above-described split retard combustion, the fuel injection timing is significantly retarded. Therefore, in addition to the control of the intake air amount, the target injection timing (main injection timing) shown in FIG. 24), the target intake air amount and the fuel injection amount in FIG. 24 are corrected.
Further, when the target air-fuel ratio decreases to the stoichiometric air-fuel ratio or a value close thereto, a pumping loss due to the intake throttle occurs, so that the target intake air amount and the torque correction coefficient K2 corresponding to the target λ as shown in FIG. The fuel injection amount for main combustion is corrected.

S103では、DPF温度が再生中の目標上限値T22を超えたか否かを判定する。
DPF温度>T22の場合は、再生中に上限値を超えたため、S111へ進んで、主燃焼の燃料噴射時期を進角して、排気温度を低下させ、次いでS112で、燃料噴射時期の進角によるトルク増加を抑制するためのトルク補正(主燃焼用噴射量の減量補正)を行う。
In S103, it is determined whether or not the DPF temperature has exceeded the target upper limit value T22 being regenerated.
If the DPF temperature is greater than T22, the upper limit value has been exceeded during regeneration, so the routine proceeds to S111 to advance the fuel injection timing of main combustion to lower the exhaust temperature, and then at S112, advance the fuel injection timing. Torque correction (decrease correction of the main combustion injection amount) is performed to suppress the torque increase due to.

DPF温度≦T22の場合は、S104へ進んで、DPF温度が再生中の目標下限値T21を下回ったか否かを判定する。
DPF温度<T21の場合は、再生中に下限値を下回ったため、S109へ進んで、主燃焼の燃料噴射時期を遅角して、排気温度を上昇させ、次いでS110で、燃料噴射時期の遅角によるトルク落ちを補償するためのトルク補正(主燃焼用噴射量の増量補正)を行う。
When DPF temperature ≦ T22, the routine proceeds to S104, where it is determined whether or not the DPF temperature has fallen below the target lower limit value T21 being regenerated.
If the DPF temperature is less than T21, the lower limit value has been fallen during regeneration. Therefore, the process proceeds to S109, the main fuel injection timing is retarded to increase the exhaust temperature, and then the fuel injection timing is retarded in S110. Torque correction (increase correction of the main combustion injection amount) is performed to compensate for the torque drop due to.

S105では、DPFの再生開始から所定時間tdpfreg経過したかを否かを判定する。所定時間経過すれば、DPFに堆積したPMは確実に燃焼除去されるので、S106へ進む。
S106では、DPFの再生が完了したので、本発明に係る分割リタード燃焼から通常の燃焼に切換えて、DPFの加熱を停止する。
In S105, it is determined whether or not a predetermined time tdpfreg has elapsed from the start of DPF regeneration. If the predetermined time has elapsed, the PM deposited on the DPF is surely burned and removed, and the process proceeds to S106.
In S106, since the regeneration of the DPF is completed, the divided retard combustion according to the present invention is switched to the normal combustion, and the heating of the DPF is stopped.

S107では、DPFの再生が完了したので、regフラグを0にする
S108では、DPFの再生は完了したものの、DPFにPMの燃え残りがあった場合に排気λを急に大きくすると、DPFでPMが一気に燃えてしまい溶損する恐れがあることから、溶損防止モードに入るために、recフラグを1にする。
次に図4のS被毒解除モードの制御について説明する。NOxトラップ触媒のS堆積量が所定値S1に達してrq−desulフラグ=1となり、これを受けて後述する図8のフローによりdesulフラグ=1となると、図4のフローが開始される。
In S107, since regeneration of the DPF is completed, the reg flag is set to 0. In S108, regeneration of the DPF is completed, but when there is PM unburned in the DPF, if the exhaust λ is suddenly increased, PM in the DPF Since there is a risk of burning at once and there is a risk of melting, the rec flag is set to 1 to enter the melting prevention mode.
Next, the control in the S poisoning release mode of FIG. 4 will be described. When the S accumulation amount of the NOx trap catalyst reaches the predetermined value S1 and becomes rq-desul flag = 1, and when the desul flag is set to 1 in the flow of FIG. 8 described later, the flow of FIG. 4 is started.

S201では、NOxトラップ触媒のS被毒解除のため、エンジンの燃焼を、通常のリーン燃焼から、本発明に係る分割リタード燃焼に切換える。
S202では、排気λをストイキに制御する。すなわち、目標λをストイキに設定して、制御する。
S203では、触媒温度が所定値T4より高くなっているか否かを判定する。例えばBa系のNOxトラップ触媒の場合は、リッチ〜ストイキ雰囲気で600℃以上にする必要があることから、T4は600℃以上に設定される。
In S201, the engine combustion is switched from normal lean combustion to split retard combustion according to the present invention in order to release S poisoning of the NOx trap catalyst.
In S202, the exhaust λ is controlled to stoichiometric. That is, control is performed by setting the target λ to stoichiometric.
In S203, it is determined whether or not the catalyst temperature is higher than a predetermined value T4. For example, in the case of a Ba-based NOx trap catalyst, T4 is set to 600 ° C. or higher because it is necessary to set it to 600 ° C. or higher in a rich to stoichiometric atmosphere.

触媒温度が所定値T4より低い場合は、S210へ進んで、主燃焼の燃料噴射時期を遅角して、排気温度を上昇させる。
S204では、S被毒解除モードで所定時間tdesul 経過したか否かを判定する。所定時間経過すれば、S被毒が解除されるので、S205へ進む。
S205では、S被毒解除が完了したので、本発明に係る分割リタード燃焼から通常の燃焼に切換えて、NOxトラップ触媒の加熱を停止する。もちろん同時に、ストイキ運転を解除する
S206では、S被毒解除が完了したので、desulフラグを0にする。
If the catalyst temperature is lower than the predetermined value T4, the process proceeds to S210, the fuel injection timing of main combustion is retarded, and the exhaust temperature is raised.
In S204, it is determined whether or not a predetermined time tdesul has elapsed in the S poisoning release mode. If the predetermined time has elapsed, S poisoning is released, and the process proceeds to S205.
In S205, since the S poison release has been completed, the split retard combustion according to the present invention is switched to the normal combustion, and the heating of the NOx trap catalyst is stopped. Of course, at the same time, the stoichiometric operation is canceled. In S206, since the S poisoning cancellation is completed, the desul flag is set to 0.

S207では、S被毒解除は完了したものの、このような高温の条件下でDPFにPMが堆積している場合に排気λを急に大きくすると、DPFでPMが一気に燃えてしまい溶損する恐れがあることから、溶損防止モードに入るために、recフラグを1にする。
S208では、rq−spフラグを0にする。S被毒解除を行うと、NOxトラップ触媒が長時間ストイキにさらされることで、NOx脱離浄化が同時に行われるので、NOx脱離浄化要求(リッチスパイク要求)が出ていた場合に、これを取下げるためである。
In S207, S poison release is completed, but if PM is accumulated in the DPF under such a high temperature condition, if the exhaust λ is suddenly increased, the DPF may burn at once and melt down. For this reason, the rec flag is set to 1 to enter the melt prevention mode.
In S208, the rq-sp flag is set to 0. When the S poisoning release is performed, the NOx trap catalyst is exposed to stoichiometry for a long time, so that NOx desorption purification is performed at the same time. This is to withdraw.

次に図5のリッチスパイクモード(NOx脱離浄化モード)の制御について説明する。NOxトラップ触媒のNOx堆積量が所定値NOx1に達してrq−spフラグ=1となり、これを受けて後述する図7又は図8のフローによりspフラグ=1となると、図5のフローが開始される。
S301では、NOxトラップ触媒のNOx脱離浄化のため、エンジンの燃焼を、通常のリーン燃焼から、本発明に係る分割リタード燃焼に切換える。
Next, the control in the rich spike mode (NOx desorption purification mode) in FIG. 5 will be described. When the NOx accumulation amount of the NOx trap catalyst reaches the predetermined value NOx1 and becomes rq-sp flag = 1, and when the sp flag is set to 1 by the flow of FIG. 7 or FIG. 8 described later, the flow of FIG. 5 is started. The
In S301, the engine combustion is switched from normal lean combustion to split retard combustion according to the present invention for NOx desorption purification of the NOx trap catalyst.

S302では、排気λをリッチに制御する。排気λの制御は、図27に示すリッチスパイク運転での目標吸入空気量となるように吸気絞り弁6により制御した後、前記同様に、吸気絞り弁6やEGR弁19による新気量の調整で行われる。
S303では、リッチスパイクモードにて所定時間tspike 経過したか否かを判定し、経過した場合は、NOx脱離浄化完了と見なして、S304へ進む。
In S302, the exhaust λ is controlled to be rich. The exhaust λ is controlled by the intake throttle valve 6 so as to be the target intake air amount in the rich spike operation shown in FIG. 27, and then the fresh air amount is adjusted by the intake throttle valve 6 and the EGR valve 19 as described above. Done in
In S303, it is determined whether or not a predetermined time tspike has elapsed in the rich spike mode. If it has elapsed, it is considered that NOx desorption purification has been completed, and the process proceeds to S304.

S304では、NOx脱離浄化が完了したので、本発明に係る分割リタード燃焼から通常の燃焼に切換える。もちろん同時に、リッチ運転を解除する
S305では、NOx脱離浄化が完了したので、spフラグを0にする。
次に図6の溶損防止モードの制御について説明する。DPF再生又はS被毒解除が終了し、図3又は図4のフローによりrecフラグ=1となると、図6のフローが開始される。
In S304, since NOx desorption purification is completed, the split retard combustion according to the present invention is switched to normal combustion. Of course, at the same time, the rich operation is canceled. In S305, since NOx desorption purification is completed, the sp flag is set to zero.
Next, the control of the melt damage prevention mode of FIG. 6 will be described. When DPF regeneration or S-poisoning release is completed and the rec flag is set to 1 in the flow of FIG. 3 or FIG. 4, the flow of FIG. 6 is started.

S401では、DPF再生直後などは未だ高温状態にあり、排気λを急激にリーン化すると、DPF内の燃え残ったPMが一気に燃焼して溶損する恐れがあるため、排気λを目標値、例えばλ≦1.4 に制御する。尚、溶損防止モードでは、排気温度は低いことが望ましいので、本発明に係る分割リタード燃焼ではなく、通常燃焼で排気λを目標値に制御する。   In S401, immediately after the DPF regeneration or the like, it is still in a high temperature state, and if the exhaust λ is suddenly leaned, the unburned PM in the DPF may burn at once and melt, so the exhaust λ is set to a target value, for example, λ Control to ≦ 1.4. In the melt prevention mode, it is desirable that the exhaust gas temperature is low. Therefore, the exhaust λ is controlled to the target value by the normal combustion instead of the divided retard combustion according to the present invention.

S402では、DPF温度がPMの急激な酸化が開始する恐れのない所定温度T3(例えば500℃)より低くなったか否かを判定する。T3より高い場合は、排気λ制御を続行する。T3より低くなれば、酸素濃度が大気並になってもDPFの溶損は回避可能となるので、S403へ進む。
S403では、DPFの溶損の恐れがないことから、排気λ制御を止める。
In S402, it is determined whether or not the DPF temperature has become lower than a predetermined temperature T3 (for example, 500 ° C.) at which there is no risk of rapid oxidation of PM. If it is higher than T3, the exhaust λ control is continued. If it is lower than T3, the DPF can be prevented from being melted even when the oxygen concentration is the same as the atmosphere, so the process proceeds to S403.
In S403, the exhaust λ control is stopped because there is no fear of melting of the DPF.

S404では、溶損防止モードが終了したので、recフラグを0にする。
次に図7の再生優先順位決定フロー(1)について説明する。DPF再生要求(rq−DPFフラグ=1)が出されると、図6のフローが開始される。尚、本フローは、DPF再生要求と、S被毒解除要求又はNOx脱離浄化要求とが、同時におきたときの優先順位についての規定するものである。
In S404, since the melting prevention mode has ended, the rec flag is set to zero.
Next, the reproduction priority order determination flow (1) in FIG. 7 will be described. When a DPF regeneration request (rq-DPF flag = 1) is issued, the flow of FIG. 6 is started. In addition, this flow prescribes | regulates the priority when a DPF regeneration request | requirement, a S poison removal cancellation request | requirement, or a NOx desorption purification request | requirement occur simultaneously.

S501では、DPF再生要求が出た後に、S堆積量が所定値S1に達してS被毒解除時期になっているか否かを、S13と同様の手法で、判定する。
S堆積量>S1の場合は、図10のフローのS801へ進んで、rq−desulフラグ=1とし、S被毒解除要求を出す。この場合、後述する図8のフローにより優先順位が決定される。
In S501, after the DPF regeneration request is issued, it is determined by the same method as S13 whether or not the S accumulation amount reaches the predetermined value S1 and the S poisoning release timing is reached.
When the S accumulation amount> S1, the process proceeds to S801 in the flow of FIG. 10, the rq-desul flag = 1 is set, and an S poisoning release request is issued. In this case, the priority order is determined by the flow of FIG. 8 described later.

S堆積量<S1の場合は、S502へ進む。
S502では、rq−spフラグ=1、すなわちNOx脱離浄化要求(リッチスパイク要求)が出ているか否かを判定し、出ていない場合は、S503へ進む。
S503では、DPF再生要求が出された後に、NOx堆積量が所定値NOx1に達してNOx脱離浄化時期になっているか否かを、S14と同様の手法で、判定する。
If S accumulation amount <S1, the process proceeds to S502.
In S502, it is determined whether rq-sp flag = 1, that is, whether a NOx desorption purification request (rich spike request) has been issued. If not, the process proceeds to S503.
In S503, after the DPF regeneration request is issued, it is determined by the same method as in S14 whether or not the NOx accumulation amount reaches the predetermined value NOx1 and the NOx desorption purification time is reached.

NOx堆積量>NOx1の場合は、図11のフローのS901へ進んで、rq−spフラグ=1とし、NOx脱離浄化要求(リッチスパイク要求)を出す。
S503での判定で、NOx堆積量<NOx1の場合は、DPF再生要求のみが出ている場合であり、この場合は、S504へ進む。
S504では、図28に示すDPF再生及びS被毒解除の可能領域(低回転・低負荷以外の領域;昇温代が比較的少なく、排気性能の悪化代が許容値を超えない領域)であるか否かを判定する。再生可能領域の場合は、S505へ進み、regフラグ=1として、DPFの再生に移行する。
If NOx accumulation amount> NOx1, the process proceeds to S901 in the flow of FIG. 11, and the rq-sp flag = 1 is set, and a NOx desorption purification request (rich spike request) is issued.
In the determination in S503, if NOx accumulation amount <NOx1, only the DPF regeneration request is issued. In this case, the process proceeds to S504.
In S504, the DPF regeneration and S poisoning release possible region shown in FIG. 28 (region other than low rotation / low load; a region where the temperature increase is relatively small and the exhaust performance deterioration does not exceed the allowable value). It is determined whether or not. In the case of the reproducible area, the process proceeds to S505, where the reg flag = 1 is set and the process proceeds to DPF regeneration.

S502での判定で、rq−spフラグ=1の場合は、DPF再生要求とNOx脱離浄化要求とが同時に出ている場合であり、この場合は、S506へ進む。
S506では、エンジンの運転条件がNOx排出量の少ない条件(例えば定常条件)であるか否かを判定する。NOx排出量が少ない条件であれば、NOxトラップ触媒の再生を多少遅らせても、テールパイプでの排気の悪化は殆ど無いため、運転性に影響を大きく及ぼすDPFの再生を優先させるのが望ましい。従って、この場合はS507へ進む。
In the determination at S502, when the rq-sp flag = 1, the DPF regeneration request and the NOx desorption purification request are issued simultaneously. In this case, the process proceeds to S506.
In step S506, it is determined whether or not the engine operating condition is a condition (for example, a steady condition) with a small NOx emission amount. If the amount of NOx emission is small, even if the regeneration of the NOx trap catalyst is somewhat delayed, there is almost no deterioration of the exhaust in the tailpipe. Therefore, it is desirable to prioritize the regeneration of the DPF that greatly affects the operability. Accordingly, in this case, the process proceeds to S507.

NOx排出量が多い条件(例えば加速条件等)ではテールパイプでの排気悪化を防止するためにNOxトラップ触媒の再生を優先させるのが望ましい。従って、この場合はS508へ進み、spフラグ=1として、NOx脱離浄化(リッチスパイク)に移行する。
S507では、DPF温度がDPFに担持させた酸化触媒が活性化する温度T6より高いか否かを判定する。昇温を開始するにあたり、DPFに担持させた酸化触媒が活性化する温度T6よりも低い場合は、昇温開始しても、再生可能温度に到達するまで時間がかかり、昇温中にテールパイプでのNOxの悪化も懸念されるため、NOxトラップ触媒の再生を優先させるのが望ましい。従って、この場合もS508へ進み、spフラグ=1として、NOx脱離浄化(リッチスパイク)に移行する。
It is desirable to prioritize regeneration of the NOx trap catalyst in order to prevent exhaust deterioration in the tail pipe under conditions where the amount of NOx emission is large (for example, acceleration conditions). Therefore, in this case, the process proceeds to S508, where the sp flag = 1 is set, and the process proceeds to NOx desorption purification (rich spike).
In S507, it is determined whether or not the DPF temperature is higher than a temperature T6 at which the oxidation catalyst supported on the DPF is activated. When starting the temperature rise, if the oxidation catalyst supported on the DPF is lower than the activation temperature T6, it takes time to reach a reproducible temperature even if the temperature rise is started. Therefore, it is desirable to give priority to regeneration of the NOx trap catalyst. Accordingly, also in this case, the process proceeds to S508, where the sp flag = 1 is set, and the process proceeds to NOx desorption purification (rich spike).

S507での判定で、DPF温度>T6の場合は、DPFの再生を優先させるため、前述のS504、505へ進む。
次に図8の再生優先順位決定フロー(2)について説明する。S被毒解除要求(rq−desulフラグ=1)が出されると、図8のフローが開始される。尚、本フローは、S被毒解除要求とNOx脱離浄化要求とが同時におきたときの優先順位について規定するものである。
If it is determined in S507 that DPF temperature> T6, the process proceeds to S504 and 505 described above in order to prioritize the regeneration of the DPF.
Next, the reproduction priority order determination flow (2) in FIG. 8 will be described. When an S poisoning release request (rq-desul flag = 1) is issued, the flow of FIG. 8 is started. In addition, this flow prescribes | regulates the priority when an S poisoning cancellation | release request | requirement and a NOx desorption purification request | requirement occur simultaneously.

S601では、S被毒解除要求が出た後に、PM堆積量が所定値PM1に達してDPF再生時期になっているか否かを、S12と同様の手法で、判定する。
PM堆積量>PM1の場合は、図9のフローのS701へ進んで、rq−DPFフラグ=1とし、DPF再生要求を出す。この場合、前述の図7のフローにより優先順位が決定される。
In S601, after the S poisoning release request is issued, it is determined by the same method as in S12 whether or not the PM accumulation amount reaches the predetermined value PM1 and the DPF regeneration time is reached.
When PM accumulation amount> PM1, the process proceeds to S701 in the flow of FIG. 9, and the rq-DPF flag = 1 is set, and a DPF regeneration request is issued. In this case, the priority order is determined by the flow of FIG.

PM堆積量<PM1の場合は、S602へ進む。
S602では、触媒温度が所定温度T1より高いか否かを判定し、高い場合には、S603へ進む。
S603では、図24に示すDPF再生及びS被毒解除の可能領域(低回転・低負荷以外の領域;昇温代が比較的少なく、排気性能の悪化代が許容値を超えない領域)であるか否かを判定する。S被毒解除可能領域の場合は、S604へ進み、desulフラグ=1として、S被毒解除に移行する。
If PM deposition amount <PM1, the process proceeds to S602.
In S602, it is determined whether or not the catalyst temperature is higher than a predetermined temperature T1, and if it is higher, the process proceeds to S603.
In S603, the DPF regeneration and S-poisoning release possible region shown in FIG. 24 (region other than low rotation / low load; a region where the temperature increase is relatively small and the exhaust performance deterioration does not exceed the allowable value). It is determined whether or not. In the case of the S poisoning releasable area, the process proceeds to S604, the desul flag = 1 is set, and the process proceeds to S poisoning cancellation.

S602での判定で、触媒温度<T1の場合は、昇温を開始しても、S被毒解除の可能温度に到達するまで時間がかかり、昇温中にテールパイプでのNOxの悪化も懸念されることから、NOx脱離浄化を優先させるのが望ましい。このため、S605へ進む。
S605では、rq−spフラグ=1、すなわちNOx脱離浄化要求が出ているか否かを判定し、出ている場合は、S607へ進み、spフラグ=1として、NOx脱離浄化(リッチスパイク)に移行する。
If the catalyst temperature is less than T1 in the determination in S602, it takes time to reach the temperature at which S poisoning can be released even if the temperature increase is started, and there is a concern that the NOx in the tail pipe may deteriorate during the temperature increase. Therefore, it is desirable to give priority to NOx desorption purification. For this reason, it progresses to S605.
In S605, it is determined whether or not the rq-sp flag = 1, that is, whether or not a NOx desorption purification request has been issued, and if so, the process proceeds to S607, where the sp flag = 1 is set and NOx desorption purification (rich spike) is performed. Migrate to

rq−spフラグ=1でない場合は、S606へ進む。
S606では、S被毒解除要求が出された後に、NOx堆積量が所定値NOx1に達してNOx脱離浄化時期になっているか否かを、S14と同様の手法で、判定する。
NOx堆積量>NOx1の場合は、図11のフローのS901へ進み、rq−spフラグ=1とする。
If the rq-sp flag is not 1, the process proceeds to S606.
In S606, after the S poisoning release request is issued, it is determined by the same method as in S14 whether or not the NOx accumulation amount reaches the predetermined value NOx1 and the NOx desorption purification time is reached.
If NOx accumulation amount> NOx1, the process proceeds to S901 in the flow of FIG. 11, and the rq-sp flag = 1 is set.

次に図12の暖機促進モードの制御について説明する。これは触媒温度がT5以下のときに実行される。
S1001では、暖機促進運転可能領域か否かを判定する。ここでの暖機促進運転は、本発明に係る分割リタード燃焼により行うため、この燃焼が可能な領域か否かを判定する。具体的には、図24に示したDPF再生及びS被毒解除の可能領域を、暖機促進運転可能領域とし、この領域の場合に、S1002へ進む。
Next, the control in the warm-up promotion mode of FIG. 12 will be described. This is performed when the catalyst temperature is T5 or less.
In S1001, it is determined whether or not it is a warm-up promoting operation possible region. Since the warm-up promoting operation here is performed by split retard combustion according to the present invention, it is determined whether or not this combustion is possible. Specifically, the region where DPF regeneration and S-poisoning can be canceled shown in FIG. 24 is set as a warm-up promotion operation possible region. In this region, the process proceeds to S1002.

S1002では、暖機促進のため、エンジンの燃焼を、通常のリーン燃焼から、本発明に係る分割リタード燃焼に切り替える。本燃焼への切換えにより、高排温となり、触媒の暖機を促進することができる。
ここでも、目標λを設定して、制御する。目標λへの制御については、リタード燃焼によりトルクが低下することから、トルク補正を行いつつ、目標λへの制御を行う。
In S1002, the engine combustion is switched from the normal lean combustion to the split retard combustion according to the present invention in order to promote warm-up. By switching to the main combustion, the exhaust temperature becomes high and the warm-up of the catalyst can be promoted.
Again, the target λ is set and controlled. As for the control to the target λ, the torque is reduced by the retarded combustion. Therefore, the control to the target λ is performed while performing the torque correction.

S1003では、触媒温度がその活性温度であるT5より高くなったか否かを判定し、触媒温度>T5の場合に、S1004へ進んで、本発明に係る分割リタード燃焼から通常の燃焼に切換えて、暖機促進運転を終了する。   In S1003, it is determined whether or not the catalyst temperature has become higher than its activation temperature T5, and if the catalyst temperature> T5, the process proceeds to S1004 to switch from split retard combustion according to the present invention to normal combustion. End warm-up promotion operation.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing an embodiment of the present invention 排気浄化制御のフローチャート(その1)Flow chart of exhaust purification control (part 1) 排気浄化制御のフローチャート(その2)Flow chart of exhaust purification control (part 2) 排気浄化制御のフローチャート(その3)Flow chart of exhaust purification control (part 3) 排気浄化制御のフローチャート(その4)Flow chart of exhaust purification control (part 4) 排気浄化制御のフローチャート(その5)Flow chart of exhaust purification control (part 5) 排気浄化制御のフローチャート(その6)Flow chart of exhaust purification control (Part 6) 排気浄化制御のフローチャート(その7)Flow chart of exhaust purification control (7) 排気浄化制御のフローチャート(その8)Flow chart of exhaust purification control (8) 排気浄化制御のフローチャート(その9)Flow chart of exhaust purification control (9) 排気浄化制御のフローチャート(その10)Flow chart of exhaust purification control (10) 排気浄化制御のフローチャート(その11)Flow chart of exhaust purification control (11) 参考例1の燃焼形態を示すThe combustion form of the reference example 1 is shown. 参考例2の燃焼形態を示す図The figure which shows the combustion form of the reference example 2 本発明の燃焼形態を示す図The figure which shows the combustion form of this invention 参考例1、2と本発明の排気ガス状態を比較した図Figure comparing the exhaust gas states of Reference Examples 1 and 2 and the present invention 主燃焼時期と排気ガスの状態との関係を示す図Diagram showing the relationship between main combustion timing and exhaust gas status 予備燃焼のための目標燃料噴射時期を示す図Diagram showing target fuel injection timing for pre-combustion 予備燃焼のための目標燃料噴射量を示す図Diagram showing target fuel injection amount for pre-combustion 主燃焼のための目標燃料噴射時期を示す図Diagram showing target fuel injection timing for main combustion 本発明の別の燃焼形態を示す図The figure which shows another combustion form of this invention 分割リタード燃焼への切換えのフローチャートFlow chart for switching to split retard combustion PM堆積量と再生中の目標λとの関係を示す図A diagram showing the relationship between the amount of accumulated PM and the target λ being regenerated λ=1運転のための目標吸入空気量算出用マップを示す図The figure which shows the target intake air amount calculation map for (lambda) = 1 driving | operation 主噴射時期とトルク補正係数K1との関係を示す図The figure which shows the relationship between the main injection timing and the torque correction coefficient K1 目標λとトルク補正係数K2との関係を示す図The figure which shows the relationship between target (lambda) and the torque correction coefficient K2. リッチスパイク運転のための目標吸入空気量算出用マップを示す図The figure which shows the map for target intake air amount calculation for rich spike operation DPF再生及びS被毒解除の可能領域を示す図The figure which shows the possible area | region of DPF reproduction | regeneration and S poisoning cancellation | release

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 吸気通路
5 吸気絞り弁
9 燃料噴射弁
10 排気通路
11 EGR通路
12 EGR弁
13 NOxトラップ触媒
14 DPF
20 コントロールユニット
21 回転速度センサ
22 アクセル開度センサ
23 エアフローメータ
24 水温センサ
25 触媒温度センサ
26 排気圧力センサ
27 DPF温度センサ
28 空燃比センサ
1 Diesel engine
2 Air intake passage
5 Inlet throttle valve
9 Fuel injection valve
10 Exhaust passage
11 EGR passage
12 EGR valve
13 NOx trap catalyst
14 DPF
20 Control unit
21 Rotational speed sensor
22 Accelerator position sensor
23 Air Flow Meter
24 Water temperature sensor
25 Catalyst temperature sensor
26 Exhaust pressure sensor
27 DPF temperature sensor
28 Air-fuel ratio sensor

Claims (13)

排気通路に排気浄化装置を備える内燃機関において、
排気浄化装置の状態に基づく所定の条件のときに、主トルクを発生させる主燃焼と、主燃焼に先立ってなされる少なくとも1回の予備燃焼とを行わせ、前記予備燃焼は、少なくとも1つが圧縮上死点近傍で起こるように、また、前記主燃焼は、前記予備燃焼が終了した後に開始するように、機関への燃料噴射を制御する燃焼制御を行う一方、
前記燃焼制御をその前に行われていた燃焼から切り替える際は、前記予備燃焼の切り替え後、主燃焼の切り替えを遅延して行うことを特徴とする内燃機関の燃焼制御装置。
In an internal combustion engine provided with an exhaust purification device in an exhaust passage,
Under a predetermined condition based on the state of the exhaust gas purification device, main combustion for generating main torque and at least one preliminary combustion performed prior to main combustion are performed, and at least one of the preliminary combustion is compressed While performing near the top dead center, and performing the combustion control to control the fuel injection to the engine so that the main combustion starts after the preliminary combustion ends,
The combustion control device for an internal combustion engine, wherein when switching the combustion control from the combustion performed before that, the switching of the main combustion is delayed after the switching of the preliminary combustion.
前記主燃焼の切り替えを目標値に徐々に近づけるように制御することを特徴とする請求項1に記載の内燃機関の燃焼制御装置。   2. The combustion control apparatus for an internal combustion engine according to claim 1, wherein the main combustion switching is controlled so as to gradually approach a target value. 3. 前記主燃焼用の燃料噴射時期を切り替え完了後の目標噴射時期まで徐々に遅角することを特徴とする請求項2に記載の燃焼制御装置。   3. The combustion control apparatus according to claim 2, wherein the fuel injection timing for main combustion is gradually retarded to a target injection timing after completion of switching. 前記燃焼制御への切り替え時の吸気系の変動収束後に前記主燃焼の切り替えを行うことを特徴とする請求項1に記載の内燃機関の燃焼制御装置。   2. The combustion control apparatus for an internal combustion engine according to claim 1, wherein the main combustion is switched after the fluctuation of the intake system at the time of switching to the combustion control is converged. 前記予備燃焼の燃料噴射量は、前記主燃焼の燃料噴射時の筒内温度が自己着火可能な温度を上回るために必要な燃料噴射量であることを特徴とする請求項1に記載の内燃機関の燃焼制御装置。   2. The internal combustion engine according to claim 1, wherein the fuel injection amount of the preliminary combustion is a fuel injection amount necessary for an in-cylinder temperature at the time of fuel injection of the main combustion to exceed a temperature at which self-ignition is possible. Combustion control device. 前記主燃焼の燃焼開始時期は、前記予備燃焼の燃焼開始時期からクランク角で20度以上離れた時期であることを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の燃焼制御装置。   The internal combustion engine according to any one of claims 1 to 5, wherein the combustion start timing of the main combustion is a timing separated by 20 degrees or more in crank angle from the combustion start timing of the preliminary combustion. Combustion control device. 前記主燃焼の終了時期は、圧縮上死点からクランク角で50度以上離れた時期であることを特徴とする請求項1〜請求項6のいずれか1つに記載の内燃機関の燃焼制御装置。   The combustion control device for an internal combustion engine according to any one of claims 1 to 6, wherein the end time of the main combustion is a time separated by 50 degrees or more in crank angle from the compression top dead center. . 前記主燃焼は、前記主燃焼のための燃料噴射時期を変えることで、排気温度を制御することを特徴とする請求項1〜請求項7のいずれか1つに記載の内燃機関の燃焼制御装置。   The combustion control apparatus for an internal combustion engine according to any one of claims 1 to 7, wherein the main combustion controls an exhaust gas temperature by changing a fuel injection timing for the main combustion. . 排気浄化装置として、排気中のPMを捕集するフィルタを備え、
前記排気浄化装置の状態に基づく所定の条件のときは、少なくとも、排気温度を上昇させて、フィルタに堆積したPMを燃焼除去するフィルタの再生時であることを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の燃焼制御装置。
As an exhaust purification device, equipped with a filter to collect PM in the exhaust,
The predetermined condition based on the state of the exhaust gas purification device is at least the time of regeneration of a filter that raises the exhaust gas temperature and burns and removes PM accumulated on the filter. 6. The combustion control device for an internal combustion engine according to any one of 5 above.
排気浄化装置として、排気空燃比がリーンのときに排気中のNOxをトラップするNOxトラップ触媒を備え、
前記排気浄化装置の状態に基づく所定の条件のときは、少なくとも、排気空燃比をリッチ化して、NOxトラップ触媒にトラップしたNOxを脱離浄化する時であることを特徴とする請求項1〜請求項9のいずれか1つに記載の内燃機関の燃焼制御装置。
As an exhaust purification device, provided with a NOx trap catalyst for trapping NOx in exhaust when the exhaust air-fuel ratio is lean,
The predetermined condition based on the state of the exhaust purification device is a time when at least the exhaust air-fuel ratio is enriched to desorb and purify NOx trapped in the NOx trap catalyst. Item 10. The combustion control device for an internal combustion engine according to any one of Items 9 to 9.
排気浄化装置として、排気空燃比がリーンのときに排気中のNOxをトラップするNOxトラップ触媒を備え、
前記排気浄化装置の状態に基づく所定の条件のときは、少なくとも、排気温度を上昇させて、NOxトラップ触媒に堆積した硫黄分の被毒解除を行う時であることを特徴とする請求項1〜請求項10のいずれか1つに記載の内燃機関の燃焼制御装置。
As an exhaust purification device, provided with a NOx trap catalyst for trapping NOx in exhaust when the exhaust air-fuel ratio is lean,
The predetermined condition based on the state of the exhaust gas purification device is a time when at least the exhaust gas temperature is raised to remove the poisoning of sulfur accumulated in the NOx trap catalyst. The combustion control device for an internal combustion engine according to claim 10.
前記排気浄化装置の状態に基づく所定の条件のときは、少なくとも、排気浄化装置の冷機時で、排気浄化装置を急速暖機する時であることを特徴とする請求項1〜請求項11のいずれか1つに記載の内燃機関の燃焼制御装置。   The predetermined condition based on the state of the exhaust gas purification device is at least when the exhaust gas purification device is rapidly warmed up when the exhaust gas purification device is cold. A combustion control device for an internal combustion engine according to claim 1. 前記燃焼制御への切り替え前の燃焼は、燃料のパイロット噴射による燃焼中に燃料の主噴射を行う拡散燃焼を主体とした燃焼であることを特徴とする請求項1〜請求項11のいずれか1つに記載の内燃機関の燃焼制御装置。   The combustion before switching to the combustion control is a combustion mainly based on diffusion combustion in which main injection of fuel is performed during combustion by pilot injection of fuel. A combustion control device for an internal combustion engine according to claim 1.
JP2003284311A 2003-07-31 2003-07-31 Combustion control device for internal combustion engine Withdrawn JP2005048747A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003284311A JP2005048747A (en) 2003-07-31 2003-07-31 Combustion control device for internal combustion engine
US10/895,335 US20050022513A1 (en) 2003-07-31 2004-07-21 Combustion control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284311A JP2005048747A (en) 2003-07-31 2003-07-31 Combustion control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005048747A true JP2005048747A (en) 2005-02-24

Family

ID=34101094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284311A Withdrawn JP2005048747A (en) 2003-07-31 2003-07-31 Combustion control device for internal combustion engine

Country Status (2)

Country Link
US (1) US20050022513A1 (en)
JP (1) JP2005048747A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283690A (en) * 2005-04-01 2006-10-19 Yanmar Co Ltd Fuel injection control method for internal combustion engine
JP2007198145A (en) * 2006-01-24 2007-08-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
WO2007108167A1 (en) * 2006-03-17 2007-09-27 Isuzu Motors Limited Method of controlling exhaust gas purification system and exhaust gas purification system
JP2010236460A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Combustion control device and combustion control method for diesel engine
JP2011106349A (en) * 2009-11-18 2011-06-02 Denso Corp Exhaust emission control device for internal combustion engine
CN102308070A (en) * 2009-02-06 2012-01-04 戴姆勒股份公司 Method for the operation of an internal combustion engine comprising an emission control system
CN104131872A (en) * 2014-07-16 2014-11-05 潍柴动力股份有限公司 Method and device for controlling temperature of SCR reactor
CN110925105A (en) * 2019-11-07 2020-03-27 一汽解放汽车有限公司 Method and device for controlling working parameters of natural gas engine, engine and medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7661263B2 (en) * 2004-08-27 2010-02-16 Caterpillar, Inc. Method of operating an internal combustion engine
JP2005048678A (en) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2007100575A (en) * 2005-10-04 2007-04-19 Toyota Motor Corp Control device of internal combustion engine
US7886524B2 (en) * 2005-10-24 2011-02-15 Ford Global Technologies, Llc Method for controlling an internal combustion engine during regeneration of an emission after-treatment device
FR2943730B1 (en) * 2009-03-24 2014-08-29 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING POLLUTANT EMISSIONS OF A COMBUSTION ENGINE
JP6225938B2 (en) * 2015-04-03 2017-11-08 トヨタ自動車株式会社 Control device for internal combustion engine
US10018130B2 (en) * 2015-05-11 2018-07-10 General Electric Company Fuel injector wear compensation methodology by altering injection schedule

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560991B9 (en) * 1991-10-03 2005-01-26 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust of internal combustion engine
JP3079933B2 (en) * 1995-02-14 2000-08-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19750226C1 (en) * 1997-11-13 1998-10-29 Daimler Benz Ag Diesel engine management system controlling breathing and injection timing in rich and weak running
FR2792036B1 (en) * 1999-04-06 2002-06-07 Peugeot Citroen Automobiles Sa SYSTEM FOR AIDING THE REGENERATION OF A PARTICLE FILTER INTEGRATED IN AN EXHAUST LINE OF A DIESEL ENGINE, PARTICULARLY A MOTOR VEHICLE
JP4108223B2 (en) * 1999-05-12 2008-06-25 本田技研工業株式会社 Control device for internal combustion engine
JP3607980B2 (en) * 1999-12-16 2005-01-05 トヨタ自動車株式会社 Internal combustion engine
US6378487B1 (en) * 2000-09-01 2002-04-30 International Truck And Engine Corporation Method and apparatus for pre-pilot fuel injection in diesel internal combustion engines
EP1205647B1 (en) * 2000-11-03 2003-03-05 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Method for regenerating the particulate filter of a Diesel engine
DE10056034A1 (en) * 2000-11-11 2002-05-16 Bosch Gmbh Robert Method for controlling motor vehicle exhaust emissions involves using engine and load characteristics to determine operation of exhaust emissions control circuit
JP3838338B2 (en) * 2001-03-27 2006-10-25 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
US6536209B2 (en) * 2001-06-26 2003-03-25 Caterpillar Inc Post injections during cold operation
ITTO20010786A1 (en) * 2001-08-03 2003-02-03 Fiat Ricerche SELF-PRIMING METHOD OF THE REGENERATION OF A PARTICULATE FILTER FOR A DIRECT INJECTION DIESEL ENGINE PROVIDED WITH AN INI PLANT
US20030150420A1 (en) * 2001-10-12 2003-08-14 Naoya Ishikawa Compression-ignition internal combustion engine
US6804952B2 (en) * 2003-02-21 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst warm up control for diesel engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283690A (en) * 2005-04-01 2006-10-19 Yanmar Co Ltd Fuel injection control method for internal combustion engine
JP4603921B2 (en) * 2005-04-01 2010-12-22 ヤンマー株式会社 Fuel injection control method for internal combustion engine
JP2007198145A (en) * 2006-01-24 2007-08-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP4597876B2 (en) * 2006-01-24 2010-12-15 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
US8549843B2 (en) 2006-03-17 2013-10-08 Isuzu Motors Limited Method of controlling exhaust gas purification system and exhaust gas purification system
WO2007108167A1 (en) * 2006-03-17 2007-09-27 Isuzu Motors Limited Method of controlling exhaust gas purification system and exhaust gas purification system
US9322351B2 (en) 2009-02-06 2016-04-26 Daimler Ag Method for operating an internal combustion engine with an emission control system
CN102308070A (en) * 2009-02-06 2012-01-04 戴姆勒股份公司 Method for the operation of an internal combustion engine comprising an emission control system
JP2012516966A (en) * 2009-02-06 2012-07-26 ダイムラー・アクチェンゲゼルシャフト Method of operating an internal combustion engine with an exhaust gas purification device
JP2010236460A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Combustion control device and combustion control method for diesel engine
JP2011106349A (en) * 2009-11-18 2011-06-02 Denso Corp Exhaust emission control device for internal combustion engine
CN104131872A (en) * 2014-07-16 2014-11-05 潍柴动力股份有限公司 Method and device for controlling temperature of SCR reactor
CN104131872B (en) * 2014-07-16 2016-07-06 潍柴动力股份有限公司 The control method of a kind of SCR temperature of reactor and device
CN110925105A (en) * 2019-11-07 2020-03-27 一汽解放汽车有限公司 Method and device for controlling working parameters of natural gas engine, engine and medium
CN110925105B (en) * 2019-11-07 2022-01-07 一汽解放汽车有限公司 Method and device for controlling working parameters of natural gas engine, engine and medium

Also Published As

Publication number Publication date
US20050022513A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4158645B2 (en) Combustion control device for internal combustion engine
JP4225153B2 (en) Exhaust filter regeneration control device
JP4052178B2 (en) Exhaust gas purification device for internal combustion engine
JP4175022B2 (en) Exhaust gas purification device for internal combustion engine
JP2005048678A (en) Combustion control device for internal combustion engine
KR100689921B1 (en) Combustion control for engine
JP4029795B2 (en) Combustion control device for internal combustion engine
JP2005240757A (en) Control device of internal-combustion engine
JP2006183599A (en) Exhaust emission control device of internal combustion engine
JP2005048749A (en) Engine control device
JP2005042661A (en) Combustion control device for internal combustion engine
JP2005048747A (en) Combustion control device for internal combustion engine
JP2005048752A (en) Engine control device
EP1496234B1 (en) Combustion control apparatus for internal combustion engine
JP2005048746A (en) Fuel control device for internal combustion engine
JP2005048751A (en) Engine control device
JP2005042662A (en) Combustion control device for internal combustion engine
EP1496235A2 (en) Combustion control apparatus for internal combustion engine
JP2005048748A (en) Automatic combustion control device of internal combustion engine
JP2005048692A (en) Combustion control device for internal combustion engine
JP2006183581A (en) Combustion control device for internal combustion engine
JP2005042663A (en) Combustion control device of internal combustion engine
EP1496223B1 (en) Combustion control apparatus for internal combustion engine
JP2005042664A (en) Combustion controller of internal combustion engine
JP2005048750A (en) Control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080620