[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005043230A - Elongated member defect detection method and apparatus - Google Patents

Elongated member defect detection method and apparatus Download PDF

Info

Publication number
JP2005043230A
JP2005043230A JP2003277958A JP2003277958A JP2005043230A JP 2005043230 A JP2005043230 A JP 2005043230A JP 2003277958 A JP2003277958 A JP 2003277958A JP 2003277958 A JP2003277958 A JP 2003277958A JP 2005043230 A JP2005043230 A JP 2005043230A
Authority
JP
Japan
Prior art keywords
elongated member
defect
electromagnetic wave
wave
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003277958A
Other languages
Japanese (ja)
Inventor
Yasuyuki Morita
康之 森田
Akimichi Kawase
晃道 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN
Original Assignee
RIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN filed Critical RIKEN
Priority to JP2003277958A priority Critical patent/JP2005043230A/en
Publication of JP2005043230A publication Critical patent/JP2005043230A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 一定の断面形状を有する細長部材(チューブ、パイプ、棒材)の外形欠陥(ふくれ、突起、波打ち、破れ、等)及び表面欠陥(亀裂、破れ、シース不良、傷、ピンホール、等)を単一の装置で検出することができ、かつ細長部材が不透明であっても内部欠陥(異物混入、等)を同一の装置で検出することができる細長部材の欠陥検出方法及び装置を提供する。
【解決手段】 断面形状が一定の細長部材1の外形欠陥、表面欠陥及び内部欠陥を検出する細長部材の欠陥検出方法。細長部材1を透過しかつ一部吸収される波長の電磁波2を照射し、細長部材を透過した前記電磁波3の透過強度の変化から細長部材の欠陥を検出する。
【選択図】 図1

PROBLEM TO BE SOLVED: To provide external defects (bulges, protrusions, waviness, tears, etc.) and surface defects (cracks, tears, defective sheaths, scratches, pinholes, etc.) of an elongated member (tube, pipe, bar) having a constant cross-sectional shape. ) Can be detected by a single device, and even if the elongated member is opaque, an internal defect (contamination of foreign matter, etc.) can be detected by the same device. To do.
An elongated member defect detection method for detecting an external defect, a surface defect, and an internal defect of an elongated member 1 having a constant cross-sectional shape. An electromagnetic wave 2 having a wavelength that passes through the elongated member 1 and is partially absorbed is irradiated, and a defect in the elongated member is detected from a change in transmission intensity of the electromagnetic wave 3 that has passed through the elongated member.
[Selection] Figure 1

Description

本発明は、押出し成形等で製造された細長部材の欠陥検出方法及び装置に関する。   The present invention relates to a defect detection method and apparatus for an elongated member manufactured by extrusion molding or the like.

ビニール、プラスチック、ゴム、ガラス等からなる断面形状が一定の細長い中空管や棒材(以下、細長部材と呼ぶ)は、通常、押出し成形等で連続的に高速で製造される。しかし、製造された細長部材は、ふくれ、突起、波打ち、異物混入、亀裂、破れ、シース不良、傷、ピンホール、等の欠陥をもっている場合がある。   An elongated hollow tube or bar (hereinafter, referred to as an elongated member) having a constant cross-sectional shape made of vinyl, plastic, rubber, glass or the like is usually manufactured continuously at a high speed by extrusion molding or the like. However, the manufactured elongated member may have defects such as blisters, protrusions, undulations, foreign matter contamination, cracks, tears, defective sheaths, scratches, and pinholes.

これらの欠陥を検出するために、従来は、非特許文献1、2に例示される外径凹凸検出器と表面欠陥検出器が用いられていた。   In order to detect these defects, conventionally, an outer diameter unevenness detector and a surface defect detector exemplified in Non-Patent Documents 1 and 2 have been used.

外径凹凸検出器は、チューブの形状的な欠陥(ふくれ、突起、波打ち、破れ、等)を検出するものであり、図6に示すようにチューブに一定光量の可視光を照射し、チューブの凹凸で変化する通過光量の変化から異常を検出するものである。
また、表面欠陥検出器は、チューブの表面の欠陥(亀裂、破れ、シース不良、傷、ピンホール、等)を検出するものであり、図7に示すようにチューブ表面に可視光を照射し、その乱反射光を受光しその光量変化から表面の異常を検出するものである。
The outer diameter unevenness detector detects a shape defect (bulge, protrusion, wave, tear, etc.) of the tube. As shown in FIG. 6, the tube is irradiated with a certain amount of visible light, An abnormality is detected from a change in the amount of light passing through that changes in unevenness.
The surface defect detector is for detecting defects on the surface of the tube (cracks, tears, defective sheaths, scratches, pinholes, etc.), and irradiates the tube surface with visible light as shown in FIG. The irregularly reflected light is received and a surface abnormality is detected from the change in the amount of light.

なお、[非特許文献1][非特許文献2]はその他の関連文献である。   [Non-patent document 1] and [Non-patent document 2] are other related documents.

カタログ「外径凹凸検出器」、タキカワエンジニアリング株式会社Catalog “Outer Diameter Roughness Detector”, Takikawa Engineering Co., Ltd. カタログ「表面欠陥検出器」、タキカワエンジニアリング株式会社Catalog “Surface Defect Detector”, Takikawa Engineering Co., Ltd.

特開2002−72269号公報JP 2002-72269 A 特開2003−5238号公報JP 2003-5238 A

上述した外径凹凸検出器と表面欠陥検出器には、以下の問題点があった。
(1)外径凹凸検出器において、チューブの外形異常を検出するためには、ふくれ、突起等の欠陥が周方向のどの位置に発生しているかが不明なため、周方向の複数の向きから光を照射・受光する必要があり、複数の検出器が必要となり、装置が大型化する。
(2)亀裂、シース不良、傷、ピンホール、等の表面欠陥は、外径凹凸検出器では検出できないため、表面欠陥検出器を併用する必要があり、更に装置が大型化する。
(3)図8に示すように、異物混入のような内部欠陥は、対象チューブが不透明の場合、外径凹凸検出器と表面欠陥検出器のどちらでも検出できない。
The above-described outer diameter unevenness detector and surface defect detector have the following problems.
(1) In the outer diameter unevenness detector, in order to detect an abnormality in the outer shape of the tube, it is unclear at which position in the circumferential direction the defects such as blisters and protrusions have occurred. It is necessary to irradiate and receive light, and a plurality of detectors are required, which increases the size of the apparatus.
(2) Since surface defects such as cracks, sheath defects, scratches, pinholes, etc. cannot be detected by the outer diameter unevenness detector, it is necessary to use the surface defect detector in combination, and the apparatus becomes larger.
(3) As shown in FIG. 8, internal defects such as foreign matter contamination cannot be detected by either the outer diameter unevenness detector or the surface defect detector when the target tube is opaque.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、一定の断面形状を有する細長部材の外形欠陥(ふくれ、突起、波打ち、破れ、等)及び表面欠陥(亀裂、破れ、シース不良、傷、ピンホール、等)を単一の装置で検出することができ、かつ細長部材が不透明であっても内部欠陥(異物混入、等)を同一の装置で検出することができる細長部材の欠陥検出方法及び装置を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to simply remove external defects (blurring, protrusions, undulations, tears, etc.) and surface defects (cracks, tears, sheath defects, scratches, pinholes, etc.) of elongated members having a constant cross-sectional shape. To provide a defect detection method and apparatus for an elongated member that can be detected by one apparatus and that can detect internal defects (contamination of foreign matter, etc.) with the same apparatus even if the elongated member is opaque. is there.

本発明によれば、断面形状が一定の細長部材の外形欠陥、表面欠陥及び内部欠陥を検出する細長部材の欠陥検出方法であって、
細長部材を透過しかつ一部吸収される波長の電磁波を照射し、細長部材を透過した前記電磁波の透過強度の変化から細長部材の欠陥を検出する、ことを特徴とする細長部材の欠陥検出方法が提供される。
According to the present invention, there is provided a defect detection method for an elongated member for detecting external defects, surface defects and internal defects of an elongated member having a constant cross-sectional shape,
A method for detecting a defect in an elongated member, comprising: irradiating an electromagnetic wave having a wavelength that is transmitted through the elongated member and partially absorbed; and detecting a defect in the elongated member from a change in transmission intensity of the electromagnetic wave transmitted through the elongated member. Is provided.

また本発明によれば、断面形状が一定の細長部材を透過しかつ一部吸収される波長の電磁波を発振する発振源と、前記電磁波を細長部材の全断面を透過するように集束する集束素子と、該集束素子の集束面に設置され細長部材を透過した前記電磁波の透過強度を検出する透過強度検出器と、該透過強度の変化から細長部材の欠陥を判別する欠陥判別器とを備えた、ことを特徴とする細長部材の欠陥検出装置が提供される。   Further, according to the present invention, an oscillation source that oscillates an electromagnetic wave having a wavelength that passes through an elongated member having a constant cross-sectional shape and is partially absorbed, and a focusing element that focuses the electromagnetic wave so as to pass through the entire cross section of the elongated member. And a transmission intensity detector that is installed on the focusing surface of the focusing element and detects the transmission intensity of the electromagnetic wave that has passed through the elongated member, and a defect discriminator that determines a defect in the elongated member from the change in the transmission intensity. An elongated member defect detecting device is provided.

本発明の好ましい実施形態によれば、前記電磁波は、テラヘルツ波またはミリ波である。また、前記発振源は、テラヘルツ波を発振するテラヘルツ波源、またはミリ波を発振するミリ波源である。   According to a preferred embodiment of the present invention, the electromagnetic wave is a terahertz wave or a millimeter wave. The oscillation source is a terahertz wave source that oscillates terahertz waves or a millimeter wave source that oscillates millimeter waves.

上記本発明の方法及び装置によれば、以下の効果が得られる。
(1) 物質透過性を有し、欠陥のサイズと同程度の波長であるテラヘルツ波またはミリ波(10GHz〜10THz:波長約30μm〜30mm)を使用するため、従来使用していた可視光では不可能であった不透明な細長部材(チューブ、パイプ、棒材)においても、欠陥などの異常が検出可能である。
(2) 従来技術では円周上の多方向から測定を行い外形異常を検出していたが、透過波で検出を行うので1方向のみの測定でよい。
(3) 従来技術では外形異常検出器および表面欠陥検出器の2台が必要であったが、本発明では、透過波で検出を行うため1台でよい。
According to the method and apparatus of the present invention, the following effects can be obtained.
(1) Since terahertz waves or millimeter waves (10 GHz to 10 THz: wavelength of about 30 μm to 30 mm) having a material permeability and a wavelength comparable to the size of the defect are used, it is not possible with conventional visible light. Abnormalities such as defects can be detected even in opaque elongated members (tubes, pipes, rods) that were possible.
(2) In the prior art, measurement was performed from multiple directions on the circumference to detect an external abnormality. However, since detection is performed using a transmitted wave, measurement in only one direction is sufficient.
(3) In the prior art, two external anomaly detectors and surface defect detectors are required. However, in the present invention, one detector is sufficient because detection is performed with transmitted waves.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の細長部材の欠陥検出装置の全体構成図である。この図に示すように、本発明の細長部材の欠陥検出装置10は、発振源12、集束素子14、透過強度検出器16および欠陥判別器18を備える。   FIG. 1 is an overall configuration diagram of an elongated member defect detection apparatus according to the present invention. As shown in the figure, the elongated member defect detection apparatus 10 of the present invention includes an oscillation source 12, a focusing element 14, a transmission intensity detector 16, and a defect discriminator 18.

本発明において、細長部材1は、ビニール、プラスチック、ゴム、ガラス等からなる断面形状が一定の細長いチューブ、中空管、棒材等である。この細長部材1は、全体が均質である限り、透明であっても、可視光に対して不透明であってもよい。また、押出し成形等で連続的に高速で製造され、細長部材の長さ方向に移動するのが好ましいが、これに限定されず、任意の長さに切断し、位置が固定された細長部材であってもよい。   In the present invention, the elongated member 1 is an elongated tube, hollow tube, bar or the like having a constant cross-sectional shape made of vinyl, plastic, rubber, glass or the like. The elongated member 1 may be transparent or opaque to visible light as long as the whole is homogeneous. In addition, it is preferably manufactured continuously at a high speed by extrusion molding or the like and moved in the length direction of the elongated member. However, the present invention is not limited to this, and the elongated member is cut to an arbitrary length and fixed in position. There may be.

発振源12は、断面形状が一定の細長部材1を透過可能であり、かつ一部が吸収される波長の電磁波2を発振する。この発振源は、1〜10THz(波長約30〜300μm)のテラヘルツ波を発振するテラヘルツ波源、または10〜1000GHz(波長約0.3〜30mm)のミリ波を発振するミリ波源であるのがよい。
テラヘルツ波源は、例えば、特許文献1、2に開示されている。またミリ波源は、市販品をそのまま適用することができる。
テラヘルツ波の特徴の1つは、電波の物質透過性を有する最短波長域であり、かつ光波の直進性を備えた最長波長であるという点である。すなわち、電波のように様々な物質を透過することができ、電波帯では最も高い空間分解能が得られ、かつ光波のようにレンズやミラーによる引き回しが可能である。そのため、テラヘルツ波は、半導体、プラスチック、紙、ゴム、ビニル、木材、繊維、セラミック、コンクリート、歯、骨、脂肪、乾燥食品などを透過可能である。
なお、テラヘルツ波またはミリ波は、対象とする細長部材1の材質と大きさに合わせて、その波長と強度を設定する。
The oscillation source 12 oscillates an electromagnetic wave 2 having a wavelength that can be transmitted through the elongated member 1 having a constant cross-sectional shape and is partially absorbed. This oscillation source may be a terahertz wave source that oscillates a terahertz wave of 1 to 10 THz (wavelength of about 30 to 300 μm) or a millimeter wave source that oscillates a millimeter wave of 10 to 1000 GHz (wavelength of about 0.3 to 30 mm). .
Terahertz wave sources are disclosed in, for example, Patent Documents 1 and 2. As the millimeter wave source, a commercially available product can be applied as it is.
One of the characteristics of the terahertz wave is that it is the shortest wavelength region having a radio wave material permeability and the longest wavelength having straightness of light waves. That is, various substances such as radio waves can be transmitted, the highest spatial resolution can be obtained in the radio wave band, and it can be routed by a lens or mirror like a light wave. Therefore, terahertz waves can penetrate semiconductors, plastics, paper, rubber, vinyl, wood, fibers, ceramics, concrete, teeth, bones, fats, dried foods, and the like.
The wavelength and intensity of the terahertz wave or millimeter wave are set in accordance with the material and size of the elongated member 1 as a target.

集束素子14は、前記電磁波2(テラヘルツ波またはミリ波)を細長部材1の全断面を透過するように集束する。集束素子14として、図1Aに示す光学的な集光レンズまたは図1Bに示す反射ミラーを用いることができる。またその他の光学素子、例えば複合レンズを用いてもよい。
透過強度検出器16は、集束素子14による集束面(光学的な焦点面に相当する)に設置され、細長部材1を透過した透過電磁波3の透過強度を検出する。欠陥判別器18は、例えばPCであり、検出した透過電磁波3の強度変化から細長部材1の欠陥を判別する。
The focusing element 14 focuses the electromagnetic wave 2 (terahertz wave or millimeter wave) so as to pass through the entire cross section of the elongated member 1. As the focusing element 14, the optical condensing lens shown in FIG. 1A or the reflecting mirror shown in FIG. 1B can be used. Other optical elements such as compound lenses may also be used.
The transmission intensity detector 16 is installed on a focusing surface (corresponding to an optical focal plane) by the focusing element 14 and detects the transmission intensity of the transmitted electromagnetic wave 3 transmitted through the elongated member 1. The defect discriminator 18 is, for example, a PC, and discriminates the defect of the elongated member 1 from the detected intensity change of the transmitted electromagnetic wave 3.

すなわち、図1において、発振源12より出たテラヘルツ波あるいはミリ波は、細長部材1の断面を透過し、透過強度検出器15の受光面で集光される。細長部材1に亀裂や異物がある場合、受光面上での透過強度が変化するため、欠陥を検出することができる。   That is, in FIG. 1, the terahertz wave or millimeter wave emitted from the oscillation source 12 passes through the cross section of the elongated member 1 and is collected on the light receiving surface of the transmission intensity detector 15. When the elongated member 1 has a crack or a foreign substance, the transmission intensity on the light receiving surface changes, so that a defect can be detected.

原理の実証試験として、図2に示すような異物が混入した欠陥チューブを作製し、実験を行った。使用したチューブは外径5mm、内径3mmのビニールチューブで、内部に4mm程度のアルミホイルを混入させた。図1に示した装置を用いて測定を行った結果を図3に示す。使用したテラヘルツ波の周波数は1.6THz(187μm)である。異物(アルミホイル)の領域において、透過強度が減少していることが示されている。   As a proof test of the principle, a defective tube mixed with foreign matter as shown in FIG. 2 was prepared and tested. The tube used was a vinyl tube having an outer diameter of 5 mm and an inner diameter of 3 mm, and an aluminum foil of about 4 mm was mixed inside. FIG. 3 shows the results of measurement using the apparatus shown in FIG. The frequency of the terahertz wave used is 1.6 THz (187 μm). It is shown that the transmission intensity is reduced in the foreign matter (aluminum foil) region.

次に別の実証試験結果を示す。この試験では、図4に示すような欠陥が生じたチューブを作製し、同様の実験を行った。その結果を図5に示す。欠陥の領域において透過強度が変化(増加)していることが示されている。   Next, another demonstration test result is shown. In this test, a tube with defects as shown in FIG. 4 was produced and the same experiment was performed. The result is shown in FIG. It is shown that the transmission intensity changes (increases) in the defect area.

このように異物や亀裂などの欠陥による透過強度が大きく変化するので、非破壊でチューブ内の異常を検出することが可能となる。なお、今回は原理の実証のため実験には透明チューブを用いたが、不透明チューブでも同じ結果が得られる。
なお原理上一方向で検査可能であり、本実施例でも一方向により実証試験を行ったが、検査精度の向上等のため複数方向で検査することを妨げるものではない。
In this way, the transmission intensity due to a defect such as a foreign substance or a crack changes greatly, so that an abnormality in the tube can be detected without destruction. In this case, a transparent tube was used for the experiment to prove the principle, but the same result can be obtained with an opaque tube.
In principle, inspection can be performed in one direction. In this embodiment, the verification test was performed in one direction. However, this does not preclude inspection in a plurality of directions in order to improve inspection accuracy.

上述のように、テラヘルツ波およびミリ波(10THz〜10GHz:波長約30μm〜30mm)を使用すことにより、以下の効果が得られる。
(1)不透明な対象物に対しても欠陥検査が可能。
従来の方法では不透明な対象物の内部の欠陥や異物混入の検出は不可能であった。しかし、テラヘルツ波およびミリ波は対象物の透明・不透明を問わない。
(2)非常に小さい欠陥も検出が可能。
透明な対象物でも非常に小さい欠陥の場合、従来の画像処理や目視観察では検出が困難であった。テラヘルツ波およびミリ波は欠陥との大きな透過強度の違いを検出するので、非常に小さい欠陥も検出が可能である。
(3)製造工程との相性が良い。
本発明の方法は、ラインスキャンで検出できるため、製造過程の高速化が可能であり、製造工程と非常に相性がよい。
(4)ラインスキャン以外に1ショットスキャンでも欠陥検出が可能。
ビームを広げて対象物に照射し、透過の変化を見る。この場合、ラインスキャンとは異なり、1度で対象物の欠陥検出が可能となる。
As described above, the following effects can be obtained by using terahertz waves and millimeter waves (10 THz to 10 GHz: wavelength of about 30 μm to 30 mm).
(1) Defect inspection is possible even for opaque objects.
In the conventional method, it is impossible to detect defects inside the opaque object or contamination of foreign matters. However, the terahertz wave and millimeter wave may be transparent or opaque.
(2) Very small defects can be detected.
In the case of a very small defect even with a transparent object, it has been difficult to detect it by conventional image processing or visual observation. Since terahertz waves and millimeter waves detect a large difference in transmission intensity from defects, even very small defects can be detected.
(3) Good compatibility with the manufacturing process.
Since the method of the present invention can be detected by line scanning, the manufacturing process can be speeded up and is very compatible with the manufacturing process.
(4) Defects can be detected by one-shot scanning in addition to line scanning.
Expand the beam and irradiate the object to see the change in transmission. In this case, unlike the line scan, it is possible to detect the defect of the object at one time.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の細長部材の欠陥検出装置の全体構成図である。It is a whole block diagram of the elongate member defect detection apparatus of this invention. 異物が混入した欠陥チューブを示す写真である。It is a photograph which shows the defective tube which the foreign material mixed. 本発明の実施例を示す図である。It is a figure which shows the Example of this invention. 欠陥が生じたチューブを示す写真である。It is a photograph which shows the tube which the defect produced. 本発明の別の実施例を示す図である。It is a figure which shows another Example of this invention. 従来の外径凹凸検出器の原理図である。It is a principle diagram of a conventional outer diameter unevenness detector. 従来の表面欠陥検出器の原理図である。It is a principle diagram of a conventional surface defect detector. 従来技術で検出不可能な欠陥例を示す図である。It is a figure which shows the example of a defect which cannot be detected with a prior art.

符号の説明Explanation of symbols

1 細長部材(チューブ、パイプ、棒材)、
2 電磁波(テラヘルツ波またはミリ波)、3 透過波、
10 欠陥検出装置、12 発振源(テラヘルツ波源またはミリ波源)、
14 集束素子(集光レンズ、反射ミラー)、
16 透過強度検出器、18 欠陥判別器(PCなど)、

1 Elongated member (tube, pipe, bar),
2 electromagnetic waves (terahertz waves or millimeter waves), 3 transmitted waves,
10 defect detection device, 12 oscillation source (terahertz wave source or millimeter wave source),
14 Focusing element (condensing lens, reflecting mirror),
16 Transmission intensity detector, 18 Defect discriminator (PC etc.),

Claims (4)

断面形状が一定の細長部材の外形欠陥、表面欠陥及び内部欠陥を検出する細長部材の欠陥検出方法であって、
細長部材を透過しかつ一部吸収される波長の電磁波を照射し、細長部材を透過した前記電磁波の透過強度の変化から細長部材の欠陥を検出する、ことを特徴とする細長部材の欠陥検出方法。
An elongated member defect detection method for detecting external defects, surface defects and internal defects of an elongated member having a constant cross-sectional shape,
A method for detecting a defect in an elongated member, comprising: irradiating an electromagnetic wave having a wavelength that is transmitted through the elongated member and partially absorbed; and detecting a defect in the elongated member from a change in transmission intensity of the electromagnetic wave transmitted through the elongated member. .
前記電磁波は、テラヘルツ波またはミリ波である、ことを特徴とする請求項1に記載の細長部材の欠陥検出方法。 2. The elongated member defect detection method according to claim 1, wherein the electromagnetic wave is a terahertz wave or a millimeter wave. 断面形状が一定の細長部材を透過しかつ一部吸収される波長の電磁波を発振する発振源と、前記電磁波を細長部材の全断面を透過するように集束する集束素子と、該集束素子の集束面に設置され細長部材を透過した前記電磁波の透過強度を検出する透過強度検出器と、該透過強度の変化から細長部材の欠陥を判別する欠陥判別器とを備えた、ことを特徴とする細長部材の欠陥検出装置。 An oscillation source that oscillates an electromagnetic wave having a wavelength that passes through an elongated member having a constant cross-sectional shape and is partially absorbed, a focusing element that focuses the electromagnetic wave so as to pass through the entire cross section of the elongated member, and focusing of the focusing element An elongate device comprising: a transmission intensity detector that detects the transmission intensity of the electromagnetic wave transmitted through the elongated member installed on the surface; and a defect discriminator that determines a defect of the elongated member from the change in the transmission intensity. A defect detection apparatus for members. 前記発振源は、テラヘルツ波を発振するテラヘルツ波源、またはミリ波を発振するミリ波源である、ことを特徴とする請求項3に記載の細長部材の欠陥検出装置。

4. The elongated member defect detection apparatus according to claim 3, wherein the oscillation source is a terahertz wave source that oscillates a terahertz wave or a millimeter wave source that oscillates a millimeter wave.

JP2003277958A 2003-07-23 2003-07-23 Elongated member defect detection method and apparatus Pending JP2005043230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277958A JP2005043230A (en) 2003-07-23 2003-07-23 Elongated member defect detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277958A JP2005043230A (en) 2003-07-23 2003-07-23 Elongated member defect detection method and apparatus

Publications (1)

Publication Number Publication Date
JP2005043230A true JP2005043230A (en) 2005-02-17

Family

ID=34264508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277958A Pending JP2005043230A (en) 2003-07-23 2003-07-23 Elongated member defect detection method and apparatus

Country Status (1)

Country Link
JP (1) JP2005043230A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226910A (en) * 2005-02-18 2006-08-31 Central Res Inst Of Electric Power Ind Anomaly detection method and anomaly detection apparatus for solid insulator
JP2007132915A (en) * 2005-11-09 2007-05-31 Semiconductor Res Found Method and system for inspecting building
JP2007278916A (en) * 2006-04-10 2007-10-25 Jfe Steel Kk Method and device for inspecting flaw of cast piece
EP1912057A2 (en) 2006-10-10 2008-04-16 Aisin Seiki Kabushiki Kaisha Method and device for configuration examination
JP2014081285A (en) * 2012-10-17 2014-05-08 Aisin Seiki Co Ltd Method of measuring film thickness of multilayer ceramic
KR101433268B1 (en) 2013-02-05 2014-08-26 아주대학교산학협력단 Apparatus and method for detecting foreign material using terahertz metamaterials
JP2017146275A (en) * 2016-02-19 2017-08-24 三重県 Method and device for measuring sample made of inorganic material with heating history
KR101795992B1 (en) * 2017-06-22 2017-11-10 한양대학교 산학협력단 Device for analyzing tubular specimen using terahertz wave and method for analyzing tubular specimen using the device
KR101840284B1 (en) 2016-11-04 2018-03-22 (주)레이텍 Terahertz wave object inspection device
KR20190035079A (en) * 2017-09-26 2019-04-03 (주)레이텍 Terahertz wave non-destructive inspection device using reflector
CN112730598A (en) * 2020-12-27 2021-04-30 北京工业大学 Method for manufacturing non-excavation harmonic magnetic field focusing detection probe of buried steel pipeline
KR20210068544A (en) * 2018-10-01 2021-06-09 시코라 아게 Methods and devices for controlling production systems for planar or stranded objects
CN113189008A (en) * 2021-05-12 2021-07-30 苏州振畅智能科技有限公司 AI + three-dimensional calibration fusion-based steel pipe wall detection device and method
CN113720862A (en) * 2021-08-17 2021-11-30 珠海格力电器股份有限公司 Part abnormality detection method, device, equipment and storage medium

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226910A (en) * 2005-02-18 2006-08-31 Central Res Inst Of Electric Power Ind Anomaly detection method and anomaly detection apparatus for solid insulator
JP4614436B2 (en) * 2005-02-18 2011-01-19 財団法人電力中央研究所 Anomaly detection method and anomaly detection apparatus for solid insulator
JP2007132915A (en) * 2005-11-09 2007-05-31 Semiconductor Res Found Method and system for inspecting building
JP2007278916A (en) * 2006-04-10 2007-10-25 Jfe Steel Kk Method and device for inspecting flaw of cast piece
EP1912057A2 (en) 2006-10-10 2008-04-16 Aisin Seiki Kabushiki Kaisha Method and device for configuration examination
US7593099B2 (en) 2006-10-10 2009-09-22 Aisin Seiki Kabushiki Kaisha Method and device for configuration examination
JP2014081285A (en) * 2012-10-17 2014-05-08 Aisin Seiki Co Ltd Method of measuring film thickness of multilayer ceramic
KR101433268B1 (en) 2013-02-05 2014-08-26 아주대학교산학협력단 Apparatus and method for detecting foreign material using terahertz metamaterials
JP2017146275A (en) * 2016-02-19 2017-08-24 三重県 Method and device for measuring sample made of inorganic material with heating history
KR101840284B1 (en) 2016-11-04 2018-03-22 (주)레이텍 Terahertz wave object inspection device
KR101795992B1 (en) * 2017-06-22 2017-11-10 한양대학교 산학협력단 Device for analyzing tubular specimen using terahertz wave and method for analyzing tubular specimen using the device
KR20190035079A (en) * 2017-09-26 2019-04-03 (주)레이텍 Terahertz wave non-destructive inspection device using reflector
KR101991009B1 (en) 2017-09-26 2019-06-19 (주)레이텍 Terahertz wave non-destructive inspection device using reflector
JP7628150B2 (en) 2018-10-01 2025-02-07 シコラ アーゲー Method and device for controlling a production system for planar or strand-like objects - Patents.com
KR20210068544A (en) * 2018-10-01 2021-06-09 시코라 아게 Methods and devices for controlling production systems for planar or stranded objects
US12157263B2 (en) 2018-10-01 2024-12-03 Sikora Ag Method and device for controlling a production system for planar or strand-shaped bodies
KR102713898B1 (en) * 2018-10-01 2024-10-04 시코라 아게 Method and device for controlling a production system for planar or stranded objects
JP2022501582A (en) * 2018-10-01 2022-01-06 シコラ アーゲー Methods and equipment for controlling production systems for planar or strand objects
CN112730598B (en) * 2020-12-27 2024-02-02 北京工业大学 Manufacturing method of non-excavation harmonic magnetic field focusing detection probe for buried steel pipeline
CN112730598A (en) * 2020-12-27 2021-04-30 北京工业大学 Method for manufacturing non-excavation harmonic magnetic field focusing detection probe of buried steel pipeline
CN113189008A (en) * 2021-05-12 2021-07-30 苏州振畅智能科技有限公司 AI + three-dimensional calibration fusion-based steel pipe wall detection device and method
CN113720862B (en) * 2021-08-17 2023-01-13 珠海格力电器股份有限公司 Part abnormality detection method, device, equipment and storage medium
CN113720862A (en) * 2021-08-17 2021-11-30 珠海格力电器股份有限公司 Part abnormality detection method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP2005043230A (en) Elongated member defect detection method and apparatus
IL100443A (en) Inspection system for detecting surface flaws
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
JPH03267745A (en) Surface property detecting method
JP5596925B2 (en) Foreign object inspection apparatus and inspection method
JP2002188999A (en) Detector and method for detecting foreign matter and defect
US7342654B2 (en) Detection of impurities in cylindrically shaped transparent media
JP4913585B2 (en) Abnormality inspection device
CN111323371A (en) Optical detection system and optical detection method
KR102043880B1 (en) Optical head for a high resolution detecting apparatus and a high resolution detecting apparatus using ring beam
KR102069299B1 (en) High efficiehcy transmission image object inspection module and object inspection apparatus
US20080100830A1 (en) System and method for inspecting an object using an acousto-optic device
CN108885168B (en) Detection system and signal enhancement device
CN115698683A (en) Method for assessing the quality of a component of an optical material
JPH0372248A (en) Dust detector
JP2796906B2 (en) Foreign matter inspection device
JP2006214867A (en) Apparatus and method for measuring defective particle
JPH09304412A (en) Detecting equipment for foreign matter in transparent fluid
JPH0734365Y2 (en) Foreign object detection and removal device
JPH09304413A (en) Detecting method and equipment for foreign matter in transparent fluid
JP6805845B2 (en) Laser ultrasonic flaw detector
JP2005156416A (en) Method and apparatus for inspecting glass substrate
JP2009244052A (en) Surface inspection apparatus and surface inspection method
US9739592B2 (en) Multiple beam path laser optical system using multiple beam reflector
JP6414842B2 (en) Inspection method and inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324