[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005045432A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2005045432A
JP2005045432A JP2003201639A JP2003201639A JP2005045432A JP 2005045432 A JP2005045432 A JP 2005045432A JP 2003201639 A JP2003201639 A JP 2003201639A JP 2003201639 A JP2003201639 A JP 2003201639A JP 2005045432 A JP2005045432 A JP 2005045432A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave device
idt electrode
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003201639A
Other languages
Japanese (ja)
Inventor
Yasuhide Onozawa
康秀 小野澤
Yuji Ogawa
祐史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003201639A priority Critical patent/JP2005045432A/en
Publication of JP2005045432A publication Critical patent/JP2005045432A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a SAW device which has a large electromechanical coupling coefficient for realizing a wide-band filter and also has small transmission loss. <P>SOLUTION: The surface acoustic wave device is constituted by arranging IDT electrodes on the main surface of rotary Y-cut X-propagation lithium niobate (LiNbO<SB>3</SB>) in the propagation direction of a Love wave, and the metal material of the IDT electrodes is an alloy which is principally comprised of Ag and contains 0.1 to 3.0 wt.% Pd and 0.1 to 3.0 wt.% Cu. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は弾性表面波デバイスに関し、特に大きな電気機械結合係数kを有し、伝送損失の小さな弾性表面波デバイスに関する。
【0002】
【従来の技術】
近年、弾性表面波デバイス(以下、SAWデバイスと称する)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話、無線LAN等に多く用いられている。周知のように、弾性表面波とは媒質の表面付近にエネルギーを集中させて伝搬する波の総称で、圧電基板の表面上に形成したIDT電極により弾性表面波を励振し、また受信することができる。SAWデバイスに利用されている主な弾性表面波としてはレイリー波がよく知られているが、この他にSH波(SH波タイプ)、ラブ波(Love wave)、漏洩弾性表面波(Leaky)等がある。
【0003】
SAWデバイスに最も多く用いられているレイリー波は、図4(a)に示すように半無限の個体表面にエネルギーを集中させて伝搬する弾性表面波で、レイリー波の変位は表面波の進行方向X1の成分u1(P波)と、深さ方向X3の成分u3(SV波)のみを有し、u3はu1と位相が90°ずれている。即ち、レイリー波は(P+SV)波ということができる。レイリー波は表面近くではu3がu1に対して90°進むことから、後方楕円回転を示し、深さX3=0.2λ(λはレイリー波の波長)より深いところでは前方楕円回転となり、深さX3=2λより深いところでは変位u1、u3共ほぼ零となる。また、伝搬速度が周波数に無関係に一定であり、速度分散性が無いことも大きな特徴である。図4(b)はレイリー波を用いたSAW共振子の構成を示す平面図であって、圧電基板21の主表面上にレイリー波の伝搬方向に沿ってIDT電極22と、その両側にグレーティング反射器(以下、反射器と称す)23a、23bをそれぞれ配置する。IDT電極22は互いに間挿し合う複数の電極指を有する一対の電極より構成され、一方の電極はT1端子に、他方の端子はT2端子に接続してSAW共振子を完成する。
【0004】
圧電基板に高結合材料といわれる128°回転YカットX伝搬のニオブ酸リチウム(128°Y−XLiNbO)を用い、レイリー波を利用したSAWデバイスを構成しても電気機械結合係数kは5.5%と小さく、最近要求される広帯域のSAWフィルタの要求を満たすことは出来ない。そこで、大きな電気機械結合係数kが期待できる弾性表面波としてSH波(SH波タイプ)を用いたSAWデバイスがある。SH波は図5に示すように波動の進行方向X1と変位方向u2とが直交した横波で、圧電媒質に異方性があるとその表面にエネルギーを集中させて伝搬する性質がある。この表面波は圧電表面すべり波、あるいは発見者の名前をとってBGS波とも呼ばれる。このSH波は六方晶系6mm圧電結晶、あるいは圧電セラミック板のC軸または分極軸が基板表面に平行な場合などに存在する。
【0005】
特開2001−77662号公報には、オイラー角が(0°,125°〜146°,0°±5°)の回転YカットX伝搬のLiTaO上に比重の重い金属(Au、Ag、Ta、Mo等)のIDT電極を形成してSH波を励起したSAWデバイスの伝送損失、電気機械結合係数kが開示されている。この発明によると伝送損失も良好であり、電気機械結合係数kも22%から30%(k=5%〜9%)程度のものが得られたと記されている。
【0006】
大きな電気機械結合係数kが期待できる弾性表面波の1つにラブ波を用いたSAWデバイスがあり、ラブ波は図6に示すように圧電媒質Bの上に表面層Aを形成し、表面層Aの音速Vaと圧電媒質Bの音速Vbとの間にVa<Vbの関係が成り立つ時に生ずる弾性表面波で、周波数が高いほど変位(エネルギー)は表面に集中することになる。現象的には表面層Aの遅い波のために圧電媒質Bの波が引きずられ、押し上げられる形でエネルギーが表面に集中するものと考えられる。
【0007】
ラブ波を利用したSAWデバイスは特開昭59−156013号公報に開示されており、圧電基板に回転Y−XLiNbOを用い、該圧電基板上に導波路を形成するように音速の遅い高密度の金属薄膜、または誘電体膜を形成し、さらにIDT電極を配置して構成している。ここで、高密度の金属としては金、銀、白金を使用している。このようにして構成したSAWデバイスの電気機械結合係数kは28%から14%に達すると記されている。
さらに、特開平6−164306号公報には回転Y−XLiTaOの主表面上に比重の大きな金属のIDT電極を配置してラブ波型SAWデバイスを構成した例が開示されている。この発明によると構成されたSAWデバイスの電気機械結合係数kは11%以上に達すると記されている。
【特許文献1】特開2001−77662号公報
【特許文献2】特開昭59−156013号公報
【特許文献3】特開平6−164306号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述のようにLiTaO上にIDT電極を形成しSH波を励起するSAWデバイスは、伝送損失、電気機械結合係数kが良好であるものの、IDT電極にAuを用いればコストが高価になり、Ag、Ta、Mo、Cu、Ni、Cr、Zn、W等を用いれば対耐候性に難点があるという問題があった。
また、LiNbO、LiTaO上にIDT電極を形成しラブ波を利用するSAWデバイスでは、金、銀あるいは白金等の膜を厚く付着する必要があり、金、白金の場合は高価に、銀の場合は耐候性に難点があるという問題があった。
しかし、特開2001−192752号公報にはAgを主成分として、Pdを0.1〜3wt%含有し、Al、Au、Pt、Cu、Ta、Cr、Ti、Ni、Co、Siから複数の元素を合計で0.1〜3wt%含有する電子部品用金属材料が開示され、耐候性にも優れ、比抵抗も小さいと記述されている。
また、特開2002−140929号公報にはAgを主成分とし、Auを0.1wt%以上10wt%以下の範囲で含有し、Pd、Al、Cu、Ta、Cr、Ti、Ni、V、W、Mo、Ru、Mgから1種類以上の元素を0.1wt%以上5wt%以下添加した電子部品用金属材料が開示され、耐候性にも優れ、比抵抗も小さいと記述されている。
さらに、特開2003−55721号公報にはAgに、AuとCu、Ti及びSnから選択された少なくとも1つの金属を添加したAg合金の薄膜で、0.1〜4.0at%のAu、0〜5.0at%のCu、0〜1.0at%のTi、0〜1.0at%のSnを含有するAg合金膜が開示され、密着性、比抵抗とも従来のものより優れていると記述されている。
本発明は上記問題を解決するためになされたものであって、低コストで且つ大きな電気機会結合係数kを有するSAWデバイスを提供することを目的とする。
【特許文献4】特開2001−192752号公報
【特許文献5】特開2002−140929号公報
【特許文献6】特開2003−55721号公報
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明に係る弾性表面波デバイスの請求項1記載の発明は、オイラー角が(0°,90°〜150°,0°±5°)であるニオブ酸リチウム(LiNbO)の主表面上にラブ波の伝搬方向に沿ってIDT電極を配置して構成した弾性表面波デバイスにおいて、前記IDT電極の材料としてAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金を用いたこと特徴とする弾性表面波デバイスである。
請求項2記載の発明は、オイラー角が(0°,80°〜140°,0°±5°)であるタンタル酸リチウム(LiTaO)の主表面上にラブ波の伝搬方向に沿ってIDT電極を配置して構成した弾性表面波デバイスにおいて、前記IDT電極の材料としてAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金を用いたこと特徴とする弾性表面波デバイスである。
請求項3記載の発明は、オイラー角が(0°,125°〜146°,0°±5°)であるLiTaO基板にSH波を励起するIDT電極を形成した弾性表面波デバイスにおいて、前記IDT電極の材料としてAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金を用いると共に規格化膜厚H/λ(Hは電極膜厚、λは励起されるSH波の波長)を0.2%から5%としたこと特徴とする弾性表面波デバイスである。
請求項4記載の発明は、請求項1乃至3に記載のいずれかに記載の弾性表面波デバイスのIDT電極の材料をAgを主成分とし、0.1wt%〜3.0wt%のAuと、0.1wt%〜3.0wt%のCuとを含有した合金に代えたこと特徴とする弾性表面波デバイスである。
請求項5記載の発明は、請求項1乃至3に記載のいずれかに記載の弾性表面波デバイスのIDT電極の材料をAgを主成分とし、0.1wt%〜4.0at%のAuと、0〜5.0at%のCuと、0〜1.0at%のTiと、0〜1.0at%のSnとを含有した合金に代えたこと特徴とする弾性表面波デバイスである。
請求項6記載の発明は、所定の配線が施されたプリント基板と、その上にフリップチップ実装した弾性表面波素子と、前記弾性表面波素子と前記プリント基板との間に気密空間を確保するようにこれらの上面を覆う絶縁性の気密部材とを備えた弾性表面波デバイスにおいて、前記弾性表面波素子が請求項1乃至5のいずれかに該当することを特徴とする弾性表面波デバイスである。
請求項7記載の発明は、所定の配線が施されたプリント基板と、その上にフリップチップ実装した弾性表面波素子と、前記弾性表面波素子と前記プリント基板との間に気密空間を確保するようにこれらの上面を覆う絶縁性の気密部材と、該気密部材の外面に付着した第1の金属膜と、第1の金属膜とは異なる金属からなる第2の金属膜とを順次付着した多層金属膜と、該多層金属膜の上に樹脂層とを備えた弾性表面波デバイスにおいて、前記弾性表面波素子が請求項1乃至5のいずれかに該当することを特徴とする弾性表面波デバイスである。
【0010】
【発明の実施の形態】
以下本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1(a)は本発明に係るSAWデバイスの構成の実施の形態を示す平面図、同図(b)はQ−Qにおける断面図である。圧電基板1の主表面上に弾性表面波の伝搬方向に沿ってIDT電極2とその両側に反射器3a、3bを配置する。IDT電極2は互いに間挿し合う複数の電極指を有する一対の電極より構成され、一方の電極は端子T1に、他方の電極は端子T2に接続されてSAW共振子を構成する。
【0011】
圧電基板1に回転YカットX伝搬のニオブ酸リチウム(LiNbO)を用い、IDT電極2、反射器3a、3bの電極材料にAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金からなる薄膜を所定の膜厚で付着することによりラブ波を励起し、ラブ波型SAWデバイスを構成することができる。該ラブ波型SAWデバイスは大きな電気機械結合係数k有する。上記のAgを主成分とした合金を電極に用いることにより、コストを低減し、且つ耐候性に強いSAWデバイスを実現することが可能となる。
【0012】
圧電基板1に回転角が−10°から50°の範囲の所定の角度で切断されたYカットX伝搬のタンタル酸リチウム(LiTaO)を用い、IDT電極2、反射器3a、3bの電極材料にAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金からなる薄膜を用いることによりラブ波を励起し、ラブ波型SAWデバイスを構成することができる。該ラブ波型SAWデバイスは大きな電気機械結合係数k有する。上記のAgを主成分とした合金を電極に用いることにより、コストを低減し、且つ耐候性に強いSAWデバイスを実現することが可能となる。
【0013】
圧電基板1にオイラー角が(0°,125°〜146°,0°±5°)であるYカットX伝搬のLiTaO基板を用い、IDT電極2、反射器3a、3bの電極材料にAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金からなる薄膜を用い、規格化膜厚H/λ(Hは電極膜厚、λは励起されるSH波の波長)を0.2%から5%とすることによりSH波を励起し、SH波型SAWデバイスを構成することができる。該SH波型SAWデバイスは大きな電気機械結合係数k有する。上記のAgを主成分とした合金を電極に用いることにより、コストを低減し、且つ耐候性に強いSAWデバイスを実現することが可能となる。
【0014】
IDT電極2、反射器3a、3bの電極材料にAgを主成分とし、0.1wt%〜3.0wt%のAuと、0.1wt%〜3.0wt%のCuとを含有した合金を用いてもコストを低減し、且つ耐候性に強いSAWデバイスを実現することができる。また、IDT電極2、反射器3a、3bの電極材料にAgを主成分とし、0.1at%〜4.0at%のAuと、0〜5.0at%のCuと、0〜1.0at%のTiと、0〜1.0at%のSnとを含有した合金を用いてもよい。
【0015】
以上では1つのIDT電極1とその両側に反射器を配置して構成したSAW共振子について説明したが、図2に示すように圧電基板1の主表面上に弾性表面波(ラブ波、SH波等)の伝搬方向に沿って3つのIDT電極4、5、6を配置すると共に、それらの両側に反射器7a、7bを配設して構成した縦結合1次−3次二重モードSAWフィルタにも適用すれば、広帯域のSAWフィルタが実現することができる。さらに、縦結合多重モードSAWフィルタ、横結合多重モードSAWフィルタ、ラダー型SAWフィルタ、トランスバーサル型SAWフィルタ等にも適用できることは説明するまでもない。
【0016】
図3は本発明の係る他の実施例の構成を示す断面図である。絶縁基板11、例えばセラミック基板の上面と裏面にそれぞれ接続端子12と外部端子13を形成すると共に、接続端子12、外部端子13間を導通する内部導体14を形成する。そして、接続端子12に金属バンプ15を介してSAWデバイス素子16をフリップチップ方式でボンディングすると共に、フェイスダウン状態のSAWデバイス素子16と絶縁基板11の上面とに絶縁性樹脂17を付着した上で熱硬化させ、SAWデバイス素子16と絶縁基板11の上面との間に気密空間18を形成して、所謂CSPタイプのSAWデバイスを完成する。なお、前記SAWデバイス素子16は圧電基板に回転YカットX伝搬のLiTaO、LiNbOを用いたラブ波型SAWデバイス素子を使用する。また、前記SAWデバイス素子16は圧電基板にオイラー角が(0°,125°〜146°,0°±5°)であるLiTaO基板を用い、その上に規格化膜厚H/λ(Hは電極膜厚、λは励起されるSH波の波長)が0.2%から5%のIDT電極を形成し、SH波を励起した弾性表面波デバイス素子を使用してもよい。前記SAWデバイス素子16のIDT電極にAgを主成分とし、0.1wt%から3.0wt%のPdと0.1wt%から3.0wt%のCuを含有した合金を用いれば電極膜の比抵抗が小さく、耐候性に優れたSAWデバイスを構成することができる。
さらに、熱硬化した絶縁性樹脂17の外側表面に絶縁性樹脂との密着性の良い第1の金属膜19aを付着し、さらに第1の金属膜19aの上に第2の金属膜19bを積層して、耐候性が優れ、且つSAWデバイス周辺の電子部品からの電磁気的影響を受けないSAWデバイスを完成することができる。
また、前記積層金属膜19(19a、19b)の上に樹脂20でコーティングすれば耐候性に優れ、外部からの衝撃等にも優れたSAWデバイスを得ることができる。
【0017】
【発明の効果】
本発明は、以上説明したように構成したので、請求項1に記載の発明はニオブ酸リチウム基板上にラブ波を励起し、大きな電気機械結合係数kのSAWデバイスが得られるという優れた効果を表す。請求項2に記載の発明はタンタル酸リチウム基板上にラブ波励起し、大きな電気機械結合係数kのSAWデバイスが得られるという優れた効果を表す。請求項3に記載の発明はタンタル酸リチウム基板上にSH波励起し、大きな電気機械結合係数kのSAWデバイスが得られるという優れた効果を表す。請求項4あるいは5に記載の発明は大きな電気機械結合係数kのSAWデバイスが得られるという優れた効果を奏す。請求項6あるいは7に記載の発明は、大きな電気機械結合係数kが得られると共に小型のSAWデバイスが実現できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る弾性表面波共振子の、(a)は平面図、(b)は断面図である。
【図2】本発明に係る縦結合二重モードSAWフィルタの平面図である。
【図3】本発明に係る弾性表面波デバイス素子を簡易パッケージに収容した断面図で、(a)は樹脂に積層金属膜を付着したもの、(b)はさらにその上に樹脂でコーティングしたものである。
【図4】(a)レイリー波を説明する図、(b)はレイリー波を用いたSAWデバイスの平面図である。
【図5】SH波を説明する図である。
【図6】ラブ波を説明する図である。
【符号の説明】
1・・圧電基板
2、4、5、6・・IDT電極
3a、3b、7a、7b・・グレーティング反射器
11・・絶縁基板
12・・接続端子
13・・外部端子
14・・内部導体
15・・金属バンプ
16・・SAWデバイス素子
17・・絶縁性樹脂
18・・気密空間
19・・積層金属膜
19a・・第1の金属膜
19b・・第2の金属膜
20・・樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device having a large electromechanical coupling coefficient k 2 and a small transmission loss.
[0002]
[Prior art]
In recent years, surface acoustic wave devices (hereinafter referred to as SAW devices) have been widely used in the communication field, and have been widely used particularly in mobile phones, wireless LANs and the like because they have excellent characteristics such as high performance, small size, and mass productivity. Yes. As is well known, a surface acoustic wave is a general term for a wave that propagates by concentrating energy near the surface of a medium. The surface acoustic wave is excited and received by an IDT electrode formed on the surface of a piezoelectric substrate. it can. Rayleigh waves are well known as main surface acoustic waves used in SAW devices, but other than this, SH waves (SH wave type), Love waves, leaky surface acoustic waves (Leaky), etc. There is.
[0003]
As shown in FIG. 4A, the Rayleigh wave most frequently used in the SAW device is a surface acoustic wave that propagates by concentrating energy on a semi-infinite solid surface. The displacement of the Rayleigh wave is the traveling direction of the surface wave. It has only a component u1 (P wave) of X1 and a component u3 (SV wave) in the depth direction X3, and u3 is 90 ° out of phase with u1. That is, the Rayleigh wave can be called a (P + SV) wave. Since the Rayleigh wave moves 90 ° relative to u1 near the surface, it indicates backward elliptical rotation, and forward elliptical rotation occurs at a depth deeper than the depth X3 = 0.2λ (λ is the wavelength of the Rayleigh wave). At locations deeper than X3 = 2λ, both displacements u1 and u3 are substantially zero. Another significant feature is that the propagation velocity is constant regardless of the frequency and there is no velocity dispersion. FIG. 4B is a plan view showing the configuration of the SAW resonator using Rayleigh waves. The IDT electrode 22 is formed on the main surface of the piezoelectric substrate 21 along the propagation direction of the Rayleigh waves, and gratings are reflected on both sides thereof. The devices (hereinafter referred to as reflectors) 23a and 23b are respectively arranged. The IDT electrode 22 is composed of a pair of electrodes having a plurality of electrode fingers interleaved with each other, and one electrode is connected to the T1 terminal and the other terminal is connected to the T2 terminal to complete the SAW resonator.
[0004]
Even if a SAW device using Rayleigh waves is constructed using 128 ° rotated Y-cut X-propagating lithium niobate (128 ° Y-XLiNbO 3 ), which is said to be a high coupling material, on the piezoelectric substrate, the electromechanical coupling coefficient k 2 is 5 .5%, which cannot meet the requirements for a wideband SAW filter that has recently been required. Therefore, there is a SAW device using an SH wave (SH wave type) as a surface acoustic wave from which a large electromechanical coupling coefficient k 2 can be expected. As shown in FIG. 5, the SH wave is a transverse wave in which the wave traveling direction X1 and the displacement direction u2 are orthogonal to each other. If the piezoelectric medium has anisotropy, it has the property of concentrating energy on its surface and propagating. This surface wave is also called a piezoelectric surface slip wave or a BGS wave in the name of the discoverer. This SH wave exists when the hexagonal 6 mm piezoelectric crystal or the C-axis or polarization axis of the piezoelectric ceramic plate is parallel to the substrate surface.
[0005]
Japanese Patent Application Laid-Open No. 2001-77662 discloses a heavy metal (Au, Ag, Ta) on a rotating Y-cut X-propagating LiTaO 3 with Euler angles (0 °, 125 ° to 146 °, 0 ° ± 5 °). , Mo, etc.), the transmission loss and the electromechanical coupling coefficient k of a SAW device in which an SH wave is excited by forming an IDT electrode are disclosed. According to this invention, the transmission loss is also good, and it is described that an electromechanical coupling coefficient k of about 22% to 30% (k 2 = 5% to 9%) was obtained.
[0006]
There is a SAW device using a Love wave as one of surface acoustic waves that can be expected to have a large electromechanical coupling coefficient k 2. The Love wave forms a surface layer A on a piezoelectric medium B as shown in FIG. A surface acoustic wave generated when the relationship Va <Vb is established between the sound velocity Va of the layer A and the sound velocity Vb of the piezoelectric medium B. The higher the frequency, the more the displacement (energy) is concentrated on the surface. Phenomenologically, it is considered that the energy of the piezoelectric medium B is dragged due to the slow wave of the surface layer A, and energy is concentrated on the surface.
[0007]
A SAW device using a Love wave is disclosed in Japanese Patent Application Laid-Open No. 59-156013. A rotating Y-XLiNbO 3 is used as a piezoelectric substrate, and a high-density sound having a low sound speed is formed so as to form a waveguide on the piezoelectric substrate. A metal thin film or a dielectric film is formed, and an IDT electrode is further arranged. Here, gold, silver, or platinum is used as the high-density metal. Thus electromechanical coupling coefficient k 2 of the SAW device which is constructed is marked to reach 14% to 28%.
Further, Japanese Patent Laid-Open No. 6-164306 discloses an example in which a love wave type SAW device is configured by disposing a metal IDT electrode having a large specific gravity on the main surface of rotating Y-XLiTaO 3 . Electromechanical coupling coefficient k 2 of the SAW devices configured According to the present invention are described to reach more than 11%.
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-77662 [Patent Document 2] Japanese Patent Application Laid-Open No. 59-156013 [Patent Document 3] Japanese Patent Application Laid-Open No. 6-164306
[Problems to be solved by the invention]
However, the SAW device that excites the SH wave by forming the IDT electrode on LiTaO 3 as described above has good transmission loss and electromechanical coupling coefficient k 2, but the cost is high if Au is used for the IDT electrode. Thus, there is a problem that there is a problem in weather resistance when Ag, Ta, Mo, Cu, Ni, Cr, Zn, W or the like is used.
In addition, in a SAW device using a Love wave by forming an IDT electrode on LiNbO 3 or LiTaO 3 , it is necessary to deposit a thick film of gold, silver, platinum, or the like. In some cases, there was a problem that the weather resistance was difficult.
However, Japanese Patent Application Laid-Open No. 2001-192752 contains Ag as a main component, contains 0.1 to 3 wt% of Pd, and contains a plurality of elements from Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, and Si. A metal material for electronic parts containing 0.1 to 3 wt% of elements in total is disclosed, and is described as having excellent weather resistance and low specific resistance.
Japanese Patent Application Laid-Open No. 2002-140929 contains Ag as a main component and contains Au in a range of 0.1 wt% to 10 wt%, and contains Pd, Al, Cu, Ta, Cr, Ti, Ni, V, W , Mo, Ru, and Mg, a metal material for electronic parts to which one or more elements are added in an amount of 0.1 wt% to 5 wt% is disclosed, and is described as having excellent weather resistance and low specific resistance.
Further, JP-A-2003-55721 discloses a thin film of an Ag alloy in which at least one metal selected from Au, Cu, Ti, and Sn is added to Ag, and 0.1 to 4.0 at% Au, 0 An Ag alloy film containing ˜5.0 at% Cu, 0 to 1.0 at% Ti, and 0 to 1.0 at% Sn is disclosed, and it is described that both adhesion and specific resistance are superior to conventional ones. Has been.
The present invention was made to solve the above problems, and an object thereof is to provide a SAW device having and at low cost large electrical opportunity coupling coefficient k 2.
[Patent Document 4] JP 2001-192752 [Patent Document 5] JP 2002-140929 [Patent Document 6] JP 2003-55721 A
[Means for Solving the Problems]
In order to achieve the above object, the surface acoustic wave device according to claim 1 of the present invention is characterized in that lithium niobate (LiNbO) having an Euler angle of (0 °, 90 ° to 150 °, 0 ° ± 5 °). 3 ) In the surface acoustic wave device constructed by arranging IDT electrodes on the main surface along the propagation direction of the Love wave, the material of the IDT electrode is mainly composed of Ag, 0.1 wt% to 3.0 wt% It is a surface acoustic wave device characterized by using an alloy containing Pd of 0.1 wt% and Cu of 0.1 wt% to 3.0 wt%.
The invention according to claim 2 is directed to IDT along the propagation direction of the Love wave on the main surface of lithium tantalate (LiTaO 3 ) having Euler angles (0 °, 80 ° to 140 °, 0 ° ± 5 °). In the surface acoustic wave device configured by arranging electrodes, the material of the IDT electrode is mainly composed of Ag, 0.1 wt% to 3.0 wt% Pd, 0.1 wt% to 3.0 wt% Cu, It is a surface acoustic wave device characterized by using an alloy containing.
The invention according to claim 3 is a surface acoustic wave device in which an IDT electrode for exciting SH waves is formed on a LiTaO 3 substrate having an Euler angle (0 °, 125 ° to 146 °, 0 ° ± 5 °). As an IDT electrode material, an alloy containing Ag as a main component, 0.1 wt% to 3.0 wt% of Pd, and 0.1 wt% to 3.0 wt% of Cu is used, and a normalized film thickness H / λ is used. The surface acoustic wave device is characterized in that (H is the electrode film thickness, and λ is the wavelength of the excited SH wave) is 0.2% to 5%.
The invention according to claim 4 is characterized in that the material of the IDT electrode of the surface acoustic wave device according to any one of claims 1 to 3 is mainly composed of Ag, 0.1 wt% to 3.0 wt% Au, The surface acoustic wave device is characterized by being replaced with an alloy containing 0.1 wt% to 3.0 wt% of Cu.
The invention according to claim 5 is characterized in that the material of the IDT electrode of the surface acoustic wave device according to any one of claims 1 to 3 is mainly composed of Ag, 0.1 wt% to 4.0 at% Au, The surface acoustic wave device is characterized in that it is replaced with an alloy containing 0 to 5.0 at% Cu, 0 to 1.0 at% Ti, and 0 to 1.0 at% Sn.
The invention according to claim 6 secures an airtight space between the printed circuit board on which the predetermined wiring is applied, the surface acoustic wave element flip-chip mounted thereon, and the surface acoustic wave element and the printed circuit board. In the surface acoustic wave device provided with an insulating hermetic member covering these upper surfaces, the surface acoustic wave element corresponds to any one of claims 1 to 5, wherein the surface acoustic wave device is a surface acoustic wave device. .
The invention according to claim 7 secures an airtight space between the printed circuit board on which the predetermined wiring is applied, the surface acoustic wave element flip-chip mounted thereon, and the surface acoustic wave element and the printed circuit board. In this manner, an insulating hermetic member covering these upper surfaces, a first metal film adhered to the outer surface of the hermetic member, and a second metal film made of a metal different from the first metal film were sequentially adhered. A surface acoustic wave device comprising a multilayer metal film and a resin layer on the multilayer metal film, wherein the surface acoustic wave element corresponds to any one of claims 1 to 5. It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1A is a plan view showing an embodiment of the configuration of a SAW device according to the present invention, and FIG. 1B is a cross-sectional view taken along the line Q-Q. An IDT electrode 2 and reflectors 3a and 3b are arranged on both sides of the piezoelectric substrate 1 on the main surface along the propagation direction of the surface acoustic wave. The IDT electrode 2 is composed of a pair of electrodes having a plurality of electrode fingers interleaved with each other, one electrode being connected to the terminal T1, and the other electrode being connected to the terminal T2, thereby constituting a SAW resonator.
[0011]
Rotating Y-cut X-propagating lithium niobate (LiNbO 3 ) is used for the piezoelectric substrate 1, and the electrode material of the IDT electrode 2 and the reflectors 3 a and 3 b is mainly composed of Ag, and 0.1 to 3.0 wt% Pd Then, a love wave is excited by attaching a thin film made of an alloy containing 0.1 wt% to 3.0 wt% of Cu at a predetermined film thickness, and a Love wave type SAW device can be configured. The Love wave type SAW device having a large electromechanical coupling coefficient k 2. By using an alloy containing Ag as a main component for the electrode, it is possible to realize a SAW device with reduced cost and strong weather resistance.
[0012]
Using Y-cut X-propagating lithium tantalate (LiTaO 3 ) cut at a predetermined angle in the range of −10 ° to 50 ° on the piezoelectric substrate 1, electrode materials for the IDT electrode 2 and the reflectors 3 a and 3 b In addition, a Love wave is excited by using a thin film made of an alloy containing Ag as a main component, 0.1 wt% to 3.0 wt% Pd, and 0.1 wt% to 3.0 wt% Cu. A wave SAW device can be constructed. The Love wave type SAW device having a large electromechanical coupling coefficient k 2. By using an alloy containing Ag as a main component for the electrode, it is possible to realize a SAW device with reduced cost and strong weather resistance.
[0013]
A Y-cut X-propagating LiTaO 3 substrate having Euler angles (0 °, 125 ° to 146 °, 0 ° ± 5 °) is used for the piezoelectric substrate 1 and Ag is used as the electrode material for the IDT electrode 2 and the reflectors 3a and 3b. Is a thin film made of an alloy containing 0.1 wt% to 3.0 wt% of Pd and 0.1 wt% to 3.0 wt% of Cu, and a normalized film thickness H / λ (H is The SH wave type SAW device can be constructed by exciting the SH wave by changing the electrode film thickness, λ, is the wavelength of the excited SH wave) from 0.2% to 5%. The SH wave type SAW device having a large electromechanical coupling coefficient k 2. By using an alloy containing Ag as a main component for the electrode, it is possible to realize a SAW device with reduced cost and strong weather resistance.
[0014]
The electrode material of the IDT electrode 2 and the reflectors 3a and 3b is made of an alloy containing Ag as a main component and containing 0.1 wt% to 3.0 wt% Au and 0.1 wt% to 3.0 wt% Cu. However, it is possible to realize a SAW device with reduced cost and strong weather resistance. The electrode material of the IDT electrode 2 and the reflectors 3a and 3b is mainly composed of Ag, 0.1 at% to 4.0 at% Au, 0 to 5.0 at% Cu, and 0 to 1.0 at%. An alloy containing Ti and 0 to 1.0 at% Sn may be used.
[0015]
In the above, the SAW resonator formed by arranging one IDT electrode 1 and reflectors on both sides thereof has been described. However, as shown in FIG. 2, surface acoustic waves (love waves, SH waves) are formed on the main surface of the piezoelectric substrate 1. And the like, and three IDT electrodes 4, 5, 6 are arranged along the propagation direction, and reflectors 7 a, 7 b are arranged on both sides of the IDT electrodes 4, 5, 6. In addition, a broadband SAW filter can be realized. Furthermore, it goes without saying that the present invention can also be applied to a longitudinally coupled multimode SAW filter, a laterally coupled multimode SAW filter, a ladder type SAW filter, a transversal type SAW filter, and the like.
[0016]
FIG. 3 is a sectional view showing the structure of another embodiment of the present invention. A connection terminal 12 and an external terminal 13 are formed on the top surface and the back surface of an insulating substrate 11, for example, a ceramic substrate, and an internal conductor 14 that conducts between the connection terminal 12 and the external terminal 13 is formed. Then, the SAW device element 16 is bonded to the connection terminal 12 via the metal bump 15 by a flip chip method, and the insulating resin 17 is attached to the SAW device element 16 in the face-down state and the upper surface of the insulating substrate 11. Heat-curing is performed to form an airtight space 18 between the SAW device element 16 and the upper surface of the insulating substrate 11 to complete a so-called CSP type SAW device. The SAW device element 16 is a Love wave type SAW device element using a rotating Y-cut X-propagating LiTaO 3 or LiNbO 3 for a piezoelectric substrate. The SAW device element 16 uses a LiTaO 3 substrate having Euler angles (0 °, 125 ° to 146 °, 0 ° ± 5 °) as a piezoelectric substrate, and a normalized film thickness H / λ (H It is also possible to use a surface acoustic wave device element in which an IDT electrode having an electrode film thickness and λ is a wavelength of an excited SH wave (0.2 to 5%) is formed and the SH wave is excited. If an alloy containing Ag as a main component, 0.1 wt% to 3.0 wt% Pd and 0.1 wt% to 3.0 wt% Cu is used for the IDT electrode of the SAW device element 16, the specific resistance of the electrode film Therefore, it is possible to construct a SAW device having a small size and excellent weather resistance.
Further, a first metal film 19a having good adhesion to the insulating resin is attached to the outer surface of the thermally cured insulating resin 17, and a second metal film 19b is laminated on the first metal film 19a. Thus, it is possible to complete a SAW device that has excellent weather resistance and is not affected by electromagnetic influence from electronic components around the SAW device.
Further, if the laminated metal film 19 (19a, 19b) is coated with the resin 20, a SAW device having excellent weather resistance and excellent impact from the outside can be obtained.
[0017]
【The invention's effect】
Since the present invention is configured as described above, the invention according to claim 1 excites a Love wave on a lithium niobate substrate and provides an excellent effect that a SAW device having a large electromechanical coupling coefficient k 2 can be obtained. Represents. The invention described in claim 2 exhibits an excellent effect that a SAW device having a large electromechanical coupling coefficient k 2 is obtained by exciting a Love wave on a lithium tantalate substrate. The invention described in claim 3 exhibits an excellent effect that a SAW device having a large electromechanical coupling coefficient k 2 is obtained by SH wave excitation on a lithium tantalate substrate. The invention according to claim 4 or 5 has an excellent effect that a SAW device having a large electromechanical coupling coefficient k 2 can be obtained. The invention according to claim 6 or 7 has an excellent effect that a large electromechanical coupling coefficient k 2 can be obtained and a small SAW device can be realized.
[Brief description of the drawings]
1A is a plan view and FIG. 1B is a cross-sectional view of a surface acoustic wave resonator according to the present invention.
FIG. 2 is a plan view of a longitudinally coupled double mode SAW filter according to the present invention.
FIG. 3 is a cross-sectional view of a surface acoustic wave device element according to the present invention housed in a simple package, where (a) shows a laminated metal film attached to a resin, and (b) shows a resin coated thereon. It is.
4A is a diagram for explaining Rayleigh waves, and FIG. 4B is a plan view of a SAW device using Rayleigh waves.
FIG. 5 is a diagram for explaining SH waves;
FIG. 6 is a diagram illustrating a love wave.
[Explanation of symbols]
1. ・ Piezoelectric substrates 2,4,5,6 ・ ・ IDT electrodes 3a, 3b, 7a, 7b ・ ・ Grating reflector 11 ・ ・ Insulating substrate 12 ・ ・ Connection terminal 13 ・ ・ External terminal 14 ・ ・ Internal conductor 15 ・Metal bump 16 SAW device element 17 Insulating resin 18 Airtight space 19 Multilayer metal film 19a First metal film 19b Second metal film 20 Resin

Claims (7)

オイラー角が(0°,90°〜150°,0°±5°)であるニオブ酸リチウム(LiNbO)の主表面上にラブ波の伝搬方向に沿ってIDT電極を配置して構成した弾性表面波デバイスにおいて、
前記IDT電極の材料としてAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金を用いたこと特徴とする弾性表面波デバイス。
Elasticity configured by arranging IDT electrodes along the propagation direction of Love waves on the main surface of lithium niobate (LiNbO 3 ) having Euler angles (0 °, 90 ° to 150 °, 0 ° ± 5 °) In surface wave devices,
An elastic surface characterized by using an alloy containing Ag as a main component, 0.1 wt% to 3.0 wt% Pd, and 0.1 wt% to 3.0 wt% Cu as the material of the IDT electrode. Wave device.
オイラー角が(0°,80°〜140°,0°±5°)であるタンタル酸リチウム(LiTaO)の主表面上にラブ波の伝搬方向に沿ってIDT電極を配置して構成した弾性表面波デバイスにおいて、
前記IDT電極の材料としてAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金を用いたこと特徴とする弾性表面波デバイス。
Elasticity constructed by arranging IDT electrodes along the propagation direction of Love waves on the main surface of lithium tantalate (LiTaO 3 ) with Euler angles (0 °, 80 ° -140 °, 0 ° ± 5 °) In surface wave devices,
An elastic surface characterized by using an alloy containing Ag as a main component, 0.1 wt% to 3.0 wt% Pd, and 0.1 wt% to 3.0 wt% Cu as the material of the IDT electrode. Wave device.
オイラー角が(0°,125°〜146°,0°±5°)であるLiTaO基板にSH波を励起するIDT電極を形成した弾性表面波デバイスにおいて、
前記IDT電極の材料としてAgを主成分とし、0.1wt%〜3.0wt%のPdと、0.1wt%〜3.0wt%のCuとを含有した合金を用いると共に規格化膜厚H/λ(Hは電極膜厚、λは励起されるSH波の波長)を0.2%から5%としたこと特徴とする弾性表面波デバイス。
In a surface acoustic wave device in which an IDT electrode for exciting SH waves is formed on a LiTaO 3 substrate having an Euler angle (0 °, 125 ° to 146 °, 0 ° ± 5 °),
As an IDT electrode material, an alloy containing Ag as a main component, 0.1 wt% to 3.0 wt% of Pd, and 0.1 wt% to 3.0 wt% of Cu is used and a normalized film thickness H / A surface acoustic wave device characterized in that λ (H is the electrode film thickness, λ is the wavelength of the excited SH wave) is 0.2% to 5%.
請求項1乃至3に記載のいずれかに記載の弾性表面波デバイスのIDT電極の材料をAgを主成分とし、0.1wt%〜3.0wt%のAuと、0.1wt%〜3.0wt%のCuとを含有した合金に代えたこと特徴とする弾性表面波デバイス。The material of the IDT electrode of the surface acoustic wave device according to any one of claims 1 to 3 is mainly composed of Ag, 0.1 wt% to 3.0 wt% Au, and 0.1 wt% to 3.0 wt%. A surface acoustic wave device characterized in that the surface acoustic wave device is replaced with an alloy containing 1% Cu. 請求項1乃至3に記載のいずれかに記載の弾性表面波デバイスのIDT電極の材料をAgを主成分とし、0.1wt%〜4.0at%のAuと、0〜5.0at%のCuと、0〜1.0at%のTiと、0〜1.0at%のSnとを含有した合金に代えたこと特徴とする弾性表面波デバイス。The material of the IDT electrode of the surface acoustic wave device according to any one of claims 1 to 3, comprising Ag as a main component, 0.1 wt% to 4.0 at% Au, and 0 to 5.0 at% Cu. And a surface acoustic wave device that is replaced with an alloy containing 0 to 1.0 at% Ti and 0 to 1.0 at% Sn. 所定の配線が施されたプリント基板と、その上にフリップチップ実装した弾性表面波素子と、前記弾性表面波素子と前記プリント基板との間に気密空間を確保するようにこれらの上面を覆う絶縁性の気密部材とを備えた弾性表面波デバイスにおいて、
前記弾性表面波素子が請求項1乃至5のいずれかに該当することを特徴とする弾性表面波デバイス。
A printed circuit board on which a predetermined wiring is provided, a surface acoustic wave element flip-chip mounted on the printed circuit board, and an insulating covering the upper surface so as to secure an airtight space between the surface acoustic wave element and the printed circuit board In a surface acoustic wave device comprising a gas-tight airtight member,
6. The surface acoustic wave device according to claim 1, wherein the surface acoustic wave element corresponds to any one of claims 1 to 5.
所定の配線が施されたプリント基板と、その上にフリップチップ実装した弾性表面波素子と、前記弾性表面波素子と前記プリント基板との間に気密空間を確保するようにこれらの上面を覆う絶縁性の気密部材と、該気密部材の外面に付着した第1の金属膜と、第1の金属膜とは異なる金属からなる第2の金属膜とを順次付着した多層金属膜と、該多層金属膜の上に樹脂層とを備えた弾性表面波デバイスにおいて、
前記弾性表面波素子が請求項1乃至5のいずれかに該当することを特徴とする弾性表面波デバイス。
A printed circuit board on which a predetermined wiring is provided, a surface acoustic wave element flip-chip mounted on the printed circuit board, and an insulating covering the upper surface so as to secure an airtight space between the surface acoustic wave element and the printed circuit board Airtight member, a first metal film adhering to the outer surface of the airtight member, a second metal film made of a metal different from the first metal film, and a multi-layer metal film In a surface acoustic wave device including a resin layer on a film,
6. The surface acoustic wave device according to claim 1, wherein the surface acoustic wave element corresponds to any one of claims 1 to 5.
JP2003201639A 2003-07-25 2003-07-25 Surface acoustic wave device Pending JP2005045432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003201639A JP2005045432A (en) 2003-07-25 2003-07-25 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003201639A JP2005045432A (en) 2003-07-25 2003-07-25 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2005045432A true JP2005045432A (en) 2005-02-17

Family

ID=34261641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201639A Pending JP2005045432A (en) 2003-07-25 2003-07-25 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2005045432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104057A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Surface acoustic wave device
FR2998420A1 (en) * 2012-11-22 2014-05-23 Centre Nat Rech Scient ELASTIC SURFACE WAVE TRANSDUCER SPRAYING ON LITHIUM NIOBATE SUBSTRATE OR LITHIUM TANTALATE.
JP2015073308A (en) * 2014-11-26 2015-04-16 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 Elastic wave device
JPWO2017217197A1 (en) * 2016-06-14 2019-03-22 株式会社村田製作所 Multiplexer, high frequency front end circuit and communication device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104057A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Surface acoustic wave device
JP4613779B2 (en) * 2005-09-30 2011-01-19 セイコーエプソン株式会社 Surface acoustic wave device
FR2998420A1 (en) * 2012-11-22 2014-05-23 Centre Nat Rech Scient ELASTIC SURFACE WAVE TRANSDUCER SPRAYING ON LITHIUM NIOBATE SUBSTRATE OR LITHIUM TANTALATE.
WO2014079912A1 (en) * 2012-11-22 2014-05-30 Centre National De La Recherche Scientifique (C.N.R.S) Surface acoustic wave transducer of which the waves propagate on a lithium niobate or lithium tantalate substrate
JP2015073308A (en) * 2014-11-26 2015-04-16 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 Elastic wave device
JPWO2017217197A1 (en) * 2016-06-14 2019-03-22 株式会社村田製作所 Multiplexer, high frequency front end circuit and communication device
US10637439B2 (en) 2016-06-14 2020-04-28 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device
US10972073B2 (en) 2016-06-14 2021-04-06 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device
US11336261B2 (en) 2016-06-14 2022-05-17 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device

Similar Documents

Publication Publication Date Title
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
CN104702239B (en) Ladder-type acoustic wave filter and the antenna diplexer using the acoustic wave filter
JP4917396B2 (en) Filters and duplexers
JP5828032B2 (en) Elastic wave element and antenna duplexer using the same
JP6534366B2 (en) Elastic wave device
WO2016208447A1 (en) Multiplexer, high-frequency front-end circuit, and communication device
JP4279271B2 (en) Surface acoustic wave device and manufacturing method thereof
JP5187444B2 (en) Surface acoustic wave device
WO2006114930A1 (en) Boundary acoustic wave device
JP6806907B2 (en) Elastic wave device, duplexer and communication device
JP7278305B2 (en) Acoustic wave device, branching filter and communication device
JP6432512B2 (en) Surface acoustic wave device, electronic component, and method of manufacturing surface acoustic wave device
JP6939761B2 (en) Elastic wave device and electronic component module
JP6854891B2 (en) Elastic wave device, demultiplexer and communication device
US11863155B2 (en) Surface acoustic wave element
JP2014175885A (en) Acoustic wave element and electronic apparatus using the same
JPWO2005086345A1 (en) Boundary acoustic wave device
JP2009010927A (en) Elastic boundary wave substrate and elastic boundary wave functional element using the substrate
JP7493306B2 (en) Elastic Wave Device
JP2001094393A (en) Surface acoustic wave device and communication equipment
JP2001308675A (en) Surface wave filter and common device, communication device
EP1635458B1 (en) Surface acoustic wave device
JP2005045432A (en) Surface acoustic wave device
JP2002152003A (en) Surface acoustic wave filter
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element