[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004335611A - Semiconductor inspection apparatus and inspection method, and semiconductor device - Google Patents

Semiconductor inspection apparatus and inspection method, and semiconductor device Download PDF

Info

Publication number
JP2004335611A
JP2004335611A JP2003127306A JP2003127306A JP2004335611A JP 2004335611 A JP2004335611 A JP 2004335611A JP 2003127306 A JP2003127306 A JP 2003127306A JP 2003127306 A JP2003127306 A JP 2003127306A JP 2004335611 A JP2004335611 A JP 2004335611A
Authority
JP
Japan
Prior art keywords
inspection
semiconductor
light
location
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003127306A
Other languages
Japanese (ja)
Inventor
Kazunori Sakata
和則 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003127306A priority Critical patent/JP2004335611A/en
Publication of JP2004335611A publication Critical patent/JP2004335611A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor inspection apparatus and an inspection method capable of obtaining the information of height and widthwise directions of a portion to be inspected, and a semiconductor device using the same. <P>SOLUTION: A stage 11 has a very subtle round shape, e.g. along a Y direction, and is controlled to move so that a portion P1 to be inspected is always included on the top T1 of a wafer 10. An inspection beam generating mechanism 121 irradiates the portion to be inspected on the wafer 10 with an inspection light Lin1 so as to have an incident angle θ. An inspection light generating mechanism 122 irradiates an inspection light Lin2 in parallel with a tangent direction of the wafer 10 and immediately above the portion P1. A detecting mechanism 131 for detecting a reflection light Lre1 of the inspection light Lin1 from the top of the wafer 10 and a detecting mechanism 132 for detecting the inspection light Lin2 passing if a foreign matter does not exist are provided. An operation control mechanism 14 obtains information including the information of the height and width of an object at an inspection point according to correlation of the data of each detection amount obtained by the mechanisms 131, 132. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置製造に係り、特に、半導体ウェハにおけるパターン欠陥や異物の付着などの異常を検出するための半導体検査装置及び検査方法、その利用含む半導体装置に関する。
【0002】
【従来の技術】
LSIの多機能化に伴い、チップ製品は大規模集積化、デザインルールの縮小化が常に要求される。そして、ロジック製品やメモリ製品等、ある用途に応じたチップ製品をその時のデザインルールで半導体ウェハ一枚からなるべく多数確保する必要がある。かつ、各々性能を均一化し高歩留まりで量産化しなければならない。
【0003】
LSI製造のプロセスにおける最適化条件の模索やプロセスコントロールに影響してウェハ内の欠陥は増減する。露光パターンの不具合に起因するパターン欠陥やパーティクル発生によるウェハ上への異物付着の検査は、一般には比較検査で達成される。すなわち、隣り合う集積回路チップ領域の同一パターン領域の画像を取り込んで比較検査する。画像を取り込んでの比較検査は、検査倍率や検査モードによって検査速度が異なり、検査レシピによっては製造ラインの実質効率に影響する。
【0004】
その他、画像ではなく、単なる検査光の乱反射を捉えて異物付着等の欠陥を検出する技術もある。この技術は、検査光の受光感度に左右され、欠陥として認識する必要のない箇所まで欠陥検出する可能性が高い。従来では、例えば、アルミニューム薄膜の蒸着面の異物検査ではあるが、改善策としての技術が開示されている(特許文献1参照)。この技術は、アルミニューム薄膜の蒸着面に所定角度で投射するレーザービームに関し、散乱光の指向性が異物に当てられたときのそれと異なることを利用している。
【0005】
【特許文献1】
特開平6−174655号公報(第4、5頁、図2)
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1では、異物判定の精度に改善がみられるものの、欠陥として妥当なのか、異物のサイズ(高さ及び幅)の情報が得られないのが現状である。
本発明は、上記のような事情を考慮してなされたもので、検査箇所の高さ及び幅方向の情報が得られる半導体検査装置及び検査方法、半導体装置を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る半導体検査装置は、半導体ウェハをX方向またはY方向に沿ってラウンド形状に反らせつつ支持し前記半導体ウェハの頂部に検査箇所が含まれるように移動制御可能なステージと、前記半導体ウェハ上の前記検査箇所に所定の入射角度を有して第1の検査光を照射する第1検査光発生機構と、少なくとも前記半導体ウェハ上から反射してくる前記第1の検査光を検出する第1検出機構と、前記半導体ウェハに対する接線方向と平行にかつ前記検査箇所直上に第2の検査光を照射する第2検査光発生機構と、少なくとも前記検査箇所直上を通過する前記第2の検査光を検出する第2検出機構と、前記第1検出機構で得られた検出光量のデータと前記第2検出機構で得られた検出光量のデータとの相関に応じて相対的に前記検査箇所の状態を検査する演算制御機構と、を具備したことを特徴とする。
【0008】
上記本発明に係る半導体検査装置によれば、第1検査光発生機構及び第1検出機構、第2検査光発生機構及び第2検出機構が設けられる。一つは所定の入射角度を有する第1の検査光、もう一つは入射角度の無い第2の検査光、これら両者の受光検出度合いの相関を用いる。さらに、検査箇所が常に頂部にくるよう半導体ウェハをラウンド形状に反らせつつ支持するステージを配備する。これにより、検査箇所の高さ方向に関する詳細な情報が得られると共に、検査精度向上に寄与する。
【0009】
なお、上記本発明に係る半導体検査装置において、好ましくは、前記演算制御機構により前記検査箇所における対象物の少なくとも高さ及び幅の測定または評価をすることを特徴とする。すなわち、第1、第2の検査光これら両者の受光検出度合いの相関から対象物の詳細な分析がなされる。また、前記第1検査光発生機構と前記第2検査光発生機構はそれぞれ排他的に動作させることを特徴とする。これにより、同じ検査光、検出機構を用いて高精度な情報を得ることができる。
【0010】
本発明に係る半導体検査方法は、半導体ウェハをX方向またはY方向に沿ってラウンド形状に反らせながら支持し前記半導体ウェハの頂部に検査箇所が含まれるように移動する工程と、それぞれ所定のタイミングで、前記検査箇所に所定の入射角度を有する第1の検査光と、前記半導体ウェハに対する接線方向と平行にかつ前記検査箇所直上に第2の検査光を照射する工程と、前記第1、第2の検査光それぞれを前記半導体ウェハ周辺の複数の受光部で捉えた光強度の相関に応じて少なくとも前記検査箇所における対象物の高さの情報を得る検査工程と、を含むことを特徴とする。
【0011】
上記本発明に係る半導体検査方法によれば、ラウンド形状に反らせながら支持された半導体ウェハの頂部が検査箇所に含まれ、所定の入射角度を有する第1の検査光、入射角度の無い水平な第2の検査光を検査箇所に照射する。これら両者の検査光に関し、反射光、通過光等の受光検出度合いの相関から検査箇所における対象物の高さの情報を得る。
【0012】
なお、上記本発明に係る半導体検査方法において、好ましい実施態様として次のような特徴を少なくとも一つ有する。
前記検査工程は、前記半導体ウェハのスクライブライン領域を隔てて隣り合う所定パターンの検査箇所どうしを比較し、比較結果が所定範囲以内であるか否かで前記検査箇所の異常の有無を判定することを特徴とする。
前記検査工程は、前記検査箇所における対象物の少なくとも高さ及び幅を含む情報に規定範囲を設け、前記規定範囲以内であるか否かで前記検査箇所の異常の有無を判定することを特徴とする。
前記検査箇所に異常が判定されたとき、前記検査箇所を含む所定パターン領域とは別の所定パターン領域に検査箇所を移動させることを特徴とする。
【0013】
本発明の半導体装置は、上記いずれかに記載の半導体検査装置もしくは半導体検査方法の利用を含んで形成されたことを特徴とする。信頼性を維持しつつ高歩留まりの半導体装置の量産が期待できる。
【0014】
【発明の実施の形態】
図1は、本発明の第1実施形態に係る半導体検査装置の要部を示すブロック図である。半導体ウェハ(以下、ウェハともいう)10は、半導体プロセス製造途中のものを含み、図示しないスクライブラインを隔てて集積回路等の所定パターン領域が繰り返し配置されている。ステージ11はウェハ10をX方向またはY方向に沿ってラウンド形状に反らせつつ支持し、常にウェハ10の頂部T1に検査箇所P1が含まれるように移動制御可能な構成となっている。このような構成を実現するために、ステージ11は、例えばY方向に沿って極わずかなラウンド形状となっている。載置されるウェハ10は厚さが725μm以下と薄いためステージ11のラウンド形状に従ったラウンド形状を呈する。例えば、ステージ11はウェハ10の頂部T1と最低部の高低差h1が1〜5μmの範囲の所定値になるように構成される。ステージ11は、図示しないピエゾアクチュエータ等の位置決め装置が含まれていて、ウェハ10の頂部T1を矢印A1のように可変制御すると共にX,Y方向に移動制御可能である。これにより、半導体ウェハ10上で検査箇所を逐次移動させる。
【0015】
検査光発生機構121は、ウェハ10上の検査箇所P1に入射角度θを有して検査光Lin1を照射する。入射角度θは0°〜10°の範囲から適当な角度を選ぶ。検査光発生機構122は、ラウンド形状が維持されたウェハ10に対する接線方向と平行にかつ検査箇所P1直上に検査光Lin2を照射する。すなわち、検査光Lin2は水平面に対する入射角度はゼロであり、検査箇所P1に検出すべき対象物が無い限り検査箇所P1直上を通過する。通過する検査光Lin2を検査箇所となるウェハ10の頂部T1からどれだけ離間させるかは、検出しなければならない異物(欠陥)の高さに応じて決定すればよい。検査光Lin1及びLin2は、例えば共に同じ波長を有するレーザ光で、照射箇所(検査箇所)に影響の出ない波長のものを選ぶ。例えばHe系レーザ、Ne系レーザ等が考えられる。また、このようなレーザ光のビームスポット径は可変である方が望ましい。検出すべき異物の大きさに応じてビームスポット径が調整可能な方がよいからである。
【0016】
また、ウェハ10上方周辺において、ウェハ10上からの検査光Lin1の反射光Lre1を受光検出する検出機構131が設けられている。検出機構131は、例えば複数の光電子倍増管(PMT1〜4)で構成される。検出機構131は、少なくとも検査光Lin1が鏡面に照射された際の正反射方向に受光部が対面するように設置された光電子倍増管PMT1が含まれる。さらに、ウェハ10直上を通過する検査光Lin2を受光検出する検出機構132が設けられている。検出機構132は、例えば検出機構131と同様の光電子倍増管(PMT0)である。
【0017】
すなわち、検出機構131は、検査箇所における対象物へ照射された検査光Lin1の散乱した反射光Lre1をPMT1〜4で捉える。かつ、検出機構131は、検査箇所における対象物へ照射された検査光Lin2の散乱した反射光Lre2をPMT1〜4で捉える。検出機構132は、検査箇所直上を通過する検査光Lin2をPMT0で捉える。かつ、検出機構132は、検査箇所における対象物へ照射された検査光Lin1の散乱した反射光Lre1をPMT0で捉えることも考えられる。
【0018】
演算制御機構14は、この半導体検査装置の検査方法を設定する機構である。演算制御機構14は、メモリ部を含み、検出機構131で得られた検出光量のデータと検出機構132で得られた検出光量のデータとの相関に応じて相対的に上記検査箇所の状態を検査する。すなわち、演算制御機構14は、検出機構131と132で得た光強度の相関から、検査箇所における対象物の少なくとも高さ及び幅を含む情報を得る。
【0019】
演算制御機構14は、得られた検査箇所における対象物の高さ及び幅の情報が隣り合う同一の所定パターンにおける検査箇所の情報と比較して異常であるか否かを判定する。異常を判定する規定範囲は、製造プロセスを考慮して設定される。入力部15により変更設定できるようにしてもよい。これにより、検査箇所に欠陥や異物等がないか検査することができる。さらに、検出された欠陥や異物等が歩留りに影響するものであるか否か判断することができる。出力部16は、演算制御機構14にて得られる異常箇所を例えばウェハ上のマップで表示する。
【0020】
また、演算制御機構14で、検査箇所の異常の個数に制限を設け、検査対象の所定パターン領域(チップ領域)において規定個数に達した場合、その検査箇所を含む所定パターン領域(チップ領域)とは別の所定パターン領域(チップ領域)に検査箇所を移動させるようにしてもよい。よって、ステージ11は演算制御機構14における検査結果によって移動制御されるようにしてもよい。これにより、異常箇所を大量に含むチップ領域について必要以上の検査を避けることが可能である。
【0021】
図2は、検査光照射及び検出動作のタイミング図である。図3(a),(b)は検査箇所への検査光入射及び反射の概略図である。ステージ11により、ウェハ10がラウンド形状に支持され、常にウェハ10の頂部T1に検査箇所が含まれるように所定方向にスキャン移動する。このウェハ10の移動に伴い検査箇所には、検査光発生機構121による検査光Lin1、検査光発生機構122による検査光Lin2は、それぞれ排他的なタイミングで照射される。検査箇所に当たった検査光Lin1は乱反射し、検出機構131(または132)が反射光Lre1を捉える。検査光Lin2は検査箇所直上を通過するか対象物に当たって乱反射し、通過してきた検査光Lin2を検出機構132が捉え、また検出機構131が反射光Lre2を捉える。
【0022】
図3(a),(b)に示すように、検査箇所に異常となる異物が存在する場合と存在しない場合ではPMT0〜4それぞれが受光検出する光強度に大きな差が現われる。演算制御機構14は、これら反射光Lre1,Lre2の光強度の検出度合いに応じて少なくとも検査箇所における対象物の高さ及び幅を含む情報を得る。
【0023】
上記実施形態及び方法によれば、ウェハ10をラウンド形状に反らせ支持するステージ11により、ウェハ10の頂部が常に検査箇所に含まれるように移動制御される。かつ、検査光発生機構121及び検出機構131、検査光発生機構122及び検出機構132が設けられる。一つは所定の入射角度θを有する検査光Lin1、もう一つは入射角度の無い検査光Lin2が用いられる。これら両者の受光検出度合いの相関を用いることにより、検査箇所における対象物の少なくとも高さ及び幅を含む情報が得られる。これにより、検査箇所に欠陥や異物等がないか検査、判定することができる。この結果、ウェハ上の欠陥(異物)検査精度の向上が図れる。
【0024】
図4は、本発明の第2実施形態に係る半導体検査装置の要部を示すブロック図である。図1と同様の箇所には同一の符号を付す。演算制御機構24は、製造プロセス参照データを取り込む。演算制御機構24は、図2のように検査光が制御され、検出機構131、132で得られた検査箇所における高さ及び幅の情報が、製造プロセスと照らし合わせて設定された規定範囲に比べて大きいか否かを判断する。すなわち、隣り合う同一の所定パターンによる情報と比較するのではなく、製造プロセス参照データの情報と比較して検査箇所における対象物の高さ及び幅を含む情報が正常であるか否かを判定する。出力部16は、演算制御機構24にて得られる異常箇所を例えばウェハ上のマップで表示する。
【0025】
以上説明したように、本発明によれば、所定の入射角度を有する検査光及び入射角度の無い検査光を用いて、検査箇所における対象物の高さ及び幅方向に関する詳細な情報が得られる。好ましくは、検査箇所における対象物の高さ及び幅の情報、あるいはこれらを含む総合的な情報において規定範囲を設け、規定範囲以外の情報により検査箇所の異常を認識する。また、異常箇所を含む一つのパターン領域を飛ばして別の検査箇所に移動すれば、メモリのオーバーフローを避けられる利点もある。実際のデバイス製品における欠陥検査の最適化に反映させることもできる。これにより、信頼性を維持しつつ高歩留まりの半導体装置の量産に寄与する。この結果、検査箇所の高さ及び幅方向の情報が得られる半導体検査装置及び検査方法、また、これを利用した高信頼性の半導体装置を提供することができる。
【図面の簡単な説明】
【図1】第1実施形態に係る半導体検査装置の要部を示すブロック図。
【図2】検査光照射及び検出動作のタイミング図。
【図3】検査箇所への検査光入射及び反射の各概略図。
【図4】第2実施形態に係る半導体検査装置の要部を示すブロック図。
【符号の説明】
10…半導体ウェハ、11…ステージ、121,122…検査光発生機構、131,132…検出機構、14,24…演算制御機構、15…入力部、16…出力部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to semiconductor device manufacturing, and more particularly, to a semiconductor inspection apparatus and an inspection method for detecting an abnormality such as a pattern defect or the attachment of a foreign substance on a semiconductor wafer, and a semiconductor device including the use thereof.
[0002]
[Prior art]
With the increase in the functions of LSIs, chip products are constantly required to be integrated on a large scale and to reduce design rules. Then, it is necessary to secure as many chip products as possible from a single semiconductor wafer according to the design rule at that time, such as logic products and memory products. In addition, the mass production must be performed with uniform performance and high yield.
[0003]
The number of defects in the wafer increases or decreases due to the search for optimization conditions and process control in the LSI manufacturing process. Inspection of foreign matter adhering to a wafer due to pattern defects or particles generated due to a defect in an exposure pattern is generally achieved by a comparative inspection. That is, an image of the same pattern area in an adjacent integrated circuit chip area is fetched and compared and inspected. The inspection speed of the comparative inspection by taking in the image differs depending on the inspection magnification and the inspection mode, and depending on the inspection recipe, it affects the actual efficiency of the production line.
[0004]
In addition, there is also a technique for detecting a defect such as a foreign substance adhesion by capturing irregular reflection of inspection light instead of an image. This technique is highly dependent on the light receiving sensitivity of the inspection light and has a high possibility of detecting a defect up to a portion that does not need to be recognized as a defect. Conventionally, for example, a foreign substance inspection on a deposition surface of an aluminum thin film has been disclosed, but a technique as an improvement measure has been disclosed (see Patent Document 1). This technology utilizes the fact that the directivity of the scattered light differs from that of a laser beam projected onto a deposition surface of an aluminum thin film at a predetermined angle when it is applied to a foreign substance.
[0005]
[Patent Document 1]
JP-A-6-174655 (pages 4, 5; FIG. 2)
[0006]
[Problems to be solved by the invention]
However, in the above-mentioned Patent Document 1, although the accuracy of foreign matter determination is improved, information on the size (height and width) of the foreign matter cannot be obtained as to whether it is appropriate as a defect.
The present invention has been made in view of the above circumstances, and has as its object to provide a semiconductor inspection device, an inspection method, and a semiconductor device that can obtain information on the height and width of an inspection point.
[0007]
[Means for Solving the Problems]
A semiconductor inspection apparatus according to the present invention includes a stage capable of supporting a semiconductor wafer while warping it in a round shape along an X direction or a Y direction and capable of controlling movement so that an inspection portion is included on a top of the semiconductor wafer; A first inspection light generating mechanism that irradiates a first inspection light at a predetermined incident angle to the inspection location above, and a first inspection light that detects the first inspection light reflected from at least the semiconductor wafer (1) a detection mechanism, a second inspection light generating mechanism that irradiates a second inspection light parallel to a tangential direction to the semiconductor wafer and directly above the inspection location, and the second inspection light that passes at least immediately above the inspection location A second detection mechanism for detecting the light intensity, and the inspection location relatively determined according to the correlation between the data on the detected light quantity obtained by the first detection mechanism and the data on the detected light quantity obtained by the second detection mechanism. And arithmetic control mechanism for checking the status, characterized by comprising a.
[0008]
According to the semiconductor inspection apparatus of the present invention, the first inspection light generation mechanism and the first detection mechanism, and the second inspection light generation mechanism and the second detection mechanism are provided. One is a first inspection light having a predetermined incident angle, the other is a second inspection light having no incident angle, and the correlation between the light receiving detection degrees of these two is used. Further, a stage is provided to support the semiconductor wafer while warping it into a round shape so that the inspection location is always at the top. Thereby, detailed information on the height direction of the inspection location can be obtained, and the inspection accuracy can be improved.
[0009]
In the above-described semiconductor inspection apparatus according to the present invention, preferably, the arithmetic control mechanism measures or evaluates at least a height and a width of the object at the inspection location. That is, the target object is analyzed in detail from the correlation between the first and second inspection light beams and the degree of detection of the light reception. Further, the first inspection light generation mechanism and the second inspection light generation mechanism are operated exclusively. Thus, highly accurate information can be obtained using the same inspection light and detection mechanism.
[0010]
A semiconductor inspection method according to the present invention includes a step of supporting a semiconductor wafer while warping it in a round shape along an X direction or a Y direction and moving the semiconductor wafer so that an inspection portion is included at the top of the semiconductor wafer, and at a predetermined timing, respectively. Irradiating a first inspection light having a predetermined incident angle on the inspection location, and a second inspection light in parallel with a tangential direction to the semiconductor wafer and directly above the inspection location; A step of obtaining at least information on the height of the object at the inspection location in accordance with the correlation of the light intensities of the respective inspection light beams captured by the plurality of light receiving units around the semiconductor wafer.
[0011]
According to the semiconductor inspection method according to the present invention, the top portion of the semiconductor wafer supported while being warped into a round shape is included in the inspection location, the first inspection light having a predetermined incident angle, and the horizontal inspection light having no incident angle. The inspection light of No. 2 is applied to the inspection location. With respect to both of these inspection lights, information on the height of the object at the inspection location is obtained from the correlation between the degree of detection of the received light such as reflected light and transmitted light.
[0012]
The semiconductor inspection method according to the present invention has at least one of the following features as a preferred embodiment.
The inspection step is to compare inspection locations of a predetermined pattern adjacent to each other across a scribe line area of the semiconductor wafer, and determine whether or not the inspection location is abnormal based on whether the comparison result is within a predetermined range. It is characterized by.
The inspection step is characterized in that a specified range is provided in information including at least the height and width of the object at the inspection location, and whether or not the inspection location is abnormal is determined based on whether the information is within the specified range. I do.
When an abnormality is determined in the inspection location, the inspection location is moved to a predetermined pattern area different from the predetermined pattern area including the inspection location.
[0013]
According to another aspect of the invention, there is provided a semiconductor device formed using any one of the semiconductor inspection apparatuses or semiconductor inspection methods described above. Mass production of semiconductor devices with high yield while maintaining reliability can be expected.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block diagram showing a main part of the semiconductor inspection device according to the first embodiment of the present invention. A semiconductor wafer (hereinafter, also referred to as a wafer) 10 includes a wafer in the course of manufacturing a semiconductor process, and has a predetermined pattern region of an integrated circuit or the like repeatedly arranged with a scribe line (not shown) interposed therebetween. The stage 11 supports the wafer 10 while warping it in a round shape along the X direction or the Y direction, and is configured to be able to control the movement so that the inspection point P1 is always included in the top T1 of the wafer 10. In order to realize such a configuration, the stage 11 has, for example, a very slight round shape along the Y direction. The mounted wafer 10 has a thin shape of 725 μm or less, and has a round shape according to the round shape of the stage 11. For example, the stage 11 is configured such that the height difference h1 between the top T1 and the lowest part of the wafer 10 is a predetermined value in the range of 1 to 5 μm. The stage 11 includes a positioning device such as a piezo actuator (not shown), and can variably control the top T1 of the wafer 10 as indicated by an arrow A1 and can control the movement in the X and Y directions. As a result, the inspection locations are sequentially moved on the semiconductor wafer 10.
[0015]
The inspection light generating mechanism 121 irradiates the inspection position P1 on the wafer 10 with the inspection light Lin1 at an incident angle θ. The incident angle θ is selected from a range of 0 ° to 10 °. The inspection light generating mechanism 122 irradiates the inspection light Lin2 parallel to the tangential direction to the wafer 10 having the round shape and directly above the inspection location P1. That is, the incident angle of the inspection light Lin2 with respect to the horizontal plane is zero, and the inspection light Lin2 passes just above the inspection point P1 unless there is an object to be detected at the inspection point P1. The distance by which the passing inspection light Lin2 is separated from the top T1 of the wafer 10 serving as the inspection location may be determined according to the height of the foreign matter (defect) that must be detected. As the inspection light Lin1 and Lin2, for example, laser light having the same wavelength and having a wavelength that does not affect the irradiation location (inspection location) is selected. For example, a He-based laser, a Ne-based laser or the like can be considered. It is desirable that the beam spot diameter of such a laser beam be variable. This is because it is better that the beam spot diameter can be adjusted according to the size of the foreign matter to be detected.
[0016]
Further, a detection mechanism 131 that receives and detects the reflected light Lre1 of the inspection light Lin1 from above the wafer 10 is provided around the upper part of the wafer 10. The detection mechanism 131 includes, for example, a plurality of photomultiplier tubes (PMTs 1 to 4). The detection mechanism 131 includes a photomultiplier tube PMT1 installed so that the light receiving unit faces at least in the regular reflection direction when the inspection light Lin1 is applied to the mirror surface. Further, a detection mechanism 132 that detects and detects the inspection light Lin2 passing just above the wafer 10 is provided. The detection mechanism 132 is, for example, a photomultiplier tube (PMT0) similar to the detection mechanism 131.
[0017]
That is, the detection mechanism 131 captures the scattered reflected light Lre1 of the inspection light Lin1 applied to the target object at the inspection location by using the PMTs 1 to 4. Further, the detection mechanism 131 captures the scattered reflected light Lre2 of the inspection light Lin2 applied to the target object at the inspection location by using the PMTs 1 to 4. The detection mechanism 132 catches the inspection light Lin2 that passes immediately above the inspection location with the PMT0. In addition, the detection mechanism 132 may capture the scattered reflected light Lre1 of the inspection light Lin1 applied to the target object at the inspection location with the PMT0.
[0018]
The arithmetic control mechanism 14 is a mechanism for setting an inspection method of the semiconductor inspection apparatus. The arithmetic and control unit 14 includes a memory unit, and relatively inspects the state of the inspection location according to the correlation between the detected light amount data obtained by the detection mechanism 131 and the detected light amount data obtained by the detection mechanism 132. I do. That is, the arithmetic and control unit 14 obtains information including at least the height and width of the object at the inspection location from the correlation between the light intensities obtained by the detection mechanisms 131 and 132.
[0019]
The arithmetic and control unit 14 determines whether the obtained information on the height and width of the object at the inspection location is abnormal by comparing it with the information on the inspection location in the same adjacent predetermined pattern. The specified range for determining the abnormality is set in consideration of the manufacturing process. The setting may be changed by the input unit 15. Thus, the inspection location can be inspected for defects, foreign matter, and the like. Further, it can be determined whether or not the detected defect, foreign matter, or the like affects the yield. The output unit 16 displays the abnormal location obtained by the arithmetic and control unit 14 on, for example, a map on a wafer.
[0020]
In addition, the arithmetic control mechanism 14 sets a limit on the number of abnormalities in the inspection location, and when the number reaches a specified number in a predetermined pattern area (chip area) to be inspected, a predetermined pattern area (chip area) including the inspection location is set. The inspection location may be moved to another predetermined pattern area (chip area). Therefore, the movement of the stage 11 may be controlled based on the inspection result in the arithmetic and control unit 14. This makes it possible to avoid unnecessary inspection of a chip area including a large number of abnormal locations.
[0021]
FIG. 2 is a timing chart of the inspection light irradiation and detection operation. FIGS. 3A and 3B are schematic diagrams of inspection light incidence and reflection on an inspection location. The stage 10 supports the wafer 10 in a round shape, and scans the wafer 10 in a predetermined direction so that the inspection point is always included on the top T1 of the wafer 10. With the movement of the wafer 10, the inspection light is irradiated with the inspection light Lin1 by the inspection light generation mechanism 121 and the inspection light Lin2 by the inspection light generation mechanism 122 at exclusive timing. The inspection light Lin1 hitting the inspection location is irregularly reflected, and the detection mechanism 131 (or 132) captures the reflected light Lre1. The inspection light Lin2 passes right above the inspection location or is irregularly reflected upon hitting the object, and the detection mechanism 132 captures the inspection light Lin2 that has passed, and the detection mechanism 131 captures the reflected light Lre2.
[0022]
As shown in FIGS. 3A and 3B, there is a large difference in the light intensity detected and received by each of the PMTs 0 to 4 when an abnormal foreign substance is present at the inspection location and when it is not present. The arithmetic and control unit 14 obtains information including at least the height and width of the object at the inspection location according to the degree of detection of the light intensity of the reflected lights Lre1 and Lre2.
[0023]
According to the above embodiment and method, the stage 11 that warps and supports the wafer 10 in a round shape controls the movement so that the top of the wafer 10 is always included in the inspection location. Further, an inspection light generation mechanism 121 and a detection mechanism 131, and an inspection light generation mechanism 122 and a detection mechanism 132 are provided. One is the inspection light Lin1 having a predetermined incident angle θ, and the other is the inspection light Lin2 having no incident angle. By using the correlation between the two light reception detection degrees, information including at least the height and width of the object at the inspection location can be obtained. As a result, it is possible to inspect and determine whether or not there is a defect, a foreign substance, or the like at the inspection location. As a result, the inspection accuracy of the defect (foreign matter) on the wafer can be improved.
[0024]
FIG. 4 is a block diagram showing a main part of a semiconductor inspection device according to a second embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals. The arithmetic and control unit 24 takes in the manufacturing process reference data. The arithmetic control mechanism 24 controls the inspection light as shown in FIG. 2, and the information on the height and the width at the inspection location obtained by the detection mechanisms 131 and 132 is compared with the specified range set in comparison with the manufacturing process. To determine if it is large. That is, it is determined whether the information including the height and width of the target object at the inspection location is normal by comparing with information of the manufacturing process reference data instead of comparing with information of the same adjacent predetermined pattern. . The output unit 16 displays an abnormal location obtained by the arithmetic and control unit 24 on, for example, a map on a wafer.
[0025]
As described above, according to the present invention, detailed information on the height and width directions of an object at an inspection location can be obtained using inspection light having a predetermined incident angle and inspection light having no incident angle. Preferably, a specified range is provided in information on the height and width of the object at the inspection location or comprehensive information including the information, and an abnormality in the inspection location is recognized based on information outside the specified range. In addition, if one pattern area including an abnormal location is skipped and moved to another inspection location, there is an advantage that memory overflow can be avoided. This can be reflected in optimization of defect inspection in an actual device product. This contributes to mass production of high-yield semiconductor devices while maintaining reliability. As a result, it is possible to provide a semiconductor inspection device and an inspection method capable of obtaining information in the height and width directions of an inspection portion, and a highly reliable semiconductor device using the same.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a main part of a semiconductor inspection device according to a first embodiment.
FIG. 2 is a timing chart of inspection light irradiation and detection operations.
FIG. 3 is a schematic diagram of inspection light incidence and reflection on an inspection location.
FIG. 4 is a block diagram showing a main part of a semiconductor inspection device according to a second embodiment.
[Explanation of symbols]
Reference Signs List 10: semiconductor wafer, 11: stage, 121, 122: inspection light generation mechanism, 131, 132: detection mechanism, 14, 24: arithmetic control mechanism, 15: input unit, 16: output unit.

Claims (9)

半導体ウェハをX方向またはY方向に沿ってラウンド形状に反らせつつ支持し前記半導体ウェハの頂部に検査箇所が含まれるように移動制御可能なステージと、
前記半導体ウェハ上の前記検査箇所に所定の入射角度を有して第1の検査光を照射する第1検査光発生機構と、
少なくとも前記半導体ウェハ上から反射してくる前記第1の検査光を検出する第1検出機構と、
前記半導体ウェハに対する接線方向と平行にかつ前記検査箇所直上に第2の検査光を照射する第2検査光発生機構と、
少なくとも前記検査箇所直上を通過する前記第2の検査光を検出する第2検出機構と、
前記第1検出機構で得られた検出光量のデータと前記第2検出機構で得られた検出光量のデータとの相関に応じて相対的に前記検査箇所の状態を検査する演算制御機構と、
を具備したことを特徴とする半導体検査装置。
A stage capable of supporting the semiconductor wafer while warping it in a round shape along the X direction or the Y direction and controlling the movement so that an inspection point is included at the top of the semiconductor wafer;
A first inspection light generation mechanism for irradiating the inspection location on the semiconductor wafer with a first inspection light at a predetermined incident angle;
A first detection mechanism for detecting the first inspection light reflected from at least the semiconductor wafer;
A second inspection light generation mechanism that irradiates a second inspection light in parallel with a tangential direction to the semiconductor wafer and directly above the inspection location;
A second detection mechanism that detects at least the second inspection light passing directly above the inspection location;
An arithmetic control mechanism for relatively inspecting the state of the inspection location in accordance with the correlation between the detected light quantity data obtained by the first detection mechanism and the detected light quantity data obtained by the second detection mechanism;
A semiconductor inspection device comprising:
前記演算制御機構により前記検査箇所における対象物の少なくとも高さ及び幅の測定または評価をすることを特徴とする請求項1記載の半導体検査装置。2. The semiconductor inspection apparatus according to claim 1, wherein the arithmetic control mechanism measures or evaluates at least a height and a width of the object at the inspection location. 前記第1検査光発生機構と前記第2検査光発生機構はそれぞれ排他的に動作させることを特徴とする請求項1または2記載の半導体検査装置。3. The semiconductor inspection apparatus according to claim 1, wherein the first inspection light generation mechanism and the second inspection light generation mechanism are operated exclusively. 半導体ウェハをX方向またはY方向に沿ってラウンド形状に反らせながら支持し前記半導体ウェハの頂部に検査箇所が含まれるように移動する工程と、
それぞれ所定のタイミングで、前記検査箇所に所定の入射角度を有する第1の検査光と、前記半導体ウェハに対する接線方向と平行にかつ前記検査箇所直上に第2の検査光を照射する工程と、
前記第1、第2の検査光それぞれを前記半導体ウェハ周辺の複数の受光部で捉えた光強度の相関に応じて少なくとも前記検査箇所における対象物の高さの情報を得る検査工程と、
を含むことを特徴とする半導体検査方法。
Supporting the semiconductor wafer while warping it in a round shape along the X direction or the Y direction, and moving the semiconductor wafer so that an inspection point is included on the top of the semiconductor wafer;
At each predetermined timing, a first inspection light having a predetermined incident angle on the inspection location, and a step of irradiating the second inspection light parallel to a tangential direction to the semiconductor wafer and directly above the inspection location,
An inspection step of obtaining at least information on the height of an object at the inspection location according to a correlation of light intensities captured by the plurality of light receiving units around the semiconductor wafer with each of the first and second inspection lights;
A semiconductor inspection method comprising:
前記検査工程は、前記半導体ウェハのスクライブライン領域を隔てて隣り合う所定パターンの検査箇所どうしを比較し、比較結果が所定範囲以内であるか否かで前記検査箇所の異常の有無を判定することを特徴とする請求項4記載の半導体検査方法。The inspection step compares the inspection locations of a predetermined pattern adjacent to each other across a scribe line area of the semiconductor wafer, and determines whether the inspection location is abnormal based on whether the comparison result is within a predetermined range. The semiconductor inspection method according to claim 4, wherein: 前記検査工程は、前記検査箇所における対象物の少なくとも高さ及び幅を含む情報に規定範囲を設け、前記規定範囲以内であるか否かで前記検査箇所の異常の有無を判定することを特徴とする請求項4記載の半導体検査方法。The inspection step provides a specified range in the information including at least the height and width of the object at the inspection location, and determines whether there is an abnormality in the inspection location based on whether the information is within the specified range. 5. The semiconductor inspection method according to claim 4, wherein: 前記検査箇所に異常が判定されたとき、前記検査箇所を含む所定パターン領域とは別の所定パターン領域に検査箇所を移動させることを特徴When an abnormality is determined in the inspection location, the inspection location is moved to a predetermined pattern area different from the predetermined pattern area including the inspection location. 前記請求項1〜3いずれかに記載の半導体検査装置の利用を含んで形成されたことを特徴とする半導体装置。
とする請求項4〜6いずれか一つに記載の半導体検査方法。
A semiconductor device formed by utilizing the semiconductor inspection device according to claim 1.
The semiconductor inspection method according to any one of claims 4 to 6, wherein
前記請求項4〜7いずれかに記載の半導体検査方法の利用を含んで形成されたことを特徴とする半導体装置。A semiconductor device formed by utilizing the semiconductor inspection method according to claim 4.
JP2003127306A 2003-05-02 2003-05-02 Semiconductor inspection apparatus and inspection method, and semiconductor device Withdrawn JP2004335611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127306A JP2004335611A (en) 2003-05-02 2003-05-02 Semiconductor inspection apparatus and inspection method, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127306A JP2004335611A (en) 2003-05-02 2003-05-02 Semiconductor inspection apparatus and inspection method, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004335611A true JP2004335611A (en) 2004-11-25

Family

ID=33503906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127306A Withdrawn JP2004335611A (en) 2003-05-02 2003-05-02 Semiconductor inspection apparatus and inspection method, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004335611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304217A (en) * 2007-06-05 2008-12-18 Fujinon Corp Surface flaw inspection system
JP2009008553A (en) * 2007-06-28 2009-01-15 Fujinon Corp Defect inspecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304217A (en) * 2007-06-05 2008-12-18 Fujinon Corp Surface flaw inspection system
JP2009008553A (en) * 2007-06-28 2009-01-15 Fujinon Corp Defect inspecting apparatus

Similar Documents

Publication Publication Date Title
TWI641828B (en) Method of characterizing structures of interest on semiconductor wafer and semiconductor metrology system
CN106030292B (en) Apparatus and method for combined bright field, dark field and photothermal inspection
US8411264B2 (en) Method and apparatus for inspecting defects
US11043433B2 (en) Method of inspecting surface and method of manufacturing semiconductor device
US9255891B2 (en) Inspection beam shaping for improved detection sensitivity
US8154717B2 (en) Optical apparatus for defect inspection
US8670116B2 (en) Method and device for inspecting for defects
JP2004061289A (en) Pattern inspecting apparatus
TW200816343A (en) Defect inspecting method and defect inspecting apparatus
JPH05218163A (en) Method and device for inspecting foreing matter
JP2001004347A (en) Defect inspecting device
JP2003017536A (en) Pattern inspection method and inspection apparatus
TWI829958B (en) System and method for inspecting semiconductor devices
US12119273B2 (en) System and method for high speed inspection of semiconductor substrates
JP2004335611A (en) Semiconductor inspection apparatus and inspection method, and semiconductor device
KR101360251B1 (en) Reviewing apparatus of wafer defect and Method thereof
JP4408902B2 (en) Foreign object inspection method and apparatus
US8625090B2 (en) Method and apparatus for inspecting substrates
JP2011180145A (en) Flaw inspection device
JP2007107960A (en) Flaw inspection device
JPH07159333A (en) Apparatus and method for inspection of appearance
JP2004301719A (en) Inspection device and inspection method on semiconductor, and semiconductor device
JPH11274256A (en) Sample checking device
JP2004309295A (en) Method and device for measuring height of bump
JP6330211B2 (en) Surface state inspection method for flat substrate and flat surface state inspection apparatus using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704