[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005043240A - Sensor for detecting road surface conditions - Google Patents

Sensor for detecting road surface conditions Download PDF

Info

Publication number
JP2005043240A
JP2005043240A JP2003278198A JP2003278198A JP2005043240A JP 2005043240 A JP2005043240 A JP 2005043240A JP 2003278198 A JP2003278198 A JP 2003278198A JP 2003278198 A JP2003278198 A JP 2003278198A JP 2005043240 A JP2005043240 A JP 2005043240A
Authority
JP
Japan
Prior art keywords
light
road surface
polarized light
reflected
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003278198A
Other languages
Japanese (ja)
Inventor
Toshiro Nakajima
利郎 中島
Kazuo Takashima
和夫 高嶋
Sadahiro Tsuya
定広 津谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003278198A priority Critical patent/JP2005043240A/en
Publication of JP2005043240A publication Critical patent/JP2005043240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sensor for detecting a road surface conditions, which can precisely distinguish the road surface conditions. <P>SOLUTION: The sensor for detecting the road surface conditions is composed of a light source 1 having at least an infrared wavelength range; a first analyzer 2 arranged on an optical path through which incident light emitted from the light source 1 is projected onto the road surface 4 and transmitting only polarized light with a first orientation 15 in the incident light; a second analyzer 6 arranged on an optical path of reflection light 5 formed from the incident light 3 which is reflected by either the road surface or either a water film and an ice layer on the road surface, or by both of them, after passing through the first analyzer 2 and which transmits only polarized light with a second orientation 16 perpendicular to the first orientation 15; light-detecting means 10, 11 which individually detect light intensities of two or more specific wavelength values in the polarized light with the second orientation 16; and a signal processing means 14 which processes output signals which are the output from the light-detecting means 10, 11 and based on a plurality of specific wavelength values. The road surface conditions are distinguished, on the basis of relative light intensities among the plurality of specific wavelength values in the polarized light with the second orientation 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、路面の湿潤、凍結等の状態を検出する路面状態検出センサに関する。   The present invention relates to a road surface state detection sensor that detects a state of wetness or freezing of a road surface.

従来の路面状態検出センサでは、例えば特許文献1の図2に示されるように光源から出射された赤外領域の投射光を路面に照射し、路面で反射した反射光中の特定の2波長の光強度を比較し、その比率、つまり相対光強度によって路面状態を識別した。これは、水の吸光スペクトルが液体状態(水)と固体状態(氷)の場合とで変化する、つまり、水と氷とでは上記吸光スペクトル比率が異なる原理を利用したものであった。   In the conventional road surface state detection sensor, for example, as shown in FIG. 2 of Patent Document 1, the projection light in the infrared region emitted from the light source is irradiated onto the road surface, and two specific wavelengths in the reflected light reflected by the road surface are emitted. The light intensity was compared, and the road surface condition was identified by the ratio, that is, the relative light intensity. This is based on the principle that the absorption spectrum ratio of water changes depending on whether the absorption spectrum of water is in a liquid state (water) or a solid state (ice).

また、従来の別の路面状態検出センサでは、例えば特許文献2の図1に示されるように、光源から出射された投射光を一旦偏光板に透過させて特定の偏光光のみとした後に路面に照射させて、路面からの反射光の光強度を測定して路面状態を識別した。特定の偏光光が路面状態に対してより強い光強度で反射する性質を利用したもので、路面状態が一層検出しやすくなるからである。   Further, in another conventional road surface state detection sensor, for example, as shown in FIG. 1 of Patent Document 2, the projection light emitted from the light source is once transmitted through the polarizing plate to make only specific polarized light, and then on the road surface. Irradiated and measured the light intensity of the reflected light from the road surface to identify the road surface condition. This is because it utilizes the property that specific polarized light is reflected with a higher light intensity than the road surface state, and the road surface state becomes easier to detect.

特開平10−73538号公報Japanese Patent Laid-Open No. 10-73538

特開平5−264441号公報JP-A-5-264441

上述の従来の路面状態検出センサでは、路面が湿潤状態あるいは凍結状態の場合、路面上に水(あるいは氷)膜が形成され、かかる状態の路面に光を投射すると水膜を透過し路面で反射する反射光だけでなく、水膜の表面で反射する反射光も同時に発生した。したがって、受光器側では、結果的に両者とも含んだ状態の反射光を受光した。水膜の表面で反射する光は水(あるいは氷)の吸光の影響を受けないので、路面状態検出の観点から見ると何ら信号成分を含んでいない光成分となる。この結果、路面状態の変化に対する出力信号の変化量が低減してしまうため、路面状態検出に対する感度が低下するという問題点があった。   In the conventional road surface condition detection sensor described above, when the road surface is wet or frozen, a water (or ice) film is formed on the road surface. When light is projected onto the road surface in this state, the water film is transmitted and reflected by the road surface. Not only reflected light but also reflected light reflected on the surface of the water film was generated at the same time. Therefore, on the side of the light receiver, as a result, the reflected light including both is received. Since the light reflected from the surface of the water film is not affected by the absorption of water (or ice), it is a light component that does not contain any signal component from the viewpoint of road surface condition detection. As a result, since the amount of change in the output signal with respect to the change in the road surface state is reduced, there is a problem that the sensitivity to the road surface state detection is lowered.

この発明は、上記のような問題点を解決するためになされたものであり、路面状態変化に対してより高い感度で出力信号変化を捉え、精度の高い路面状態の識別が可能となるような路面状態検出センサを得ることを目的とする。   The present invention has been made to solve the above-described problems, and can detect a change in an output signal with a higher sensitivity to a change in road surface state, and can identify a road surface state with high accuracy. An object is to obtain a road surface state detection sensor.

本発明に係る路面状態検出センサは、少なくとも赤外領域の波長からなる光源と、上記光源から出射された投射光が路面に至るまでの光路上に配置され上記投射光中の第1方向の偏光光のみを透過する第1検光子と、上記第1検光子透過後の投射光が上記路面あるいは上記路面上の水または氷からなる膜のいずれか一方または双方によって反射されて生じた反射光の光路上に配置され上記第1方向に直交する第2方向の偏光光のみを透過する第2検光子と、上記第2方向の偏光光における少なくとも2以上の特定波長の光強度を個別に検出する光検出手段と、上記光検出手段からの上記複数の特定波長に基づく出力信号を処理する信号処理手段と、を備え、上記第2方向の偏光光における複数の特定波長間の相対光強度に基づき路面状態を識別することとした。   The road surface state detection sensor according to the present invention includes a light source having a wavelength of at least an infrared region, and a polarized light in a first direction in the projection light that is disposed on an optical path from the light emitted from the light source to the road surface. A first analyzer that transmits only light, and reflected light generated by reflecting the projection light after passing through the first analyzer by either one or both of the road surface or a film made of water or ice on the road surface. A second analyzer that is disposed on the optical path and transmits only polarized light in the second direction orthogonal to the first direction, and individually detects the light intensity of at least two or more specific wavelengths in the polarized light in the second direction. Light detection means and signal processing means for processing output signals based on the plurality of specific wavelengths from the light detection means, and based on relative light intensity between the plurality of specific wavelengths in the polarized light in the second direction. Know road conditions It decided to.

本発明に係る路面状態検出センサでは、上記のように構成したので、路面状態の識別に不要な路面上に発生する水膜からの正反射光成分の除去が容易で、識別に必要な情報である水膜あるいは氷層中を透過した反射光を高い信号強度比で検出できるため、精度の高い路面状態識別が可能な路面状態検出センサが得られる。   Since the road surface state detection sensor according to the present invention is configured as described above, it is easy to remove the specularly reflected light component from the water film generated on the road surface that is unnecessary for the road surface state identification, and the information necessary for the identification. Since reflected light transmitted through a certain water film or ice layer can be detected with a high signal intensity ratio, a road surface state detection sensor capable of highly accurate road surface state identification can be obtained.

実施の形態1.
図1は本発明の実施の形態1による路面状態検出センサの構成図である。図1中、1は少なくとも赤外領域(波長1.0〜2.0μm)を含む光源、2は光源1から路面に至るまでの光路上に配置され、光源1からの投射光で特定の偏光方向(第1方向)の偏光光(S偏光)のみを選択する第1偏光子(第1検光子)、3は第1偏光子2を透過して路面に至る投射光、4は路面、5は路面からの反射光、6は反射光5のうち上述の第1方向と直交する第2方向の偏光光(P偏光)のみを選択する第2偏光子(第2検光子)、7は第2偏光子6を透過した偏光光を2つの特定波長λをそれぞれ含む波長領域に分岐するダイクロイックミラー、8はダイクロイックミラー7で分岐された一方の反射光をさらに狭い第1特定波長λに選択する第1波長フィルター、9はダイクロイックミラー7で分離された他方の反射光をさらに狭い第2特定波長λに選択する第2波長フィルター、10,11はそれぞれ第1および第2波長フィルター8,9を透過した光を受光し電気信号に変換する第1および第2光検出器、12,13は第1および第2光検出器10,11の出力信号をそれぞれ増幅する第1および第2増幅器、14は第1および第2増幅器12,13の出力信号を比較する比較器、をそれぞれ示す。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a road surface state detection sensor according to Embodiment 1 of the present invention. In FIG. 1, 1 is a light source including at least an infrared region (wavelength: 1.0 to 2.0 μm), 2 is arranged on an optical path from the light source 1 to the road surface, and is a specific polarized light by projection light from the light source 1. The first polarizer (first analyzer) that selects only polarized light (S-polarized light) in the direction (first direction), 3 is the projection light that passes through the first polarizer 2 and reaches the road surface, 4 is the road surface, 5 Is the reflected light from the road surface, 6 is the second polarizer (second analyzer) that selects only the polarized light (P-polarized light) in the second direction orthogonal to the first direction of the reflected light 5, and 7 is the first A dichroic mirror that branches the polarized light transmitted through the two polarizers 6 into wavelength regions including two specific wavelengths λ 1 and λ 2 , and 8 is a narrower first specific wavelength of one reflected light branched by the dichroic mirror 7. The first wavelength filter to be selected as λ 1 , 9 is the other one separated by the dichroic mirror 7 The second wavelength filters 10 and 11 for selecting the reflected light to the narrower second specific wavelength λ 2 receive the light transmitted through the first and second wavelength filters 8 and 9, respectively, and convert them into electrical signals. Two photodetectors 12 and 13 are first and second amplifiers for amplifying the output signals of the first and second photodetectors 10 and 11, respectively, and 14 is a comparison of the output signals of the first and second amplifiers 12 and 13. Each comparator is shown.

また、図1ないし図3において、15は第1検光子2透過後の投射光3で入射面に対して垂直方向、すなわち第1方向に振動軸を有する偏光方向(S偏光方向)、5aは路面4が乾燥状態の場合の路面からの反射光、17a,17bは路面4からの反射光が有する偏光方向で、17aは偏光方向15と同一の第1方向の偏光方向、17bは偏光方向15に対して垂直方向、すなわち第2方向の偏光方向をそれぞれ表す。ここで、上記入射面とは、入射光と入射面の法線方向を含む平面であり、図1ないし図3中では紙面に対して平行な面に相当する。   Also, in FIGS. 1 to 3, reference numeral 15 denotes projection light 3 transmitted through the first analyzer 2, which is perpendicular to the incident surface, that is, a polarization direction having an oscillation axis in the first direction (S polarization direction), 5a Reflected light from the road surface when the road surface 4 is in a dry state, 17a and 17b are polarization directions of the reflected light from the road surface 4, 17a is the first polarization direction identical to the polarization direction 15, and 17b is the polarization direction 15 Represents the polarization direction in the vertical direction, that is, the second direction. Here, the incident surface is a plane including the normal direction of the incident light and the incident surface, and corresponds to a surface parallel to the paper surface in FIGS.

さらに、図3において、4aは路面が湿潤(あるいは凍結)状態において形成される水膜(あるいは氷層)、5bは水膜(あるいは氷層)4aの表面で反射された反射光、5cは水膜(あるいは氷層)4aを透過し路面4で反射された反射光、18は水膜(あるいは氷層)4aの表面からの反射光5bが有する偏光方向、19a,19bは水膜(あるいは氷層)4aを透過し路面4で反射された反射光5cが有する2つの互いに直交する偏光方向、をそれぞれ示す。また、図4は路面状態をパラメータとした場合の反射光の波長と反射光の光強度の関係を示す図である。図4において、20は波長軸、21は第1特定波長λの光強度Iλ1に対する第2特定波長λの光強度Iλ2の比率(相対光強度)、22は路面上の水膜を透過した路面からの反射光スペクトル、23は路面上の氷層を透過した路面からの反射光スペクトル、24は路面乾燥時の反射光スペクトルで、ここで、22,23それぞれの反射光スペクトルは路面乾燥時で規格化されたスペクトルとしている。25は反射光スペクトルの相対変化を観測する上で基準となる複数の特定波長λであり、25a,bは測定対象となる第1特定波長λおよび第2特定波長λをそれぞれ示す。なお、特定波長は2以上でもかまわない。 Further, in FIG. 3, 4a is a water film (or ice layer) formed when the road surface is wet (or frozen), 5b is reflected light reflected from the surface of the water film (or ice layer) 4a, and 5c is water. Reflected light that is transmitted through the film (or ice layer) 4a and reflected by the road surface 4, 18 is the polarization direction of the reflected light 5b from the surface of the water film (or ice layer) 4a, and 19a and 19b are water films (or ice). Layer) 4a, and the two orthogonal polarization directions of the reflected light 5c reflected by the road surface 4 are shown. FIG. 4 is a diagram showing the relationship between the wavelength of the reflected light and the light intensity of the reflected light when the road surface condition is used as a parameter. 4, 20 is the wavelength axis, the 21 ratio of the second specific wavelength lambda 2 of the light intensity I .lambda.2 to light intensity I .lambda.1 of the first specific wavelength lambda 1 (relative light intensity), 22 the water film on the road surface The reflected light spectrum from the transmitted road surface, 23 is the reflected light spectrum from the road surface that has passed through the ice layer on the road surface, and 24 is the reflected light spectrum when the road surface is dried. Here, the reflected light spectrum of each of 22 and 23 is the road surface The spectrum is normalized at the time of drying. Reference numeral 25 denotes a plurality of specific wavelengths λ 1 and λ 2 serving as a reference in observing the relative change in the reflected light spectrum, and 25a and b denote the first specific wavelength λ 1 and the second specific wavelength λ 2 to be measured. Each is shown. The specific wavelength may be 2 or more.

次に、実施の形態1の路面状態検出センサの動作について説明する。光源1から出射された少なくとも1.0〜2.0μmの赤外領域の波長を有する光は、第1偏光子2の作用によって偏光方向が第1方向、つまり、入射面に対して垂直方向である偏光光(S偏光)のみが選択された後、投射光3として路面4に照射される。路面4が乾燥状態の場合、投射光3は路面4で反射され、その反射光5aは投射光3が本来有する第1方向、すなわち偏光方向17aの偏光光(S偏光)と、投射光3と直交するP方向、すなわち偏光方向17bの偏光光(P偏光)とが混在する状態となる。   Next, the operation of the road surface state detection sensor according to the first embodiment will be described. Light having a wavelength in the infrared region of at least 1.0 to 2.0 μm emitted from the light source 1 is polarized in the first direction by the action of the first polarizer 2, that is, in the direction perpendicular to the incident surface. After only certain polarized light (S-polarized light) is selected, the road surface 4 is irradiated as projection light 3. When the road surface 4 is in a dry state, the projection light 3 is reflected by the road surface 4, and the reflected light 5 a is the first direction that the projection light 3 originally has, that is, polarized light (S-polarized light) in the polarization direction 17 a, and the projection light 3. It becomes a state where polarized light (P-polarized light) in the orthogonal P direction, that is, the polarization direction 17b is mixed.

一方、路面4が湿潤、あるいは凍結状態にある場合は、路面4上に水膜(あるいは氷層)4aが形成されているので、投射光3はその一部が水膜(あるいは氷層)4aの表面で反射されると同時に、残りの一部が水膜(あるいは氷層)4a表面を透過して路面4で反射される。水膜(あるいは氷層)4a表面で反射された反射光5bは、投射光3の有する偏光方向15と同一の第1方向である偏光方向18の偏光光(S偏光)のみとなる。なお、氷層の場合は若干直交成分が混在する。   On the other hand, when the road surface 4 is in a wet or frozen state, a water film (or ice layer) 4a is formed on the road surface 4, so that a part of the projection light 3 is a water film (or ice layer) 4a. At the same time, the remaining part of the light is transmitted through the surface of the water film (or ice layer) 4a and reflected by the road surface 4. The reflected light 5 b reflected on the surface of the water film (or ice layer) 4 a is only polarized light (S-polarized light) having a polarization direction 18 that is the same first direction as the polarization direction 15 of the projection light 3. In the case of an ice layer, there are some orthogonal components.

また、水膜(あるいは氷層)4aを透過して路面4で反射された反射光5cは、投射光3と同一の第1方向である偏光方向19aの偏光光(S偏光)だけでなく、投射光3と直交する第2方向の偏光方向19bの偏光光(P偏光)をも有することとなる。このように水膜(あるいは氷層)4a表面で反射された反射光5bと水膜(あるいは氷層)4aを透過して路面4で反射された反射光5cが混在した状態で第2検光子6に入射するが、第2検光子6の作用により投射光3と直交する第2方向の偏光方向19bの偏光光(P偏光)のみが選択された後、ダイクロイックミラー7に入射する。   In addition, the reflected light 5c transmitted through the water film (or ice layer) 4a and reflected by the road surface 4 is not only polarized light (S-polarized light) in the polarization direction 19a which is the same first direction as the projection light 3, It also has polarized light (P-polarized light) in the polarization direction 19b in the second direction orthogonal to the projection light 3. Thus, the second analyzer in a state where the reflected light 5b reflected on the surface of the water film (or ice layer) 4a and the reflected light 5c transmitted through the water film (or ice layer) 4a and reflected on the road surface 4 are mixed. 6, but only the polarized light (P-polarized light) in the second polarization direction 19 b orthogonal to the projection light 3 is selected by the action of the second analyzer 6, and then enters the dichroic mirror 7.

つまり、路面4が乾燥状態の場合は、路面4からの反射光5aの一部である第2方向である偏光方向17bの偏光光(P偏光)のみが、路面状態が湿潤(あるいは凍結)状態の場合は、路面上に形成された水膜(あるいは氷層)4aの表面から入射して水膜(あるいは氷層)中を進行し路面4で反射した反射光の一部、すなわち第2方向である偏光方向19bの偏光光(P偏光)のみが、それぞれ選択される。   That is, when the road surface 4 is in a dry state, only the polarized light (P-polarized light) in the polarization direction 17b that is the second direction that is a part of the reflected light 5a from the road surface 4 is in a wet (or frozen) state of the road surface. In this case, a part of the reflected light that is incident on the surface of the water film (or ice layer) 4a formed on the road surface, travels through the water film (or ice layer) and is reflected by the road surface 4, that is, the second direction. Only polarized light (P-polarized light) in the polarization direction 19b is selected.

第2検光子6によって選択された第2方向である偏光方向17b、19bの偏光光(P偏光)は、ダイクロイックミラー7の作用によって波長域が分離され、第1および第2波長フィルター8,9によってそれぞれ第1特定波長λ1(25a)および第2特定波長λ2(25b)の波長成分が選択された後、各波長毎に個別に第1および第2光検出器10,11で受光される。第1および第2光検出器10,11からの出力信号はそれぞれ第1および第2増幅器12,13によって増幅された後、比較器14に入力される。比較器14は入力された各増幅器からの出力信号に基づき第1および第2特定波長λ、λの受光強度Iλ1、Iλ2(Iλ1:第1特定波長λ1における受光強度、Iλ2:第2特定波長λにおける受光強度)を比較し、その結果をもとに路面4の乾燥、湿潤、凍結等の路面状態を識別する。 The wavelength regions of the polarized light (P-polarized light) in the polarization directions 17b and 19b, which are the second directions selected by the second analyzer 6, are separated by the action of the dichroic mirror 7, and the first and second wavelength filters 8, 9 are separated. After the wavelength components of the first specific wavelength λ 1 (25a) and the second specific wavelength λ 2 (25b) are selected by, respectively, they are received by the first and second photodetectors 10 and 11 for each wavelength individually. The Output signals from the first and second photodetectors 10 and 11 are amplified by the first and second amplifiers 12 and 13, respectively, and then input to the comparator 14. The comparator 14 receives the received light intensity I λ1 , I λ2 (I λ1 : received light intensity at the first specific wavelength λ 1 , I 1) at the first and second specific wavelengths λ 1 , λ 2 based on the input output signal from each amplifier. .lambda.2: identifying second comparing the received light intensity) at a particular wavelength lambda 2, the drying of the road 4 based on the result, the wet, the road surface condition of the freezing and the like.

図4に示すように、第1および第2特定波長λの受光強度比率Iλ2/Iλ1は路面4の状態に強く依存する。第1特定波長λにおいて各路面状態の光強度を1として規格化し、さらに全波長域において乾燥状態時の光強度を1として規格化すると、第2特定波長λでは路面乾燥状態時の反射光スペクトル24の光強度が最大で、水膜が形成された路面状態の反射光スペクトル22ではIλ2/Iλ1は1/2程度となり、氷層が形成された路面状態の反射光スペクトル23ではさらに小さくなる。 As shown in FIG. 4, the received light intensity ratio I λ2 / I λ1 of the first and second specific wavelengths λ 1 and λ 2 strongly depends on the state of the road surface 4. When the light intensity of each road surface state is normalized as 1 at the first specific wavelength λ 1 and further the light intensity in the dry state is normalized to 1 in all wavelength regions, the reflection at the road surface dry state at the second specific wavelength λ 2 In the reflected light spectrum 22 in the road surface state in which the light spectrum 24 has the maximum light intensity and the water film is formed, I λ2 / I λ1 is about ½, and in the reflected light spectrum 23 in the road surface state in which the ice layer is formed, It becomes even smaller.

要するに、Iλ2/Iλ1を識別指標とすると、受光強度比率Iλ2/Iλ1の値は、路面乾燥時の比率をa、湿潤時の比率をb、凍結時の比率をcとした場合、a>b>cの関係となる。このような各特定波長毎の受光強度の変化量の差により路面状態の識別が従来より高精度に実現できる。 In short, assuming that I λ2 / I λ1 is an identification index, the value of the received light intensity ratio I λ2 / I λ1 is as follows: a road surface dry ratio is a, a wet ratio is b, and a freezing ratio is c. The relationship is a>b> c. Identification of the road surface state can be realized with higher accuracy than before by the difference in the amount of change in the received light intensity for each specific wavelength.

図5に本実施の形態の路面状態検出センサの実験結果を示す。投射光3は第1検光子2によって選択されたS偏光のみであり、反射光は第2検光子6によってP偏光のみに選択されている。グラフ中の縦軸の光強度は乾燥時の光強度を1として規格化されている。路面上に水を噴霧して一定時間経過した時点での反射光の反射光スペクトルを測定して、各路面状態に対応した実測データを得た。水を噴霧後の経過時間をパラメータとして、130秒後、210秒後、510秒後の反射光スペクトルを測定した。路面は水の噴霧後200秒程度で凍結するので、130秒後は路面湿潤状態、210秒後および510秒後は路面凍結状態となっている。図5から分かるように、1450〜1500nmの波長範囲で路面乾燥時の光強度1に対して、路面湿潤状態(130秒後)、路面凍結状態(210、510秒後)の順に光強度が低減する。つまり、各路面状態に対応した光強度に明瞭に分離される結果が得られた。なお、上記実験結果から、第1特定波長λは各反射光スペクトルがなるべく平坦な領域、つまり1.1μm以上1.3μm以下の波長範囲が好適であり、第2特定波長λは1.4μm以上1.6μm以下の波長範囲が好適であることが分かった。 FIG. 5 shows the experimental results of the road surface state detection sensor of the present embodiment. The projection light 3 is only S-polarized light selected by the first analyzer 2, and the reflected light is selected only by P-polarized light by the second analyzer 6. The light intensity on the vertical axis in the graph is normalized with the light intensity at the time of drying as 1. Water was sprayed on the road surface, and the reflected light spectrum of the reflected light at the time when a certain time had elapsed was measured, and actual measurement data corresponding to each road surface state was obtained. Using the elapsed time after spraying water as a parameter, the reflected light spectrum was measured after 130 seconds, 210 seconds and 510 seconds. Since the road surface freezes about 200 seconds after spraying water, the road surface is wet after 130 seconds, and the road surface is frozen after 210 seconds and 510 seconds. As can be seen from FIG. 5, the light intensity decreases in the order of a wet road surface (after 130 seconds) and a frozen road surface (after 210 and 510 seconds) with respect to a light intensity of 1 when the road surface is dried in a wavelength range of 1450 to 1500 nm. To do. That is, the result of being clearly separated into the light intensity corresponding to each road surface state was obtained. From the above experimental results, the first specific wavelength λ 1 is preferably a region where each reflected light spectrum is as flat as possible, that is, a wavelength range of 1.1 μm to 1.3 μm, and the second specific wavelength λ 2 is 1. It has been found that a wavelength range of 4 μm or more and 1.6 μm or less is suitable.

図6に図5の実験に対する比較実験を行った結果を示す。投射光3は第1検光子2によって選択されたS偏光であり、反射光は上記実験とは異なり投射光と同方向のS偏光のみに選択されている。縦軸の光強度は乾燥時の光強度を1として規格化されている。路面上に水を噴霧して一定時間経過した時点での反射光スペクトルを測定して、各路面状態に対応した実測データを得た。水噴霧後の経過時間をパラメータとして、140秒後、410秒後、1010秒後の反射光スペクトルを測定した。140秒後は路面湿潤状態、410秒後および1010秒後は路面凍結状態となっている。図6から容易に分かるように、投射光と反射光の偏光方向を同一方向とした場合は各路面状態に対応した反射光スペクトル間の光強度の差は図5の実験結果に比べて、大幅に小さくなった。かかる比較実験の結果からも、本実施の形態の路面状態検出センサの有効性が実証された。   FIG. 6 shows the result of a comparative experiment performed on the experiment of FIG. The projection light 3 is S-polarized light selected by the first analyzer 2, and the reflected light is selected only as S-polarized light in the same direction as the projection light unlike the above experiment. The light intensity on the vertical axis is normalized assuming that the light intensity during drying is 1. The reflected light spectrum was measured after a certain period of time after water was sprayed on the road surface, and actual measurement data corresponding to each road surface state was obtained. Using the elapsed time after water spray as a parameter, the reflected light spectrum after 140 seconds, 410 seconds and 1010 seconds was measured. After 140 seconds, the road surface is wet, and after 410 seconds and 1010 seconds, the road surface is frozen. As can be easily seen from FIG. 6, when the polarization direction of the projection light and the reflected light is the same direction, the difference in light intensity between the reflected light spectra corresponding to each road surface state is significantly larger than the experimental result of FIG. It became small. The effectiveness of the road surface condition detection sensor according to the present embodiment was verified also from the result of the comparative experiment.

以上、本実施の形態の路面状態検出センサでは、赤外領域における水の吸光スペクトルの形状が液体(水)と固体(氷)とでは異なることを利用すべく、投射光側の第1検光子と反射光側の第2検光子との偏光方向を直交させて赤外波長域における特定の2波長に関して投射光と直交する偏光成分のみを受光する検出光学系を構成したので、路面状態の識別に不要な路面上に発生する水膜からの正反射光成分の除去が容易で、識別に必要な情報である水膜あるいは氷層中を透過した反射光を高い信号強度比で検出できるため、精度の高い路面状態識別が可能な路面状態検出センサが得られる。   As described above, in the road surface state detection sensor of the present embodiment, the first analyzer on the projection light side is used in order to use the fact that the shape of the water absorption spectrum in the infrared region is different between liquid (water) and solid (ice). Since the detection optical system is configured to receive only the polarization component orthogonal to the projection light with respect to two specific wavelengths in the infrared wavelength region by orthogonalizing the polarization directions of the reflected light and the second analyzer on the reflected light side, the road surface state is identified. Because it is easy to remove the specularly reflected light component from the water film generated on the road surface that is unnecessary, and the reflected light transmitted through the water film or ice layer, which is information necessary for identification, can be detected with a high signal intensity ratio A road surface state detection sensor capable of highly accurate road surface state identification is obtained.

実施の形態2.
図7は本発明の実施の形態2による路面状態検出センサの構成図である。図1ないし図3と同一の符号を付したものは、同一またはこれに相当するものである。図7において、30は反射光を偏光方向によって分離する偏光ビームスプリッター(偏光分岐手段)で、投射光3と同一の第1方向である偏光方向33を有する偏光光(S偏光)を透過し、投射光3と直交する第2方向である偏光方向34を有する偏光光(P偏光)を反射する。31は偏光ビームスプリッター30を透過した透過光(S偏光)、32は偏光ビームスプリッター30によって反射された第2方向である偏光方向34を有する反射光(P偏光)、33は投射光3と同一の偏光方向(第1方向)、34は投射光3と直交する偏光方向(第2方向)、35は透過光31を受光して電気信号に変換する第3光検出器、36は反射光32を2分割するハーフミラー、37はハーフミラー36で分離された一方の光を受光する第4光検出器、38,39はそれぞれ第3および第4光検出器35,37からの出力信号を増幅する第3および第4増幅器、40は増幅器12,13、38,39からの出力信号を入力し、各出力信号の強度を比較し、路面状態の識別を行う比較器である。
Embodiment 2. FIG.
FIG. 7 is a configuration diagram of a road surface state detection sensor according to Embodiment 2 of the present invention. The same reference numerals as those in FIGS. 1 to 3 denote the same or corresponding parts. In FIG. 7, reference numeral 30 denotes a polarization beam splitter (polarization branching unit) that separates reflected light according to the polarization direction, and transmits polarized light (S-polarized light) having a polarization direction 33 that is the same first direction as the projection light 3. Polarized light (P-polarized light) having a polarization direction 34 that is a second direction orthogonal to the projection light 3 is reflected. 31 is transmitted light (S-polarized light) transmitted through the polarizing beam splitter 30, 32 is reflected light (P-polarized light) having a polarization direction 34 that is the second direction reflected by the polarizing beam splitter 30, and 33 is the same as the projection light 3. , 34 is a polarization direction (second direction) orthogonal to the projection light 3, 35 is a third photodetector that receives the transmitted light 31 and converts it into an electrical signal, and 36 is a reflected light 32. , A half mirror 37, a fourth photodetector for receiving one light separated by the half mirror 36, and 38 and 39 amplifying output signals from the third and fourth photodetectors 35 and 37, respectively. The third and fourth amplifiers 40 and 40 are comparators that receive the output signals from the amplifiers 12, 13, 38, and 39, compare the intensities of the output signals, and identify road surface conditions.

次に、実施の形態2による路面状態検出センサの動作について説明する。光源1から発生した少なくとも1.0〜2.0μmの赤外領域の波長を有する光は第1偏光子2の作用により予め設定した第1方向である偏光方向15の偏光光(S偏光)のみを選択し、投射光3として路面4を照射する。路面4からの反射光5は偏光ビームスプリッター30を介して偏光方向によって光を分離する。具体的には、投射光3と直交する第2方向である偏光方向34の偏光光(P偏光)を反射する一方、投射光3と同一の第1方向である偏光方向33の偏光光(S偏光)を透過する。透過光31は第3光検出器35によって受光され、電気信号への変換後、第3増幅器38で増幅され比較器40に入力される。   Next, the operation of the road surface state detection sensor according to the second embodiment will be described. Light having a wavelength in the infrared region of at least 1.0 to 2.0 μm generated from the light source 1 is only polarized light (S-polarized light) having a polarization direction 15 which is a first direction set in advance by the action of the first polarizer 2. And the road surface 4 is irradiated as the projection light 3. The reflected light 5 from the road surface 4 is separated by the polarization direction through the polarization beam splitter 30. Specifically, the polarized light (P-polarized light) in the polarization direction 34, which is the second direction orthogonal to the projection light 3, is reflected, while the polarized light (S) in the polarization direction 33, which is the same first direction as the projection light 3, is reflected. (Polarized light) is transmitted. The transmitted light 31 is received by the third photodetector 35, converted into an electrical signal, amplified by the third amplifier 38 and input to the comparator 40.

一方,偏光ビームスプリッター30によって反射された反射光32はハーフミラー36によってさらに2つに分岐され、一方の光は第4光検出器37によって受光され電気信号に変換後、第4増幅器39によって増幅され比較器40に入力する。ハーフミラー36によって分岐された他方の光はダイクロイックミラー7を介して各特定波長に分離され、第1および第2波長フィルター8,9によってそれぞれ第1特定波長λ、第2特定波長λの特定波長成分がそれぞれ選択された後、第1および第2光検出器10,11で特定波長毎に個別に受光される。各光検出器10,11からの出力信号はそれぞれ第1および第2増幅器12,13によって増幅された後、比較器40に入力する。比較器40は入力された各増幅器からの信号をもとに路面4の乾燥、湿潤、凍結等の路面状態を識別する。 On the other hand, the reflected light 32 reflected by the polarization beam splitter 30 is further split into two by a half mirror 36. One light is received by a fourth photodetector 37 and converted into an electric signal, and then amplified by a fourth amplifier 39. And input to the comparator 40. The other light branched by the half mirror 36 is separated into each specific wavelength via the dichroic mirror 7, and the first and second wavelength filters 8 and 9 have the first specific wavelength λ 1 and the second specific wavelength λ 2 respectively . After the specific wavelength components are selected, the first and second photodetectors 10 and 11 individually receive light for each specific wavelength. Output signals from the photodetectors 10 and 11 are amplified by the first and second amplifiers 12 and 13, respectively, and then input to the comparator 40. The comparator 40 discriminates road surface conditions such as dryness, wetness, and freezing of the road surface 4 based on the input signals from the amplifiers.

第1および第2光検出器10,11の出力信号であるIλ1、Iλ2は、実施の形態1で既に述べたように、路面上が乾燥、湿潤、凍結等の状態に応じてそれぞれ変化する。さらに、第3および第4光検出器35,37からの出力信号は路面4からの反射光5が有する偏光特性を示すもので、反射光5のうち投射光3と同一偏光方向の偏光光(S偏光)の光強度を示す第3光検出器35の出力をIs、投射光3と直交する偏光方向の偏光光(P偏光)の光強度を示す第4光検出器37の出力をIpとすると、IsをIs+Ipで規格化した指標値Is/(Is+Ip)は路面4の表面状態に応じて変化の度合いが変わる。出力Isは、図3中の第1方向である偏光方向18の偏光光(S偏光)と同じく第1方向である偏光方向19aの偏光光(S偏光)の各光強度の総和であり、一方、出力Ipは第2方向である偏光方向19bの偏光光(P偏光)の光強度に相当する。 The output signals I λ1 and I λ2 of the first and second photodetectors 10 and 11 change according to the dry, wet, frozen state, etc. on the road surface as already described in the first embodiment. To do. Furthermore, the output signals from the third and fourth photodetectors 35 and 37 indicate the polarization characteristics of the reflected light 5 from the road surface 4. Of the reflected light 5, polarized light having the same polarization direction as the projection light 3 ( The output of the third photodetector 35 indicating the light intensity of the S-polarized light is Is, and the output of the fourth photodetector 37 indicating the light intensity of the polarized light (P-polarized light) in the polarization direction orthogonal to the projection light 3 is Ip. Then, the index value Is / (Is + Ip) obtained by standardizing Is with Is + Ip changes according to the surface state of the road surface 4. The output Is is the sum of the light intensities of the polarized light (S-polarized light) in the first polarization direction 19a as well as the polarized light (S-polarized light) in the first polarization direction 18 in FIG. The output Ip corresponds to the light intensity of the polarized light (P-polarized light) in the polarization direction 19b which is the second direction.

路面乾燥時におけるIsとIpが同じ値となるように予め規格化しておくと、上記指標値は乾燥時の比率をa、湿潤時をb、凍結時をc、積雪時をdとすると、b>c>aあるいはb>d>aの関係が成立する。このような路面状態による偏光特性(Is/Is+Ip)の変化及び2つの特定波長間の受光強度比率Iλ2/Iλ1の変化を併用すると、前者からは主に路面状態の識別が、後者からは主に路面上の膜種の識別がより精度良く実行できる。従って、上述の2つの識別指標を併用して路面状態の識別を行うことによって、より精度の高い識別が可能となる。 When Is and Ip during road drying advance normalized so as to have the same value, a 1 the ratio of the dry the index value, b 1 and when wet, c 1 and upon freezing, d 1 the time snow Then, the relationship of b 1 > c 1 > a 1 or b 1 > d 1 > a 1 is established. When the change in the polarization characteristics (Is / Is + Ip) and the change in the received light intensity ratio I λ2 / I λ1 between two specific wavelengths are used in combination, the former mainly identifies the road surface state, and the latter Mainly, the film type on the road surface can be identified with higher accuracy. Therefore, it is possible to identify with higher accuracy by using the above two identification indexes together to identify the road surface state.

以上、本実施の形態の路面状態検出センサでは、投射光の偏光方向を特定するとともに、反射光を受光するにあたって偏光方向を分離してさらに各特定波長毎に受光することにより、路面が湿潤(あるいは凍結、積雪)している場合、路面表面からの反射光と水表面から入り水膜中を進行し路面から反射する光とを分離検出し、各反射光に対して偏光特性あるいは特定波長間の光強度比等のパラメータを併用して路面状態を識別するので、より高精度の路面状態検出が可能な路面状態検出センサが得られる。   As described above, in the road surface state detection sensor according to the present embodiment, the polarization direction of the projection light is specified, and when the reflected light is received, the polarization direction is separated and further received for each specific wavelength, so that the road surface is wet ( (In the case of freezing or snow), the reflected light from the road surface and the light that enters from the water surface and travels through the water film and reflects from the road surface are separated and detected. Since the road surface state is identified using parameters such as the light intensity ratio, a road surface state detection sensor capable of detecting the road surface state with higher accuracy can be obtained.

実施の形態3.
図8は本発明の実施の形態3による路面状態検出センサの構成図である。図1ないし図3、および図7と同一の符号を付したものは、同一またはこれに相当するものである。図8において、41は投射光3を路面4に照射した場合に路面4から発生する散乱光、43は路面4からの散乱光41を受光し電気信号に変換する第5光検出器、44は第5光検出器43からの出力信号を増幅する第5増幅器、45は各増幅器12,13,38,39,44からの出力信号を入力し、各信号値を比較することにより路面状態を識別する比較器を示す。
Embodiment 3 FIG.
FIG. 8 is a block diagram of a road surface state detection sensor according to Embodiment 3 of the present invention. The same reference numerals as those in FIGS. 1 to 3 and FIG. 7 denote the same or corresponding parts. In FIG. 8, 41 is the scattered light generated from the road surface 4 when the projection light 3 is irradiated onto the road surface 4, 43 is the fifth photodetector for receiving the scattered light 41 from the road surface 4 and converting it into an electrical signal, 44 The fifth amplifier 45 for amplifying the output signal from the fifth photodetector 43 receives the output signals from the amplifiers 12, 13, 38, 39, and 44, and identifies the road surface state by comparing the signal values. A comparator is shown.

実施の形態3による路面状態検出センサでは、実施の形態2で示した装置構成に加えて路面4からの散乱光を受光する第5光検出器43およびその出力信号を増幅する第5増幅器44が新たに設けられている点に特徴がある。   In the road surface state detection sensor according to the third embodiment, in addition to the device configuration shown in the second embodiment, a fifth photodetector 43 that receives scattered light from the road surface 4 and a fifth amplifier 44 that amplifies the output signal are provided. It is characterized in that it is newly provided.

次に、実施の形態3による路面状態検出センサの動作について説明する。特定の2波長の光強度比較および偏光特性変化を利用した路面状態検出に関しては実施の形態2で説明した通りである。   Next, the operation of the road surface state detection sensor according to the third embodiment will be described. The comparison of the light intensity of two specific wavelengths and the detection of the road surface state using the change in polarization characteristics are as described in the second embodiment.

路面4から発生した散乱光41は第5光検出器43によって受光され電気信号に変換され第5増幅器44で増幅された後、比較器45に入力される。散乱光41の光強度は路面状態に強く依存する。例えば、路面4が湿潤な状態では乾燥時より表面が滑らかなので散乱光41の光強度も相対的に小さくなる。各路面状態について光強度を比較すると、各光強度を乾燥時a、湿潤時b、凍結時c、積雪時dとした場合、各光強度間にはd>a>c>bで表される関係が成立するので、これらの関係に基づき、路面状態をさらに高精度で識別できる。 The scattered light 41 generated from the road surface 4 is received by the fifth photodetector 43, converted into an electrical signal, amplified by the fifth amplifier 44, and then input to the comparator 45. The light intensity of the scattered light 41 strongly depends on the road surface condition. For example, when the road surface 4 is wet, the surface is smoother than when it is dry, so that the light intensity of the scattered light 41 is relatively small. When comparing the light intensity for each road surface state, when each light intensity is a 2 at the time of drying, b 2 at the time of wet, c 2 at the time of freezing, and d 2 at the time of snow accumulation, d 2 > a 2 > c between each light intensity. the relation represented by 2> b 2 is satisfied, based on these relations, it can be identified with higher precision the road surface condition.

以上、実施の形態2で説明した投射光と直交する偏光方向の偏光光のみを選択した反射光における2波長間の受光強度の比較、路面からの反射光強度における投射光に対して同一の偏光方向の偏光光と直交方向の偏光光との相対強度比率の比較に加えて、本実施の形態で示した付加的な装置構成によって測定された散乱光の受光強度変化という第3番目のパラメータを合わせた合計3つの独立したパラメータを用いて路面状態の識別を行うことにより、路面状態の識別精度の一層の向上が実現できる。   As described above, the comparison of the received light intensity between the two wavelengths in the reflected light in which only the polarized light having the polarization direction orthogonal to the projected light described in the second embodiment is selected, and the same polarization with respect to the projected light in the reflected light intensity from the road surface. In addition to the comparison of the relative intensity ratio between the polarized light in the direction and the polarized light in the orthogonal direction, a third parameter of the received light intensity change of the scattered light measured by the additional apparatus configuration shown in the present embodiment is By identifying the road surface state using a total of three independent parameters, it is possible to further improve the road surface state identification accuracy.

実施の形態4.
図9は本発明の実施の形態4による路面状態検出センサの構成図である。図1と同一の符号を付したものは、同一またはこれに相当するものである。図9において、50は赤外領域(1.0〜2.0μm)にある単一の特定波長を有する第1光源、51は赤外領域(1.0〜2.0μm)の波長域で第1光源50以外の特定波長を有する単一波長の第2光源、52は第1光源50からの第1投射光、53は第2光源51からの第2投射光、54は第1および第2投射光52、53を合波するハーフミラー、をそれぞれ示す。ここで単一波長光源としては,装置構成が簡単でかつ極めて軽量な発光ダイオード(LED)や半導体レーザ(LD)が好適である。
Embodiment 4 FIG.
FIG. 9 is a configuration diagram of a road surface state detection sensor according to Embodiment 4 of the present invention. Those given the same reference numerals as in FIG. 1 are the same or equivalent. In FIG. 9, 50 is the first light source having a single specific wavelength in the infrared region (1.0 to 2.0 μm), 51 is the first light source in the infrared region (1.0 to 2.0 μm) wavelength region. A single-wavelength second light source having a specific wavelength other than one light source 50, 52 is a first projection light from the first light source 50, 53 is a second projection light from the second light source 51, and 54 is a first and second light source. A half mirror for combining the projection lights 52 and 53 is shown. Here, as the single wavelength light source, a light-emitting diode (LED) or a semiconductor laser (LD) having a simple device configuration and extremely light weight is preferable.

次に、実施の形態4による路面状態検出センサの動作について説明する。なお、動作自体は実施の形態1の路面状態検出センサとほぼ同一である。   Next, the operation of the road surface state detection sensor according to the fourth embodiment will be described. The operation itself is substantially the same as that of the road surface state detection sensor of the first embodiment.

赤外領域(1.0〜2.0μm)のうち波長が第1特定波長λである単一波長を有する第1光源50から投射された第1投射光52と、同じく赤外領域(1.0〜2.0μm)ではあるが第1特定波長λとは異なる第2特定波長λを有する単一波長の第2光源51から投射された第2投射光53とをハーフミラー54によって合波した後、第1偏光子2を透過させて第1方向の偏光光(S偏光)のみを選択して路面4に照射する。路面4からの反射光5のうち第2検光子6によって選択された反射光は、さらに、ダイクロイックミラー7の作用により各特定波長域に分離され、第1および第2波長フィルター8,9によってそれぞれ第1特定波長λ(25a)、第2特定波長λ(25b)の波長成分に選択された後に、第1および第2光検出器10,11で個別に受光される。第1および第2光検出器10,11からの出力信号はそれぞれ第1および第2増幅器12,13によって増幅され、比較器14に入力する。比較器14は入力された各増幅器からの出力信号に基づき特定の2波長λ、λの受光強度を比較し、その結果をもとに路面4の乾燥、湿潤、凍結等の路面状態を識別する。識別方法の詳細は実施の形態1と同一であるので省略する。 The first projection light 52 projected from the first light source 50 having a single wavelength whose wavelength is the first specific wavelength λ 1 in the infrared region (1.0 to 2.0 μm), and the infrared region (1 The second projection light 53 projected from the second light source 51 having a single wavelength having a second specific wavelength λ 2 that is different from the first specific wavelength λ 1 but by a half mirror 54. After multiplexing, the first polarizer 2 is transmitted, and only the polarized light in the first direction (S-polarized light) is selected and applied to the road surface 4. The reflected light selected by the second analyzer 6 out of the reflected light 5 from the road surface 4 is further separated into specific wavelength regions by the action of the dichroic mirror 7, and the first and second wavelength filters 8 and 9 respectively. After being selected as the wavelength component of the first specific wavelength λ 1 (25a) and the second specific wavelength λ 2 (25b), the first and second photodetectors 10 and 11 individually receive the light. Output signals from the first and second photodetectors 10 and 11 are amplified by the first and second amplifiers 12 and 13, respectively, and input to the comparator 14. The comparator 14 compares the received light intensities of specific two wavelengths λ 1 and λ 2 based on the output signals from the input amplifiers, and based on the result, determines the road surface condition such as dry, wet, and frozen of the road surface 4. Identify. Since the details of the identification method are the same as those in the first embodiment, the description is omitted.

本実施の形態では、上述したように、LEDやLD等の単一波長光源を複数の特定波長光源として適用した点に特徴がある。つまり、LEDやLD等のそれ自身で小型でかつ軽量である半導体光源を路面照射用光源として用いることにより、装置全体として小型化や軽量化が図られた高精度の路面状態検出センサが容易に得られる。   As described above, the present embodiment is characterized in that a single wavelength light source such as an LED or an LD is applied as a plurality of specific wavelength light sources. In other words, by using a semiconductor light source that is small and light by itself, such as an LED or LD, as a light source for road surface irradiation, a highly accurate road surface state detection sensor that is reduced in size and weight as an entire device can be easily obtained. can get.

実施の形態1の路面状態検出センサの構成図である。1 is a configuration diagram of a road surface state detection sensor according to a first embodiment. 実施の形態1の路面状態検出センサの動作を説明する図である。FIG. 6 is a diagram for explaining the operation of the road surface state detection sensor according to the first embodiment. 実施の形態1の路面状態検出センサの動作を説明する図である。FIG. 6 is a diagram for explaining the operation of the road surface state detection sensor according to the first embodiment. 路面の反射光強度比率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the reflected light intensity ratio of a road surface. 本実施の形態1による路面状態検出センサによって実測された路面の反射光強度の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the reflected light intensity of the road surface measured by the road surface state detection sensor by this Embodiment 1. FIG. 図5に示した実験に対する比較実験の結果を表す図である。It is a figure showing the result of the comparison experiment with respect to the experiment shown in FIG. 実施の形態2の路面状態検出センサの構成図である。FIG. 6 is a configuration diagram of a road surface state detection sensor according to a second embodiment. 実施の形態3の路面状態検出センサの構成図である。FIG. 6 is a configuration diagram of a road surface state detection sensor according to a third embodiment. 実施の形態4の路面状態検出センサの構成図である。FIG. 10 is a configuration diagram of a road surface state detection sensor according to a fourth embodiment.

符号の説明Explanation of symbols

1 光源、 2 偏光子(検光子)、 3 投射光、 4 路面、 4a 水膜あるいは氷層、 5a 反射光、 5b 水膜(あるいは氷層)表面から反射した反射光、 5c 水膜(あるいは氷層)を透過し路面で発生した反射光、 6 検光子、 7 ダイクロイックミラー、 8 第1波長フィルター、 9 第2波長フィルター、 10 第1光検出器、 11 第2光検出器、 12 第1増幅器、 13 第2増幅器、 14 比較器、 15 投射光の偏光方向で入射面に対して垂直方向に振動軸を有する偏光方向(第1方向)、 16 第2方向、 17a,b 路面反射光の偏光方向、 18 水膜(あるいは氷層)表面反射光の偏光方向、 19a,19b 水膜(あるいは氷層)を透過し路面で発生した光の偏光方向、 20 波長軸、 21 光強度比率、 22 路面上の水膜を透過した路面からの反射光スペクトル、 23 路面上の氷層を透過した路面からの反射光スペクトル、 24 路面乾燥時の反射光スペクトル、 25a 透過スペクトルの相対変化を観測する上で基準となる特定波長、 25b 測定対象となる特定波長、 30 偏光ビームスプリッター(偏光分岐手段)、 31 偏光ビームスプリッターを透過した透過光、 32 偏光ビームスプリッターによって反射された光、 33 投射光と同一の偏光方向(第1方向)、 34 投射光と直交する偏光方向(第2方向)、 35 第3光検出器、 36 ハーフミラー、 37 第4光検出器、 38 第3増幅器、 39 第4増幅器、 40 比較器、 41 散乱光、 43 第5光検出器、 44 第5増幅器、 45 比較器、 50 第1光源、 51 第2光源、 52 第1投射光、 53 第2投射光、 54 ハーフミラー。

DESCRIPTION OF SYMBOLS 1 Light source, 2 Polarizer (analyzer), 3 Projection light, 4 Road surface, 4a Water film or ice layer, 5a Reflected light, 5b Reflected light reflected from water film (or ice layer) surface, 5c Water film (or ice) Reflected light generated on the road surface, 6 analyzer, 7 dichroic mirror, 8 first wavelength filter, 9 second wavelength filter, 10 first photodetector, 11 second photodetector, 12 first amplifier 13 Second amplifier, 14 Comparator, 15 Polarization direction (first direction) having a vibration axis perpendicular to the incident surface in the polarization direction of the projected light, 16 Second direction, 17a, b Polarization of road surface reflected light Direction, 18 Polarization direction of water film (or ice layer) surface reflected light, 19a, 19b Polarization direction of light transmitted through water film (or ice layer) and generated on road surface, 20 wavelength axis, 21 light intensity ratio, 22 road surface Permeates the water film above The reflected light spectrum from the road surface, 23 the reflected light spectrum from the road surface that has passed through the ice layer on the road surface, 24 the reflected light spectrum when the road surface is dried, 25a a specific wavelength that is a reference for observing the relative change in the transmitted spectrum, 25b Specific wavelength to be measured, 30 Polarization beam splitter (polarization branching means), 31 Transmitted light transmitted through polarization beam splitter, 32 Light reflected by polarization beam splitter, 33 Same polarization direction as projection light (first direction) ), 34 Polarization direction orthogonal to the projected light (second direction), 35 Third photodetector, 36 Half mirror, 37 Fourth photodetector, 38 Third amplifier, 39 Fourth amplifier, 40 Comparator, 41 Scattering Light, 43 fifth light detector, 44 fifth amplifier, 45 comparator, 50 first light source, 51 second light source, 52 first projection light, 53 2 projected light, 54 a half mirror.

Claims (6)

少なくとも赤外領域の波長からなる光源と、
前記光源から出射された投射光が路面に至るまでの光路上に配置され前記投射光中の第1方向の偏光光のみを透過する第1検光子と、
前記第1検光子透過後の投射光が前記路面あるいは前記路面上の水または氷からなる膜のいずれか一方または双方によって反射されて生じた反射光の光路上に配置され前記第1方向に直交する第2方向の偏光光のみを透過する第2検光子と、
前記第2方向の偏光光における少なくとも2以上の特定波長の光強度を個別に検出する光検出手段と、
前記光検出手段からの前記複数の特定波長に基づく出力信号を処理する信号処理手段と、を備え、
前記第2方向の偏光光における複数の特定波長間の相対光強度に基づき路面状態を識別することを特徴とする路面状態検出センサ。
A light source comprising at least wavelengths in the infrared region;
A first analyzer that is disposed on an optical path from the light source to the road surface and transmits only polarized light in a first direction in the projection light;
The projected light after passing through the first analyzer is arranged on the optical path of the reflected light generated by reflecting the road surface or the water or ice film on the road surface, or orthogonal to the first direction. A second analyzer that transmits only polarized light in the second direction,
Light detecting means for individually detecting the light intensity of at least two or more specific wavelengths in the polarized light in the second direction;
Signal processing means for processing an output signal based on the plurality of specific wavelengths from the light detection means, and
A road surface state detection sensor that identifies a road surface state based on relative light intensity between a plurality of specific wavelengths in polarized light in the second direction.
少なくとも赤外領域の波長からなる光源と、
前記光源から出射された投射光が路面に至るまでの光路上に配置され前記投射光中の第1方向の偏光光のみを透過する第1検光子と、
前記第1検光子透過後の投射光が前記路面あるいは前記路面上の水または氷からなる膜のいずれか一方または双方によって反射されて生じた反射光の光路上に配置され前記反射光を前記第1方向の偏光光と前記第1方向に直交する第2方向の偏光光に分岐する偏光分岐手段と、
前記反射光中の前記第1方向の偏光光の光強度と前記第2方向の偏光光における少なくとも2以上の特定波長毎の光強度とを個別に検出する光検出手段と、
前記光検出手段からの各出力信号を処理する信号処理手段と、を備え、
前記反射光中の前記第1および第2方向の偏光光間の相対光強度と前記第2方向の偏光光における複数の特定波長間の相対光強度とに基づき路面状態を識別することを特徴とする路面状態検出センサ。
A light source comprising at least wavelengths in the infrared region;
A first analyzer that is disposed on an optical path from the light source to the road surface and transmits only polarized light in a first direction in the projection light;
The projection light after passing through the first analyzer is arranged on the optical path of the reflected light generated by reflecting the road surface or one or both of the film made of water or ice on the road surface, and the reflected light is Polarization branching means for branching into polarized light in one direction and polarized light in a second direction orthogonal to the first direction;
A light detecting means for individually detecting the light intensity of the polarized light in the first direction in the reflected light and the light intensity for at least two or more specific wavelengths in the polarized light in the second direction;
Signal processing means for processing each output signal from the light detection means,
The road surface state is identified based on the relative light intensity between the polarized light in the first and second directions in the reflected light and the relative light intensity between a plurality of specific wavelengths in the polarized light in the second direction. Road surface condition detection sensor.
前記投射光によって生じた前記路面あるいは前記路面上の水または氷からなる膜のいずれか一方または双方からの散乱光の光強度を検出する散乱光検出手段を備え、前記信号処理手段が前記散乱光検出手段からの出力信号を処理して路面状態の識別に前記散乱光強度も利用することを特徴とする請求項1または2記載の路面状態検出センサ。 Scattered light detection means for detecting the light intensity of scattered light from one or both of the road surface or water or ice film on the road surface generated by the projection light, and the signal processing means is the scattered light. 3. A road surface state detection sensor according to claim 1, wherein the scattered light intensity is also used for identifying the road surface state by processing an output signal from the detection means. 前記光源が、それぞれ異なる特定波長で発する複数の単一波長光源からなることを特徴とする請求項1ないし3のいずれか1項記載の路面状態検出センサ。 The road surface condition detection sensor according to any one of claims 1 to 3, wherein the light source includes a plurality of single wavelength light sources that emit light at different specific wavelengths. 前記第1方向の偏光光がS偏光であり、前記第2方向の偏光光がP偏光であることを特徴とする請求項1ないし4のいずれか1項記載の路面状態検出センサ。 5. The road surface state detection sensor according to claim 1, wherein the polarized light in the first direction is S-polarized light and the polarized light in the second direction is P-polarized light. 6. 前記複数の特定波長のうち第1特定波長が1.1μm以上1.3μm以下であり、第2特定波長が1.4μm以上1.6μm以下であることを特徴とする請求項1ないし5のいずれか1項記載の路面状態検出センサ。

The first specific wavelength of the plurality of specific wavelengths is 1.1 μm to 1.3 μm, and the second specific wavelength is 1.4 μm to 1.6 μm. The road surface condition detection sensor according to claim 1.

JP2003278198A 2003-07-23 2003-07-23 Sensor for detecting road surface conditions Pending JP2005043240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278198A JP2005043240A (en) 2003-07-23 2003-07-23 Sensor for detecting road surface conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278198A JP2005043240A (en) 2003-07-23 2003-07-23 Sensor for detecting road surface conditions

Publications (1)

Publication Number Publication Date
JP2005043240A true JP2005043240A (en) 2005-02-17

Family

ID=34264681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278198A Pending JP2005043240A (en) 2003-07-23 2003-07-23 Sensor for detecting road surface conditions

Country Status (1)

Country Link
JP (1) JP2005043240A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897949A1 (en) * 2006-02-24 2007-08-31 Peugeot Citroen Automobiles Sa Road surface characterizing system for adherence detector field, has displacement device making detection system mobile for measuring electromagnetic waves according to angle with respect to surface same as that of electromagnetic waves
JP2007316049A (en) * 2006-04-27 2007-12-06 Japan Aerospace Exploration Agency Road surface monitoring system
WO2008003852A1 (en) * 2006-07-07 2008-01-10 Centre National De La Recherche Scientifique (C.N.R.S) Device for evaluating the state of wetting of a surface, evaluation method and associated indication device
JP2009192343A (en) * 2008-02-14 2009-08-27 Nokodai Tlo Kk Measuring device for measuring optical rotation of measuring object
JP2010025915A (en) * 2008-06-18 2010-02-04 Ricoh Co Ltd Imaging apparatus and road surface state discrimination method
WO2011007015A1 (en) * 2009-07-17 2011-01-20 Continental Teves Ag & Co. Ohg Laser-based method for the friction coefficient classification of motor vehicles
CN102114840A (en) * 2011-01-20 2011-07-06 浙江吉利汽车研究院有限公司 Driving safety control device on road surface change
JP2011185644A (en) * 2010-03-05 2011-09-22 Nec Corp Light measuring apparatus and method
JP2012026927A (en) * 2010-07-26 2012-02-09 Astron Inc Kk Weather measuring apparatus
WO2013004227A1 (en) * 2011-07-05 2013-01-10 Conti Temic Microelectronic Gmbh Image capturing device for a vehicle
WO2013013563A1 (en) * 2011-07-25 2013-01-31 中兴通讯股份有限公司 Road surface ponding and icing detection method and device
JP2016138790A (en) * 2015-01-27 2016-08-04 国立研究開発法人産業技術総合研究所 Surface inspection device, surface inspection method, program for the same, and recording medium of program
EP3229011A1 (en) 2016-04-06 2017-10-11 Panasonic Intellectual Property Management Co., Ltd. Detection device, detection method, and non-transitory computer-readable recording medium storing detection program
JP2018205186A (en) * 2017-06-06 2018-12-27 株式会社豊田中央研究所 Device and program for determining state of road surface
WO2019058682A1 (en) 2017-09-20 2019-03-28 ヤマハ発動機株式会社 Road surface detection device and vehicle
CN110214267A (en) * 2016-11-18 2019-09-06 法国电力公司 For estimating the mancarried device and method of Polymer Parameters
CN113390796A (en) * 2021-06-03 2021-09-14 武汉致腾科技有限公司 Multispectral-based road surface water ice snow identification and classification method
EP4045933A4 (en) * 2019-10-16 2023-05-31 Waymo LLC Systems and methods for infrared sensing

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897949A1 (en) * 2006-02-24 2007-08-31 Peugeot Citroen Automobiles Sa Road surface characterizing system for adherence detector field, has displacement device making detection system mobile for measuring electromagnetic waves according to angle with respect to surface same as that of electromagnetic waves
JP2007316049A (en) * 2006-04-27 2007-12-06 Japan Aerospace Exploration Agency Road surface monitoring system
WO2008003852A1 (en) * 2006-07-07 2008-01-10 Centre National De La Recherche Scientifique (C.N.R.S) Device for evaluating the state of wetting of a surface, evaluation method and associated indication device
FR2903492A1 (en) * 2006-07-07 2008-01-11 Centre Nat Rech Scient DEVICE FOR EVALUATING THE SURFACE MOORING STATE, EVALUATION METHOD AND INDICATING DEVICE THEREFOR
US8269968B2 (en) 2006-07-07 2012-09-18 Centre National De La Recherche Scientifique (C.N.R.S.) Device for evaluating the state of wetting of a surface, evaluation method and associated indication device
JP2009192343A (en) * 2008-02-14 2009-08-27 Nokodai Tlo Kk Measuring device for measuring optical rotation of measuring object
JP2010025915A (en) * 2008-06-18 2010-02-04 Ricoh Co Ltd Imaging apparatus and road surface state discrimination method
WO2011007015A1 (en) * 2009-07-17 2011-01-20 Continental Teves Ag & Co. Ohg Laser-based method for the friction coefficient classification of motor vehicles
CN102481935A (en) * 2009-07-17 2012-05-30 大陆-特韦斯贸易合伙股份公司及两合公司 Laser-based method for the friction coefficient classification of motor vehicles
JP2011185644A (en) * 2010-03-05 2011-09-22 Nec Corp Light measuring apparatus and method
JP2012026927A (en) * 2010-07-26 2012-02-09 Astron Inc Kk Weather measuring apparatus
CN102114840A (en) * 2011-01-20 2011-07-06 浙江吉利汽车研究院有限公司 Driving safety control device on road surface change
WO2013004227A1 (en) * 2011-07-05 2013-01-10 Conti Temic Microelectronic Gmbh Image capturing device for a vehicle
WO2013013563A1 (en) * 2011-07-25 2013-01-31 中兴通讯股份有限公司 Road surface ponding and icing detection method and device
JP2016138790A (en) * 2015-01-27 2016-08-04 国立研究開発法人産業技術総合研究所 Surface inspection device, surface inspection method, program for the same, and recording medium of program
EP3229011A1 (en) 2016-04-06 2017-10-11 Panasonic Intellectual Property Management Co., Ltd. Detection device, detection method, and non-transitory computer-readable recording medium storing detection program
US10360459B2 (en) 2016-04-06 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Detection device, detection method, and non-transitory computer-readable recording medium storing detection program
CN110214267A (en) * 2016-11-18 2019-09-06 法国电力公司 For estimating the mancarried device and method of Polymer Parameters
US11137352B2 (en) 2016-11-18 2021-10-05 Electricite De France Portable device and method for estimating a parameter of a polymer
JP2018205186A (en) * 2017-06-06 2018-12-27 株式会社豊田中央研究所 Device and program for determining state of road surface
JP7001305B2 (en) 2017-06-06 2022-01-19 株式会社豊田中央研究所 Road surface condition determination device and road surface condition determination program
WO2019058682A1 (en) 2017-09-20 2019-03-28 ヤマハ発動機株式会社 Road surface detection device and vehicle
EP4045933A4 (en) * 2019-10-16 2023-05-31 Waymo LLC Systems and methods for infrared sensing
US12055442B2 (en) 2019-10-16 2024-08-06 Waymo Llc Systems and methods for infrared sensing
CN113390796A (en) * 2021-06-03 2021-09-14 武汉致腾科技有限公司 Multispectral-based road surface water ice snow identification and classification method
CN113390796B (en) * 2021-06-03 2022-07-08 武汉致腾科技有限公司 Multispectral-based pavement water ice and snow identification and classification method

Similar Documents

Publication Publication Date Title
JP2005043240A (en) Sensor for detecting road surface conditions
KR920016823A (en) Optical instrumentation for determining surface properties
JP3970334B2 (en) Optical surface inspection equipment
US20210341283A1 (en) Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
US20160033783A1 (en) Optical system for generating beam of reference light and method for splitting beam of light to generate beam of reference light
US5910841A (en) Ellipsometer using an expanded beam
TWI228588B (en) Apparatus and method for simultaneous channel and optical signal-to-noise ratio monitoring
JP6381779B2 (en) Terahertz wave measuring device
US6239873B1 (en) Apparatus for simultaneous measurement of two polarization states of scattered light
JPH10206314A (en) Measuring method for road surface condition and device therefore
JP4684215B2 (en) Surface defect inspection equipment
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
JPH08247940A (en) Road surface state detection device
JPH08201278A (en) Spectrum measuring device
WO2021235091A1 (en) Moisture detection device
JP2003130615A (en) Method and device for measuring thickness and composition
JP3983549B2 (en) Surface defect inspection equipment
JPH05142156A (en) Foreign matter inspecting device
JPH11101739A (en) Ellipsometry apparatus
US20150308950A1 (en) Optical sensing apparatus and a method for detecting characteristics of a sample
JP4678587B2 (en) Optical property measuring device
RU2005130289A (en) ELLIPSOMETER
JP3231257B2 (en) Method and apparatus for measuring road surface condition
JP2020034476A (en) Concentration measuring apparatus and concentration measuring method
TWI687331B (en) Multi-wavelength laser radar system for detecting specific substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219