[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005044865A - Semiconductor package device and its manufacturing method - Google Patents

Semiconductor package device and its manufacturing method Download PDF

Info

Publication number
JP2005044865A
JP2005044865A JP2003200646A JP2003200646A JP2005044865A JP 2005044865 A JP2005044865 A JP 2005044865A JP 2003200646 A JP2003200646 A JP 2003200646A JP 2003200646 A JP2003200646 A JP 2003200646A JP 2005044865 A JP2005044865 A JP 2005044865A
Authority
JP
Japan
Prior art keywords
solder
semiconductor package
protruding
electrodes
package device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200646A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kosugi
智之 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2003200646A priority Critical patent/JP2005044865A/en
Publication of JP2005044865A publication Critical patent/JP2005044865A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1705Shape
    • H01L2224/17051Bump connectors having different shapes

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor package device which is equipped with a soldered joint that has excellent resistance to stress induced by a physical external force and very reliable, and to provide a method of easily manufacturing the same. <P>SOLUTION: Bump electrodes 1e1 provided in the peripheral parts of CSP1 which are liable to undergo a physical external force and the corresponding terminal electrodes 2a of a wiring board 2 are joined together with concave solder bumps 3a whose sides are formed concave as one goes to the central part, and other bump electrodes 1e2 and the corresponding terminal electrodes 2a are joined together with convex solder bumps 3b whose sides are formed convex as one goes to the central part. Concentrating stress acting on the joint surfaces of the concave solder bumps 3a with the tip surface of the projecting electrode 1e1 and the terminal electrode 2a is relaxed by stress induced by a physical external force, so that crack can be restrained from occurring in a joint, or a joint itself can be protected against damage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、チップサイズパッケージ(Chip Size Package;以下、CSPと略記する)を搭載した半導体パッケージ装置とその製造方法に関する。
【0002】
【従来の技術】
従来、チップサイズ半導体パッケージつまりCSPを製造する方法として、半導体ウエハの状態でウエハを加工し入出力端子とこれに対応する突起電極を形成した後に樹脂封止を行う、ウエハレベル半導体パッケージの製造方法が知られている。樹脂封止した後は、各突起電極の露出させた先端面に半田バンプ等の金属バンプを配置した後、個々のチップサイズに切り出し、複数のCSPを一括製造する(例えば特許文献1)。
【0003】
【特許文献1】
特開2000−188352(第3頁、図2)
【0004】
【発明が解決しようとする課題】
上述のようにして製造されたCSPは、通常、配線基板上の所定位置に半田接合により搭載される。この場合、各突起電極と対応する配線基板上の端子電極とを半田バンプを介して対向配置させた後、リフロー炉中に通すリフロー処理を行い、半田バンプを溶融させ、対応する突起電極と端子電極とを半田バンプを介して接合する。これにより、CSPの配線基板上への搭載が完了する。
【0005】
上述の配線基板上に搭載されたCSPに対しては、基板実装工程や、携帯機器等の製品に組み込まれた後の流通過程或いは製品として使用される際等、様々な状況下において物理的外力が加えられ、これにより半田接合部分にクラックが発生したり半田接合が破断したりし、機器の動作不良が引き起こされる。この場合、その物理的外力による応力は、半田バンプが設けられた半田接合エリアの周辺部において強く作用する傾向があり、そのうちでも特にコーナー部における応力が最も大きく、半田接合不良はコーナー部において最も発生し易い。
【0006】
本発明は、物理的外力による応力に対する耐久性に優れた半田接合部を備えた信頼性の高い半導体パッケージ装置とそれを容易に製造する方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明の半導体パッケージ装置は、複数の入出力端子電極にそれぞれ導電接続された複数の突起電極が所定のエリアに配置され、前記突起電極間に封止材が設けられた半導体パッケージを、複数の端子電極を有する配線基板に、互いに対応する前記突起電極と前記端子電極とをそれぞれ半田バンプを介して接合された半導体パッケージ装置であって、複数の前記半田バンプのうちの少なくとも前記エリアの周辺のコーナー部に位置する半田バンプはストレート状または高さ方向における中央部が凹んだ柱状をなしていることを特徴とするものである。
【0008】
また、本発明の半導体パッケージ装置の製造方法は、半導体ウエハの一方の主面の所定のチップサイズエリア毎に複数の入出力端子電極にそれぞれ導電接続された複数の突起電極を立設し、前記突起電極間に絶縁材料からなる封止材を前記突起電極間の各先端面が露出するように充填し、前記突起電極の各先端面に、所定の高さの半田ボールを形成し、前記半導体ウエハを前記チップサイズエリア毎に切断して、複数のチップサイズ半導体パッケージとなし、前記チップサイズ半導体パッケージの少なくとも1つを、前記各突起電極が前記配線基板の端子電極に前記半田ボールを介し対向させて配置し、リフロー処理により前記半田ボールを溶融させて、対応する前記突起電極と前記配線基板の端子電極とを接合してなる半導体パッケージ装置の製造方法であって、前記チップサイズエリアの少なくとも周辺部のコーナー部に位置する突起電極の各先端面に形成する半田ボールの高さを、前記チップサイズエリアの中央部に位置する突起電極の各先端面に形成する半田ボールの高さよりも小さくなした前記チップサイズ半導体パッケージを前記配線基板と対向した状態でリフロー処理を行い、前記チップサイズエリアのコーナー部に位置する突起電極の各先端面に形成する半田ボールをストレート状または高さ方向における中央部が凹んだ柱状となすことを特徴とするものである。
【0009】
本発明の半導体パッケージ装置およびその製造方法によれば、物理的外力が最も加わり易いチップ周辺コーナー部の半田バンプを、ストレート状または高さ方向における中央部が凹んだ柱状に形成するので、換言すれば、半田バンプの高さ方向の中央部の面積に対し半田バンプの接合面における面積を同等または大きくするので、半田バンプ周縁部への応力集中を低減する作用が生じ、最も大きい応力が作用するチップ周辺コーナー部の半田バンプにクラックが発生したり或いは接合状態そのものが破壊される不具合の発生が、顕著に抑制される。その結果、耐久性に優れた半田接合部を備えた信頼性の高い半導体パッケージ装置を提供することができる。
【0010】
【発明の実施の形態】
本発明の実施形態としての半導体パッケージ装置について、図1乃至図2に基づき説明する。図1は本実施形態の半導体パッケージ装置を示す模式的正断面図、図2はそのII−II平断面図である。
【0011】
本半導体パッケージ装置は、図1に示されるように、CSP1が配線基板2上の所定位置に半田接合により搭載されてなる。
【0012】
CSP1は、シリコンウエハをチップサイズに切断したシリコン基板1aを備えている。このシリコン基板1aには、集積回路(不図示)が加工形成されており、その入出力端子として複数の電極パッド1bが一方の主面にマトリクス状に配列されている。この一方の主面には、各電極パッド1bの中央部を除いて、絶縁膜1cが被覆されている。各電極パッド1bの露出された中央部表面には、絶縁膜1cの表面にパターン形成された配線1dの一端部がそれぞれ導通接続されている。これら配線1dのそれぞれの他端には、突起電極1eがそれぞれ立設されている。そして、それら突起電極1e間には、それぞれの先端面を露出させて封止樹脂(封止材)1fが充填設置されている。なお、本実施形態のCSP1では、電極パッド1bが配設される側の主面(以下、底面という)全体が、突起電極1eの配設エリアである。
【0013】
図2に示すように、突起電極1eは、CSP1の底面全体にわたり、例えば、5行×6列の配列でマトリクス状に配設されている。すなわち、電極パッド1bの配列に拘わらず突起電極1eが5行×6列の配列となるように、各配線1dがパターン形成されている。ただし、突起電極1eの数は、図面を簡略化したものであり、実際にはもっと多数の行と列からなるマトリクス配列となされている。
【0014】
以上の様に構成されたCSP1は、各突起電極1eの先端を対応する配線基板2側の端子電極2aにそれぞれ半田バンプ3を介して接合され、配線基板2の所定位置に搭載されている。
【0015】
ここで、半田バンプ3は、突起電極の配設エリアつまりCSP1の底面の周辺部に配設された突起電極1e1上に配置された半田バンプ3は、断面積が小さく、かつ、ストレート状、または側面が中央部に向かうに従い凹んだ湾曲面をなす柱状に形成された凹型半田バンプ3aとされ、周辺部以外の突起電極1e2上に配置された半田バンプ3は、凹型半田バンプ3aより断面積が大きく、かつ、側面が中央部に向かうに従い突き出た湾曲面をなす柱状に形成された凸型半田バンプ3bとされている。
【0016】
ここで、図3に基づいて、本願の発明の作用について説明する。半田バンプには、シリコン基板1aと配線基板2との線膨張係数の相違に起因する応力が発生する。この応力は、高さ方向における中央部が突き出た凸型半田バンプ3bにおいては、図3に図示されている如く、断面積が大きい中央部から半田バンプ3bと突起電極1e2との界面である接合面Sa1に作用する。ここで、接合面Sa1は半田バンプ3bの中央部よりも断面積が小さいため、半田バンプ3bの周縁部には応力が集中する。これにより、凸型半田バンプ3bは破壊されやすくなる。要するに、半田バンプ3bの破壊は、シリコン基板1aと配線基板2との線膨張係数の相違に起因して生ずる、主として剪断応力の集中によるものである。これに対し、ストレート状または高さ方向における中央部が凹んだ凹型半田バンプ3aでは、図3に図示されている如く、同様に、応力は、凹型半田バンプ3aの中央部から凹型半田バンプ3aと突起電極1e1との界面である接合面Sa2に作用するが、この場合には、凹型半田バンプ3aの中央部の断面積に対し接合面Sa2の断面積が同等または大きいため、凹型半田バンプ3aの周縁部への応力の集中は低減されることになる。従って、その物理的外力による応力が強く作用する半田接合エリアの周辺部、特に、最も大きく作用するコーナー部に凹型半田バンプ3aを形成すれば、応力集中が低減され、突起電極と端子電極との接合部におけるクラックの発生或いは接合状態そのものの破壊等を抑制することができる。
【0017】
以上のように、本実施形態の半導体パッケージ装置によれば、CSP1の突起電極1eの配設エリアつまりその底面において、周辺部の突起電極1e1上にはストレート状または高さ方向における中央部が凹んだ凹型半田バンプ3aを、周辺部以外の突起電極1e2上には高さ方向における中央部が突き出た凸型半田バンプ3bを、それぞれ選択的に配置したから、物理的外力に応じて作用する応力により半田バンプと突起電極や接続端子との接合部にクラックが発生したり、或いは接合状態そのものが破壊される不具合の発生が顕著に抑制されるとともに、半導体パッケージ全体の配線基板に対する実装接続強度が増強される。
【0018】
次に、上記半導体パッケージ装置の製造方法について、図4乃至図7に基づき説明する。
【0019】
まず、シリコンウエハの状態で所定のチップサイズエリア毎に図1に示すCSP1が加工形成されたウエハレベルシリコン基板を準備する。
【0020】
次に、図4に示すように、上記ウエハレベルシリコン基板10の封止樹脂層10aが被着された底面10bにハードマスク11を重ね合わせ、半田印刷を行う。そのハードマスク11には、図5に示すように、チップサイズエリアAc毎に大、小2種類の平面形状が楕円の透孔11b、11aがマトリクス状に穿設されている。これら透孔11a、11bは、CSP1の突起電極1e1、1e2(図1参照)に対応させて穿設されており、チップサイズエリアAcの周辺部に配設された突起電極1e1には小透孔11aが、周辺部以外の突起電極1e2には大透孔11bが、それぞれ対応させて配設されている。このハードマスク11を、ウエハレベルシリコン基板10の底面10bに、合せマーク(不図示)を基準に位置を合せながら重ね合わせる。なお、透孔11a、11bの平面形状は、楕円でなく真円であってもよい。
【0021】
次に、ハードマスク11上に半田ペーストpを供給し、スキージ12をハードマスク11表面に摺接させつつ矢印方向に走行させ、図6に示すように半田ペーストpをハードマスク11表面に沿って薄く延ばしながら大、小の透孔11a、11b内に充填し、突起電極1e1および突起電極1e2の各先端面に、それぞれ、半田ボール形成層pa、pbを形成する。
【0022】
次いで、半田ペーストpが固化しないうちにハードマスク11をウエハレベルシリコン基板10の底面10bからその直角方向に向けて取り外し、この後、リフロー炉に通してリフロー処理を行うと、半田ボール形成層pa、pbが溶融して、表面張力によりボール状に変形し、図7に示すように、チップサイズエリアAc毎に各突起電極1eの先端面に大、小2種類の半田ボール13b、13aがそれぞれ形成されたウエハレベル半導体パッケージPGwが得られる。この場合、図5に示すハードマスク11の大、小透孔11b、11aの配置に従い、チップサイズエリアAcの周辺部には小半田ボール13aが配置され、その他の部位には大半田ボール13bが配置された構成となっている。
【0023】
これら大半田ボール13bと小半田ボール13aとは、図8に示すように、半田の量が異なると共に、高さがGだけ異なっている。この高さギャップGは、ハードマスク11の大、小透孔11b、11aの容積比によって異なってくる。従って、図1に示す凹型半田バンプ3aと凸型半田バンプ3bを形成するのに必要な半田ボール13a、13b間の高さギャップGは、ハードマスク11の大、小透孔11b、11aの容積比つまり大、小透孔11b、11aの開口面積或いはハードマスク11の厚さを適正に設定することにより得られる。
【0024】
次に、図7に図示された大、小、半田ボール13b、13aが配置形成されたウエハレベル半導体パッケージPGwを、チップサイズエリアAcを区画する切離ラインLに沿って切断する。これにより、図8に示すように、周辺部の突起電極1e1先端面に小半田ボール13aが形成され、その他の突起電極1e2先端面に大半田ボール13bが形成され、全体として大、小、半田ボール13b、13aがマトリクス配置で設置されたCSP1が、一括して効率良く得られる。
【0025】
次いで、上述のようにして製造された半田ボール付きCSP1を、配線基板2の所定位置に、突起電極1eとこれらに対応する接続端子2aが大、小、半田ボール13b、13aを介して対向するように位置合せして載置する。なお、この段階では、小半田ボール13aに配線基板2の対応する接続端子2aが接触していない。
【0026】
この後、上述のCSP1が載置された配線基板2をリフロー炉に通す。これにより、大、小、半田ボール13b、13aが溶融し、各半田ボール13b、13aがCSP1の重量および自重により、対応する突起電極1e2、1e1先端面と接続端子2a間で圧縮され、側面が高さ方向の中央部に向かうに従い突き出た湾曲面をなす略柱形状になる。この際、大半田ボール13bは配線基板2の重量により大きく変形するので、小半田ボール13aの上端が配線基板2に形成された端子電極に接触するようになり、漸次、この端子電極側に移動する。加えて、このリフロー処理の後、溶融半田が冷却されて固化する際に体積が膨張し、特に大半田ボール13bは高さ方向への膨張の度合いが大きく、これにより、CSP1が若干押し戻される状態となる。その結果、小半田ボール13aを挟持する周辺部突起電極1e1と対応する接続端子2aの間隔もその分だけ広がるが、小半田ボール13aの半田量が少ないために、この小半田ボール13aが溶融した後に固化して形成される半田バンプ3は、図1に示されるように、ストレート状または側面が中央部に向かうに従い凹んだ湾曲面をなす柱状の凹型半田バンプ3aとなる。このようにして、図1に示される半導体パッケージ装置が比較的少ない工数で容易に製造される。
【0027】
以上のように、本実施形態の半導体パッケージ装置の製造方法によれば、ウエハレベルにおいて、チップサイズエリアの周辺部の突起電極1e1に対応させて凹型半田バンプ3aを形成するための小半田ボール13aを、その他の突起電極1e2に対しては凸型半田バンプ3bを形成するための大半田ボール13bを、それぞれ形成し、この後、個々のCSP1に切離し、こうして得られたCSP1を配線基板2に搭載した状態でリフロ−処理を行い、搭載されたCSP1のバンプエリア周辺の突起電極1e1には物理的外力による応力の接合面への集中を低減するストレート状または高さ方向における中央部が凹んだ凹型半田バンプ3aを形成し、それら以外の突起電極1e2には高さ方向における中央部が突き出た凸型半田バンプ3bを形成するので、半田バンプによる接合強度が大きく且つ信頼性の高い高品質の半導体パッケージ装置を、少ない工数で容易に製造することができる。
【0028】
なお、本発明の半導体パッケージ装置とその製造方法については、上記実施形態に限定されるものではない
【0029】
例えば、凹型半田バンプ3aはチップサイズエリアAcの周辺部全てに形成せずに周辺部コーナーにのみ形成するようにしてもよく、また、全ての半田バンプを凹型半田バンプ3aとしてもよい。
【0030】
また、大きさの異なる半田ボールを選択配置する方法としては、印刷法に限らず、大きさの異なる複数種類の半田ボールを吸着する治具を用い、それら複数種類の半田ボールを治具で決められた所定の配置で一括付着させる方法を用いることもできる。
【0031】
【発明の効果】
本発明の半導体パッケージ装置およびその製造方法によれば、物理的外力が最も加わり易いチップ周辺コーナー部の半田バンプを、ストレート状または高さ方向における中央部が凹んだ柱状に形成するので、換言すれば、半田バンプの高さ方向の中央部の面積に対し半田バンプの接合面における面積を同等または大きくするので、半田バンプ周縁部への応力集中を低減する作用が生じ、最も大きい応力が作用するチップ周辺コーナー部の半田バンプにクラックが発生したり或いは接合状態そのものが破壊される不具合の発生が、顕著に抑制される。その結果、耐久性に優れた半田接合部を備えた信頼性の高い半導体パッケージ装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の半導体パッケージ装置の一実施形態を示す模式的側断面図である。
【図2】上記半導体パッケージ装置を示すII−II平断面図である。
【図3】上記半導体パッケージ装置における半田バンプに作用する応力を説明する模式的説明図である。
【図4】本発明の半導体パッケージ装置の製造方法の一実施形態における印刷工程を示す説明図である。
【図5】上記印刷工程で用いるマスクの一部分を示す部分平面図である。
【図6】上記印刷工程における作用を示す部分拡大説明図である。
【図7】上記製造方法により製造されたウエハレベル半導体パッケージを示す平面図である。
【図8】上記ウエハレベル半導体パッケージの要部を示す部分的側断面図である。
【符号の説明】
1…CSP
1e、1e1、1e2…突起電極
1f…封止樹脂
2…配線基板
2a…端子電極
3…半田バンプ
3a…凹型半田バンプ
3b…凸型半田バンプ
10…ウエハレベルシリコン基板
11…ハードマスク
11a、11b…透孔
12…スキージ
13…半田ボール
13a…小半田ボール
13b…大半田ボール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor package device mounted with a chip size package (hereinafter abbreviated as CSP) and a manufacturing method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method of manufacturing a chip size semiconductor package, that is, a CSP, a wafer level semiconductor package manufacturing method in which a wafer is processed in the state of a semiconductor wafer to form an input / output terminal and a protruding electrode corresponding thereto, and then resin sealing is performed. It has been known. After the resin sealing, metal bumps such as solder bumps are arranged on the exposed end surfaces of the protruding electrodes, and then cut into individual chip sizes to manufacture a plurality of CSPs (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-188352 (3rd page, FIG. 2)
[0004]
[Problems to be solved by the invention]
The CSP manufactured as described above is usually mounted at a predetermined position on the wiring board by solder bonding. In this case, after each protruding electrode and the corresponding terminal electrode on the wiring board are arranged to face each other via the solder bump, a reflow process is performed by passing through a reflow furnace to melt the solder bump, and the corresponding protruding electrode and terminal The electrodes are joined via solder bumps. This completes the mounting of the CSP on the wiring board.
[0005]
For the CSP mounted on the above-mentioned wiring board, physical external force is used under various circumstances such as board mounting process, distribution process after being incorporated in products such as portable devices, or when used as products. As a result, cracks are generated in the solder joints or the solder joints are broken, resulting in malfunction of the device. In this case, the stress due to the physical external force tends to act strongly in the peripheral portion of the solder joint area where the solder bumps are provided, and among them, the stress at the corner portion is the largest, and the solder joint failure is the most at the corner portion. It is easy to generate.
[0006]
An object of the present invention is to provide a highly reliable semiconductor package device having a solder joint excellent in durability against stress caused by a physical external force and a method for easily manufacturing the semiconductor package device.
[0007]
[Means for Solving the Problems]
In the semiconductor package device of the present invention, a plurality of protruding electrodes that are conductively connected to a plurality of input / output terminal electrodes are arranged in a predetermined area, and a semiconductor package in which a sealing material is provided between the protruding electrodes A semiconductor package device in which the protruding electrode and the terminal electrode corresponding to each other are joined to a wiring board having a terminal electrode via a solder bump, respectively, and at least around the area of the plurality of the solder bumps The solder bumps located at the corners are characterized by a straight shape or a columnar shape with a recessed central portion in the height direction.
[0008]
Further, in the method for manufacturing a semiconductor package device of the present invention, a plurality of protruding electrodes that are conductively connected to a plurality of input / output terminal electrodes for each predetermined chip size area on one main surface of a semiconductor wafer are provided, A sealing material made of an insulating material is filled between the projecting electrodes so that the respective front end surfaces between the projecting electrodes are exposed, solder balls having a predetermined height are formed on the respective front end surfaces of the projecting electrodes, and the semiconductor A wafer is cut into each chip size area to form a plurality of chip size semiconductor packages, and at least one of the chip size semiconductor packages is opposed to the terminal electrodes of the wiring board via the solder balls. A semiconductor package device in which the solder balls are melted by a reflow process and the corresponding protruding electrodes and terminal electrodes of the wiring board are joined. The height of the solder ball formed on each tip surface of the protruding electrode located at the corner of at least the peripheral portion of the chip size area is set to the height of the protruding electrode positioned at the center of the chip size area. Each tip surface of the protruding electrode located at the corner portion of the chip size area is subjected to a reflow process in a state where the chip size semiconductor package made smaller than the height of the solder ball formed on each tip surface is opposed to the wiring board. The solder balls to be formed in a straight shape or a columnar shape with a recessed central portion in the height direction.
[0009]
According to the semiconductor package device and the manufacturing method thereof of the present invention, the solder bumps at the corners around the chip, to which physical external force is most easily applied, are formed in a straight shape or a column shape having a recessed central portion in the height direction. For example, since the area of the solder bump bonding surface is equal to or larger than the area of the central portion of the solder bump in the height direction, the effect of reducing stress concentration on the solder bump peripheral edge occurs, and the largest stress acts. Occurrence of defects that cause cracks in the solder bumps at the corners around the chip or the bonded state itself is significantly suppressed. As a result, it is possible to provide a highly reliable semiconductor package device including a solder joint having excellent durability.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A semiconductor package device as an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic front sectional view showing a semiconductor package device of this embodiment, and FIG. 2 is a II-II plane sectional view thereof.
[0011]
As shown in FIG. 1, the semiconductor package device includes a CSP 1 mounted on a predetermined position on a wiring board 2 by solder bonding.
[0012]
The CSP 1 includes a silicon substrate 1a obtained by cutting a silicon wafer into a chip size. An integrated circuit (not shown) is formed on the silicon substrate 1a, and a plurality of electrode pads 1b as input / output terminals are arranged in a matrix on one main surface. This one main surface is covered with an insulating film 1c except for the central portion of each electrode pad 1b. One end of the wiring 1d patterned on the surface of the insulating film 1c is electrically connected to the exposed central surface of each electrode pad 1b. A protruding electrode 1e is erected on the other end of each wiring 1d. Between the protruding electrodes 1e, a sealing resin (sealing material) 1f is filled and installed with the respective end surfaces exposed. In the CSP 1 of the present embodiment, the entire main surface (hereinafter referred to as the bottom surface) on the side where the electrode pad 1b is disposed is an area where the protruding electrode 1e is disposed.
[0013]
As shown in FIG. 2, the protruding electrodes 1 e are arranged in a matrix in an array of, for example, 5 rows × 6 columns over the entire bottom surface of the CSP 1. That is, each wiring 1d is patterned so that the protruding electrodes 1e are arranged in 5 rows × 6 columns regardless of the arrangement of the electrode pads 1b. However, the number of the protruding electrodes 1e is a simplification of the drawing, and is actually a matrix array composed of a larger number of rows and columns.
[0014]
The CSP 1 configured as described above is mounted at a predetermined position on the wiring board 2 by bonding the tip of each protruding electrode 1 e to the corresponding terminal electrode 2 a on the wiring board 2 side via the solder bump 3.
[0015]
Here, the solder bump 3 has a small sectional area and a straight shape, or the solder bump 3 disposed on the protruding electrode 1e1 disposed in the peripheral area of the bottom surface of the CSP1. The solder bumps 3a are formed in a columnar shape having a curved surface that is concave as the side faces the center, and the solder bumps 3 disposed on the protruding electrodes 1e2 other than the peripheral part have a cross-sectional area that is larger than that of the concave solder bumps 3a. The convex solder bumps 3b are formed in a columnar shape that is large and has a curved surface that protrudes toward the center.
[0016]
Here, the operation of the present invention will be described with reference to FIG. A stress caused by a difference in linear expansion coefficient between the silicon substrate 1a and the wiring substrate 2 is generated in the solder bump. As shown in FIG. 3, in the convex solder bump 3b whose central portion protrudes in the height direction, this stress is a junction that is an interface between the solder bump 3b and the protruding electrode 1e2 from the central portion having a large cross-sectional area. It acts on the surface Sa1. Here, since the joint surface Sa1 has a smaller cross-sectional area than the central portion of the solder bump 3b, stress is concentrated on the peripheral portion of the solder bump 3b. Thereby, the convex solder bump 3b is easily destroyed. In short, the breakage of the solder bumps 3b is mainly due to the concentration of shear stress caused by the difference in the linear expansion coefficient between the silicon substrate 1a and the wiring substrate 2. On the other hand, in the concave solder bump 3a having a straight shape or a recessed central portion in the height direction, similarly, as shown in FIG. 3, stress is applied from the central portion of the concave solder bump 3a to the concave solder bump 3a. This acts on the joint surface Sa2 that is the interface with the protruding electrode 1e1, but in this case, the cross-sectional area of the joint surface Sa2 is equal to or larger than the cross-sectional area of the central portion of the concave solder bump 3a. The concentration of stress on the peripheral edge will be reduced. Therefore, if the concave solder bumps 3a are formed in the peripheral portion of the solder joint area where the stress due to the physical external force acts strongly, particularly the corner portion where the stress acts most greatly, the stress concentration is reduced, and the protrusion electrode and the terminal electrode are reduced. Generation | occurrence | production of the crack in a junction part or destruction of the joining state itself can be suppressed.
[0017]
As described above, according to the semiconductor package device of the present embodiment, in the area where the protruding electrode 1e of the CSP 1 is disposed, that is, the bottom surface thereof, the central portion in the straight or height direction is recessed on the protruding electrode 1e1 in the peripheral portion. Since the concave solder bumps 3a are selectively disposed on the protruding electrodes 1e2 other than the peripheral portions, and the convex solder bumps 3b protruding in the center in the height direction are selectively disposed, the stress acting according to the physical external force As a result, the occurrence of cracks in the joints between the solder bumps and the protruding electrodes and connection terminals, or the occurrence of defects that destroy the bonding state itself, is significantly suppressed, and the mounting connection strength of the entire semiconductor package to the wiring board is reduced. Be enhanced.
[0018]
Next, a method for manufacturing the semiconductor package device will be described with reference to FIGS.
[0019]
First, a wafer level silicon substrate is prepared in which the CSP 1 shown in FIG. 1 is processed and formed for each predetermined chip size area in a silicon wafer state.
[0020]
Next, as shown in FIG. 4, the hard mask 11 is superimposed on the bottom surface 10b of the wafer level silicon substrate 10 on which the sealing resin layer 10a is adhered, and solder printing is performed. As shown in FIG. 5, in the hard mask 11, through holes 11b and 11a having two large and small planar shapes are formed in a matrix for each chip size area Ac. These through holes 11a and 11b are formed so as to correspond to the protruding electrodes 1e1 and 1e2 (see FIG. 1) of the CSP 1, and the protruding electrodes 1e1 disposed in the peripheral portion of the chip size area Ac have small through holes. The large through holes 11b are arranged corresponding to the protruding electrodes 1e2 other than the peripheral portion 11a. The hard mask 11 is overlaid on the bottom surface 10b of the wafer level silicon substrate 10 while aligning the positions with reference to an alignment mark (not shown). The planar shape of the through holes 11a and 11b may be a perfect circle instead of an ellipse.
[0021]
Next, the solder paste p is supplied onto the hard mask 11, and the squeegee 12 is caused to travel in the direction of the arrow while being in sliding contact with the surface of the hard mask 11, so that the solder paste p is moved along the surface of the hard mask 11 as shown in FIG. While extending thinly, the large and small through holes 11a and 11b are filled, and solder ball forming layers pa and pb are formed on the respective tip surfaces of the protruding electrode 1e1 and the protruding electrode 1e2.
[0022]
Next, before the solder paste p is solidified, the hard mask 11 is removed from the bottom surface 10b of the wafer level silicon substrate 10 in the direction perpendicular thereto, and then subjected to a reflow process through a reflow furnace. Pb melts and deforms into a ball shape due to surface tension. As shown in FIG. 7, two large and small solder balls 13b and 13a are formed on the tip surface of each protruding electrode 1e for each chip size area Ac. The formed wafer level semiconductor package PGw is obtained. In this case, according to the arrangement of the large and small through holes 11b and 11a of the hard mask 11 shown in FIG. 5, the small solder balls 13a are arranged in the peripheral portion of the chip size area Ac, and the large solder balls 13b are arranged in other portions. It is an arranged configuration.
[0023]
As shown in FIG. 8, the large solder balls 13b and the small solder balls 13a differ in the amount of solder and in height by G. The height gap G differs depending on the volume ratio of the large and small through holes 11b and 11a of the hard mask 11. Therefore, the height gap G between the solder balls 13a and 13b necessary for forming the concave solder bump 3a and the convex solder bump 3b shown in FIG. 1 is large in the hard mask 11 and the volume of the small through holes 11b and 11a. It can be obtained by appropriately setting the ratio, that is, the opening area of the large through holes 11b and 11a or the thickness of the hard mask 11.
[0024]
Next, the wafer level semiconductor package PGw on which the large and small solder balls 13b and 13a shown in FIG. 7 are arranged and cut is cut along a cutting line L that divides the chip size area Ac. As a result, as shown in FIG. 8, a small solder ball 13a is formed on the tip surface of the protruding electrode 1e1 in the peripheral portion, and a large solder ball 13b is formed on the tip surface of the other protruding electrode 1e2. CSP1 in which the balls 13b and 13a are installed in a matrix arrangement can be obtained efficiently in a lump.
[0025]
Next, the solder ball CSP 1 manufactured as described above is placed at a predetermined position on the wiring board 2 so that the protruding electrodes 1e and the corresponding connection terminals 2a are large and small, with the solder balls 13b and 13a facing each other. And align and place. At this stage, the corresponding connection terminal 2a of the wiring board 2 is not in contact with the small solder ball 13a.
[0026]
Thereafter, the wiring board 2 on which the above-described CSP 1 is placed is passed through a reflow furnace. As a result, the large and small solder balls 13b and 13a are melted, and the solder balls 13b and 13a are compressed between the tip surfaces of the corresponding protruding electrodes 1e2 and 1e1 and the connection terminals 2a by the weight and weight of the CSP 1, and the side surfaces are compressed. It becomes the substantially columnar shape which makes the curved surface which protruded toward the center part of the height direction. At this time, since the large solder ball 13b is largely deformed by the weight of the wiring board 2, the upper end of the small solder ball 13a comes into contact with the terminal electrode formed on the wiring board 2, and gradually moves to the terminal electrode side. To do. In addition, after the reflow process, the volume of the molten solder expands when the molten solder is cooled and solidified, and particularly the large solder ball 13b has a large degree of expansion in the height direction, whereby the CSP1 is slightly pushed back. It becomes. As a result, the distance between the peripheral protruding electrode 1e1 sandwiching the small solder ball 13a and the corresponding connecting terminal 2a is increased by that amount. However, since the solder amount of the small solder ball 13a is small, the small solder ball 13a is melted. As shown in FIG. 1, the solder bump 3 formed by solidification later becomes a column-shaped concave solder bump 3a having a straight shape or a curved surface that is concave as the side faces toward the center. In this way, the semiconductor package device shown in FIG. 1 is easily manufactured with relatively few man-hours.
[0027]
As described above, according to the manufacturing method of the semiconductor package device of the present embodiment, the small solder balls 13a for forming the concave solder bumps 3a corresponding to the protruding electrodes 1e1 in the peripheral portion of the chip size area at the wafer level. For the other protruding electrodes 1e2, large solder balls 13b for forming the convex solder bumps 3b are respectively formed, and then separated into individual CSP1, and the CSP1 thus obtained is applied to the wiring board 2. The reflow treatment is performed in the mounted state, and the protruding electrode 1e1 around the bump area of the mounted CSP 1 has a straight shape or a central portion in the height direction that reduces stress concentration on the joint surface due to a physical external force. Concave solder bumps 3a are formed, and other protruding electrodes 1e2 are provided with convex solder bumps 3b protruding from the center in the height direction. Since formed, the semiconductor package device bonding strength of large and reliable high quality due to the solder bumps can be easily manufactured by a reduced number of steps.
[0028]
The semiconductor package device and the manufacturing method thereof according to the present invention are not limited to the above embodiment.
For example, the concave solder bumps 3a may be formed only in the peripheral corners without being formed in the entire peripheral part of the chip size area Ac, or all the solder bumps may be the concave solder bumps 3a.
[0030]
In addition, the method for selectively arranging solder balls having different sizes is not limited to the printing method, and a jig for adsorbing plural types of solder balls having different sizes is used, and the plural types of solder balls are determined by the jig. It is also possible to use a method of making a lump attachment in a predetermined arrangement.
[0031]
【The invention's effect】
According to the semiconductor package device and the manufacturing method thereof of the present invention, the solder bumps at the corners around the chip, to which physical external force is most easily applied, are formed in a straight shape or a column shape having a recessed central portion in the height direction. For example, since the area of the solder bump bonding surface is equal to or larger than the area of the central portion of the solder bump in the height direction, the effect of reducing stress concentration on the solder bump peripheral edge occurs, and the largest stress acts. Occurrence of defects that cause cracks in the solder bumps at the corners around the chip or the bonded state itself is significantly suppressed. As a result, it is possible to provide a highly reliable semiconductor package device including a solder joint having excellent durability.
[Brief description of the drawings]
FIG. 1 is a schematic sectional side view showing an embodiment of a semiconductor package device of the present invention.
FIG. 2 is a II-II plane sectional view showing the semiconductor package device.
FIG. 3 is a schematic explanatory view illustrating stress acting on a solder bump in the semiconductor package device.
FIG. 4 is an explanatory view showing a printing process in an embodiment of a method for manufacturing a semiconductor package device of the present invention.
FIG. 5 is a partial plan view showing a part of a mask used in the printing process.
FIG. 6 is a partially enlarged explanatory view showing an operation in the printing process.
FIG. 7 is a plan view showing a wafer level semiconductor package manufactured by the manufacturing method.
FIG. 8 is a partial side sectional view showing a main part of the wafer level semiconductor package.
[Explanation of symbols]
1 ... CSP
1e, 1e1, 1e2 ... protruding electrode 1f ... sealing resin 2 ... wiring substrate 2a ... terminal electrode 3 ... solder bump 3a ... concave solder bump 3b ... convex solder bump 10 ... wafer level silicon substrate 11 ... hard mask 11a, 11b ... Through hole 12 ... Squeegee 13 ... Solder ball 13a ... Small solder ball 13b ... Large solder ball

Claims (5)

複数の入出力端子電極にそれぞれ導電接続された複数の突起電極が所定のエリアに配置され、前記突起電極間に封止材が設けられた半導体パッケージを、複数の端子電極を有する配線基板に、互いに対応する前記突起電極と前記端子電極とをそれぞれ半田バンプを介して接合された半導体パッケージ装置であって、
複数の前記半田バンプのうちの少なくとも前記エリアの周辺のコーナー部に位置する半田バンプはストレート状または高さ方向における中央部が凹んだ柱状をなしていることを特徴とする半導体パッケージ装置。
A wiring board having a plurality of terminal electrodes, a plurality of protruding electrodes that are conductively connected to a plurality of input / output terminal electrodes, disposed in a predetermined area, a semiconductor package provided with a sealing material between the protruding electrodes, A semiconductor package device in which the protruding electrodes and the terminal electrodes corresponding to each other are joined via solder bumps,
2. A semiconductor package device, wherein a solder bump positioned at least at a corner portion around the area among the plurality of solder bumps is formed in a straight shape or a column shape having a recessed central portion in the height direction.
前記複数の半田バンプのうちの前記エリアの周辺部に位置する半田バンプはストレート状または高さ方向における中央部が凹んだ柱状に形成され、前記エリアの中央部に位置する半田バンプは高さ方向における中央部が突き出た柱状に形成されていることを特徴とする請求項1に記載の半導体パッケージ装置。Among the plurality of solder bumps, the solder bump located at the periphery of the area is formed in a straight shape or a columnar shape with a recessed central portion in the height direction, and the solder bump located in the central portion of the area is in the height direction. The semiconductor package device according to claim 1, wherein the semiconductor package device is formed in a columnar shape with a protruding central portion. 半導体ウエハの一方の主面の所定のチップサイズエリア毎に複数の入出力端子電極にそれぞれ導電接続された複数の突起電極を立設し、
前記突起電極間に絶縁材料からなる封止材を前記突起電極間の各先端面が露出するように充填し、
前記突起電極の各先端面に、所定の高さの半田ボールを形成し、
前記半導体ウエハを前記チップサイズエリア毎に切断して、複数のチップサイズ半導体パッケージとなし、
前記チップサイズ半導体パッケージの少なくとも1つを、前記各突起電極が前記配線基板の端子電極に前記半田ボールを介し対向させて配置し、
リフロー処理により前記半田ボールを溶融させて、対応する前記突起電極と前記配線基板の端子電極とを接合してなる半導体パッケージ装置の製造方法であって、
前記チップサイズエリアの少なくとも周辺部のコーナー部に位置する突起電極の各先端面に形成する半田ボールの高さを、前記チップサイズエリアの中央部に位置する突起電極の各先端面に形成する半田ボールの高さよりも小さくなした前記チップサイズ半導体パッケージを前記配線基板と対向した状態でリフロー処理を行い、前記チップサイズエリアのコーナー部に位置する突起電極の各先端面に形成する半田ボールをストレート状または高さ方向における中央部が凹んだ柱状となすことを特徴とする半導体パッケージ装置の製造方法。
A plurality of protruding electrodes electrically connected to a plurality of input / output terminal electrodes for each predetermined chip size area on one main surface of the semiconductor wafer,
Filled with a sealing material made of an insulating material between the protruding electrodes so that each tip surface between the protruding electrodes is exposed,
A solder ball having a predetermined height is formed on each tip surface of the protruding electrode,
Cutting the semiconductor wafer for each chip size area, and a plurality of chip size semiconductor packages,
At least one of the chip size semiconductor packages is arranged such that each protruding electrode faces the terminal electrode of the wiring board via the solder ball,
A method of manufacturing a semiconductor package device, wherein the solder balls are melted by a reflow process, and the corresponding protruding electrodes and terminal electrodes of the wiring board are joined.
Solder formed on each tip surface of the protruding electrode located at the center of the chip size area with the height of the solder ball formed on each tip surface of the protruding electrode located at the corner portion of at least the peripheral portion of the chip size area A reflow process is performed on the chip size semiconductor package, which is smaller than the height of the ball, facing the wiring board, and solder balls formed on the respective end surfaces of the protruding electrodes located at the corners of the chip size area are straightened. A method for manufacturing a semiconductor package device, characterized in that the central portion in the shape or height direction has a recessed columnar shape.
前記半田ボールの形成は、前記突起電極に対応させて透孔が穿設されたマスクを用いて印刷により行うことを特徴とする請求項3に記載の半導体パッケージ装置の製造方法。4. The method of manufacturing a semiconductor package device according to claim 3, wherein the solder balls are formed by printing using a mask having through holes corresponding to the protruding electrodes. 前記マスクにおいて、少なくとも前記チップサイズエリア周辺のコーナー部に位置する突起電極に対応する透孔のサイズが、それら以外の突起電極に対応する透孔のサイズよりも大きく形成されていることを特徴とする請求項4に記載の半導体パッケージ装置の製造方法。In the mask, at least the size of the through hole corresponding to the protruding electrode located in the corner portion around the chip size area is formed larger than the size of the through hole corresponding to the other protruding electrode. A method for manufacturing a semiconductor package device according to claim 4.
JP2003200646A 2003-07-23 2003-07-23 Semiconductor package device and its manufacturing method Pending JP2005044865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200646A JP2005044865A (en) 2003-07-23 2003-07-23 Semiconductor package device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200646A JP2005044865A (en) 2003-07-23 2003-07-23 Semiconductor package device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005044865A true JP2005044865A (en) 2005-02-17

Family

ID=34260982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200646A Pending JP2005044865A (en) 2003-07-23 2003-07-23 Semiconductor package device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005044865A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123905A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode element, its manufacturing method, and its anchoring structure
US7938311B2 (en) * 2005-08-30 2011-05-10 Commissariat A L'energie Atomique Method for hybridization of two components by using different sized solder protrusions and a device that uses two components hybridized according to this method
JP2012009822A (en) * 2010-05-21 2012-01-12 Panasonic Corp Semiconductor device and semiconductor device unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938311B2 (en) * 2005-08-30 2011-05-10 Commissariat A L'energie Atomique Method for hybridization of two components by using different sized solder protrusions and a device that uses two components hybridized according to this method
JP2007123905A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode element, its manufacturing method, and its anchoring structure
US8343784B2 (en) 2005-10-27 2013-01-01 Lg Innotek Co., Ltd. Light emitting diode device, manufacturing method of the light emitting diode device and mounting structure of the light emitting diode device
JP2012009822A (en) * 2010-05-21 2012-01-12 Panasonic Corp Semiconductor device and semiconductor device unit
US8492896B2 (en) 2010-05-21 2013-07-23 Panasonic Corporation Semiconductor apparatus and semiconductor apparatus unit

Similar Documents

Publication Publication Date Title
KR101268238B1 (en) Manufacture method of semiconductor device
JP2006108313A (en) Packaging board and semiconductor device
JPH11121507A (en) Semiconductor device and its manufacture
JP2003258154A (en) Package structure of semiconductor device
JP3180800B2 (en) Semiconductor device and manufacturing method thereof
TWI433282B (en) Semiconductor apparatus, and method of manufacturing semiconductor apparatus
JP2005129663A (en) Multilayer circuit board
JP2003086761A (en) Semiconductor device and manufacturing method therefor
JP6128993B2 (en) Multilayer semiconductor device, printed circuit board, electronic device, and method of manufacturing multilayer semiconductor device
JP2010010269A (en) Semiconductor device, intermediate for manufacturing semiconductor device, and method of manufacturing them
JP2005044865A (en) Semiconductor package device and its manufacturing method
KR20010105210A (en) Repairable flip chip semiconductor device with excellent packaging reliability and method of manufacturing same
US6852572B2 (en) Method of manufacturing semiconductor device
JP2001351946A (en) Semiconductor device
JPH09307022A (en) Surface mount semiconductor package, printed wiring board and module substrate
JP2004247464A (en) Semiconductor device and manufacturing method therefor
JP2003197681A (en) Electronic apparatus
JP2004266016A (en) Semiconductor device, its manufacturing method and semiconductor substrate
JP2007317754A (en) Semiconductor device
JP4736762B2 (en) BGA type semiconductor device and manufacturing method thereof
JP3976964B2 (en) Assembling method of semiconductor device
JP2003037210A (en) Semiconductor device and method of manufacturing the same
JP2008171904A (en) Laminated semiconductor device and its manufacturing method
JP2008071873A (en) Manufacturing method of semiconductor device
JP2000068271A (en) Wafer device, chip device and manufacture of the chip device