[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004336974A - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP2004336974A
JP2004336974A JP2003133649A JP2003133649A JP2004336974A JP 2004336974 A JP2004336974 A JP 2004336974A JP 2003133649 A JP2003133649 A JP 2003133649A JP 2003133649 A JP2003133649 A JP 2003133649A JP 2004336974 A JP2004336974 A JP 2004336974A
Authority
JP
Japan
Prior art keywords
voltage
storage battery
power
upper limit
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003133649A
Other languages
Japanese (ja)
Inventor
Kiyoshi Shigekago
潔 茂籠
Katsuyuki Oinuma
克幸 老沼
Ichiro Kiyokawa
一郎 清川
Hideaki Fujioka
秀彰 藤岡
Satoshi Tanezaki
智 種崎
Masayoshi Fusada
正義 房田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
NTT Power and Building Facilities Inc
Original Assignee
Origin Electric Co Ltd
NTT Power and Building Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd, NTT Power and Building Facilities Inc filed Critical Origin Electric Co Ltd
Priority to JP2003133649A priority Critical patent/JP2004336974A/en
Publication of JP2004336974A publication Critical patent/JP2004336974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce charging power loss, and to supply electric power to a load stably and effectively from an input source the output voltage of which fluctuates sharply without decreasing the lifetime of a storage battery. <P>SOLUTION: This power supply which charges the storage battery using the input source, the output voltage of which fluctuates sharply, is provided with a power directly feeding circuit that is turned on in a low resistance state until a voltage of the storage battery reaches a preset upper limit value, supplies the output electric power of the input source to the storage battery, and is turned off when the voltage of the storage battery reaches the upper limit value; a voltage-boost/step-down converter composed of a voltage-boost portion that is operated when the voltage of the storage battery reaches the upper limit value and that boosts the voltage from the input source and a step-down portion that lowers the output voltage of the voltage-boost portion to hold the voltage of the storage battery to the upper limit value; and a control device that turns on and off the power direct feeding circuit and controls the operation of the voltage-boost/step-down converter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池のような出力電圧が大幅に変動する入力源で蓄電池を充電すると共に、負荷に電力を供給する電源装置に関する。
【0002】
【従来の技術】
太陽電池や風力発電装置などの入力源はクリーンエネルギーとして注目され、いろいろな分野で用いられるようになって来ているが、これらの最大の欠点は太陽光あるいは風の強さによって出力変動が大幅に変わるといういうことである。この欠点を補うために、蓄電池を併用し、入力源の出力電圧が高いときには蓄電池を充電しながら、負荷に電力を供給している。そして、入力源の出力電圧が設定下限値よりも降下すると、蓄電池から負荷に電力を供給して、負荷への電力供給を継続している。代表的な従来例として下記特許文献1〜3が存在する。
【0003】
太陽電池を入力源として用いている従来例について、図3に従って説明する。図3において、太陽電池1は通常の構成ものであり、最大で27V程度の出力電圧を発生する。電力直送回路2は、不図示のオン抵抗の小さい半導体スイッチ素子などから構成されて、その半導体スイッチ素子がオンのとき太陽電池1の電力を負荷3、蓄電池4に供給する。
【0004】
電力直送回路2を制御する制御部6は、蓄電池4の端子電圧を検出し、図5に示すようにその端子電圧が満充電又はそれに近い設定上限値V1に達するまで、電力直送回路2の不図示の半導体スイッチ素子を飽和状態、つまり低抵抗状態でオンさせ、蓄電池4の端子電圧が設定上限電圧V1に達すると、電力直送回路2の半導体スイッチ素子をオフさせる。この半導体スイッチ素子がオフすると、太陽電池1の出力電力は負荷3へも蓄電池4へも供給されなくなり、負荷3への電力は蓄電池4から供給される。
【0005】
時間の経過とともに蓄電池4の端子電圧は降下し、図5に示すように、設定下限値V2に達すると、制御部6は再び電力直送回路2の不図示の半導体スイッチ素子をオンさせる。このような動作を繰り返す。設定下限値V2は設定上限値V1よりも数V程度、例えばハンチング現象を起こさないために3V程度低い値に設定され、したがって、蓄電池4の端子電圧は3V程度の範囲で充放電を繰り返す(例えば、特許文献1、2)。
【0006】
次に、図4によって別の従来例について説明する。図4の従来例は、前述の従来例の電力直送回路2をDC−DCコンバータ5’に置き換えたものである。制御部6は、蓄電池4の端子電圧を検出し、その端子電圧が設定上限値V1に保持されるように、DC−DCコンバータ5’を制御する。この方式の場合、蓄電池4の端子電圧が低い段階では、DC−DCコンバータ5’の不図示のスイッチング半導体素子は最大の導通幅で動作する(例えば、特許文献3)。
【0007】
【特許文献1】
特開平07−312833号公報
【特許文献2】
特開平07−322529号公報
【特許文献3】
特開平08−251832号公報
【0008】
【発明が解決しようとする課題】
電力直送回路2を用いた従来の電源装置200では、蓄電池4の端子電圧が大幅に低下しているときには効率的な充電が行われるが、設定上限値V1と設定下限値V2との間では、過充電防止機能と過放電防止機能によって蓄電池4の充放電が繰り返し行われるために、蓄電池の寿命を短くしてしまうという問題がある。
【0009】
また、蓄電池4の端子電圧が設定下限値V2に近いときに、天候の急変で太陽光が遮られて太陽電池の出力が大幅に低下すると、蓄電池4の充電が行えず、蓄電池4の端子電圧が更に低下し、十分な電力を負荷に供給できないという問題もある。
【0010】
次に、DC−DCコンバータ5’を用いた従来の電源装置300では、蓄電池4の端子電圧が大幅に低下している場合、最大の導通幅でDC−DCコンバータ5’を動作させるものの、電力直送回路2に比べてスイッチング損失と制御損失とが大きいという欠点がある。
【0011】
また、DC−DCコンバータ5’の場合には、太陽電池1の出力電圧が蓄電池電圧以下に低下すると、出力側に電力を全く供給できず、蓄電池4だけから負荷3に電流を供給することになり、太陽電池1の出力電力を有効に利用できないという欠点もある。
【0012】
さらにまた、入力電圧が大幅に急変する場合には、簡単な回路構成のDC−DCコンバータでは制御が不安定になり、蓄電池の端子電圧を一定に保持するのが難しいという欠点もある。
【0013】
本発明は、電力直送回路による蓄電池の高効率充電と昇降圧コンバータによる定電圧充電とを行い、充電電力損失を低減すると共に、蓄電池の寿命を低下させずに、出力電圧が大幅に変動する入力源から負荷に電力を安定かつ有効に供給する電源を提供することを主目的としている。
【0014】
【課題を解決するための手段】
上記問題点を解決するため、本願請求項1は、出力電力の変動が大きな入力源を用いて蓄電池を充電すると共に、負荷に直流電力を供給する電源装置において、前記蓄電池が設定上限値に達するまで低抵抗状態でオンして前記入力源の出力電力を前記蓄電池に供給し、前記蓄電池の電圧が設定上限値に達するときにオフする電力直送回路と、前記蓄電池の電圧が前記設定上限値になると動作する昇降圧コンバータであって、前記入力源からの電圧を昇圧する昇圧部と、該昇圧部の出力電圧を降圧して前記蓄電池の電圧を前記設定上限値に保持する降圧部とからなる昇降圧コンバータと、前記電力直送回路をオン、オフ駆動すると共に、前記昇降圧コンバータの動作を制御する制御部とを備えたことを特徴とする電源装置提供するものである。
【0015】
このように構成した電源装置においては、充電電力損失を低減すると共に、蓄電池の寿命を低下させずに、出力電圧が大幅に変動する入力源から負荷側に電力を安定かつ有効に供給することができる。
【0016】
また本願請求項2は、請求項1において、前記昇圧部は、前記入力源の出力電圧が予め決められた下限値以上であるとき、該出力電圧の最大値以上である予め決められた設定電圧値まで昇圧させることを特徴とする電源装置を提供するものである。
【0017】
このように構成した電源装置においては、入力源の出力電圧が下限値以上でどのように変動しても、入力源の出力電圧の大きさにかかわらず、蓄電池に充電電力を供給できる。
【0018】
本願請求項3は、請求項1又は請求項2において、前記入力源は、太陽電池、風力発電装置、小規模水力発電装置、潮力発電装置のいずれかであることを特徴とする電源装置を提供するものである。
【0019】
このように構成した電源装置においては、入力源が太陽電池に制限されることなく、気象条件などによって出力電力が大幅に変動する他の発電手段に対しても有効である。
【0020】
【発明の実施の形態および実施例】
図1によって、本発明の1実施例である電源装置100について説明する。図1において、入力源1は、気象条件などで出力される電力がかなり大幅に変動する太陽電池、風力発電装置、小規模の水力発電機、潮力発電装置などであり、以下では太陽電池として説明する。太陽電池1の出力は、太陽光の強さによって大幅に変動することが知られている。
【0021】
電力直送回路2は、従来のものと同様で、オン抵抗の小さいFETのような半導体スイッチ又はリレーなどからなり、太陽電池1からの電力を制御することなくそのまま負荷3、蓄電池4に供給する。電力直送回路2は、太陽電池1の出力電圧が設定値以上になるときにオンし、蓄電池4の端子電圧が設定上限値V1(図5)に達すると、オフする。
【0022】
ここで、蓄電池4は鉛蓄電池又はNi−Cd電池などの2次電池であり、例えば、ある日数天候が悪くてほとんど充電されない場合でも、負荷3の電力需要に応えられるような容量を有している。負荷3は、街路灯、監視カメラ、無人通信局などである。
【0023】
昇降圧コンバータ5は、電力直送回路2と並列に接続されており、太陽電池1の出力電圧をその最大出力電圧値以上で予め決められた設定電圧まで昇圧する昇圧部5Aと、昇圧部5Aで昇圧された電圧を降圧して蓄電池4の電圧を設定上限値V1に保持するよう動作する降圧部5Bとからなる。
【0024】
制御部6はマイコンなどからなり、説明を分かり易くするために、主な制御要素をブロックにて示している。制御部6は、太陽電池1の出力電圧を検出する第1の電圧検出器61、電圧検出器61で検出された検出電圧と第1の基準源62の基準電圧とを比較する第1の比較器63、蓄電池4の端子電圧を検出する第2の電圧検出器64、電圧検出器64で検出された電圧と第2の基準源65の基準電圧とを比較する第2の比較器66と、第1の比較器63からのオン信号を受けて電力直送回路2をオンさせ、第2の比較器66からのオフ信号を受けて電力直送回路2をオフさせる直送用駆動回路67、第2の比較器66からのオフ信号を反転する反転回路68、昇降圧コンバータ5を制御するコンバータ制御回路69を備える。
【0025】
電力直送回路2又は昇降圧コンバータ5の出力と蓄電池4との間には、過放電防止スイッチ7、過充電防止スイッチ8が直列に接続されている。過放電防止スイッチ7、過充電防止スイッチ8は制御部6からの信号によって動作するが、特に本発明と関係があるわけでもないので、制御部6では図示するのを省略している。
【0026】
過放電防止スイッチ7は、放電によって蓄電池4の端子電圧が設定下限値V2まで低下すると、制御部6からの信号で開き、蓄電池4から負荷3に放電されないようにする。
【0027】
過充電防止スイッチ8は、電力直送回路2などの短絡事故によって蓄電池4の端子電圧が設定上限値V1を超えても充電電力が供給されることによって、過充電電圧を超えようとするとき、制御部6からの信号で開き、それ以上、蓄電池4が充電されないようにする。また、負荷3に過負荷対策が施されていない場合、過充電防止スイッチ8は電力直送回路2と昇降圧コンバータ5との接続点と、負荷3と蓄電池4との接続点間に接続してもよく、電力直送回路2の短絡事故時には、負荷3と蓄電池4を電力直送回路2又は昇降圧コンバータ5の出力から切り離す。
【0028】
次に、電源装置100の動作について説明する。過放電防止スイッチ7、過充電防止スイッチ8は閉じた状態にあり、蓄電池4の端子電圧は低下した状態にあるものとする。
【0029】
太陽電池1が発生する出力電力が上昇し、電圧検出器61により検出された電圧が第1の基準源62の基準電圧よりも高くなると、第1の比較器63はオン信号を出力し、駆動回路67はそのオン信号を受けて駆動信号を電力直送回路2に与え、電力直送回路2をオンさせる。これに伴い、太陽電池1の出力電力は電力直送回路2を通して負荷3に供給されると共に、蓄電池4を充電する。このときの電力直送回路2のインピーダンスは最小であるので、負荷3と蓄電池4への電力の供給は効率良く行われる。
【0030】
蓄電池4の充電が進み、蓄電池4の端子電圧が満充電レベルの設定上限値V1に達すると、電圧検出器64によって検出された検出電圧が第2の基準源65の基準値を超えるので、第2の比較器66はオフ信号を出力する。このオフ信号は、駆動回路67に与えられ、駆動回路67から電力直送回路2に供給されていた駆動信号を消滅させ、電力直送回路2をオフさせる。
【0031】
他方、第2の比較器66のオフ信号は反転回路68により反転され、オン信号としてコンバータ制御回路69に入力される。これに伴い、コンバータ制御回路69は昇降圧コンバータ5に駆動信号を供給し、昇圧部5Aと降圧部5Bをオンさせる。
【0032】
昇降圧コンバータ5の1例について図2を用いて説明する。この昇降圧コンバータ5は一般的なものであり、昇圧部5Aは前記オン信号により閉じるスイッチ素子51、ダイオード52、昇圧用インダクタ53、昇圧用スイッチング素子54、ダイオード55、フィルタ用コンデンサ56からなり、太陽電池1からの電圧をその最大電圧よりも高い予め決められた一定電圧まで昇圧する。これによって、降圧部5Bの入力電圧は一定電圧となる。
【0033】
降圧部5Bは、昇圧部5Aで昇圧された一定電圧を設定上限値V1に下降させるためパルス幅制御されるスイッチング素子57、インダクタ58、スイッチング素子57のオフ期間にインダクタ58のエネルギーを出力側に供給するフリーホイーリングダイオード59、フィルタ用コンデンサ60からなり、蓄電池4の端子電圧を設定上限値V1に維持するよう動作する。
【0034】
コンバータ制御回路69は、前記オン信号を受けてスイッチ素子51をオンさせる駆動回路691、昇圧部5Aの出力電圧を検出する電圧検出器692、電圧検出器692により検出された検出電圧と基準源693の基準電圧とを比較して誤差信号を出力する誤差増幅器694、その誤差信号を受けて前記検出電圧と前記基準電圧とが等しくなるように、昇圧用スイッチング素子54をパルス幅制御する昇圧用パルス幅制御部695、蓄電池4の端子電圧を検出する電圧検出器64の検出電圧と基準源696の基準電圧とを比較してそれらの誤差信号を出力する誤差増幅器697、その誤差信号を受けて前記検出電圧と前記基準電圧とが等しくなるように、スイッチング素子57をパルス幅制御する降圧用パルス幅制御部698からなる。
【0035】
次に、その昇降圧コンバータ5の動作について説明する。駆動回路691が前述のオン信号を受けると、スイッチ素子51をオンさせる。まず、昇圧用スイッチング素子54がオンすると、太陽電池1からの電流がスイッチ素子51、ダイオード52、昇圧用インダクタ53、昇圧用スイッチング素子54を通して流れ、昇圧用インダクタ53にエネルギーを蓄える。次に、昇圧用スイッチング素子54がターンオフすると、太陽電池1の電圧に昇圧用インダクタ53のエネルギーによる電圧を重畳した電圧でコンデンサ56は充電される。したがって、コンデンサ56の電圧、つまり昇圧部5Aの電圧は太陽電池1の出力電圧よりも高くなる。
【0036】
昇圧部5Aの電圧は電圧検出器692で検出され、その検出電圧と基準源693の基準電圧との誤差信号が誤差増幅器694から出力される。昇圧用スイッチング素子54は、前記検出電圧が基準源693の基準電圧に等しくなるように、パルス幅制御される。ここで、基準源693の基準電圧は、昇圧部5Aの出力電圧が太陽電池1の最大電力よりも高い設定電圧になるように、設定されている。一例として、太陽電池1の最大電力が27Vの場合、昇圧部5Aの出力電圧が30Vになるように、基準源693の基準電圧は設定される。
【0037】
このように昇圧部5Aの出力電圧が太陽電池1の最大電力よりも大きな一定電圧に昇圧する一つの理由は、天候状態によって太陽電池1の出力電圧が大幅に変化しても、降圧部5Bの入力電圧を一定値にすることにより、簡単な回路構成の降圧部でも安定な出力電圧を確立できるようにするためである。
【0038】
他の理由は、天候状態によって太陽電池1の出力電圧が蓄電池4の端子電圧、つまり通常の状態では設定上限値V1よりも低下することがしばしばあるが、一旦、蓄電池4の端子電圧よりもかなり高い前記設定電圧まで昇圧することによって、天候が悪いために太陽電池1の出力電圧が蓄電池4の端子電圧よりも低くなっても、負荷3、蓄電池4に電力を供給できるようにすることである。太陽電池の特性から、太陽電池の出力電圧が低下した期間では、負荷側へ供給できる電力は少なくなるが、太陽電池の発生電力を有効に利用することが可能となる。このことは天候状態があまり良くない期間が長いときにかなり有効となる。
【0039】
降圧部5Bの動作は、周知のスイッチングレギュレータと同じ動作であるので詳しい説明を省略するが、出力電圧が図5に示した設定上限値V1になるように、スイッチング素子57をパルス幅制御して、太陽電池の発生電力で蓄電池4を定電圧充電する。基準源696の基準電圧は設定上限値V1を縮小した値に設定される。
したがって、本発明では多少天候状態が悪くとも、昼間においては蓄電池4の端子電圧を設定上限値V1、又はその近辺に保持することができる。
【0040】
次に、夜間のように太陽光が存在しないとき、又は夕方や早朝など太陽光がかなり弱い期間では、従来と同様に、蓄電池5から負荷3に電力が供給される。しかし、前日の天候状態が悪い場合、従来では蓄電池4の端子電圧が低下した状態で夜間を迎え、放電が行われるので、蓄電池4の端子電圧がかなり低い状態となるが、本発明では太陽電池の電圧を昇圧しているために、蓄電池4の充電状態が比較的良い状態で夜間を迎えことができ、太陽電池、負荷などの条件が同じであれば、従来に比べて蓄電池4の端子電圧は高い状態にある。したがって、蓄電池4の小容量化が可能である。
【0041】
また、この発明では、昇降圧コンバータ5が動作していて蓄電池4の端子電圧が設定上限値V1に保持されている状態では、電力直送回路2はオフであるが、昇降圧コンバータ5が動作している状態でも太陽電池1の出力電圧が低下したことによって、蓄電池4の端子電圧が設定上限値V1に保持できなくて低下することがある。しかし、この状態の場合は、太陽電池1の出力電圧が設定上限値V1よりも低下した状態にあるので、比較器66のオン信号で駆動回路67から駆動信号が与えられても、電力直送回路2は逆バイアス状態にあるのでオフのままであり、したがって、電力直送回路2と昇降圧コンバータ5とがオンする期間は実質的に生ずることはなく、電力直送回路2がオン、オフ動作を繰り返すこともない。
【0042】
なお、以上の実施例では、入力源1として太陽電池で説明したが、風力発電の場合も風力の強さによって発電電力が大幅に変動するので、この発明は有効である。また、小川の流れを利用した小規模の水力発電機や、潮力を利用した発電機などの場合にもこの発明を適用できる。また、通常の蓄電池の充電装置としても適用できる。
【0043】
【発明の効果】
本発明によれば、充電電力損失を低減すると共に、蓄電池の寿命を低下させずに、出力電圧が大幅に変動する入力源から負荷に電力を安定かつ有効に供給する電源を提供することができる。
【図面の簡単な説明】
【図1】本発明の1実施例である電源装置100の構成を説明するための図である。
【図2】電源100に用いられる昇降圧コンバータ5の一例を示す。
【図3】従来の太陽電池を用いた蓄電池充電回路を説明するための図である。
【図4】従来の別の太陽電池を用いた蓄電池充電回路を説明するための図である。
【図5】従来の蓄電池充電回路を説明するための波形図である。
【符号の説明】
1…入力源(太陽電池)、
2…電力直送回路、
3…負荷、
4…蓄電池、
5…昇降圧コンバータ、
5A…昇圧部、
5B…降圧部、
5’…DC−DCコンバータ、
6…制御部、
61、64…電圧検出器、
62、65…基準電圧源、
63、65…比較器、
67…直送用駆動回路、
68…反転回路、
69…コンバータ制御回路、
691、695、698…駆動回路、
692…電圧検出器、
693、696…基準電圧源、
694、697…差動増幅器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device that charges a storage battery with an input source whose output voltage fluctuates greatly, such as a solar cell, and supplies power to a load.
[0002]
[Prior art]
Input sources such as solar cells and wind power generators are attracting attention as clean energy and are being used in various fields, but the biggest disadvantage is that the output fluctuates significantly due to the intensity of sunlight or wind. It is to be changed to. To compensate for this drawback, a storage battery is used in combination, and when the output voltage of the input source is high, power is supplied to the load while charging the storage battery. Then, when the output voltage of the input source falls below the set lower limit, power is supplied from the storage battery to the load, and power supply to the load is continued. The following Patent Documents 1 to 3 exist as typical conventional examples.
[0003]
A conventional example using a solar cell as an input source will be described with reference to FIG. In FIG. 3, the solar cell 1 has a normal configuration and generates an output voltage of about 27 V at the maximum. The power direct transmission circuit 2 includes a semiconductor switch element (not shown) having a small on-resistance, and supplies the power of the solar cell 1 to the load 3 and the storage battery 4 when the semiconductor switch element is turned on.
[0004]
The control unit 6 that controls the direct power transmission circuit 2 detects the terminal voltage of the storage battery 4 and, as shown in FIG. The illustrated semiconductor switch element is turned on in a saturated state, that is, in a low resistance state, and when the terminal voltage of the storage battery 4 reaches the set upper limit voltage V1, the semiconductor switch element of the power direct transmission circuit 2 is turned off. When the semiconductor switch element is turned off, the output power of the solar cell 1 is no longer supplied to the load 3 and the storage battery 4, and the power to the load 3 is supplied from the storage battery 4.
[0005]
As the time elapses, the terminal voltage of the storage battery 4 drops, and when reaching the set lower limit value V2 as shown in FIG. 5, the control unit 6 turns on the semiconductor switch element (not shown) of the power direct transmission circuit 2 again. Such an operation is repeated. The set lower limit value V2 is set to be several volts lower than the set upper limit value V1, for example, to a value lower by about 3V so as not to cause a hunting phenomenon. Therefore, the terminal voltage of the storage battery 4 is repeatedly charged and discharged in a range of about 3V (for example, , Patent Documents 1 and 2).
[0006]
Next, another conventional example will be described with reference to FIG. In the conventional example of FIG. 4, the direct power transmission circuit 2 of the above-described conventional example is replaced with a DC-DC converter 5 '. The control unit 6 detects the terminal voltage of the storage battery 4 and controls the DC-DC converter 5 ′ so that the terminal voltage is maintained at the set upper limit value V1. In the case of this method, when the terminal voltage of the storage battery 4 is low, the switching semiconductor element (not shown) of the DC-DC converter 5 'operates with the maximum conduction width (for example, Patent Document 3).
[0007]
[Patent Document 1]
JP-A-07-31833 [Patent Document 2]
JP 07-322529 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 08-251832
[Problems to be solved by the invention]
In the conventional power supply device 200 using the direct power transmission circuit 2, efficient charging is performed when the terminal voltage of the storage battery 4 is significantly reduced, but between the set upper limit value V1 and the set lower limit value V2, Since the charge and discharge of the storage battery 4 are repeatedly performed by the overcharge prevention function and the overdischarge prevention function, there is a problem that the life of the storage battery is shortened.
[0009]
Further, when the terminal voltage of the storage battery 4 is close to the set lower limit value V2 and the sunlight is interrupted due to a sudden change in the weather and the output of the solar battery is greatly reduced, the storage battery 4 cannot be charged. Is further reduced, and sufficient power cannot be supplied to the load.
[0010]
Next, in the conventional power supply device 300 using the DC-DC converter 5 ′, when the terminal voltage of the storage battery 4 is greatly reduced, the DC-DC converter 5 ′ operates at the maximum conduction width, There is a disadvantage that switching loss and control loss are large as compared with the direct transmission circuit 2.
[0011]
Further, in the case of the DC-DC converter 5 ', when the output voltage of the solar cell 1 drops below the storage battery voltage, no power can be supplied to the output side, and current is supplied to the load 3 only from the storage battery 4. Therefore, there is a disadvantage that the output power of the solar cell 1 cannot be used effectively.
[0012]
Furthermore, when the input voltage changes abruptly, there is a disadvantage that the control becomes unstable with a DC-DC converter having a simple circuit configuration, and it is difficult to keep the terminal voltage of the storage battery constant.
[0013]
The present invention performs high-efficiency charging of a storage battery by a direct power transmission circuit and constant-voltage charging by a buck-boost converter to reduce charging power loss and to reduce the input voltage in which the output voltage fluctuates greatly without reducing the life of the storage battery. The main purpose is to provide a power source that supplies power stably and effectively from a source to a load.
[0014]
[Means for Solving the Problems]
In order to solve the above problem, claim 1 of the present application is a power supply device that charges a storage battery using an input source having a large output power fluctuation and supplies DC power to a load, wherein the storage battery reaches a set upper limit value. To a low-resistance state to supply the output power of the input source to the storage battery, and a power direct-feed circuit that turns off when the voltage of the storage battery reaches a set upper limit, and the voltage of the storage battery is set to the set upper limit. A step-up / step-down converter that operates when the voltage from the input source is increased, and a step-down unit that reduces the output voltage of the step-up unit and holds the voltage of the storage battery at the set upper limit. A power supply device comprising: a step-up / step-down converter; and a control unit that turns on and off the direct power transmission circuit and controls an operation of the step-up / step-down converter.
[0015]
In the power supply device configured as described above, the charging power loss can be reduced, and the power can be stably and effectively supplied from the input source whose output voltage fluctuates greatly to the load side without reducing the life of the storage battery. it can.
[0016]
According to a second aspect of the present invention, in the first aspect, when the output voltage of the input source is equal to or higher than a predetermined lower limit value, the booster sets a predetermined set voltage equal to or higher than the maximum value of the output voltage. It is intended to provide a power supply device characterized by boosting to a value.
[0017]
In the power supply device configured as described above, charging power can be supplied to the storage battery regardless of the magnitude of the output voltage of the input source, no matter how the output voltage of the input source fluctuates above the lower limit.
[0018]
A third aspect of the present invention provides the power supply device according to the first or second aspect, wherein the input source is any one of a solar cell, a wind power generator, a small-scale hydroelectric power generator, and a tidal power generator. To provide.
[0019]
The power supply device configured as described above is not limited to a solar cell as an input source, and is also effective for other power generation means whose output power greatly fluctuates due to weather conditions and the like.
[0020]
Embodiments and Examples of the Invention
Referring to FIG. 1, a power supply device 100 according to one embodiment of the present invention will be described. In FIG. 1, an input source 1 is a solar cell, a wind power generator, a small-scale hydroelectric generator, a tidal power generator, or the like whose output power fluctuates considerably due to weather conditions or the like. explain. It is known that the output of the solar cell 1 greatly varies depending on the intensity of sunlight.
[0021]
The power direct transmission circuit 2 is similar to a conventional one, and is composed of a semiconductor switch or a relay such as an FET having a small on-resistance, and supplies the power from the solar cell 1 to the load 3 and the storage battery 4 without control. The direct power transmission circuit 2 is turned on when the output voltage of the solar cell 1 becomes equal to or higher than a set value, and turned off when the terminal voltage of the storage battery 4 reaches the set upper limit value V1 (FIG. 5).
[0022]
Here, the storage battery 4 is a secondary battery such as a lead storage battery or a Ni-Cd battery, and has a capacity capable of responding to the power demand of the load 3 even when the weather is bad for a few days and the battery is hardly charged. I have. The load 3 is a street light, a monitoring camera, an unmanned communication station, or the like.
[0023]
The step-up / step-down converter 5 is connected in parallel with the power direct transmission circuit 2, and includes a booster 5A that boosts the output voltage of the solar cell 1 to a predetermined set voltage at or above its maximum output voltage, and a booster 5A. A step-down unit 5B operable to step down the boosted voltage to maintain the voltage of the storage battery 4 at the set upper limit V1.
[0024]
The control unit 6 is composed of a microcomputer or the like, and main control elements are indicated by blocks for easy understanding of the description. The control unit 6 includes a first voltage detector 61 that detects an output voltage of the solar cell 1, and a first comparison that compares a detection voltage detected by the voltage detector 61 with a reference voltage of a first reference source 62. A second voltage detector 64 for detecting the terminal voltage of the storage battery 4, a second comparator 66 for comparing the voltage detected by the voltage detector 64 with the reference voltage of the second reference source 65, A direct drive circuit 67 for turning on the power direct transmission circuit 2 in response to the ON signal from the first comparator 63 and turning off the power direct transmission circuit 2 in response to the OFF signal from the second comparator 66; An inverting circuit 68 for inverting the off signal from the comparator 66 and a converter control circuit 69 for controlling the buck-boost converter 5 are provided.
[0025]
An over-discharge prevention switch 7 and an over-charge prevention switch 8 are connected in series between the output of the direct power transmission circuit 2 or the step-up / step-down converter 5 and the storage battery 4. The over-discharge prevention switch 7 and the over-charge prevention switch 8 operate according to a signal from the control unit 6, but they are not particularly related to the present invention, and therefore are not shown in the control unit 6.
[0026]
When the terminal voltage of the storage battery 4 decreases to the set lower limit value V2 due to the discharge, the overdischarge prevention switch 7 is opened by a signal from the control unit 6 to prevent the storage battery 4 from being discharged to the load 3.
[0027]
The overcharge prevention switch 8 controls the overcharge voltage when the terminal voltage of the storage battery 4 exceeds the set upper limit value V1 and the overcharge voltage is exceeded by supplying the charging power even when the terminal voltage of the storage battery 4 exceeds the set upper limit value V1 due to a short circuit accident of the power direct transmission circuit 2 or the like. Opened by a signal from the unit 6 to prevent the storage battery 4 from being charged any more. If the load 3 is not provided with an overload countermeasure, the overcharge prevention switch 8 is connected between the connection point between the direct power supply circuit 2 and the buck-boost converter 5 and the connection point between the load 3 and the storage battery 4. Alternatively, when a short circuit occurs in the direct power transmission circuit 2, the load 3 and the storage battery 4 are disconnected from the output of the direct power transmission circuit 2 or the buck-boost converter 5.
[0028]
Next, the operation of the power supply device 100 will be described. It is assumed that the overdischarge prevention switch 7 and the overcharge prevention switch 8 are in a closed state, and the terminal voltage of the storage battery 4 is in a reduced state.
[0029]
When the output power generated by the solar cell 1 increases and the voltage detected by the voltage detector 61 becomes higher than the reference voltage of the first reference source 62, the first comparator 63 outputs an ON signal and drives The circuit 67 receives the ON signal and supplies a drive signal to the power direct transmission circuit 2 to turn on the power direct transmission circuit 2. Along with this, the output power of the solar cell 1 is supplied to the load 3 through the power direct transmission circuit 2 and the storage battery 4 is charged. At this time, since the impedance of the power direct transmission circuit 2 is minimum, the power supply to the load 3 and the storage battery 4 is performed efficiently.
[0030]
When the charging of the storage battery 4 proceeds and the terminal voltage of the storage battery 4 reaches the set upper limit value V1 of the full charge level, the detected voltage detected by the voltage detector 64 exceeds the reference value of the second reference source 65. The second comparator 66 outputs an off signal. This off signal is supplied to the drive circuit 67, and the drive signal supplied from the drive circuit 67 to the power direct transmission circuit 2 is extinguished, and the power direct transmission circuit 2 is turned off.
[0031]
On the other hand, the off signal of the second comparator 66 is inverted by the inverting circuit 68 and input to the converter control circuit 69 as an on signal. Accordingly, converter control circuit 69 supplies a drive signal to step-up / step-down converter 5 to turn on step-up unit 5A and step-down unit 5B.
[0032]
An example of the buck-boost converter 5 will be described with reference to FIG. This step-up / step-down converter 5 is a general one. The step-up unit 5A includes a switch element 51, a diode 52, a step-up inductor 53, a step-up switching element 54, a diode 55, and a filter capacitor 56 which are closed by the ON signal. The voltage from the solar cell 1 is boosted to a predetermined constant voltage higher than the maximum voltage. Thereby, the input voltage of the step-down unit 5B becomes a constant voltage.
[0033]
The step-down unit 5B outputs the energy of the inductor 58 to the output side during the off period of the switching element 57, the inductor 58, and the switching element 57 that are pulse-width controlled to lower the constant voltage boosted by the boosting unit 5A to the set upper limit value V1. It comprises a freewheeling diode 59 to be supplied and a filter capacitor 60, and operates to maintain the terminal voltage of the storage battery 4 at the set upper limit value V1.
[0034]
The converter control circuit 69 includes a driving circuit 691 for turning on the switch element 51 in response to the ON signal, a voltage detector 692 for detecting an output voltage of the booster 5A, a detection voltage detected by the voltage detector 692 and a reference source 693. An error amplifier 694 that compares the reference voltage with the reference voltage and outputs an error signal. A boosting pulse that receives the error signal and controls the pulse width of the boosting switching element 54 so that the detection voltage and the reference voltage become equal. A width control unit 695, an error amplifier 697 for comparing a detection voltage of the voltage detector 64 for detecting a terminal voltage of the storage battery 4 with a reference voltage of the reference source 696, and outputting an error signal therebetween; A step-down pulse width controller 698 for controlling the pulse width of the switching element 57 so that the detection voltage is equal to the reference voltage.
[0035]
Next, the operation of the step-up / step-down converter 5 will be described. When the drive circuit 691 receives the above-described ON signal, it turns on the switch element 51. First, when the boosting switching element 54 is turned on, a current from the solar cell 1 flows through the switching element 51, the diode 52, the boosting inductor 53, and the boosting switching element 54, and stores energy in the boosting inductor 53. Next, when the boosting switching element 54 is turned off, the capacitor 56 is charged with a voltage obtained by superimposing the voltage of the energy of the boosting inductor 53 on the voltage of the solar cell 1. Therefore, the voltage of the capacitor 56, that is, the voltage of the booster 5A becomes higher than the output voltage of the solar cell 1.
[0036]
The voltage of the booster 5A is detected by the voltage detector 692, and an error signal between the detected voltage and the reference voltage of the reference source 693 is output from the error amplifier 694. The step-up switching element 54 is controlled in pulse width so that the detection voltage becomes equal to the reference voltage of the reference source 693. Here, the reference voltage of the reference source 693 is set such that the output voltage of the booster 5A becomes a set voltage higher than the maximum power of the solar cell 1. As an example, when the maximum power of the solar cell 1 is 27 V, the reference voltage of the reference source 693 is set so that the output voltage of the booster 5A becomes 30 V.
[0037]
One reason that the output voltage of the booster 5A is boosted to a constant voltage higher than the maximum power of the solar cell 1 is that the output voltage of the solar cell 1 greatly changes due to the weather conditions. By setting the input voltage to a constant value, a stable output voltage can be established even in a step-down unit having a simple circuit configuration.
[0038]
Another reason is that the output voltage of the solar cell 1 is often lower than the terminal voltage of the storage battery 4, that is, the set upper limit value V 1 in a normal state, but is much higher than the terminal voltage of the storage battery 4 depending on the weather condition. By increasing the voltage to the higher set voltage, power can be supplied to the load 3 and the storage battery 4 even when the output voltage of the solar cell 1 becomes lower than the terminal voltage of the storage battery 4 due to bad weather. . From the characteristics of the solar cell, during the period in which the output voltage of the solar cell is reduced, the power that can be supplied to the load side decreases, but the power generated by the solar cell can be used effectively. This can be quite useful during long periods of poor weather.
[0039]
The operation of the step-down unit 5B is the same as the operation of a well-known switching regulator, and therefore detailed description is omitted. However, the pulse width of the switching element 57 is controlled so that the output voltage becomes the set upper limit V1 shown in FIG. Then, the storage battery 4 is charged at a constant voltage with the power generated by the solar cell. The reference voltage of the reference source 696 is set to a value obtained by reducing the set upper limit value V1.
Therefore, in the present invention, the terminal voltage of the storage battery 4 can be maintained at or near the set upper limit value V1 in the daytime even if the weather condition is somewhat bad.
[0040]
Next, when there is no sunlight, such as at night, or during a period when sunlight is extremely weak, such as in the evening or early morning, power is supplied from the storage battery 5 to the load 3 as in the related art. However, when the weather condition of the previous day is bad, the terminal voltage of the storage battery 4 is lowered at night, and the battery is discharged. Therefore, the terminal voltage of the storage battery 4 is considerably low. Since the voltage of the storage battery 4 is increased, it is possible to wake up at night with a relatively good state of charge of the storage battery 4, and if the conditions such as the solar cell and the load are the same, the terminal voltage of the storage battery 4 is lower than in the conventional case. Is in a high state. Therefore, the capacity of the storage battery 4 can be reduced.
[0041]
Further, according to the present invention, in a state where the buck-boost converter 5 is operating and the terminal voltage of the storage battery 4 is held at the set upper limit value V1, the power direct transmission circuit 2 is off, but the buck-boost converter 5 operates. Even in the state, the terminal voltage of the storage battery 4 may not be able to be maintained at the set upper limit value V1 due to a decrease in the output voltage of the solar cell 1 and may decrease. However, in this state, since the output voltage of the solar cell 1 is lower than the set upper limit value V1, even if a drive signal is given from the drive circuit 67 by the ON signal of the comparator 66, the direct power transmission circuit 2 is in a reverse-biased state and therefore remains off. Therefore, a period in which the power direct-feeding circuit 2 and the buck-boost converter 5 are turned on does not substantially occur, and the power direct-feeding circuit 2 repeats the on / off operation. Not even.
[0042]
In the above embodiment, the solar cell is described as the input source 1. However, in the case of wind power generation, the present invention is effective because the generated power greatly varies depending on the strength of wind power. Further, the present invention can be applied to a small-scale hydroelectric generator using a flow of a stream or a generator using tidal power. Further, the present invention can also be applied as a normal storage battery charging device.
[0043]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a power supply that reduces charging power loss and that supplies power stably and effectively from an input source whose output voltage greatly fluctuates to a load without reducing the life of a storage battery. .
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a configuration of a power supply device 100 according to one embodiment of the present invention.
FIG. 2 shows an example of a buck-boost converter 5 used in the power supply 100.
FIG. 3 is a diagram for explaining a conventional battery charging circuit using a solar cell.
FIG. 4 is a diagram for explaining a conventional storage battery charging circuit using another solar cell.
FIG. 5 is a waveform diagram for explaining a conventional storage battery charging circuit.
[Explanation of symbols]
1: Input source (solar cell),
2. Electric power direct transmission circuit,
3 ... load,
4 ... Battery,
5 ... buck-boost converter
5A: booster,
5B: Step-down unit,
5 '... DC-DC converter,
6 ... Control unit,
61, 64 ... voltage detector,
62, 65 ... reference voltage source,
63, 65 ... Comparator,
67 ... Drive circuit for direct delivery,
68 ... inverting circuit,
69 ... Converter control circuit,
691, 695, 698 ... drive circuit,
692 ... voltage detector,
693, 696 ... reference voltage source,
694, 697: Differential amplifier.

Claims (3)

出力電力の変動が大きな入力源を用いて蓄電池を充電すると共に、負荷に直流電力を供給する電源装置において、
前記蓄電池が設定上限値に達するまで低抵抗状態でオンして前記入力源の出力電力を前記蓄電池に供給し、前記蓄電池の電圧が設定上限値に達するときにオフする電力直送回路と、
前記蓄電池の電圧が前記設定上限値になると動作する昇降圧コンバータであって、前記入力源からの電圧を昇圧する昇圧部と、該昇圧部の出力電圧を降圧して前記蓄電池の電圧を前記設定上限値に保持する降圧部とからなる昇降圧コンバータと、
前記電力直送回路をオン、オフ駆動すると共に、前記昇降圧コンバータの動作を制御する制御部と、
を備えたことを特徴とする電源装置。
In a power supply device that supplies a DC power to a load while charging a storage battery using an input source having a large output power variation,
A power direct-feed circuit that turns on in a low resistance state until the storage battery reaches a set upper limit value, supplies output power of the input source to the storage battery, and turns off when the voltage of the storage battery reaches the set upper limit value,
A step-up / step-down converter that operates when the voltage of the storage battery reaches the set upper limit value, wherein the booster boosts a voltage from the input source, and the output voltage of the booster is stepped down to set the voltage of the storage battery. A buck-boost converter comprising a step-down unit for maintaining the upper limit value,
A control unit that controls the operation of the buck-boost converter, while driving the power direct transmission circuit on and off,
A power supply device comprising:
請求項1において、
前記昇圧部は、前記入力源の出力電圧が予め決められた下限値以上であるとき、該出力電圧の最大値以上である予め決められた設定電圧値まで昇圧させることを特徴とする電源装置。
In claim 1,
The power supply device, wherein, when the output voltage of the input source is equal to or higher than a predetermined lower limit, the booster increases the voltage to a predetermined set voltage value equal to or higher than the maximum value of the output voltage.
請求項1又は請求項2において、
前記入力源は、太陽電池、風力発電装置、小規模水力発電装置、潮力発電装置のいずれかであることを特徴とする電源装置。
In claim 1 or claim 2,
The power supply device, wherein the input source is any one of a solar cell, a wind power generator, a small-scale hydroelectric power generator, and a tidal power generator.
JP2003133649A 2003-05-12 2003-05-12 Power supply Pending JP2004336974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133649A JP2004336974A (en) 2003-05-12 2003-05-12 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133649A JP2004336974A (en) 2003-05-12 2003-05-12 Power supply

Publications (1)

Publication Number Publication Date
JP2004336974A true JP2004336974A (en) 2004-11-25

Family

ID=33508122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133649A Pending JP2004336974A (en) 2003-05-12 2003-05-12 Power supply

Country Status (1)

Country Link
JP (1) JP2004336974A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341787A (en) * 2004-04-28 2005-12-08 Matsushita Electric Ind Co Ltd Switching power supply circuit
JP2007089372A (en) * 2005-09-26 2007-04-05 Matsushita Electric Works Ltd Power supply device
JP2007104810A (en) * 2005-10-05 2007-04-19 Seiko Instruments Inc Electronic apparatus comprising boosting dc-dc converter
CN102035245A (en) * 2011-01-07 2011-04-27 绿电能源技术开发(福建)有限公司 Controller using wind power conversion
JP2011211885A (en) * 2010-03-11 2011-10-20 Sanyo Electric Co Ltd Power storage system
JP2012139009A (en) * 2010-12-24 2012-07-19 Kyocera Corp Mobile terminal device
JP5668132B1 (en) * 2013-12-27 2015-02-12 株式会社フジクラ Power storage system and power storage method
CN104426473A (en) * 2013-09-03 2015-03-18 深圳市金威源科技股份有限公司 Solar photovoltaic system control method and device
CN106026387A (en) * 2016-05-18 2016-10-12 东南大学 Method for collecting maximum energy of monitoring system power supply of power transmission line of electric power grid
CN110912402A (en) * 2018-09-18 2020-03-24 力智电子股份有限公司 Power supply conversion circuit
JP2021185738A (en) * 2017-04-13 2021-12-09 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged, and charging method
US11689029B2 (en) 2016-10-12 2023-06-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal with charging circuit and device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154122A (en) * 1985-12-27 1987-07-09 Kyocera Corp Charging control system in solar generating device
JPH07322529A (en) * 1994-05-23 1995-12-08 Nec Eng Ltd Solar cell power supply
JPH0941333A (en) * 1995-07-28 1997-02-10 Kictec:Kk Self-light emitting road pin
JPH09163722A (en) * 1995-11-30 1997-06-20 Sumitomo Metal Ind Ltd Non-insulating-type dc-dc converter with overload protective function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154122A (en) * 1985-12-27 1987-07-09 Kyocera Corp Charging control system in solar generating device
JPH07322529A (en) * 1994-05-23 1995-12-08 Nec Eng Ltd Solar cell power supply
JPH0941333A (en) * 1995-07-28 1997-02-10 Kictec:Kk Self-light emitting road pin
JPH09163722A (en) * 1995-11-30 1997-06-20 Sumitomo Metal Ind Ltd Non-insulating-type dc-dc converter with overload protective function

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341787A (en) * 2004-04-28 2005-12-08 Matsushita Electric Ind Co Ltd Switching power supply circuit
JP2007089372A (en) * 2005-09-26 2007-04-05 Matsushita Electric Works Ltd Power supply device
JP2007104810A (en) * 2005-10-05 2007-04-19 Seiko Instruments Inc Electronic apparatus comprising boosting dc-dc converter
KR101228267B1 (en) * 2005-10-05 2013-01-30 세이코 인스트루 가부시키가이샤 Electronic equipment having a boost dc-dc converter
JP2011211885A (en) * 2010-03-11 2011-10-20 Sanyo Electric Co Ltd Power storage system
JP2012139009A (en) * 2010-12-24 2012-07-19 Kyocera Corp Mobile terminal device
CN102035245A (en) * 2011-01-07 2011-04-27 绿电能源技术开发(福建)有限公司 Controller using wind power conversion
CN104426473B (en) * 2013-09-03 2018-06-15 深圳市金威源科技股份有限公司 A kind of solar energy photovoltaic system control method and control device
CN104426473A (en) * 2013-09-03 2015-03-18 深圳市金威源科技股份有限公司 Solar photovoltaic system control method and device
CN105934827A (en) * 2013-12-27 2016-09-07 株式会社藤仓 Electricity storage system and electricity storage method
WO2015099159A1 (en) * 2013-12-27 2015-07-02 株式会社フジクラ Electricity storage system and electricity storage method
JPWO2015099159A1 (en) * 2013-12-27 2017-03-23 株式会社フジクラ Power storage system and power storage method
JP5668132B1 (en) * 2013-12-27 2015-02-12 株式会社フジクラ Power storage system and power storage method
US10181748B2 (en) 2013-12-27 2019-01-15 Fujikura Ltd. Power storage system and power storage method
CN106026387A (en) * 2016-05-18 2016-10-12 东南大学 Method for collecting maximum energy of monitoring system power supply of power transmission line of electric power grid
US11689029B2 (en) 2016-10-12 2023-06-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal with charging circuit and device thereof
JP2021185738A (en) * 2017-04-13 2021-12-09 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged, and charging method
JP7187632B2 (en) 2017-04-13 2022-12-12 オッポ広東移動通信有限公司 Equipment to be charged and charging method
US11631985B2 (en) 2017-04-13 2023-04-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels
CN110912402A (en) * 2018-09-18 2020-03-24 力智电子股份有限公司 Power supply conversion circuit
CN110912402B (en) * 2018-09-18 2022-03-15 力智电子股份有限公司 Power supply conversion circuit

Similar Documents

Publication Publication Date Title
US7622898B2 (en) Charging or discharging apparatus for electrically charging or discharging a capacitor storage type power source adapted to store electric energy in electric double layer capacitors
US8013583B2 (en) Dynamic switch power converter
US8193758B2 (en) Circuits and methods for power conversion
US6590370B1 (en) Switching DC-DC power converter and battery charger for use with direct oxidation fuel cell power source
US7663342B2 (en) Apparatus, system, and method for controlling multiple power supplies
US8531152B2 (en) Solar battery charger
US20090079385A1 (en) Solar powered battery charger using switch capacitor voltage converters
US20060174939A1 (en) Efficiency booster circuit and technique for maximizing power point tracking
KR20060047861A (en) Power source device and charge controlling method to be used in same
WO2007084196A2 (en) Dynamic switch power converter
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2011250608A (en) Solar cell system
JP2004336974A (en) Power supply
US8937402B2 (en) Converter circuit and electronic system comprising such a circuit
US20170117730A1 (en) Efficient supercapacitor charging technique by a hysteretic charging scheme
JP3932196B2 (en) Power supply device control method and power supply device
JP4828511B2 (en) Backup power supply and control method thereof
US20150381041A1 (en) Low-light solar boost converter and control method therefor
WO2012032621A1 (en) Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor
JP5336791B2 (en) Power supply
JP2004320982A (en) Electronic equipment
JPH07322529A (en) Solar cell power supply
KR101162221B1 (en) An apparatus of preventing over-charging/over-discharging for an energy storage and a method thereof
JP2011186583A (en) Circuit device and electronic equipment
JP2008035573A (en) Electricity accumulation device employing electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060922