[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004509460A - Method of manufacturing a spin valve structure - Google Patents

Method of manufacturing a spin valve structure Download PDF

Info

Publication number
JP2004509460A
JP2004509460A JP2002527521A JP2002527521A JP2004509460A JP 2004509460 A JP2004509460 A JP 2004509460A JP 2002527521 A JP2002527521 A JP 2002527521A JP 2002527521 A JP2002527521 A JP 2002527521A JP 2004509460 A JP2004509460 A JP 2004509460A
Authority
JP
Japan
Prior art keywords
layer
spin valve
valve structure
magnetic
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002527521A
Other languages
Japanese (ja)
Inventor
ギリース ムルレイ エフ
クイパー アントニウス イー ティー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2004509460A publication Critical patent/JP2004509460A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01F10/3259Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/118Oxide films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • Y10T428/1129Super lattice [e.g., giant magneto resistance [GMR] or colossal magneto resistance [CMR], etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

本発明は、GMRタイプのスピンバルブ構造(1)を製造する方法に関する。このような構造は、磁性層(11a 11b)、非磁性層(15)及び強磁性体のセンス層(17)のスタックを有する。非常に良好なGMR効果をもつスピンバルブ構造を得るために、この方法は、特定のステップ、すなわちセンス層の強磁性体を酸化するステップと、酸化された強磁性体にアルミニウムを堆積するステップと、酸化された強磁性体からの酸素を使用して、堆積されたアルミニウムを酸化するステップとである。The invention relates to a method for producing a GMR type spin valve structure (1). Such a structure has a stack of magnetic layers (11a 11b), non-magnetic layers (15) and a ferromagnetic sense layer (17). In order to obtain a spin valve structure with a very good GMR effect, the method comprises the steps of oxidizing the ferromagnetic material of the sense layer and depositing aluminum on the oxidized ferromagnetic material. Oxidizing the deposited aluminum using oxygen from the oxidized ferromagnetic material.

Description

【0001】
【発明の属する技術分野】
本発明は、磁性層、非磁性層及び強磁性体のセンス層のスタックを有する、巨大磁気抵抗(GMR)タイプのスピンバルブ構造を製造する方法に関する。
【0002】
【従来の技術】
スピンバルブ構造は、磁気抵抗効果を有する磁性多層構造である。これは、このような構造の抵抗が外部磁界の影響下で変化することを意味する。スピンバルブ構造の場合、磁気抵抗効果は、多くは巨大磁気抵抗(GMR)効果と呼ばれる。多くの今日の磁気ディスクデバイスは、スピンバルブ構造をセンシング素子として使用する。これらの構造は、例えば自動車センサ及び磁性RAMのような他の技術分野のデバイスにおいても広く応用されている。
【0003】
スピンバルブ構造のセクション磁性層/非磁性層/センス層のみがGMR効果に寄与し、従って構造のアクティブ領域である。スピンバルブ構造の他の領域である非アクティブ領域は、前記アクティブ領域からの電流をシャントすることができる。この構造に存在するいくつかの境界(インタフェース)層は、非鏡面反射を取り入れることによりGMR効果を低減することもできる。すなわち電子が散乱し、スピン情報の損失をもたらす。
【0004】
Y. Kamiguchi他による論文「Co Fe specular spin valves with nano oxide layer」(C−7803−5555−5/99; IEEE, page DB−01)は巨大磁気抵抗型のスピンバルブ構造を開示している。この論文には以下のサンプルが記載されている。SiO構造/Ta 5nm/NiFe 2nm/IrMn 7nm/NOLをもつピン層/Cu 2nm /CoFe 2nm /CoFeO 4nm/Ta0 0.4nm。このサンプルにおいて、スピンバルブ構造は、交換バイアスのための金属反強磁性体をもつCoFe鏡面構造である。この構造は、鏡面電子散乱を強化するためのNOL(nano oxide layer)を含むピン層を有する。サンプルは、マグネトロンスパッタリングにより堆積された。
【0005】
前記IEEEの論文に開示されたスピンバルブ構造では、アクティブ領域が、NOLをもつピン層、Cu層及びCoFe層を有する。ここで、NOLは、電子を反射する働きをする。
【0006】
【発明が解決しようとする課題】
本発明の目的は、センス層の位置において電子を鏡面反射する効果的な手段を有するスピンバルブ構造を実現することが可能な方法を提供することである。
【0007】
【課題を解決するための手段】
この目的は、請求項1に記載の本発明による方法により達成される。すなわち、磁性層、非磁性層及び強磁性体のセンス層のスタックを有する巨大磁気抵抗型のスピンバルブ構造を製造する方法であって、前記方法が、センス層の強磁性体を酸化させるステップと、センス層の酸化された強磁性体上にアルミニウムを堆積させるステップとを含むとともに、そののち、このアルミニウムがセンス層の酸化された強磁性体からの酸素を使用して酸化してアルミニウム酸化膜になることを含む方法により達成される。このように、連続的に、センス層上に補助酸化膜を形成し、この補助酸化膜上に金属アルミニウム層を形成し、補助酸化膜からの酸素を使用することによってこのアルミニウム層のアルミニウムを酸化させることにより、アルミニウム酸化膜が形成される。概して、前記層は薄膜層である。それぞれの層は、一層であってもよいが、多層構造を有していてもよい。磁性層は、それ自体既知である多様な手段により固定されるか又はピン止めされる磁化を有することができる。磁性層を形成するのに適した材料は例えばCoFeの合金である。非磁性層は、銅(Cu)により形成されることができる。センス層の磁化は、印加される外部磁界により自由に影響される。好適には、金属コバルト、コバルトと鉄(CoFe)の合金又はニッケルと鉄(NiFe)の合金が、センス層を形成するための強磁性体として選ばれる。アルミニウムはコバルト(Co)又は鉄(Fe)のどちらよりも電気的陰性度が大きいので、補助酸化物は、アルミニウムの酸化の間にそれぞれ金属コバルト、CoFe及びNiFeになり、アルミニウム酸化物が形成される。
【0008】
上記のように形成されるアルミニウム酸化物は、緻密な(closed)酸化物であり、シャープな境界を生じさせることが分かった。これは鏡面反射を与えるので、構造のアクティブ領域の電子スピンメカニズムを乱さず、大幅に改善されたMR信号をもたらす。約2nmのアルミニウム酸化物層は、センス層の酸化に対してすぐれた保護となりえ、これにより極端に薄いセンス層が適用されることができる。高感度が必要とされる高密度磁気記録のためには上述したようなセンス層が必要とされる。こうして得られる構造の保磁力は15Oeのオーダーで比較的低く、温度依存性をほとんどもたないことが測定により示された。本発明による方法は、それ自体知られている薄膜技術を利用することができる。
【0009】
Y. Shimizu他による論文「Enhancement of GMR properties of bottom type spin valve films with ultra−thin free layer covered with specular oxide capping layer」(O−7803−5943−7 4/00; IEEE, page FA−07)は、Alターゲットの純アルゴンガスのスパッタリングにより形成されたアルミニウム酸化物キャップ層で覆われたCoFeBフリー層を開示している。この論文から既知である方法は、Al酸化物を形成するための酸素ソースとして補助酸化物が形成されていないので、本明細書に記載の方法とは全く相違するものである。既知の方法に起因するデバイスには補助酸化物からの酸化が無く、境界ミキシングが生じる可能性があるので、この既知の方法によっては本発明の方法により得られる効果が得られない。
【0010】
更に、Masashige Sato他による文献「Effects of interface oxidation in ferromagnetic tunnel junctions」(IEEE Transactions on Magnetics, vol. 35, no. 5, September 1999, pages 2946 − 2948)が酸化されたAl障壁をもつトンネル接合を開示していることに注意されたい。開示されたサンプルでは、アルミニウムを堆積する前に、トンネル接合磁気抵抗(TMR)デバイスの下部コバルト層の表面が空気に晒され、そののち、形成されたアルミニウム層が、無線周波数酸素プラズマ中で酸化された。上述した論文では、酸化されたコバルトの表面は拡散防止層として働き、酸化されていないアルミニウム層は、アニールによって、酸化されたアルミニウム及び酸化されたコバルトからの酸素原子により酸化されるものとしている。最後に述べた論文に開示されている方法、デバイス及び効果に関するすべての知識はTMR構造に限定されている。GMR構造に関する情報はこの論文から導き出せない。
【0011】
本発明は、更に、本発明の方法により得られるスピンバルブ構造に関する。このように、本発明によるスピンバルブ構造は、センス層の位置において境界の酸化を有する。この構造は、一般に、最初に述べたIEEEの論文に開示されているようなNOLをもつピン層を備えることができる。
【0012】
本発明は、更に、読取りヘッド、フィールドセンサ及び磁気メモリにそれぞれ関し、これらは、それぞれ本発明の方法により得られる又は得られうる巨大磁気抵抗型のスピンバルブ構造を備える。
【0013】
本発明は、更に、本発明による読取りヘッドを有する、磁気記憶媒体から情報を読み取るための装置に関する。
【0014】
本発明は、更に、本発明による磁気メモリを有する電子回路に関する。
【0015】
特許請求の範囲に関して、各請求項に規定されるさまざまな特徴は組み合わされてもよいことに注意されたい。
【0016】
本発明の上記及び他の側面は、後述する実施例を参照して非限定的な例示により明らかになるであろう。
【0017】
【発明の実施の形態】
図1に概略的に示されているスピンバルブ構造1は、基板3により支持される実質的に平行な層のスタックを備える。基板3は、例えばSiのような非磁性非導電性の材料で構成されることができ、ウェハの一部であってもよい。スタックは多数の層を含み、それらの層のうちTa及びNiFeの2つの層5及び7はそれぞれシード層として働き、スタックのIrMnの層9について正しい結晶組織を与える。層9は、構造のピン層であるスタックのCoFeの磁性多層11a及び11bの磁化をピン止めする(固定する)ためのピン止め層である反強磁性物質である。構造のアクティブな層に電子を閉じこめるため、NOLとも呼ばれるCoFeOxの反射層13が、層11aと層11bとの間に存在する。反射層13は、CoFeの酸化により形成される。他の例として、強磁性元素及びより電気的陰性度の大きい元素を含む合金が使用されてもよい。スタックのCuの層15は、ピン層とセンス層17との間で交換結合をブレークする働きをする。センス層17は、この例ではCoFeの強磁性層であり、スタックの一部である。センス層17上には、特別な酸化物層19が、本発明に従う方法を用いて形成されている。この方法によれば、センス層17が形成されたのち、この層の強磁性体の膜が酸化され酸化物になり、この例ではCoFe酸化物になる。そののち、この層の上にアルミニウム膜を形成するために、酸化された層17上に例えばスパッタリングによりアルミニウムが堆積される。こののち、堆積されたアルミニウムの酸化プロセスが続く。このプロセス中、酸化された層17からの酸素が、酸化物層19を形成するために使用される。この例では、アルミニウム酸化物層は、クローズ(close)構造を有し、センス層17とのシャープな境界を形成する。
【0018】
図1に示される、必要な接続パッドを備えるスピンバルブ構造1は、フィールドセンサ、具体的にはGMRセンサとして使用されることができる。このような種類のセンサは、特に、自動車及び産業の応用分野に適している。例として、デジタル位置センサ及びアナログ角度センサが挙げられる。
【0019】
図2は、磁気読取りヘッドの一部を表している。読取りヘッドは、電気接続部100をもつトランスデューサTを有する。トランスデューサTは、例えば図1に示す実施例のような本発明によるスピンバルブ構造の実施例を含む。読取りヘッドはフラックスガイド102、104を有し、これらのフラックスガイドは、磁気回路を形成するようにトランスデューサーTに相対的に配置される。フラックスガイド102、104は、ヘッドの磁極面を形成する端面102a、104aを有し、これらの端面の間には磁性ギャップ10がある。例えば磁気テープ、ディスク又はカードのような磁気媒体が、端面102a、104aの近傍を通る場合、その媒体上の磁気的に記憶された情報が、上記の磁気回路内に変化する磁束を生成し、この磁束が、また、トランスデューサTを通して供給される。トランスデューサTは、変化する磁束を電気抵抗のバリエーションに変える。これは、電気接続部100に接続される適切な計測機器により測定されることができる。このような磁気ヘッドは、磁気媒体上の磁気情報の記録に使用されることができる誘導コイルを有していてもよい。
【0020】
本発明による装置の実施例が図3に示されている。この装置は、フレーム200と、例えばハードディスク又は光磁気ディスクのようなディスク状情報担体204を担持するためにフレーム200内に回転可能に取り付けられるスピンドル202とを有する。情報担体204は、組み込まれた担体又は取り外し可能な担体でありうる。装置は、屈曲部206aを介して符号208により示される本発明による読取りヘッドの実施例を支持するスイングアーム206を更に有する。スピンドル202及びアーム206を駆動するための駆動部が設けられる。動作状態において、ヘッド208は、回転する情報担体204を走査する。ヘッドは、情報担体204と対向して配置され、担体204に対して実質的に半径方向に移動する。図示される装置は、データ記憶システム、オーディオシステム又はビデオシステムの一部でありうる。本発明による装置は、テープ又はカードから情報を読み取るための装置であってもよい。
【0021】
本発明による磁気メモリの実施例が図4に開示されている。このメモリは、メモリ素子302と、特定のメモリ素子を選択するためのワード線304及びビット線306とを有する。それぞれのメモリ素子302は、符号300により図示される本発明によるスピンバルブ構造の実施例を含む。ビット線206におけるメモリ素子302は、例えばCuのように低い抵抗率の非磁性金属308により互いに隔てられてもよい。
【0022】
本発明は、好適な実施例に関して図示され説明されているが、当業者であれば、この明細書に開示されている本発明の範囲及び精神から逸脱することなく形態、詳細及び/又は材料のさまざまな変更又は変形がなされてもよいことが分かるであろう。具体的には、上述したもの以外の強磁性体がセンス層に適していることがありうる。更に、それ自体知られている薄膜技法を含みうる本発明の方法により得られるスピンバルブ構造の応用の多様性がありうる。
【図面の簡単な説明】
【図1】本発明によるスピンバルブ構造の実施例の概略断面図。
【図2】本発明による読取りヘッドの実施例の概略斜視図。
【図3】本発明による装置の実施例を示す概略図。
【図4】本発明による磁気メモリの実施例の概略斜視図。
【図5】本発明による電子回路の実施例の概略図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a giant magnetoresistive (GMR) type spin valve structure having a stack of magnetic, non-magnetic and ferromagnetic sense layers.
[0002]
[Prior art]
The spin valve structure is a magnetic multilayer structure having a magnetoresistance effect. This means that the resistance of such a structure changes under the influence of an external magnetic field. In the case of a spin valve structure, the magnetoresistance effect is often referred to as a giant magnetoresistance (GMR) effect. Many modern magnetic disk devices use a spin valve structure as a sensing element. These structures are also widely applied in devices in other technical fields such as, for example, automotive sensors and magnetic RAM.
[0003]
Only the section magnetic layer / non-magnetic layer / sense layer of the spin valve structure contributes to the GMR effect and is therefore the active region of the structure. An inactive region, another region of the spin valve structure, can shunt current from the active region. Some interface layers present in this structure may also reduce the GMR effect by incorporating non-specular reflection. That is, electrons are scattered, resulting in loss of spin information.
[0004]
Y. A paper by Kamiguchi et al., "Co Fe spectral spin valves with nano oxide layer" (C-7803-5555-5 / 99; IEEE, page DB-01) discloses a giant magnetoresistive spin valve structure. The paper contains the following samples: SiO structure / Ta 5 nm / NiFe 2 nm / IrMn 7 nm / pin layer with NOL / Cu 2 nm / CoFe 2 nm / CoFeO 4 nm / Ta0 0.4 nm. In this sample, the spin valve structure is a CoFe mirror structure having a metal antiferromagnet for exchange bias. This structure has a pinned layer including a nano oxide layer (NOL) to enhance specular electron scattering. The samples were deposited by magnetron sputtering.
[0005]
In the spin valve structure disclosed in the IEEE article, the active region has a pinned layer having NOL, a Cu layer, and a CoFe layer. Here, NOL functions to reflect electrons.
[0006]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method capable of realizing a spin valve structure having an effective means for specularly reflecting electrons at the location of a sense layer.
[0007]
[Means for Solving the Problems]
This object is achieved by a method according to the invention as defined in claim 1. That is, a method of manufacturing a giant magnetoresistive spin valve structure having a stack of a magnetic layer, a non-magnetic layer and a ferromagnetic sense layer, the method comprising oxidizing the ferromagnetic material of the sense layer; Depositing aluminum on the oxidized ferromagnetic material of the sense layer, and then oxidizing the aluminum using oxygen from the oxidized ferromagnetic material of the sense layer to form an aluminum oxide film. Is achieved by a method that includes Thus, an auxiliary oxide film is continuously formed on the sense layer, a metal aluminum layer is formed on the auxiliary oxide film, and the aluminum of the aluminum layer is oxidized by using oxygen from the auxiliary oxide film. As a result, an aluminum oxide film is formed. Generally, the layer is a thin film layer. Each layer may be a single layer, or may have a multilayer structure. The magnetic layer can have a magnetization that is fixed or pinned by various means known per se. A material suitable for forming the magnetic layer is, for example, an alloy of CoFe. The non-magnetic layer can be formed of copper (Cu). The magnetization of the sense layer is freely affected by the applied external magnetic field. Preferably, metallic cobalt, an alloy of cobalt and iron (CoFe) or an alloy of nickel and iron (NiFe) is selected as the ferromagnetic material for forming the sense layer. Since aluminum has a higher electronegativity than either cobalt (Co) or iron (Fe), the auxiliary oxides become metallic cobalt, CoFe and NiFe, respectively, during the oxidation of aluminum to form aluminum oxide. You.
[0008]
The aluminum oxide formed as described above was found to be a closed oxide, producing sharp boundaries. This provides specular reflection, so that it does not disturb the electron spin mechanism in the active area of the structure, resulting in a greatly improved MR signal. An aluminum oxide layer of about 2 nm can provide good protection against oxidation of the sense layer, so that extremely thin sense layers can be applied. For high-density magnetic recording requiring high sensitivity, the above-described sense layer is required. The measurements show that the coercive force of the structure thus obtained is relatively low, on the order of 15 Oe, and has little temperature dependence. The method according to the invention can make use of thin-film technology known per se.
[0009]
Y. Shimizu et al., "Enhancement of GMR properties of bottom type spin valve films with ultra-thin free layer over a seven-day contract. Disclose a CoFeB free layer covered with an aluminum oxide cap layer formed by sputtering pure argon gas on a 2 O 3 target. The method known from this article is completely different from the method described herein, since no auxiliary oxide is formed as an oxygen source for forming the Al oxide. Devices resulting from the known method are not oxidized from the auxiliary oxide and may undergo boundary mixing, so that the effect obtained by the method of the present invention is not obtained by this known method.
[0010]
In addition, the publication "Effects of interface oxidation in ferromagnetic tunnel junctions" by Masashi Sato et al. (IEEE Transactions, Magnets. Note that it is disclosed. In the disclosed sample, before depositing aluminum, the surface of the lower cobalt layer of the tunnel junction magnetoresistive (TMR) device is exposed to air, after which the formed aluminum layer is oxidized in a radio frequency oxygen plasma. Was done. In the article mentioned above, it is assumed that the surface of the oxidized cobalt acts as a diffusion barrier, and that the non-oxidized aluminum layer is oxidized by annealing with oxygen atoms from the oxidized aluminum and the oxidized cobalt. All knowledge of the methods, devices and effects disclosed in the last mentioned article is limited to TMR structures. Information on GMR structures cannot be derived from this article.
[0011]
The invention further relates to a spin valve structure obtainable by the method of the invention. Thus, the spin valve structure according to the present invention has boundary oxidation at the location of the sense layer. This structure can generally comprise a pinned layer with a NOL as disclosed in the IEEE article mentioned at the outset.
[0012]
The invention further relates to a read head, a field sensor and a magnetic memory, respectively, each comprising a giant magnetoresistive spin valve structure obtained or obtainable by the method of the invention.
[0013]
The invention further relates to an apparatus for reading information from a magnetic storage medium, comprising a read head according to the invention.
[0014]
The invention further relates to an electronic circuit having a magnetic memory according to the invention.
[0015]
Regarding the claims, it is noted that the various features defined in each claim may be combined.
[0016]
The above and other aspects of the invention will become apparent by way of non-limiting example, with reference to the embodiments described hereinafter.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The spin valve structure 1 shown schematically in FIG. 1 comprises a stack of substantially parallel layers supported by a substrate 3. The substrate 3 can be made of a non-magnetic and non-conductive material such as Si, for example, and may be a part of a wafer. The stack comprises a number of layers, of which two layers 5 and 7 of Ta and NiFe respectively serve as seed layers and give the correct crystallographic structure for the layer 9 of IrMn in the stack. Layer 9 is an antiferromagnetic material that is a pinning layer for pinning (fixing) the magnetization of CoFe magnetic multilayers 11a and 11b of the stack, which is the pinned layer of the structure. In order to confine electrons in the active layers of the structure, a reflective layer 13 of CoFeOx, also called NOL, is present between the layers 11a and 11b. The reflection layer 13 is formed by oxidation of CoFe. As another example, an alloy including a ferromagnetic element and an element having a higher electronegativity may be used. The Cu layer 15 of the stack serves to break exchange coupling between the pinned layer and the sense layer 17. The sense layer 17 is a CoFe ferromagnetic layer in this example, and is a part of the stack. On the sense layer 17, a special oxide layer 19 has been formed using the method according to the invention. According to this method, after the sense layer 17 is formed, the ferromagnetic film of this layer is oxidized to an oxide, and in this example, to a CoFe oxide. Thereafter, aluminum is deposited on the oxidized layer 17 by, for example, sputtering to form an aluminum film on this layer. This is followed by the oxidation process of the deposited aluminum. During this process, oxygen from oxidized layer 17 is used to form oxide layer 19. In this example, the aluminum oxide layer has a closed structure and forms a sharp boundary with the sense layer 17.
[0018]
The spin valve structure 1 with the necessary connection pads shown in FIG. 1 can be used as a field sensor, specifically a GMR sensor. Sensors of this kind are particularly suitable for automotive and industrial applications. Examples include digital position sensors and analog angle sensors.
[0019]
FIG. 2 shows a part of a magnetic read head. The read head has a transducer T with an electrical connection 100. The transducer T comprises an embodiment of the spin valve structure according to the invention, such as, for example, the embodiment shown in FIG. The read head has flux guides 102, 104, which are positioned relative to the transducer T so as to form a magnetic circuit. The flux guides 102, 104 have end faces 102a, 104a that form the pole faces of the head, with a magnetic gap 10 between the end faces. When a magnetic medium, such as a magnetic tape, disk or card, passes near the end faces 102a, 104a, the magnetically stored information on the medium creates a changing magnetic flux in the magnetic circuit, This magnetic flux is also supplied through the transducer T. The transducer T converts the changing magnetic flux into a variation in electrical resistance. This can be measured by a suitable measuring device connected to the electrical connection 100. Such a magnetic head may have an induction coil that can be used for recording magnetic information on a magnetic medium.
[0020]
An embodiment of the device according to the invention is shown in FIG. The apparatus comprises a frame 200 and a spindle 202 rotatably mounted in the frame 200 for carrying a disc-shaped information carrier 204, for example a hard disk or a magneto-optical disk. The information carrier 204 can be an integrated carrier or a removable carrier. The device further comprises a swing arm 206 supporting an embodiment of a read head according to the invention, indicated by the reference numeral 208 via a bend 206a. A drive unit for driving the spindle 202 and the arm 206 is provided. In operation, the head 208 scans the rotating information carrier 204. The head is arranged opposite the information carrier 204 and moves substantially radially with respect to the carrier 204. The depicted apparatus can be part of a data storage system, an audio system, or a video system. The device according to the invention may be a device for reading information from a tape or a card.
[0021]
An embodiment of a magnetic memory according to the present invention is disclosed in FIG. This memory has a memory element 302 and a word line 304 and a bit line 306 for selecting a specific memory element. Each memory element 302 includes an embodiment of a spin valve structure according to the present invention, indicated by reference numeral 300. The memory elements 302 on the bit lines 206 may be separated from each other by a low resistivity non-magnetic metal 308 such as, for example, Cu.
[0022]
Although the present invention has been illustrated and described with reference to preferred embodiments, workers skilled in the art will recognize that other forms, details, and / or materials may be used without departing from the scope and spirit of the invention disclosed herein. It will be appreciated that various changes or modifications may be made. Specifically, ferromagnetic materials other than those described above may be suitable for the sense layer. Furthermore, there may be a variety of applications of the spin-valve structure obtained by the method of the invention, which may include thin-film techniques known per se.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an embodiment of a spin valve structure according to the present invention.
FIG. 2 is a schematic perspective view of an embodiment of a read head according to the present invention.
FIG. 3 is a schematic diagram showing an embodiment of the device according to the present invention.
FIG. 4 is a schematic perspective view of an embodiment of a magnetic memory according to the present invention.
FIG. 5 is a schematic diagram of an embodiment of an electronic circuit according to the present invention.

Claims (8)

磁性層、非磁性層、及び強磁性体のセンス層のスタックを有する、巨大磁気抵抗型のスピンバルブ構造を製造する方法であって、前記方法が、前記センス層の前記強磁性体を酸化させる工程と、前記センス層の前記酸化された強磁性体上にアルミニウムを堆積させる工程とを含むとともに、前記センス層の前記酸化された強磁性体からの酸素を使用して前記アルミニウムが酸化しアルミニウム酸化膜になることを含む方法。A method of fabricating a giant magnetoresistive spin valve structure having a stack of a magnetic layer, a non-magnetic layer, and a ferromagnetic sense layer, the method oxidizing the ferromagnetic material of the sense layer. And depositing aluminum on the oxidized ferromagnetic material of the sense layer, wherein the aluminum is oxidized using oxygen from the oxidized ferromagnetic material of the sense layer. A method comprising becoming an oxide film. 前記センス層を形成するための前記強磁性体として金属コバルト、コバルトと鉄との合金、又はニッケルと鉄との合金が選択される、請求項1に記載の方法。The method of claim 1, wherein the ferromagnetic material for forming the sense layer is selected from metallic cobalt, an alloy of cobalt and iron, or an alloy of nickel and iron. 請求項1又は2に記載の方法により得られる巨大磁気抵抗型のスピンバルブ構造。A giant magnetoresistive spin valve structure obtained by the method according to claim 1. 請求項1又は2に記載の方法により得られうるスピンバルブ構造を備える読取りヘッド。A read head comprising a spin valve structure obtainable by the method according to claim 1. 請求項1又は2に記載の方法により得られうるスピンバルブ構造を備えるフィールドセンサ。A field sensor having a spin valve structure obtainable by the method according to claim 1. 請求項1又は2に記載の方法により得られうるスピンバルブ構造を備える磁気メモリ。A magnetic memory having a spin valve structure obtainable by the method according to claim 1. 磁気記憶媒体から情報を読み取る装置であって、請求項4に記載の読取りヘッドを有する装置。An apparatus for reading information from a magnetic storage medium, comprising the read head according to claim 4. 請求項6に記載の磁気メモリを有する電子回路。An electronic circuit comprising the magnetic memory according to claim 6.
JP2002527521A 2000-09-18 2001-09-05 Method of manufacturing a spin valve structure Pending JP2004509460A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00203234 2000-09-18
PCT/EP2001/010256 WO2002023564A1 (en) 2000-09-18 2001-09-05 Method of manufacturing a spin valve structure

Publications (1)

Publication Number Publication Date
JP2004509460A true JP2004509460A (en) 2004-03-25

Family

ID=8172038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002527521A Pending JP2004509460A (en) 2000-09-18 2001-09-05 Method of manufacturing a spin valve structure

Country Status (7)

Country Link
US (1) US6669787B2 (en)
EP (1) EP1232504A1 (en)
JP (1) JP2004509460A (en)
KR (1) KR100833260B1 (en)
CN (1) CN1180446C (en)
TW (1) TW550610B (en)
WO (1) WO2002023564A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075121B2 (en) * 2000-12-20 2006-07-11 Yamaha Corporation Magnetic tunneling junction element having thin composite oxide film
US6638774B2 (en) * 2002-01-15 2003-10-28 Infineon Technologies, Ag Method of making resistive memory elements with reduced roughness
US20050259365A1 (en) * 2002-03-08 2005-11-24 Seagate Technology Llc Magnetoresistive sensor with a specular scattering layer formed by deposition from an oxide target
US7170721B2 (en) * 2002-06-25 2007-01-30 Quantum Corporation Method of producing flux guides in magnetic recording heads
US20050128212A1 (en) * 2003-03-06 2005-06-16 Edecker Ada M. System and method for minimizing the amount of data necessary to create a virtual three-dimensional environment
US7290325B2 (en) 2004-08-13 2007-11-06 Quantum Corporation Methods of manufacturing magnetic heads with reference and monitoring devices
US7751154B2 (en) * 2005-05-19 2010-07-06 Quantum Corporation Magnetic recording heads with bearing surface protections and methods of manufacture
US7626787B2 (en) * 2006-03-08 2009-12-01 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for using a specular scattering layer in a free layer of a magnetic sensor while stabilizing the free layer by direct coupling with an antiferromagnetic layer
CN101814294B (en) * 2010-01-11 2012-05-30 清华大学 Electric writing magnetic storing element and device thereof as well as information record reproducing and manufacturing methods
US9858951B1 (en) 2015-12-01 2018-01-02 Western Digital (Fremont), Llc Method for providing a multilayer AFM layer in a read sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228002A (en) * 1999-02-05 2000-08-15 Fujitsu Ltd Magnetoresistance effect type device
JP2000251219A (en) * 1999-02-25 2000-09-14 Tdk Corp Thin-film magnetic head and its manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105309A (en) * 1990-08-24 1992-04-07 Nec Corp Manufacture of metallic magnetic substance film
JP3013031B2 (en) * 1996-12-13 2000-02-28 帝国通信工業株式会社 Magnetoresistance effect element and magnetoresistance sensor
JP2871670B1 (en) * 1997-03-26 1999-03-17 富士通株式会社 Ferromagnetic tunnel junction magnetic sensor, method of manufacturing the same, magnetic head, and magnetic recording / reproducing device
JP2000058941A (en) * 1998-08-12 2000-02-25 Read Rite Smi Kk Manufacture of spin valve film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228002A (en) * 1999-02-05 2000-08-15 Fujitsu Ltd Magnetoresistance effect type device
JP2000251219A (en) * 1999-02-25 2000-09-14 Tdk Corp Thin-film magnetic head and its manufacture

Also Published As

Publication number Publication date
US6669787B2 (en) 2003-12-30
WO2002023564A1 (en) 2002-03-21
EP1232504A1 (en) 2002-08-21
TW550610B (en) 2003-09-01
CN1393022A (en) 2003-01-22
KR100833260B1 (en) 2008-05-28
US20020034661A1 (en) 2002-03-21
KR20020062303A (en) 2002-07-25
CN1180446C (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
US6724585B2 (en) Magnetoresistive element and device utilizing magnetoresistance effect
JP3462832B2 (en) Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
JPH11296823A (en) Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system
US6876522B2 (en) GMR spin valve structure using heusler alloy
JP2000215415A (en) Magnetoresistance effect element
JPH11213343A (en) Magnetoresistive element and its production as well as magneto-resistive sensor using the magneto-resistive element, magnetoresistivity detection system and magnetic memory system using this magneto-resistive element
JPH10241123A (en) Magnetoresistance effect head
JP3836294B2 (en) Magnetic head and magnetic recording / reproducing apparatus using the same
JP2001052316A (en) Magnetoresistance effect head, its manufacture effect head, and magnetic recording apparatus using the magnetoresistance
US6669787B2 (en) Method of manufacturing a spin valve structure
EP1311008A1 (en) Magnetoresistance effect device and magnetoresistance effect head comprising the same, and magnetic recording/reproducing apparatus
JP3817399B2 (en) Magnetoresistive sensor
JPH11161921A (en) Magneto-resistance effect element and its production
US6452762B1 (en) Magneto-resistive element and production method thereof, magneto-resistive head, and magnetic recording/reproducing apparatus
JP2001028108A (en) Manufacture of magnetoresistive head
JPH10135038A (en) Magnetoresistance effect element and magneto resistance effect sensor using the element
US6798624B2 (en) Magnetization sensor for sensing the write field characteristics of a perpendicular or longitudinal recording head
JP2001056908A (en) Magneto-resistance effect element, magneto-resistance effect head, magneto-resistance detecting system and magnetic storage system
JP3823028B2 (en) Magnetic head
KR100360036B1 (en) Spin valve type magnetoresistive effect thin film element, manufacturing method thereof and thin film magnetic head comprising the element
JP2002008213A (en) Method for manufacturing magnetoresistive element
JP2003006818A (en) Magnetic-reluctance reproducing head with two ferromagnetic films bound to each other in nonpararrel
JP2000156317A (en) Magnetic recording and reproducing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120105