[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004335746A - Projection optical system, aligner, and exposure method - Google Patents

Projection optical system, aligner, and exposure method Download PDF

Info

Publication number
JP2004335746A
JP2004335746A JP2003129780A JP2003129780A JP2004335746A JP 2004335746 A JP2004335746 A JP 2004335746A JP 2003129780 A JP2003129780 A JP 2003129780A JP 2003129780 A JP2003129780 A JP 2003129780A JP 2004335746 A JP2004335746 A JP 2004335746A
Authority
JP
Japan
Prior art keywords
substrate
light
optical system
optical path
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129780A
Other languages
Japanese (ja)
Other versions
JP4366990B2 (en
JP2004335746A5 (en
Inventor
Hironori Ikezawa
弘範 池沢
Yasuhiro Omura
泰弘 大村
Michiko Nishiyama
道子 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003129780A priority Critical patent/JP4366990B2/en
Publication of JP2004335746A publication Critical patent/JP2004335746A/en
Publication of JP2004335746A5 publication Critical patent/JP2004335746A5/ja
Application granted granted Critical
Publication of JP4366990B2 publication Critical patent/JP4366990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projection optical system which has little aberration and has no degradation in imaging performance when it is used in a liquid-immersed state, and also to provide an exposure apparatus and an exposure method. <P>SOLUTION: The projection aligner which can be used in a liquid-immersed state is so structured as to satisfy a formula 1<R/Y<7, where R is the curvature radius of a lens surface closest to a substrate of the projection aligner and Y is the maximum height of an image projected on a photosensitive surface. In the case that a liquid for liquid immersion absorbs light, part of a glass material used in the projection aligner is formed of one having a low transmissivity, and a distance that a light beam having a long optical path in the liquid travels in the glass material having a low transmissivity is made short while a distance that a light beam having a short optical path in the liquid travels in the glass material having a low transmissivity is made long. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、原版上に描画されたパターンを基板上に焼付転写する投影光学系を有する投影露光装置及び露光方法に関する。
【0002】
【従来の技術】近年、感光性基板としてウエハに転写されるパターンの微細化が望まれている。これを達成するためには、露光波長の短波長化を図るか、投影光学系の開口数の増大化を図るかの2つの方法が考えられる。従来より、これらのうち、投影光学系の開口数の増大化を図る方法の一つとして、液浸式の投影露光装置が提案されている。液浸式の投影露光装置は、投影光学系の最もウエハ側のレンズ面とウエハとの空間、すなわち、作動距離(ワーキングディスタンス)の空間(以後、作動空間と呼ぶ。)の全部又はウエハ側の空間部分を水、油等の液体で満たす装置である。通常使用時の動作空間を占める空気の屈折率が1.0であるのに対し、例えば、油の屈折率は約1.6である。このため、作動空間の全部又はウエハ側の空間部分をこのような屈折率の高い液体に置換すれば、投影光学系のウエハ側の開口数を大きくし、露光パターンの微細化を図ることができる。
【0003】
【特許文献1】特開2000−58436
【0004】
【発明が解決しようとする課題】上記従来の液浸式の投影露光装置においては、作動空間の全部を屈折率の高い液体に置換した場合、投影光学系の最もウエハ側にあるレンズの屈折率の値と液体の屈折率との値が同じであれば問題はないが、一般に、レンズ硝材の屈折率の値と液浸に使用する液体の屈折率との値とは異なっており、この屈折率の差により光が屈折し収差が発生する。
ところで、一般に液浸式の光学系は、レンズから出射した光が空気中で結像することを前提としおらず、液体中において結像することを目的としている。よって、通常の空気中で使用した場合とは発生する収差は異なる。
【0005】
このような液浸式光学系で収差が発生した場合には、補正することが可能であるが、レンズの形状によっては補正で解消することができない場合があり、この場合、レンズの大型化を余儀なくされるといった問題点があり、この問題点を解決することが課題となる。
また、一般的に液浸式の投影光学系では、これに用いられているレンズにおける光の透過率と、液浸のために用いられている液体における光の透過率とが異なる場合が多い。特に短波長領域ではこの傾向が顕著であり、ArFに代表されるエキシマ光のような真空紫外光においては、レンズの硝材の透過率は高いが、液浸用に用いられる液体は、光を吸収するため透過率は硝材と比べて低い。
【0006】
このため、ウエハ上で結像される光線の光路が異なると、液体中における光の吸収量が異なり、結像性能に悪影響を与えるといった問題点がある。即ち、ウエハ上で結像される光線は、レチクル上の一点を起点とした光線が投影光学系を通り、ウエハ上の一点に集光されるが、この投影光学系を通過する光線は、投影光学系内において同一の光路をたどるのではなく、様々な光路をたどった光線がウエハ上にて集光し結像する。このため、液浸用の液体が光を吸収する場合、光線のたどった光路によって、液体を通過する距離も異なり、各々の光線の透過量も異なる。これにより、光線のたどった光路の相違により光の強弱が生じ、結像性能に悪影響を与えてしまうのである。
具体的に図3に基づき説明すると、最大像高の位置に結像される光線のうち、液浸用の液体中を通過する光路長が、最も短い距離U1と最も長い距離L1とでは、液体中を通過する距離が大きく異なる。この液体が光を吸収する場合、各々の光線の強さに強弱が生じてしまい、結像性能を劣化させる。このため、結像性能の劣化を防ぐことが課題となる。
【0007】
【課題を解決するための手段】本発明は上記課題を解決するためになされたものである。
すなわち、請求項1に係る発明は、原版上に描画されたパターンを基板の感光面に転写する投影光学系を有し、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間の空間に、所定の液体を挿入する液浸可能に形成された投影露光装置において、前記投影光学系の最も基板側のレンズ面の曲率半径をRとし、前記基板の感光面に投影される最大像高をYとした場合に、1<R/Y<7
を満たすように形成されたことを特徴とする投影露光装置である。
ここで、液浸とは、投影光学系の最も基板側のレンズ面と前記感光面との空間部分を液体で満たすことをいう。
また、最大像高Yは、感光面上において結像中心から最も離れた結像位置までの距離を示す。この最大像高は当該投影露光装置固有の値であり、収差等の悪影響を受けることなく結像可能な、結像中心からの最大の距離を意味する。このため、この値が小さくなりすぎると、一回の露光面積が狭くなり、生産効率を著しく低下させ、生産装置としての意義を失ってしまう。
【0008】
請求項2に係る発明は、原版上に描画されたパターンを基板の感光面に転写する投影光学系を有し、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間の空間に、所定の液体を挿入する液浸可能に形成された投影露光装置において、前記投影光学系に用いられる硝材の全部或いは一部を光吸収のある硝材により形成し、前記液体中を透過する光線の一つが前記光吸収のある硝材内を透過する距離を前記一つの光線よりも前記液体中を透過する距離の長い他の光線が前記光吸収のある硝材内を透過する距離よりも、短くしたことを特徴とする投影露光装置である。
これにより液浸用の液体が光を吸収する場合であっても、光路が相違した場合であっても各々の光線における光の吸収量を近づけることができ、基板の感光面上での結像性能の劣化を回避することができる。
【0009】
請求項3に係る発明は、原版上に描画されたパターンを基板の感光面に転写する投影光学系を有し、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間の空間に、所定の液体を挿入する液浸可能に形成された投影露光装置において、前記基板の感光面に投影される最大像高となる位置に像を結像するための光路のうち、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間における光路長の最も短い光路が、前記原版から前記基板までの間にたどる投影光学系内の光路における光の吸収率をKUとし、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間における光路長の最も長い光路が、前記原版から前記基板までの間にたどる投影光学系内の光路における吸収率をKLとした場合、前記投影光学系に用いられる硝材の全部或いは一部を光吸収のある硝材により形成し、前記液体中を透過する距離の短い光路をたどる光線が、前記光吸収のある硝材内を透過する距離を長くし、前記液体中を透過する距離が長い光路をたどる光線が、前記光吸収のある硝材内を透過する距離を短くすることにより、
0.8<KU/KL<1.25
を満たすように形成されたことを特徴とする投影露光装置である。
【0010】
請求項4に係る発明は、請求項3に記載された投影露光装置において、前記空間内に浸される液体媒体の単位あたりの透過率をT1とし、前記感光面に投影される最大像高となる位置に像を結像するための光路のうち、前記投影光学系の最も基板側のレンズ面と前記感光面との間における光路長が、最も短い光路の距離をU1とし、最も長い光路の距離をL1とし、投影光学系内の光吸収のある硝材の単位あたりの透過率をT2とし、前記最も短い光路の距離U1をたどる光線が前記硝材内を通過する長さをU2とし、前記最も長い光路の距離L1をたどる光線が前記硝材内を通過する長さをL2とした場合、
0.8<{1−(T1^U1)*(T2^U2)}/{1−(T1^L1)*(T2^L2)}<1.25
を満たすように形成されたことを特徴とする投影露光装置である。
ここで、*は積を意味し、^はべき乗を意味しており、(T1^U1)は、T1のU1乗という意味である。
【0011】
さらに、請求項5に係る発明は、請求項1乃至請求項4のいずれか一項に記載された投影露光装置を用いて露光する方法において、原版を所定の露光光で照明する照明工程と、投影光学系5を介して原版のパターン像を基板の感光面に露光する露光工程とを含むことを特徴とする露光方法である。
【0012】
【発明の実施の形態】
図1、図2及び図3にて本発明による投影露光装置の実施例を説明する。図1は、本発明に係る投影露光装置を示す図である。
本実施の形態では、照明工程と露光工程とを含む露光方法において、原版であるレチクル3のパターン像を基板であるウエハ8の感光面8a上に結像する。すなわち、ArFエキシマレーザー光源等の光源1から発した光束は、照明光学系2を経て、レチクルステージ4上に載置された原版としてのレチクル3のパターン面を均一に照射する。レチクル3のパターン面から発した露光光は、投影光学系5を介して、XYステージ7上に載置されたウエハ8の感光面8a上に、レチクル3のパターン面の像を結像する。
XYステージ7上には、箱型の液体遮断板6が設置されている。図1では簡単のため、液体遮断板6の断面のみを示す。そして、液体遮断板6に囲まれた空間に、水、油等の液体を入れて、作動空間を液体とすることができる。本発明の投影露光装置を液浸状態で使用する場合、図1では破線部まで液体Bを入れることにより、ウエハ8と投影光学系5のウエハ8側の面との空間を全て液体で浸されることとなる。
【0013】
ここで、図3における露光面で結像される最大像高をY(Yは感光面上において結像中心から最も離れた結像位置までの距離を示す。)、投影光学系の最も基板側のレンズ面の曲率半径Rとした場合に、
1<R/Y<7
を満たすように形成することにより、レンズを大型化することなく収差の補正を容易に行うことができる。
【0014】
尚、R/Yが1以下の場合では、曲率半径よりも露光面で結像される最大像高さの方が大きくなり、収差を補正等で解消することは困難となる。特に、口径が大きく曲率半径に近い半径の凹レンズの場合、レンズを出射した光線の一部が再びレンズ内に入る場合があり、この場合結像性能は極端に劣化する。更に、曲率半径の小さいレンズでは、レンズと基板の空間内に短時間で液体を供給、排出させることが困難となり、スループットの低下を招き生産装置としての機能を害することとなる。又、R/Yが7以上の場合では、像面収差補正が困難となり、レンズ外径の大型化が必要となる。よって、レンズを大型化することなく生産装置としての機能を確保するためには、R/Yは上記範囲内にあることが必要となる。
特に、生産装置のスループットの向上という面により着目するならば、更に2<R/Y<7の範囲であることが望ましい。
また、投影光学系においては、光のたどる光路に関係なく、原版であるレチクル3から基板であるウエハ8の間において、光の吸収量をほぼ同一とすることにより、液浸に用いる液体の光の吸収により生じていた結像性能の劣化を解消するものである。具体的には、投影光学系に用いられる硝材の一部を透過率の低い硝材により形成し、液体中を透過する距離が長い光路の光線は、透過率の低い硝材内を透過する距離を短くし、液体中を透過する距離の短い光路の光線は、透過率の低い硝材内を透過する距離を長くしたものである。
【0015】
このような構成の投影光学系では、同一起点から発せられた光線は異なる光路をたどったとしても、光の吸収量はほぼ同じとなり、同一強度の光がウエハ8上に到達するため結像性能に悪影響を与えることはない。
尚、光の透過率の低い硝材を用いることにより、光の吸収量の調整をしているが、投影光学系内のレンズとレンズの空間に光を吸収する気体例えば、一部大気を導入することにより、同様の効果を望むことも可能である。しかし、このような気体がレンズ面の曇の原因になること、気体の揺らぎにより、かえって結像性能を劣化させ、この解決方法も見当らないことにより、気体により透過率を調整する方法は妥当な解決方法ではない。
【0016】
上記のように光を吸収するレンズとして用いることができるものは投影光学系内でも限定され、光路に関係なく吸収量を全く同一にすることは困難であるが、この値が0.8から1.25の範囲内にあれば、結像性能に殆ど影響を与えることはない。即ち、この範囲外の場合には、光路により光の吸収量が異なり、著しく結像性能を劣化させてしまうが、この範囲内であれば光路による光の吸収量の差は少なく、結像性能を劣化させることはない。
【0017】
本発明に基づく具体的な第1実施例を説明する。
第1実施例は図3の構成に基づくもので、表1のレンズデータを有した投影光学系である。ここで、rは曲率半径、dは中心厚・面間隔、nは屈折率を示す。
【0018】
【表1】

Figure 2004335746
Figure 2004335746
この投影露光装置による最大像高Yは、当該投影露光装置固有の値であり、13.73mmである。又、最も基板側のレンズ面の曲率半径(G23−R2)は、52.057mmである。よって、R/Yの値は、3.791となる。
また、この投影露光装置において用いられる液浸用液体1cmあたりの光の透過率T1は、0.90であり、液体中の光路のうち短いものの距離U1は、0.356cmであり、長いものの距離L1は、0.598cmである。又、投影光学系内の吸収率の高いレンズ硝材1cmあたりの光の透過率T2は、0.98であり、U1の光路を投影光学系内でたどる光線の当該レンズ内を透過する光路の距離U2は、5.049cm、L1の光路を投影光学系内でたどる光線の当該レンズ内を透過する光路の距離L2は、2.505cmである。このU2、U2の値はL1、L1の投影光学系内の光路を計算することにより求めることができる。よって、{1−(T1^U1)*(T2^U2)}/{1−(T1^L1)*(T2^L2)}の値は、1.212となり、結像性能に悪影響を与えることはない。
ここで、比較として、このような吸収率の高いレンズを入れない場合、即ち、前記において吸収率の高いとされたレンズが他のレンズと同様に光をほとんど吸収せず透過する場合、近似的にT2を1と考えることができるため、{1−(T1^U1)*(T2^U2)}/{1−(T1^L1)*(T2^L2)}の値は、0.603となり、光の強度差が大きく、結像性能に悪影響を与える。
【0019】
本発明に基づく具体的な第2実施例を説明する。
第2実施例は図4の構成に基づくもので、表2のレンズデータを有した投影光学系である。
【0020】
【表2】
Figure 2004335746
Figure 2004335746
この投影露光装置による最大像高Yは、当該投影露光装置固有の値であり、13.73mmである。又、最も基板側のレンズ面の曲率半径(G27−R2)は、42.186mmである。よって、R/Yの値は、3.073となる。
また、この投影露光装置において用いられる液浸用液体1cmあたりの光の透過率T1は、0.90であり、液体中の光路のうち短いものの距離U1は、0.764cmであり、長いものの距離L1は、1.377cmである。又、投影光学系内の吸収率の高いレンズ硝材1cmあたりの光の透過率T2は、0.98であり、計算によりU1の光路を投影光学系内でたどる光線の当該レンズ内を透過する光路の距離U2は、4.315cm、L1の光路を投影光学系内でたどる光線の当該レンズ内を透過する光路の距離L2は、1.146cmである。
よって、{1−(T1^U1)*(T2^U2)}/{1−(T1^L1)*(T2^L2)}の値は、0.997となり、結像性能に悪影響を与えることはない。
【0021】
ここで、比較として、このような吸収率の高いレンズを入れない場合、即ち、前記において吸収率の高いとされたレンズが他のレンズと同様に光をほとんど吸収せず透過する場合、近似的にT2を1と考えることができるため、{1−(T1^U1)*(T2^U2)}/{1−(T1^L1)*(T2^L2)}の値は、0.573となり、光の強度差が大きく結像性能に悪影響を与える。
【0022】
【発明の効果】本発明では、液浸の露光装置であっても収差や結像性能を劣化させることなく結像可能な投影露光装置を提供することができる。
特に、液浸に用いる液体が光を吸収する場合には、結像性能の劣化を回避することができ、所望の微細パターンを正確に焼き付けることができる。
【図面の簡単な説明】
【図1】は、液浸投影露光装置の概要図である。
【図2】は、液浸投影露光装置のうち、液浸となる部分の構成図である。
【図3】は、本発明の第1実施例による投影露光装置の光学系の構成図である。
【図4】は、本発明の第2実施例による投影露光装置の光学系の構成図である。
【符号の説明】
1・・・光源
2・・・照明光学系
3・・・レチクル
4・・・レチクルステージ
5・・・投影光学系
6・・・液体遮断板
7・・・ウエハステージ
8・・・ウエハ
8a・・・像面
9・・・投影光学系の最もウエハ側のレンズ
A・・・光線
B・・・液体[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus having a projection optical system for printing and transferring a pattern drawn on an original onto a substrate, and an exposure method.
[0002]
2. Description of the Related Art In recent years, miniaturization of a pattern transferred to a wafer as a photosensitive substrate has been desired. In order to achieve this, there are two methods of reducing the exposure wavelength and increasing the numerical aperture of the projection optical system. Conventionally, among these methods, an immersion type projection exposure apparatus has been proposed as one of methods for increasing the numerical aperture of a projection optical system. The liquid immersion type projection exposure apparatus has a space between the wafer surface and the lens surface of the projection optical system closest to the wafer, that is, the entire working distance (working distance) (hereinafter referred to as the working space) or the wafer side. This is a device that fills a space with a liquid such as water or oil. For example, the refractive index of air occupying the operating space in normal use is 1.0, while the refractive index of oil is, for example, about 1.6. Therefore, if the entire working space or the space on the wafer side is replaced with such a liquid having a high refractive index, the numerical aperture on the wafer side of the projection optical system can be increased, and the exposure pattern can be miniaturized. .
[0003]
[Patent Document 1] JP-A-2000-58436
[0004]
In the above-mentioned conventional liquid immersion type projection exposure apparatus, when the entire working space is replaced with a liquid having a high refractive index, the refractive index of the lens closest to the wafer in the projection optical system is changed. There is no problem if the value of the refractive index is the same as the value of the refractive index of the liquid, but in general, the value of the refractive index of the lens glass material is different from the value of the refractive index of the liquid used for immersion. Light is refracted by the difference in the rates, causing aberration.
Incidentally, a liquid immersion type optical system generally does not assume that light emitted from a lens forms an image in air, but aims to form an image in a liquid. Therefore, the generated aberration is different from the case where it is used in normal air.
[0005]
When aberration occurs in such an immersion type optical system, it is possible to correct it.However, depending on the shape of the lens, it may not be possible to correct it by correction. There is a problem that it is necessary to solve this problem.
In general, in a liquid immersion type projection optical system, the light transmittance of a lens used for the lens and the light transmittance of a liquid used for the liquid immersion often differ. This tendency is particularly remarkable in the short wavelength region. In vacuum ultraviolet light such as excimer light represented by ArF, the transmittance of the lens material is high, but the liquid used for immersion absorbs light. Therefore, the transmittance is lower than that of the glass material.
[0006]
For this reason, if the optical path of the light beam imaged on the wafer is different, the amount of light absorbed in the liquid is different, which has a problem of adversely affecting the imaging performance. That is, the light beam imaged on the wafer is such that a light beam originating from one point on the reticle passes through the projection optical system and is focused on one point on the wafer. Instead of following the same optical path in the optical system, light rays that follow various optical paths are condensed and imaged on the wafer. For this reason, when the immersion liquid absorbs light, the distance through which the light passes varies depending on the optical path followed by the light rays, and the transmission amount of each light ray also differs. As a result, the intensity of light is generated due to the difference in the optical path followed by the light rays, and this adversely affects the imaging performance.
To be more specific, referring to FIG. 3, among the light rays imaged at the position of the maximum image height, the optical path length passing through the liquid for liquid immersion has the shortest distance U1 and the longest distance L1. The distance that passes through the inside is greatly different. When this liquid absorbs light, the intensity of each light beam varies, deteriorating the imaging performance. Therefore, it is an issue to prevent the deterioration of the imaging performance.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems.
That is, the invention according to claim 1 has a projection optical system that transfers a pattern drawn on an original to a photosensitive surface of a substrate, and a lens surface closest to the substrate of the projection optical system and a photosensitive surface of the substrate. In a projection exposure apparatus formed so as to be able to immerse a predetermined liquid in a space between the projection optical system, the radius of curvature of the lens surface of the projection optical system closest to the substrate is R, and the projection optical system is projected on the photosensitive surface of the substrate. When the maximum image height is Y, 1 <R / Y <7
Is a projection exposure apparatus characterized by being formed so as to satisfy the following.
Here, the liquid immersion means that a space between the lens surface closest to the substrate side of the projection optical system and the photosensitive surface is filled with liquid.
The maximum image height Y indicates a distance from the image forming center to the image forming position farthest from the image forming center on the photosensitive surface. The maximum image height is a value unique to the projection exposure apparatus, and means the maximum distance from the image forming center where an image can be formed without being affected by aberration or the like. For this reason, if this value is too small, the exposure area per exposure becomes narrow, the production efficiency is remarkably reduced, and the significance as a production device is lost.
[0008]
The invention according to claim 2 has a projection optical system for transferring a pattern drawn on an original to a photosensitive surface of a substrate, and a projection optical system between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate. In a projection exposure apparatus formed so as to be able to immerse a predetermined liquid into a space, all or a part of a glass material used for the projection optical system is formed of a light-absorbing glass material and transmitted through the liquid. The distance over which one of the light beams passes through the glass material having the light absorption is longer than the distance at which another light beam having a longer distance transmitting through the liquid than the one light beam passes through the glass material having the light absorption. A projection exposure apparatus characterized in that it is shortened.
This allows the amount of light absorbed by each light beam to be close even if the liquid for immersion absorbs light or the optical path is different, and forms an image on the photosensitive surface of the substrate. Performance degradation can be avoided.
[0009]
The invention according to claim 3 has a projection optical system for transferring a pattern drawn on an original to a photosensitive surface of a substrate, and a projection optical system between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate. In a projection exposure apparatus formed so as to be capable of immersion by inserting a predetermined liquid into the space, the optical path for forming an image at a position where the maximum image height is projected on the photosensitive surface of the substrate, The optical path having the shortest optical path length between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate has an absorptance of light in an optical path in the projection optical system that travels from the original to the substrate. KU, the longest optical path between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate is the absorption in the optical path in the projection optical system that travels from the master to the substrate. When the ratio is KL, the projection optics All or a part of the glass material used for is formed of a glass material having light absorption, the light ray that follows the short optical path of the light transmitted through the liquid, the light transmitted through the glass material having the light absorption is lengthened, Light rays that follow an optical path having a long distance to pass through the liquid, by shortening the distance that passes through the light-absorbing glass material,
0.8 <KU / KL <1.25
Is a projection exposure apparatus characterized by being formed so as to satisfy the following.
[0010]
According to a fourth aspect of the present invention, in the projection exposure apparatus according to the third aspect, the transmittance per unit of the liquid medium immersed in the space is T1, and the maximum image height projected on the photosensitive surface is T1. Of the optical paths for forming an image at a certain position, the optical path length between the lens surface of the projection optical system closest to the substrate and the photosensitive surface is the shortest optical path distance U1, and the longest optical path is The distance is defined as L1, the transmittance per unit of the glass material having light absorption in the projection optical system is defined as T2, and the length of the shortest light path passing through the glass material at the distance U1 is defined as U2. Assuming that the length of a light ray traveling along the long optical path distance L1 and passing through the glass material is L2,
0.8 <{1- (T1 @ U1) * (T2 @ U2)} / {1- (T1 @ L1) * (T2 @ L2)} <1.25
Is a projection exposure apparatus characterized by being formed so as to satisfy the following.
Here, * means a product, ^ means a power, and (T1 ^ U1) means T1 raised to the power of U1.
[0011]
Further, according to a fifth aspect of the present invention, in the method of exposing using the projection exposure apparatus according to any one of the first to fourth aspects, an illumination step of illuminating the original with predetermined exposure light; An exposure step of exposing a pattern image of an original onto a photosensitive surface of a substrate via a projection optical system 5.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a projection exposure apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a view showing a projection exposure apparatus according to the present invention.
In the present embodiment, in an exposure method including an illumination step and an exposure step, a pattern image of reticle 3 as an original is formed on photosensitive surface 8a of wafer 8 as a substrate. That is, a light beam emitted from a light source 1 such as an ArF excimer laser light source passes through an illumination optical system 2 and uniformly irradiates a pattern surface of a reticle 3 as an original placed on a reticle stage 4. The exposure light emitted from the pattern surface of the reticle 3 forms an image of the pattern surface of the reticle 3 on the photosensitive surface 8a of the wafer 8 placed on the XY stage 7 via the projection optical system 5.
On the XY stage 7, a box-shaped liquid blocking plate 6 is provided. FIG. 1 shows only a cross section of the liquid blocking plate 6 for simplicity. Then, a liquid such as water, oil, or the like is put into a space surrounded by the liquid blocking plate 6, and the working space can be made liquid. When the projection exposure apparatus of the present invention is used in a liquid immersion state, the space between the wafer 8 and the surface of the projection optical system 5 on the wafer 8 side is completely immersed in the liquid by introducing the liquid B up to the broken line portion in FIG. The Rukoto.
[0013]
Here, the maximum image height formed on the exposure surface in FIG. 3 is Y (Y indicates the distance from the image formation center to the image formation position farthest on the photosensitive surface), and the projection optical system is closest to the substrate. Where R is the radius of curvature of the lens surface,
1 <R / Y <7
By satisfying the above condition, aberration can be easily corrected without increasing the size of the lens.
[0014]
When R / Y is 1 or less, the maximum image height formed on the exposure surface is larger than the radius of curvature, and it is difficult to eliminate aberration by correction or the like. In particular, in the case of a concave lens having a large aperture and a radius close to the radius of curvature, a part of the light beam emitted from the lens may enter the lens again, and in this case, the imaging performance is extremely deteriorated. Further, with a lens having a small radius of curvature, it is difficult to supply and discharge the liquid into the space between the lens and the substrate in a short period of time, which lowers the throughput and impairs the function as a production device. Further, when R / Y is 7 or more, it becomes difficult to correct the image surface aberration, and it is necessary to increase the outer diameter of the lens. Therefore, in order to ensure the function as a production device without increasing the size of the lens, R / Y needs to be within the above range.
In particular, if attention is paid to improving the throughput of the production apparatus, it is more preferable that the range of 2 <R / Y <7 is satisfied.
Further, in the projection optical system, the amount of light absorbed between the reticle 3 as the original plate and the wafer 8 as the substrate is made substantially the same, regardless of the optical path of the light, so that the light of the liquid used for immersion can be obtained. This is to eliminate the deterioration of the imaging performance caused by the absorption of light. Specifically, a part of the glass material used in the projection optical system is formed of a glass material having a low transmittance, and a light ray in an optical path having a long transmission distance in a liquid has a short transmission distance in a glass material having a low transmittance. Light rays in an optical path having a short distance transmitted through a liquid have a longer distance transmitted through a glass material having a low transmittance.
[0015]
In the projection optical system having such a configuration, even if the light rays emitted from the same starting point follow different optical paths, the light absorption amounts are almost the same, and the light of the same intensity reaches the wafer 8, so that the image forming performance is improved. Does not adversely affect
Although the amount of light absorption is adjusted by using a glass material having a low light transmittance, a gas that absorbs light, for example, a part of the atmosphere is introduced into the space between the lens and the lens in the projection optical system. Thus, the same effect can be desired. However, since such a gas causes clouding of the lens surface, and the fluctuation of the gas deteriorates the imaging performance, a method of adjusting the transmittance by the gas is appropriate because no solution is found. Not a solution.
[0016]
What can be used as a lens that absorbs light as described above is also limited in the projection optical system, and it is difficult to make the amount of absorption completely the same regardless of the optical path. .25 has almost no effect on the imaging performance. In other words, if it is out of this range, the amount of light absorption differs depending on the optical path, and the imaging performance is remarkably deteriorated. Does not deteriorate.
[0017]
A first specific example according to the present invention will be described.
The first embodiment is based on the configuration shown in FIG. 3 and is a projection optical system having the lens data shown in Table 1. Here, r is the radius of curvature, d is the center thickness / surface interval, and n is the refractive index.
[0018]
[Table 1]
Figure 2004335746
Figure 2004335746
The maximum image height Y of the projection exposure apparatus is a value unique to the projection exposure apparatus, and is 13.73 mm. The radius of curvature (G23-R2) of the lens surface closest to the substrate is 52.57 mm. Therefore, the value of R / Y is 3.791.
Further, the transmittance T1 of light per 1 cm of the immersion liquid used in the projection exposure apparatus is 0.90, the short distance U1 of the optical paths in the liquid is 0.356 cm, and the long distance L1 is 0.598 cm. The transmittance T2 of light per cm of the lens glass material having a high absorptance in the projection optical system is 0.98, and the distance of the optical path of the light ray that follows the optical path of U1 in the projection optical system and passes through the lens is 0.98. U2 is 5.049 cm, and the distance L2 of an optical path of a light ray that follows the optical path of L1 in the projection optical system and passes through the lens is 2.505 cm. The values of U2 and U2 can be obtained by calculating the optical paths in the projection optical system of L1 and L1. Therefore, the value of {1- (T1 @ U1) * (T2 @ U2)} / {1- (T1 @ L1) * (T2 @ L2)} is 1.212, which adversely affects the imaging performance. There is no.
Here, as a comparison, when a lens having such a high absorptance is not inserted, that is, when a lens determined to have a high absorptance transmits light almost without absorbing light like other lenses, approximately Since T2 can be considered to be 1, the value of {1- (T1 ^ U1) * (T2 ^ U2)} / {1- (T1 ^ L1) * (T2 ^ L2)} is 0.603. The difference in light intensity is large and adversely affects the imaging performance.
[0019]
A second specific example according to the present invention will be described.
The second embodiment is based on the configuration of FIG. 4 and is a projection optical system having the lens data of Table 2.
[0020]
[Table 2]
Figure 2004335746
Figure 2004335746
The maximum image height Y of the projection exposure apparatus is a value unique to the projection exposure apparatus, and is 13.73 mm. The radius of curvature (G27-R2) of the lens surface closest to the substrate is 42.186 mm. Therefore, the value of R / Y is 3.073.
Further, the transmittance T1 of light per 1 cm of the immersion liquid used in this projection exposure apparatus is 0.90, the short distance U1 of the optical paths in the liquid is 0.764 cm, and the long distance L1 is 1.377 cm. The transmittance T2 of light per cm of the lens glass material having a high absorptance in the projection optical system is 0.98, and the optical path of the light ray which follows the optical path of U1 in the projection optical system and passes through the lens is calculated. Is a distance U2 of 4.315 cm, and a distance L2 of an optical path of a light ray that follows the optical path of L1 in the projection optical system and passes through the lens is 1.146 cm.
Therefore, the value of {1- (T1 @ U1) * (T2 @ U2)} / {1- (T1 @ L1) * (T2 @ L2)} is 0.997, which adversely affects the imaging performance. There is no.
[0021]
Here, as a comparison, when a lens having such a high absorptance is not inserted, that is, when a lens determined to have a high absorptance transmits light almost without absorbing light like other lenses, approximately Since T2 can be considered to be 1, the value of {1- (T1 ^ U1) * (T2 ^ U2)} / {1- (T1 ^ L1) * (T2 ^ L2)} is 0.573. The difference in light intensity is large and adversely affects the imaging performance.
[0022]
According to the present invention, it is possible to provide a projection exposure apparatus capable of forming an image without deteriorating aberrations and image forming performance even with an immersion exposure apparatus.
In particular, when the liquid used for immersion absorbs light, deterioration of the imaging performance can be avoided, and a desired fine pattern can be accurately printed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an immersion projection exposure apparatus.
FIG. 2 is a configuration diagram of a part to be immersed in the immersion projection exposure apparatus.
FIG. 3 is a configuration diagram of an optical system of the projection exposure apparatus according to the first embodiment of the present invention.
FIG. 4 is a configuration diagram of an optical system of a projection exposure apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 1 light source 2 illumination optical system 3 reticle 4 reticle stage 5 projection optical system 6 liquid blocking plate 7 wafer stage 8 wafer 8a ..Image plane 9 ... Lens A on the wafer side of the projection optical system ... Light rays B ... liquid

Claims (5)

原版上に描画されたパターンを基板の感光面に転写する投影光学系を有し、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間の空間に、所定の液体を挿入する液浸可能に形成された投影露光装置において、前記投影光学系の最も基板側のレンズ面の曲率半径をRとし、前記基板の感光面に投影される最大像高をYとした場合に、
1<R/Y<7
を満たすように形成されたことを特徴とする投影露光装置。
A projection optical system for transferring a pattern drawn on the original to a photosensitive surface of the substrate, and a predetermined liquid is supplied to a space between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate. In a projection exposure apparatus which is formed so as to be capable of being immersed and inserted, when the radius of curvature of the lens surface closest to the substrate of the projection optical system is R, and the maximum image height projected on the photosensitive surface of the substrate is Y, ,
1 <R / Y <7
A projection exposure apparatus formed to satisfy the following.
原版上に描画されたパターンを基板の感光面に転写する投影光学系を有し、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間の空間に、所定の液体を挿入する液浸可能に形成された投影露光装置において、前記投影光学系に用いられる硝材の全部或いは一部を光吸収のある硝材により形成し、前記液体中を透過する光線の一つが前記光吸収のある硝材内を透過する距離を前記一つの光線よりも前記液体中を透過する距離の長い他の光線が前記光吸収のある硝材内を透過する距離よりも、短くしたことを特徴とする投影露光装置。A projection optical system for transferring a pattern drawn on the original to a photosensitive surface of the substrate, and a predetermined liquid is supplied to a space between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate. In a projection exposure apparatus which is formed so as to be capable of being immersed and inserted, all or a part of the glass material used for the projection optical system is formed of a glass material having light absorption, and one of the light beams transmitted through the liquid absorbs the light absorbing material. Wherein the distance through which the light passes through the liquid is shorter than the distance through which the other light having a longer distance in the liquid than the one light passes through the liquid-absorbing glass. Exposure equipment. 原版上に描画されたパターンを基板の感光面に転写する投影光学系を有し、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間の空間に、所定の液体を挿入する液浸可能に形成された投影露光装置において、前記基板の感光面に投影される最大像高となる位置に像を結像するための光路のうち、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間における光路長の最も短い光路が、前記原版から前記基板までの間にたどる投影光学系内の光路における光の吸収率をKUとし、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間における光路長の最も長い光路が、前記原版から前記基板までの間にたどる投影光学系内の光路における吸収率をKLとした場合、前記投影光学系に用いられる硝材の全部或いは一部を光吸収のある硝材により形成し、前記液体中を透過する距離の短い光路をたどる光線が、前記光吸収のある硝材内を透過する距離を長くし、前記液体中を透過する距離が長い光路をたどる光線が、前記光吸収のある硝材内を透過する距離を短くすることにより、
0.8<KU/KL<1.25
を満たすように形成されたことを特徴とする投影露光装置。
A projection optical system for transferring a pattern drawn on the original to a photosensitive surface of the substrate, and a predetermined liquid is supplied to a space between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate. In the projection exposure apparatus formed so as to be immersed to be inserted, of the optical path for forming an image at the position where the maximum image height is projected on the photosensitive surface of the substrate, the optical path closest to the substrate of the projection optical system The optical path having the shortest optical path length between the lens surface and the photosensitive surface of the substrate is KU, where KU is the light absorptivity of light in the optical path in the projection optical system that travels from the original to the substrate. The optical path having the longest optical path length between the lens surface closest to the substrate and the photosensitive surface of the substrate has an absorption rate KL in the optical path in the projection optical system that runs from the original to the substrate. Complete glass materials used in projection optical systems Alternatively, a part of the light-absorbing glass material is used, and a light ray that follows an optical path having a short distance to penetrate the liquid increases the distance that the light passes through the light-absorbing glass material, and the distance that the light passes through the liquid. By reducing the distance that light rays that follow a long optical path penetrate the glass material having the light absorption,
0.8 <KU / KL <1.25
A projection exposure apparatus formed to satisfy the following.
請求項3に記載された投影露光装置において、前記空間内に浸される液体媒体の単位あたりの透過率をT1とし、前記基板の感光面に投影される最大像高となる位置に像を結像するための光路のうち、前記投影光学系の最も基板側のレンズ面と前記基板の感光面との間における光路長が、最も短い光路の距離をU1とし、最も長い光路の距離をL1とし、投影光学系内の光吸収のある硝材の単位あたりの透過率をT2とし、前記最も短い光路の距離U1をたどる光線が前記硝材内を通過する長さをU2とし、前記最も長い光路の距離L1をたどる光線が前記硝材内を通過する長さをL2とした場合、べき乗を^で表すと、
0.8<{1−(T1^U1)*(T2^U2)}/{1−(T1^L1)*(T2^L2)}<1.25
を満たすように形成されたことを特徴とする投影露光装置。
4. The projection exposure apparatus according to claim 3, wherein a transmittance per unit of the liquid medium immersed in the space is T1, and an image is formed at a position where a maximum image height is projected on a photosensitive surface of the substrate. In the optical path for imaging, the optical path length between the lens surface of the projection optical system closest to the substrate and the photosensitive surface of the substrate is U1, the distance of the shortest optical path is L1, and the distance of the longest optical path is L1. The transmittance per unit of the glass material having light absorption in the projection optical system is defined as T2, the length of a light ray following the shortest optical path distance U1 passing through the glass material is defined as U2, and the distance of the longest optical path is defined as U2. Assuming that the length of the light ray following L1 passing through the glass material is L2, the power is represented by ^.
0.8 <{1- (T1 @ U1) * (T2 @ U2)} / {1- (T1 @ L1) * (T2 @ L2)} <1.25
A projection exposure apparatus formed to satisfy the following.
請求項1乃至請求項4のいずれか一項に記載の投影露光装置を用いて露光する方法において、前記原版を所定の露光光で照明する照明工程と、前記投影光学系を介して前記原版のパターン像を前記基板の感光面に露光する露光工程とを含むことを特徴とする露光方法。A method of exposing using the projection exposure apparatus according to any one of claims 1 to 4, wherein an illumination step of illuminating the original with predetermined exposure light, and a step of irradiating the original with the projection optical system. An exposing step of exposing a pattern image on a photosensitive surface of the substrate.
JP2003129780A 2003-05-08 2003-05-08 Projection optical system, exposure apparatus and exposure method Expired - Fee Related JP4366990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129780A JP4366990B2 (en) 2003-05-08 2003-05-08 Projection optical system, exposure apparatus and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129780A JP4366990B2 (en) 2003-05-08 2003-05-08 Projection optical system, exposure apparatus and exposure method

Publications (3)

Publication Number Publication Date
JP2004335746A true JP2004335746A (en) 2004-11-25
JP2004335746A5 JP2004335746A5 (en) 2008-01-31
JP4366990B2 JP4366990B2 (en) 2009-11-18

Family

ID=33505484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129780A Expired - Fee Related JP4366990B2 (en) 2003-05-08 2003-05-08 Projection optical system, exposure apparatus and exposure method

Country Status (1)

Country Link
JP (1) JP4366990B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027438A (en) * 2005-07-15 2007-02-01 Nikon Corp Projection optical system, aligner, and method of manufacturing device
WO2007052659A1 (en) * 2005-11-01 2007-05-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
JP2007515660A (en) * 2003-10-22 2007-06-14 カール・ツァイス・エスエムティー・アーゲー Refractive projection objective for immersion lithography
JP2007516613A (en) * 2003-12-15 2007-06-21 カール・ツアイス・エスエムテイ・アーゲー Objective lens as a microlithographic projection objective comprising at least one liquid lens
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system with compensation for intensity variation and compensation element therefor
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751129B2 (en) 2003-10-22 2010-07-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US7969663B2 (en) 2003-10-22 2011-06-28 Carl Zeiss Smt Gmbh Projection objective for immersion lithography
JP2007515660A (en) * 2003-10-22 2007-06-14 カール・ツァイス・エスエムティー・アーゲー Refractive projection objective for immersion lithography
JP2007516613A (en) * 2003-12-15 2007-06-21 カール・ツアイス・エスエムテイ・アーゲー Objective lens as a microlithographic projection objective comprising at least one liquid lens
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system with compensation for intensity variation and compensation element therefor
JP2012028803A (en) * 2004-06-04 2012-02-09 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
JP4913041B2 (en) * 2004-06-04 2012-04-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection system with compensation for intensity variation and compensation element therefor
US8605257B2 (en) 2004-06-04 2013-12-10 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
JP2007027438A (en) * 2005-07-15 2007-02-01 Nikon Corp Projection optical system, aligner, and method of manufacturing device
JPWO2007052659A1 (en) * 2005-11-01 2009-04-30 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
WO2007052659A1 (en) * 2005-11-01 2007-05-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method

Also Published As

Publication number Publication date
JP4366990B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US4891663A (en) Projection exposure apparatus
US7710653B2 (en) Projection optical system, exposure system, and exposure method
JPH07220990A (en) Pattern forming method and exposure apparatus therefor
JP2005519332A (en) Refractive projection objective
JP2001141995A (en) Optical projection lens system
TWI451208B (en) Projection exposure system and projection exposure method
KR20010062343A (en) Projection exposure apparatus and method of manufacturing a device using the projection exposure apparatus
JP2007096254A (en) Exposing apparatus and micro device manufacturing method
JP2004335746A (en) Projection optical system, aligner, and exposure method
JP2007299993A (en) Aligner
KR20020046932A (en) Condenser optical system, illumination optical apparatus comprising the optical system, and exposure apparatus
EP2003478A2 (en) Projection optical system, aligner, and method for fabricating device
JP2007184336A (en) Exposure apparatus and method for manufacturing device
EP1816502A1 (en) Projection optical system, exposure equipment and exposure method
KR100386870B1 (en) Projection Optics and Exposure Equipment
JP2006120985A (en) Illumination optical device, and exposure apparatus and method
US7242457B2 (en) Exposure apparatus and exposure method, and device manufacturing method using the same
JP2006114839A (en) Projection optical system, aligner and exposure method
US7457042B2 (en) Projection optical system, exposure apparatus, and exposure method
JP2009295933A (en) Dummy exposure substrate and method of manufacturing the same, immersion exposure apparatus, and method of manufacturing device
JP3677837B2 (en) Projection exposure equipment
JPH10197791A (en) Projection lens
JP4503967B2 (en) Adjustment filter and exposure apparatus
JP4868209B2 (en) Projection optical system, exposure apparatus, and exposure method
KR20110005704A (en) Light source device, exposure device and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4366990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees