JP2004509460A - Method of manufacturing a spin valve structure - Google Patents
Method of manufacturing a spin valve structure Download PDFInfo
- Publication number
- JP2004509460A JP2004509460A JP2002527521A JP2002527521A JP2004509460A JP 2004509460 A JP2004509460 A JP 2004509460A JP 2002527521 A JP2002527521 A JP 2002527521A JP 2002527521 A JP2002527521 A JP 2002527521A JP 2004509460 A JP2004509460 A JP 2004509460A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- spin valve
- valve structure
- magnetic
- oxidized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 230000005291 magnetic effect Effects 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 27
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 12
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 238000000151 deposition Methods 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 4
- 229910000531 Co alloy Inorganic materials 0.000 claims description 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 70
- 229910003321 CoFe Inorganic materials 0.000 description 10
- 239000010408 film Substances 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910019236 CoFeB Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F41/305—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
- H01F41/307—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/10—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3916—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
- G11B5/3919—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
- G11B5/3922—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
- G11B5/3925—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
- H01F10/3259—Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/118—Oxide films
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/11—Magnetic recording head
- Y10T428/1107—Magnetoresistive
- Y10T428/1121—Multilayer
- Y10T428/1129—Super lattice [e.g., giant magneto resistance [GMR] or colossal magneto resistance [CMR], etc.]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Semiconductor Memories (AREA)
Abstract
本発明は、GMRタイプのスピンバルブ構造(1)を製造する方法に関する。このような構造は、磁性層(11a 11b)、非磁性層(15)及び強磁性体のセンス層(17)のスタックを有する。非常に良好なGMR効果をもつスピンバルブ構造を得るために、この方法は、特定のステップ、すなわちセンス層の強磁性体を酸化するステップと、酸化された強磁性体にアルミニウムを堆積するステップと、酸化された強磁性体からの酸素を使用して、堆積されたアルミニウムを酸化するステップとである。The invention relates to a method for producing a GMR type spin valve structure (1). Such a structure has a stack of magnetic layers (11a 11b), non-magnetic layers (15) and a ferromagnetic sense layer (17). In order to obtain a spin valve structure with a very good GMR effect, the method comprises the steps of oxidizing the ferromagnetic material of the sense layer and depositing aluminum on the oxidized ferromagnetic material. Oxidizing the deposited aluminum using oxygen from the oxidized ferromagnetic material.
Description
【0001】
【発明の属する技術分野】
本発明は、磁性層、非磁性層及び強磁性体のセンス層のスタックを有する、巨大磁気抵抗(GMR)タイプのスピンバルブ構造を製造する方法に関する。
【0002】
【従来の技術】
スピンバルブ構造は、磁気抵抗効果を有する磁性多層構造である。これは、このような構造の抵抗が外部磁界の影響下で変化することを意味する。スピンバルブ構造の場合、磁気抵抗効果は、多くは巨大磁気抵抗(GMR)効果と呼ばれる。多くの今日の磁気ディスクデバイスは、スピンバルブ構造をセンシング素子として使用する。これらの構造は、例えば自動車センサ及び磁性RAMのような他の技術分野のデバイスにおいても広く応用されている。
【0003】
スピンバルブ構造のセクション磁性層/非磁性層/センス層のみがGMR効果に寄与し、従って構造のアクティブ領域である。スピンバルブ構造の他の領域である非アクティブ領域は、前記アクティブ領域からの電流をシャントすることができる。この構造に存在するいくつかの境界(インタフェース)層は、非鏡面反射を取り入れることによりGMR効果を低減することもできる。すなわち電子が散乱し、スピン情報の損失をもたらす。
【0004】
Y. Kamiguchi他による論文「Co Fe specular spin valves with nano oxide layer」(C−7803−5555−5/99; IEEE, page DB−01)は巨大磁気抵抗型のスピンバルブ構造を開示している。この論文には以下のサンプルが記載されている。SiO構造/Ta 5nm/NiFe 2nm/IrMn 7nm/NOLをもつピン層/Cu 2nm /CoFe 2nm /CoFeO 4nm/Ta0 0.4nm。このサンプルにおいて、スピンバルブ構造は、交換バイアスのための金属反強磁性体をもつCoFe鏡面構造である。この構造は、鏡面電子散乱を強化するためのNOL(nano oxide layer)を含むピン層を有する。サンプルは、マグネトロンスパッタリングにより堆積された。
【0005】
前記IEEEの論文に開示されたスピンバルブ構造では、アクティブ領域が、NOLをもつピン層、Cu層及びCoFe層を有する。ここで、NOLは、電子を反射する働きをする。
【0006】
【発明が解決しようとする課題】
本発明の目的は、センス層の位置において電子を鏡面反射する効果的な手段を有するスピンバルブ構造を実現することが可能な方法を提供することである。
【0007】
【課題を解決するための手段】
この目的は、請求項1に記載の本発明による方法により達成される。すなわち、磁性層、非磁性層及び強磁性体のセンス層のスタックを有する巨大磁気抵抗型のスピンバルブ構造を製造する方法であって、前記方法が、センス層の強磁性体を酸化させるステップと、センス層の酸化された強磁性体上にアルミニウムを堆積させるステップとを含むとともに、そののち、このアルミニウムがセンス層の酸化された強磁性体からの酸素を使用して酸化してアルミニウム酸化膜になることを含む方法により達成される。このように、連続的に、センス層上に補助酸化膜を形成し、この補助酸化膜上に金属アルミニウム層を形成し、補助酸化膜からの酸素を使用することによってこのアルミニウム層のアルミニウムを酸化させることにより、アルミニウム酸化膜が形成される。概して、前記層は薄膜層である。それぞれの層は、一層であってもよいが、多層構造を有していてもよい。磁性層は、それ自体既知である多様な手段により固定されるか又はピン止めされる磁化を有することができる。磁性層を形成するのに適した材料は例えばCoFeの合金である。非磁性層は、銅(Cu)により形成されることができる。センス層の磁化は、印加される外部磁界により自由に影響される。好適には、金属コバルト、コバルトと鉄(CoFe)の合金又はニッケルと鉄(NiFe)の合金が、センス層を形成するための強磁性体として選ばれる。アルミニウムはコバルト(Co)又は鉄(Fe)のどちらよりも電気的陰性度が大きいので、補助酸化物は、アルミニウムの酸化の間にそれぞれ金属コバルト、CoFe及びNiFeになり、アルミニウム酸化物が形成される。
【0008】
上記のように形成されるアルミニウム酸化物は、緻密な(closed)酸化物であり、シャープな境界を生じさせることが分かった。これは鏡面反射を与えるので、構造のアクティブ領域の電子スピンメカニズムを乱さず、大幅に改善されたMR信号をもたらす。約2nmのアルミニウム酸化物層は、センス層の酸化に対してすぐれた保護となりえ、これにより極端に薄いセンス層が適用されることができる。高感度が必要とされる高密度磁気記録のためには上述したようなセンス層が必要とされる。こうして得られる構造の保磁力は15Oeのオーダーで比較的低く、温度依存性をほとんどもたないことが測定により示された。本発明による方法は、それ自体知られている薄膜技術を利用することができる。
【0009】
Y. Shimizu他による論文「Enhancement of GMR properties of bottom type spin valve films with ultra−thin free layer covered with specular oxide capping layer」(O−7803−5943−7 4/00; IEEE, page FA−07)は、Al2O3ターゲットの純アルゴンガスのスパッタリングにより形成されたアルミニウム酸化物キャップ層で覆われたCoFeBフリー層を開示している。この論文から既知である方法は、Al酸化物を形成するための酸素ソースとして補助酸化物が形成されていないので、本明細書に記載の方法とは全く相違するものである。既知の方法に起因するデバイスには補助酸化物からの酸化が無く、境界ミキシングが生じる可能性があるので、この既知の方法によっては本発明の方法により得られる効果が得られない。
【0010】
更に、Masashige Sato他による文献「Effects of interface oxidation in ferromagnetic tunnel junctions」(IEEE Transactions on Magnetics, vol. 35, no. 5, September 1999, pages 2946 − 2948)が酸化されたAl障壁をもつトンネル接合を開示していることに注意されたい。開示されたサンプルでは、アルミニウムを堆積する前に、トンネル接合磁気抵抗(TMR)デバイスの下部コバルト層の表面が空気に晒され、そののち、形成されたアルミニウム層が、無線周波数酸素プラズマ中で酸化された。上述した論文では、酸化されたコバルトの表面は拡散防止層として働き、酸化されていないアルミニウム層は、アニールによって、酸化されたアルミニウム及び酸化されたコバルトからの酸素原子により酸化されるものとしている。最後に述べた論文に開示されている方法、デバイス及び効果に関するすべての知識はTMR構造に限定されている。GMR構造に関する情報はこの論文から導き出せない。
【0011】
本発明は、更に、本発明の方法により得られるスピンバルブ構造に関する。このように、本発明によるスピンバルブ構造は、センス層の位置において境界の酸化を有する。この構造は、一般に、最初に述べたIEEEの論文に開示されているようなNOLをもつピン層を備えることができる。
【0012】
本発明は、更に、読取りヘッド、フィールドセンサ及び磁気メモリにそれぞれ関し、これらは、それぞれ本発明の方法により得られる又は得られうる巨大磁気抵抗型のスピンバルブ構造を備える。
【0013】
本発明は、更に、本発明による読取りヘッドを有する、磁気記憶媒体から情報を読み取るための装置に関する。
【0014】
本発明は、更に、本発明による磁気メモリを有する電子回路に関する。
【0015】
特許請求の範囲に関して、各請求項に規定されるさまざまな特徴は組み合わされてもよいことに注意されたい。
【0016】
本発明の上記及び他の側面は、後述する実施例を参照して非限定的な例示により明らかになるであろう。
【0017】
【発明の実施の形態】
図1に概略的に示されているスピンバルブ構造1は、基板3により支持される実質的に平行な層のスタックを備える。基板3は、例えばSiのような非磁性非導電性の材料で構成されることができ、ウェハの一部であってもよい。スタックは多数の層を含み、それらの層のうちTa及びNiFeの2つの層5及び7はそれぞれシード層として働き、スタックのIrMnの層9について正しい結晶組織を与える。層9は、構造のピン層であるスタックのCoFeの磁性多層11a及び11bの磁化をピン止めする(固定する)ためのピン止め層である反強磁性物質である。構造のアクティブな層に電子を閉じこめるため、NOLとも呼ばれるCoFeOxの反射層13が、層11aと層11bとの間に存在する。反射層13は、CoFeの酸化により形成される。他の例として、強磁性元素及びより電気的陰性度の大きい元素を含む合金が使用されてもよい。スタックのCuの層15は、ピン層とセンス層17との間で交換結合をブレークする働きをする。センス層17は、この例ではCoFeの強磁性層であり、スタックの一部である。センス層17上には、特別な酸化物層19が、本発明に従う方法を用いて形成されている。この方法によれば、センス層17が形成されたのち、この層の強磁性体の膜が酸化され酸化物になり、この例ではCoFe酸化物になる。そののち、この層の上にアルミニウム膜を形成するために、酸化された層17上に例えばスパッタリングによりアルミニウムが堆積される。こののち、堆積されたアルミニウムの酸化プロセスが続く。このプロセス中、酸化された層17からの酸素が、酸化物層19を形成するために使用される。この例では、アルミニウム酸化物層は、クローズ(close)構造を有し、センス層17とのシャープな境界を形成する。
【0018】
図1に示される、必要な接続パッドを備えるスピンバルブ構造1は、フィールドセンサ、具体的にはGMRセンサとして使用されることができる。このような種類のセンサは、特に、自動車及び産業の応用分野に適している。例として、デジタル位置センサ及びアナログ角度センサが挙げられる。
【0019】
図2は、磁気読取りヘッドの一部を表している。読取りヘッドは、電気接続部100をもつトランスデューサTを有する。トランスデューサTは、例えば図1に示す実施例のような本発明によるスピンバルブ構造の実施例を含む。読取りヘッドはフラックスガイド102、104を有し、これらのフラックスガイドは、磁気回路を形成するようにトランスデューサーTに相対的に配置される。フラックスガイド102、104は、ヘッドの磁極面を形成する端面102a、104aを有し、これらの端面の間には磁性ギャップ10がある。例えば磁気テープ、ディスク又はカードのような磁気媒体が、端面102a、104aの近傍を通る場合、その媒体上の磁気的に記憶された情報が、上記の磁気回路内に変化する磁束を生成し、この磁束が、また、トランスデューサTを通して供給される。トランスデューサTは、変化する磁束を電気抵抗のバリエーションに変える。これは、電気接続部100に接続される適切な計測機器により測定されることができる。このような磁気ヘッドは、磁気媒体上の磁気情報の記録に使用されることができる誘導コイルを有していてもよい。
【0020】
本発明による装置の実施例が図3に示されている。この装置は、フレーム200と、例えばハードディスク又は光磁気ディスクのようなディスク状情報担体204を担持するためにフレーム200内に回転可能に取り付けられるスピンドル202とを有する。情報担体204は、組み込まれた担体又は取り外し可能な担体でありうる。装置は、屈曲部206aを介して符号208により示される本発明による読取りヘッドの実施例を支持するスイングアーム206を更に有する。スピンドル202及びアーム206を駆動するための駆動部が設けられる。動作状態において、ヘッド208は、回転する情報担体204を走査する。ヘッドは、情報担体204と対向して配置され、担体204に対して実質的に半径方向に移動する。図示される装置は、データ記憶システム、オーディオシステム又はビデオシステムの一部でありうる。本発明による装置は、テープ又はカードから情報を読み取るための装置であってもよい。
【0021】
本発明による磁気メモリの実施例が図4に開示されている。このメモリは、メモリ素子302と、特定のメモリ素子を選択するためのワード線304及びビット線306とを有する。それぞれのメモリ素子302は、符号300により図示される本発明によるスピンバルブ構造の実施例を含む。ビット線206におけるメモリ素子302は、例えばCuのように低い抵抗率の非磁性金属308により互いに隔てられてもよい。
【0022】
本発明は、好適な実施例に関して図示され説明されているが、当業者であれば、この明細書に開示されている本発明の範囲及び精神から逸脱することなく形態、詳細及び/又は材料のさまざまな変更又は変形がなされてもよいことが分かるであろう。具体的には、上述したもの以外の強磁性体がセンス層に適していることがありうる。更に、それ自体知られている薄膜技法を含みうる本発明の方法により得られるスピンバルブ構造の応用の多様性がありうる。
【図面の簡単な説明】
【図1】本発明によるスピンバルブ構造の実施例の概略断面図。
【図2】本発明による読取りヘッドの実施例の概略斜視図。
【図3】本発明による装置の実施例を示す概略図。
【図4】本発明による磁気メモリの実施例の概略斜視図。
【図5】本発明による電子回路の実施例の概略図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a giant magnetoresistive (GMR) type spin valve structure having a stack of magnetic, non-magnetic and ferromagnetic sense layers.
[0002]
[Prior art]
The spin valve structure is a magnetic multilayer structure having a magnetoresistance effect. This means that the resistance of such a structure changes under the influence of an external magnetic field. In the case of a spin valve structure, the magnetoresistance effect is often referred to as a giant magnetoresistance (GMR) effect. Many modern magnetic disk devices use a spin valve structure as a sensing element. These structures are also widely applied in devices in other technical fields such as, for example, automotive sensors and magnetic RAM.
[0003]
Only the section magnetic layer / non-magnetic layer / sense layer of the spin valve structure contributes to the GMR effect and is therefore the active region of the structure. An inactive region, another region of the spin valve structure, can shunt current from the active region. Some interface layers present in this structure may also reduce the GMR effect by incorporating non-specular reflection. That is, electrons are scattered, resulting in loss of spin information.
[0004]
Y. A paper by Kamiguchi et al., "Co Fe spectral spin valves with nano oxide layer" (C-7803-5555-5 / 99; IEEE, page DB-01) discloses a giant magnetoresistive spin valve structure. The paper contains the following samples: SiO structure / Ta 5 nm / NiFe 2 nm / IrMn 7 nm / pin layer with NOL / Cu 2 nm / CoFe 2 nm / CoFeO 4 nm / Ta0 0.4 nm. In this sample, the spin valve structure is a CoFe mirror structure having a metal antiferromagnet for exchange bias. This structure has a pinned layer including a nano oxide layer (NOL) to enhance specular electron scattering. The samples were deposited by magnetron sputtering.
[0005]
In the spin valve structure disclosed in the IEEE article, the active region has a pinned layer having NOL, a Cu layer, and a CoFe layer. Here, NOL functions to reflect electrons.
[0006]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method capable of realizing a spin valve structure having an effective means for specularly reflecting electrons at the location of a sense layer.
[0007]
[Means for Solving the Problems]
This object is achieved by a method according to the invention as defined in claim 1. That is, a method of manufacturing a giant magnetoresistive spin valve structure having a stack of a magnetic layer, a non-magnetic layer and a ferromagnetic sense layer, the method comprising oxidizing the ferromagnetic material of the sense layer; Depositing aluminum on the oxidized ferromagnetic material of the sense layer, and then oxidizing the aluminum using oxygen from the oxidized ferromagnetic material of the sense layer to form an aluminum oxide film. Is achieved by a method that includes Thus, an auxiliary oxide film is continuously formed on the sense layer, a metal aluminum layer is formed on the auxiliary oxide film, and the aluminum of the aluminum layer is oxidized by using oxygen from the auxiliary oxide film. As a result, an aluminum oxide film is formed. Generally, the layer is a thin film layer. Each layer may be a single layer, or may have a multilayer structure. The magnetic layer can have a magnetization that is fixed or pinned by various means known per se. A material suitable for forming the magnetic layer is, for example, an alloy of CoFe. The non-magnetic layer can be formed of copper (Cu). The magnetization of the sense layer is freely affected by the applied external magnetic field. Preferably, metallic cobalt, an alloy of cobalt and iron (CoFe) or an alloy of nickel and iron (NiFe) is selected as the ferromagnetic material for forming the sense layer. Since aluminum has a higher electronegativity than either cobalt (Co) or iron (Fe), the auxiliary oxides become metallic cobalt, CoFe and NiFe, respectively, during the oxidation of aluminum to form aluminum oxide. You.
[0008]
The aluminum oxide formed as described above was found to be a closed oxide, producing sharp boundaries. This provides specular reflection, so that it does not disturb the electron spin mechanism in the active area of the structure, resulting in a greatly improved MR signal. An aluminum oxide layer of about 2 nm can provide good protection against oxidation of the sense layer, so that extremely thin sense layers can be applied. For high-density magnetic recording requiring high sensitivity, the above-described sense layer is required. The measurements show that the coercive force of the structure thus obtained is relatively low, on the order of 15 Oe, and has little temperature dependence. The method according to the invention can make use of thin-film technology known per se.
[0009]
Y. Shimizu et al., "Enhancement of GMR properties of bottom type spin valve films with ultra-thin free layer over a seven-day contract. Disclose a CoFeB free layer covered with an aluminum oxide cap layer formed by sputtering pure argon gas on a 2 O 3 target. The method known from this article is completely different from the method described herein, since no auxiliary oxide is formed as an oxygen source for forming the Al oxide. Devices resulting from the known method are not oxidized from the auxiliary oxide and may undergo boundary mixing, so that the effect obtained by the method of the present invention is not obtained by this known method.
[0010]
In addition, the publication "Effects of interface oxidation in ferromagnetic tunnel junctions" by Masashi Sato et al. (IEEE Transactions, Magnets. Note that it is disclosed. In the disclosed sample, before depositing aluminum, the surface of the lower cobalt layer of the tunnel junction magnetoresistive (TMR) device is exposed to air, after which the formed aluminum layer is oxidized in a radio frequency oxygen plasma. Was done. In the article mentioned above, it is assumed that the surface of the oxidized cobalt acts as a diffusion barrier, and that the non-oxidized aluminum layer is oxidized by annealing with oxygen atoms from the oxidized aluminum and the oxidized cobalt. All knowledge of the methods, devices and effects disclosed in the last mentioned article is limited to TMR structures. Information on GMR structures cannot be derived from this article.
[0011]
The invention further relates to a spin valve structure obtainable by the method of the invention. Thus, the spin valve structure according to the present invention has boundary oxidation at the location of the sense layer. This structure can generally comprise a pinned layer with a NOL as disclosed in the IEEE article mentioned at the outset.
[0012]
The invention further relates to a read head, a field sensor and a magnetic memory, respectively, each comprising a giant magnetoresistive spin valve structure obtained or obtainable by the method of the invention.
[0013]
The invention further relates to an apparatus for reading information from a magnetic storage medium, comprising a read head according to the invention.
[0014]
The invention further relates to an electronic circuit having a magnetic memory according to the invention.
[0015]
Regarding the claims, it is noted that the various features defined in each claim may be combined.
[0016]
The above and other aspects of the invention will become apparent by way of non-limiting example, with reference to the embodiments described hereinafter.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The spin valve structure 1 shown schematically in FIG. 1 comprises a stack of substantially parallel layers supported by a substrate 3. The substrate 3 can be made of a non-magnetic and non-conductive material such as Si, for example, and may be a part of a wafer. The stack comprises a number of layers, of which two layers 5 and 7 of Ta and NiFe respectively serve as seed layers and give the correct crystallographic structure for the layer 9 of IrMn in the stack. Layer 9 is an antiferromagnetic material that is a pinning layer for pinning (fixing) the magnetization of CoFe magnetic multilayers 11a and 11b of the stack, which is the pinned layer of the structure. In order to confine electrons in the active layers of the structure, a reflective layer 13 of CoFeOx, also called NOL, is present between the layers 11a and 11b. The reflection layer 13 is formed by oxidation of CoFe. As another example, an alloy including a ferromagnetic element and an element having a higher electronegativity may be used. The Cu layer 15 of the stack serves to break exchange coupling between the pinned layer and the sense layer 17. The sense layer 17 is a CoFe ferromagnetic layer in this example, and is a part of the stack. On the sense layer 17, a special oxide layer 19 has been formed using the method according to the invention. According to this method, after the sense layer 17 is formed, the ferromagnetic film of this layer is oxidized to an oxide, and in this example, to a CoFe oxide. Thereafter, aluminum is deposited on the oxidized layer 17 by, for example, sputtering to form an aluminum film on this layer. This is followed by the oxidation process of the deposited aluminum. During this process, oxygen from oxidized layer 17 is used to form oxide layer 19. In this example, the aluminum oxide layer has a closed structure and forms a sharp boundary with the sense layer 17.
[0018]
The spin valve structure 1 with the necessary connection pads shown in FIG. 1 can be used as a field sensor, specifically a GMR sensor. Sensors of this kind are particularly suitable for automotive and industrial applications. Examples include digital position sensors and analog angle sensors.
[0019]
FIG. 2 shows a part of a magnetic read head. The read head has a transducer T with an electrical connection 100. The transducer T comprises an embodiment of the spin valve structure according to the invention, such as, for example, the embodiment shown in FIG. The read head has flux guides 102, 104, which are positioned relative to the transducer T so as to form a magnetic circuit. The flux guides 102, 104 have end faces 102a, 104a that form the pole faces of the head, with a magnetic gap 10 between the end faces. When a magnetic medium, such as a magnetic tape, disk or card, passes near the end faces 102a, 104a, the magnetically stored information on the medium creates a changing magnetic flux in the magnetic circuit, This magnetic flux is also supplied through the transducer T. The transducer T converts the changing magnetic flux into a variation in electrical resistance. This can be measured by a suitable measuring device connected to the electrical connection 100. Such a magnetic head may have an induction coil that can be used for recording magnetic information on a magnetic medium.
[0020]
An embodiment of the device according to the invention is shown in FIG. The apparatus comprises a frame 200 and a spindle 202 rotatably mounted in the frame 200 for carrying a disc-shaped information carrier 204, for example a hard disk or a magneto-optical disk. The information carrier 204 can be an integrated carrier or a removable carrier. The device further comprises a swing arm 206 supporting an embodiment of a read head according to the invention, indicated by the reference numeral 208 via a bend 206a. A drive unit for driving the spindle 202 and the arm 206 is provided. In operation, the head 208 scans the rotating information carrier 204. The head is arranged opposite the information carrier 204 and moves substantially radially with respect to the carrier 204. The depicted apparatus can be part of a data storage system, an audio system, or a video system. The device according to the invention may be a device for reading information from a tape or a card.
[0021]
An embodiment of a magnetic memory according to the present invention is disclosed in FIG. This memory has a memory element 302 and a word line 304 and a bit line 306 for selecting a specific memory element. Each memory element 302 includes an embodiment of a spin valve structure according to the present invention, indicated by reference numeral 300. The memory elements 302 on the bit lines 206 may be separated from each other by a low resistivity non-magnetic metal 308 such as, for example, Cu.
[0022]
Although the present invention has been illustrated and described with reference to preferred embodiments, workers skilled in the art will recognize that other forms, details, and / or materials may be used without departing from the scope and spirit of the invention disclosed herein. It will be appreciated that various changes or modifications may be made. Specifically, ferromagnetic materials other than those described above may be suitable for the sense layer. Furthermore, there may be a variety of applications of the spin-valve structure obtained by the method of the invention, which may include thin-film techniques known per se.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an embodiment of a spin valve structure according to the present invention.
FIG. 2 is a schematic perspective view of an embodiment of a read head according to the present invention.
FIG. 3 is a schematic diagram showing an embodiment of the device according to the present invention.
FIG. 4 is a schematic perspective view of an embodiment of a magnetic memory according to the present invention.
FIG. 5 is a schematic diagram of an embodiment of an electronic circuit according to the present invention.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00203234 | 2000-09-18 | ||
PCT/EP2001/010256 WO2002023564A1 (en) | 2000-09-18 | 2001-09-05 | Method of manufacturing a spin valve structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004509460A true JP2004509460A (en) | 2004-03-25 |
Family
ID=8172038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002527521A Pending JP2004509460A (en) | 2000-09-18 | 2001-09-05 | Method of manufacturing a spin valve structure |
Country Status (7)
Country | Link |
---|---|
US (1) | US6669787B2 (en) |
EP (1) | EP1232504A1 (en) |
JP (1) | JP2004509460A (en) |
KR (1) | KR100833260B1 (en) |
CN (1) | CN1180446C (en) |
TW (1) | TW550610B (en) |
WO (1) | WO2002023564A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7075121B2 (en) * | 2000-12-20 | 2006-07-11 | Yamaha Corporation | Magnetic tunneling junction element having thin composite oxide film |
US6638774B2 (en) * | 2002-01-15 | 2003-10-28 | Infineon Technologies, Ag | Method of making resistive memory elements with reduced roughness |
US20050259365A1 (en) * | 2002-03-08 | 2005-11-24 | Seagate Technology Llc | Magnetoresistive sensor with a specular scattering layer formed by deposition from an oxide target |
US7170721B2 (en) * | 2002-06-25 | 2007-01-30 | Quantum Corporation | Method of producing flux guides in magnetic recording heads |
US20050128212A1 (en) * | 2003-03-06 | 2005-06-16 | Edecker Ada M. | System and method for minimizing the amount of data necessary to create a virtual three-dimensional environment |
US7290325B2 (en) | 2004-08-13 | 2007-11-06 | Quantum Corporation | Methods of manufacturing magnetic heads with reference and monitoring devices |
US7751154B2 (en) * | 2005-05-19 | 2010-07-06 | Quantum Corporation | Magnetic recording heads with bearing surface protections and methods of manufacture |
US7626787B2 (en) * | 2006-03-08 | 2009-12-01 | Hitachi Global Storage Technologies Netherlands B.V. | Method and apparatus for using a specular scattering layer in a free layer of a magnetic sensor while stabilizing the free layer by direct coupling with an antiferromagnetic layer |
CN101814294B (en) * | 2010-01-11 | 2012-05-30 | 清华大学 | Electric writing magnetic storing element and device thereof as well as information record reproducing and manufacturing methods |
US9858951B1 (en) | 2015-12-01 | 2018-01-02 | Western Digital (Fremont), Llc | Method for providing a multilayer AFM layer in a read sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228002A (en) * | 1999-02-05 | 2000-08-15 | Fujitsu Ltd | Magnetoresistance effect type device |
JP2000251219A (en) * | 1999-02-25 | 2000-09-14 | Tdk Corp | Thin-film magnetic head and its manufacture |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04105309A (en) * | 1990-08-24 | 1992-04-07 | Nec Corp | Manufacture of metallic magnetic substance film |
JP3013031B2 (en) * | 1996-12-13 | 2000-02-28 | 帝国通信工業株式会社 | Magnetoresistance effect element and magnetoresistance sensor |
JP2871670B1 (en) * | 1997-03-26 | 1999-03-17 | 富士通株式会社 | Ferromagnetic tunnel junction magnetic sensor, method of manufacturing the same, magnetic head, and magnetic recording / reproducing device |
JP2000058941A (en) * | 1998-08-12 | 2000-02-25 | Read Rite Smi Kk | Manufacture of spin valve film |
-
2001
- 2001-06-12 US US09/878,980 patent/US6669787B2/en not_active Expired - Fee Related
- 2001-06-14 TW TW090114413A patent/TW550610B/en active
- 2001-09-05 KR KR1020027006259A patent/KR100833260B1/en not_active IP Right Cessation
- 2001-09-05 EP EP01984674A patent/EP1232504A1/en not_active Withdrawn
- 2001-09-05 CN CNB018027873A patent/CN1180446C/en not_active Expired - Fee Related
- 2001-09-05 WO PCT/EP2001/010256 patent/WO2002023564A1/en active Application Filing
- 2001-09-05 JP JP2002527521A patent/JP2004509460A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228002A (en) * | 1999-02-05 | 2000-08-15 | Fujitsu Ltd | Magnetoresistance effect type device |
JP2000251219A (en) * | 1999-02-25 | 2000-09-14 | Tdk Corp | Thin-film magnetic head and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
US6669787B2 (en) | 2003-12-30 |
WO2002023564A1 (en) | 2002-03-21 |
EP1232504A1 (en) | 2002-08-21 |
TW550610B (en) | 2003-09-01 |
CN1393022A (en) | 2003-01-22 |
KR100833260B1 (en) | 2008-05-28 |
US20020034661A1 (en) | 2002-03-21 |
KR20020062303A (en) | 2002-07-25 |
CN1180446C (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6295186B1 (en) | Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias | |
US6724585B2 (en) | Magnetoresistive element and device utilizing magnetoresistance effect | |
JP3462832B2 (en) | Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same | |
US7265948B2 (en) | Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon | |
JPH11296823A (en) | Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system | |
US6876522B2 (en) | GMR spin valve structure using heusler alloy | |
JP2000215415A (en) | Magnetoresistance effect element | |
JPH11213343A (en) | Magnetoresistive element and its production as well as magneto-resistive sensor using the magneto-resistive element, magnetoresistivity detection system and magnetic memory system using this magneto-resistive element | |
JPH10241123A (en) | Magnetoresistance effect head | |
JP3836294B2 (en) | Magnetic head and magnetic recording / reproducing apparatus using the same | |
JP2001052316A (en) | Magnetoresistance effect head, its manufacture effect head, and magnetic recording apparatus using the magnetoresistance | |
US6669787B2 (en) | Method of manufacturing a spin valve structure | |
EP1311008A1 (en) | Magnetoresistance effect device and magnetoresistance effect head comprising the same, and magnetic recording/reproducing apparatus | |
JP3817399B2 (en) | Magnetoresistive sensor | |
JPH11161921A (en) | Magneto-resistance effect element and its production | |
US6452762B1 (en) | Magneto-resistive element and production method thereof, magneto-resistive head, and magnetic recording/reproducing apparatus | |
JP2001028108A (en) | Manufacture of magnetoresistive head | |
JPH10135038A (en) | Magnetoresistance effect element and magneto resistance effect sensor using the element | |
US6798624B2 (en) | Magnetization sensor for sensing the write field characteristics of a perpendicular or longitudinal recording head | |
JP2001056908A (en) | Magneto-resistance effect element, magneto-resistance effect head, magneto-resistance detecting system and magnetic storage system | |
JP3823028B2 (en) | Magnetic head | |
KR100360036B1 (en) | Spin valve type magnetoresistive effect thin film element, manufacturing method thereof and thin film magnetic head comprising the element | |
JP2002008213A (en) | Method for manufacturing magnetoresistive element | |
JP2003006818A (en) | Magnetic-reluctance reproducing head with two ferromagnetic films bound to each other in nonpararrel | |
JP2000156317A (en) | Magnetic recording and reproducing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040903 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120105 |