JP2004331549A - Method for producing hydrogenated organosilane - Google Patents
Method for producing hydrogenated organosilane Download PDFInfo
- Publication number
- JP2004331549A JP2004331549A JP2003128526A JP2003128526A JP2004331549A JP 2004331549 A JP2004331549 A JP 2004331549A JP 2003128526 A JP2003128526 A JP 2003128526A JP 2003128526 A JP2003128526 A JP 2003128526A JP 2004331549 A JP2004331549 A JP 2004331549A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogenated
- organic silane
- ether
- boiling point
- organosilane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、半導体分野の膜形成材料等に使われる高純度水素化有機シランの製造方法および高純度水素化有機シランに関する。
【0002】
【従来技術】
水素化有機シランの用途としては、かつてはシリコーン、シランカップリング剤、シリル化剤等の機能製品の原料として用いられることが主だったが、近年では半導体分野の膜形成材料として用いられることが増えてきている。
【0003】
水素化有機シランは、従来から種々の方法で合成されており、中でもハロゲン化有機シランを出発原料とし、溶媒の存在下に水素化剤で水素化して水素化有機シランを得る方法が知られている。
【0004】
水素化有機シランには、その製造過程に由来する副生物が、不純物として微量混入するが、従来の用途であるシリコーン、シランカップリング剤、シリル化剤等の原料として使用する場合には、これら微量の不純物はさほど影響しなかった。しかし半導体分野の膜形成材料用途に使用する場合には、絶縁性能の悪化に結びつく不純物の混入は微量といえども好ましくないため、従来の製造方法で得られる水素化有機シランを高純度化すべく、冷却固化して真空排気する精製方法(例えば、特許文献1参照)や水と接触させてから吸着剤と接触させたのち精製する方法が試みられてきた(例えば、特許文献2参照)。
しかしながら、不純物のうち、溶媒に由来する炭化水素系副生物は、その沸点が目的の水素化有機シランの沸点と非常に近く、高純度化実現のためには蒸留段数を多くする必要があり、高コストの要因となっていた。
【特許文献1】特開2000−044576号
【特許文献2】特開2002−173495号
【0005】
【発明が解決しようとする課題】
本発明は、溶媒に由来する炭化水素系副生物を簡便に除去できる水素化有機シランの製造方法を提供するものであり、高純度化のためのコストを低減させ得る技術を提供する。
【0006】
【課題を解決するための手段】
本発明者らは、鋭意研究を行った結果、特定の溶媒存在下に水素化反応させることによって、後の精製工程で副生物除去の負荷を予め軽減できることを見出し、水素化有機シランの高純度化を容易に実現できる方法を完成した。
【0007】
即ち、本発明は、
(1) 一般式(1)で表されるエーテル系溶媒の存在下、ハロゲン化有機シランと水素化剤とを反応させ水素化有機シランを製造する方法であって、生成物である水素化有機シランとエーテル系溶媒由来のすべての副生物との沸点差が、いずれも5℃以上となるようにエーテル系溶媒を選択して使用することを特徴とする水素化有機シランの製造方法。
R−O−R’ (1)
(式中、R及びR’は、直鎖状、分岐状若しくは環状アルキル基、アリール基又はアラルキル基で表し、それぞれ同一であっても異なってもよい)
(2) 水素化剤が金属水素化物であることを特徴とする(1)に記載の水素化有機シランの製造方法。
(3) 水素化剤が水素化リチウムアルミニウムであることを特徴とする (2)に記載の水素化有機シランの製造方法。
(4) 水素化有機シランが一般式SiHnR’’4−n(nは1〜3の整数を表し、R’’はアルキル基、アルケニル基、アルキニル基、又はアリール基を表す)で表されるものであることを特徴とする(1)〜(3)のいずれか1項に記載の水素化有機シランの製造方法。
(5) (1)〜(4)のいずれか1項に記載の製造方法により得られる水素化有機シランを蒸留分離精製することを特徴とする水素化有機シランの高純度化方法。
(6) (1)〜(5)のいずれか1項に記載の製造方法により得られた水素化有機シラン。
(7) 半導体用膜形成材料用の水素化有機シランであることを特徴とする前記の水素化有機シラン。に関する。
【0008】
【発明の実施の形態】
本発明はエーテル系溶媒の存在下で、ハロゲン化有機シランを水素化剤と反応させ水素化有機シランを製造する方法である。
水素化有機シランは、特に限定されるものではないが、例えば、一般式SiHnR’’4−n(nは1〜3の整数を表し、R’’はアルキル基、アルケニル基、アルキニル基、又はアリール基を表す)で表されるものであり、アルキル基としては、−CH3、−C2H5、−(CH2)2CH2、−CH(CH2)2、−C(CH3)3、などが挙げられ、アルケニル基としては、−CH=CH2、−CH2−CH=CH2、−(CH2)2−CH=CH2などが挙げられ、アルキニル基としては、−CH≡CH、−CH2C≡CHなど、また、アリール基としては、−C6H5、−C6H5(CH3)などが挙げられる。水素化有機シランは、特に限定されるものではないが、トリメチルシランが望ましい。
【0009】
ハロゲン化有機シランは、特に限定されるものではないが、クロロ化有機シランが好ましく、トリメチルクロロシランが特に好ましい。
【0010】
水素化剤は、固体金属水素化物や有機金属水素化物が用いられる。
固体金属水素化物を具体的に挙げると、例えばLiH、NaH、AlH3等の1個の金属からなる水素化物、或いはLiAlH4、NaAlH4、NaBH4、LiBH4等の複合固体金属水素化物が挙げられる。又、有機金属水素化物の具体例としては、LiAl(OMe)H3、LiAl(OBun)H3、LiAl(OPh)H3、NaAl(OBun)H3、NaAl(OPh)H3、KAl(OBun)H3、KAl(OPh)H3(式中のMeはメチル基、Bunはn−ブチル基、Phはフェニル基表す。)が挙げられる。これらのうち水素化リチウムアルミニウムが好ましく使用できる。
また、本発明に於いて使用する溶媒には、エーテル系溶媒が用いられる。
具体例としては、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−プロピルエーテル、ジブチルエーテル、tert−ブチルメチルエーテル、ジイソペンチルエーテル、ジ−n−ヘキシルエーテル、エチルビニルエーテル、n−ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、n−ブチルフェニルエーテル、ペンチルフェニルエーテル、ベンジルメチルエーテル、ジシクロヘキシルエーテル、ジフェニルエーテル、ジベンジルエーテル等のエーテル系溶媒が例示できる。
中でも、メチルフェニルエーテルまたはn−ブチルエーテルは、化学的に不活性で、水素化剤を添加しも安定して存在する理由から好ましく用いられる。
反応方法は、上記した溶媒と水素化剤を予め混合し、これにハロゲン化有機シランを添加して、生成する水素化有機シランを回収する。
溶媒とLiAlH4の好ましい割合は、特定するものではないが、好ましくは溶媒に対しLiAlH4を5〜20wt%で実施される。
また、反応温度についても、特定するものではないが、40〜100℃にて実施される。
特に、水素化剤にLiAlH4を用いる場合、LiAlH4の自己分解温度は120℃とされているが、溶媒中では100℃を越えると、LiAlH4が徐々に自己分解することから、反応温度は100℃以下で行うことが望ましい。反応温度は、ジャッケット付きの反応器を用い、ジャケットに温水または冷水を通液し内部の反応液の温度をコントロールする。
水素化有機シランと溶媒由来の副生物との沸点差は、蒸留分離可能な沸点差であることが望ましく、通常は5℃以上が好ましく、更には10℃以上であることが好ましい。
上記に掲げた原料を使用して、水素化有機シランを合成した場合、いずれの溶媒を用いても、溶媒由来の副生成物が生じる。副生物の種類や生成量は溶媒の種類によって異なるが、これらを例示するとメタン(沸点−161.4℃)、エタン(沸点−89℃)、プロパン(沸点−45℃)、n−ブタン(沸点−0.5℃)、イソブタン(沸点−11.9℃)等の飽和炭化水素、1−ブテン(沸点−6.3℃)、cis−2−ブテン(沸点3.7℃)、trans−2−ブテン(沸点−0.9℃)、2−メチルプロペン(沸点−6.9℃)、及びメタノール(沸点65℃) エタノール(沸点78.3℃)、1−ブタノール(沸点117.9℃)等のアルコール類、及びベンゼン(沸点80.1℃)フェノール(沸点182℃)等が挙げられ、これらの生成量も数十Volppmから数Vol%である。
溶媒としては、前記の要件を満たすものであれば特に限定されるものではないが、例えば、メチルフェニルエーテル、エチルフェニルエーテル等のフェニル基含有エーテルが好ましい。
【0011】
水素化有機シランは、蒸留分離精製によって高純度化されるが、その蒸留分離精製には特に制限はなく、例えば、単蒸留、共沸蒸留、抽出蒸留、回分蒸留、連続蒸留などの方法が挙げられる。また、従来知られた他の精製方法との併用もなんら差し支えない。
蒸留分離精製によって、これら溶剤由来の副生物は、10ppm以下、好ましくは1ppm以下に低減することが好ましい。
【0012】
こうして得られた高純度水素化有機シランの用途は、特に限定されるものではないが、半導体分野の膜形成材料に好適に使用できる。
【0013】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
尚、以下に於いて%は特記する以外は重量%を表す。
【0014】
実施例1
攪拌機、温度計、原料供給管、ガス出口管を備えたジャケット付き30L容量のステンレス製反応器に、メチルフェニルエーテルを10L及びLiAlH4粉末25molを仕込み、攪拌混合を行い、更にジャケット部に温水を通液し、反応器のスラリーの温度を50℃に調整した。
次に10L容量の原料容器にトリメチルクロロシラン80molを移液し、ここから反応器に、11mol/hrs.の速度でトリメチルクロロシランを全量滴下し、トリメチルシラン(沸点6.9℃)を合成した。
このガスの一部をガスクロマトグラフィーの検量管に導き、副生成物の定性及び定量分析を行ったところメタン(沸点−164℃)、ベンゼン(沸点80.1℃)及びメタノール(沸点64.7℃)、フェノール(沸点182℃)が表1に記す値で検出され、いずれの副生成物も沸点差は50℃以上であり、蒸留操作で充分に分離可能であった。
尚、ガスクロマトグラフィーは島津製GC−14B型(FID)を用い、分析カラムにはAgilentTechnologies社のワイドボアカラムGS−Alumina(0.53mmφ×30m)を用い分析した。
更に、20段の蒸留段数をもつバッチ式のラボ蒸留装置を用い、上記で得られたトリメチルシラン100mlをボトムに仕込み蒸留を行った。
ボトムには、外部ヒーターで100℃に加熱し、上部のコンデンサーは0℃で冷却した。
還流比を2として、初留の20mlをカットしたのち、抽出液を65ml回収し、上記と同様に分析を行った。
その結果、これらの副生物は、いずれも1ppm以下であった。
【0015】
実施例2
トリメチルシランの製造溶媒をエチルフェニルエーテル10Lに変更した以外は、実施例1と同様にしてトリメチルシラン反応器にトリメチルクロロシランを滴下し、トリメチルシランを合成した。発生ガスの一部から溶媒由来の副生成物の定性及び定量分析を行った結果、エタン(沸点−89℃)、ベンゼン(沸点80.1℃)及びエタノール(沸点78.3℃)、フェノール(沸点182℃)が表1に記す値で検出され、いずれの副生成物も沸点差は、70℃以上であり、蒸留操作で充分に分離可能であった。
更に、上記で得られたトリメチルシラン100mlを実施例1と同様に蒸留した。その結果、これらの副生物は、いずれも1ppm以下であった。
【0016】
比較例1
トリメチルシランの製造溶媒をn−ブチルエーテル10Lに変更した以外は、実施例1と同様にしてトリメチルシラン反応器にトリメチルクロロシランを滴下し、目的製造物であるトリメチルシランの製造を行った。ボンベに捕集した後、溶媒由来の副生成物の定性及び定量分析を行った結果、n−ブタン(沸点−0.5℃)、イソブタン(沸点−11.9℃)、1−ブテン(沸点−6.3℃)、cis−2−ブテン(沸点3.7℃)、trans−2−ブテン(沸点−0.9℃)、2−メチルプロペン(沸点−6.9℃)及び1−ブタノール(沸点117.9℃)が表1に記す値で検出された。
この結果が示す通り、トリメチルシラン(沸点6.9℃)とcis−2−ブテンの沸点差がもっとも近く、3.7℃であった。
更に、上記で得られたトリメチルシラン100mlを実施例1と同様に蒸留した。その結果、1−ブタノール以外の副生物は、殆ど減少していなかった。
そこで、蒸留塔の長さ及び充填剤を変更し蒸留段数を30段とした以外は、実施例1と同様に蒸留した。しかし、1−ブタノール以外の副生物は、殆ど減少していなかった。
従って、蒸留操作で分離する場合、蒸留段数が30段以上必要であり、設計段階での装置コストが高価となる。
【0017】
比較例2
トリメチルシランの製造溶媒をテトラヒドロフラン10Lに変更した以外は、実施例1と同様にしてトリメチルシラン反応器にトリメチルクロロシランを滴下し、目的製造物であるトリメチルシラン(沸点6.9℃)の製造を行った。ボンベに捕集した後、溶媒由来の副生成物の定性及び定量分析を行った結果、n−ブタン(沸点−0.5℃)、イソブタン(沸点−11.9℃)、1−ブテン(沸点−6.3℃)、cis−2−ブテン(沸点3.7℃)、trans−2−ブテン(沸点−0.9℃)、2−メチルプロペン(沸点−6.9℃)及び1−ブタノール(沸点117.9℃)が表1に記す値で検出された。
この結果が示す通り、比較例1と同様トリメチルシラン(沸点6.9℃)とcis−2−ブテンの沸点差がもっとも近く、3.7℃であった。
従って、蒸留操作で分離する場合、比較例1と同様、蒸留段数が30段以上必要であり、設計段階での装置コストが高価となる。
【表1】
【0018】
【発明の効果】
本発明は、水素化有機シラン製造の従来技術で特に考慮されることのなかった溶媒に着目し、後の蒸留分離精製の負荷を軽減し、複雑な工程無しに高純度化が可能な水素化有機シランを製造することを可能にした。
本発明の製造方法により、従来に比べより高純度な水素化有機シランをより安価に製造が可能となった。同時にこれを膜形成材料とする半導体分野の低コスト化をも実現可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high-purity hydrogenated organic silane used as a film forming material in the field of semiconductors, and a high-purity hydrogenated organic silane.
[0002]
[Prior art]
In the past, hydrogenated organic silanes were mainly used as raw materials for functional products such as silicones, silane coupling agents, and silylating agents, but in recent years they have been used as film-forming materials in the semiconductor field. It is increasing.
[0003]
Hydrogenated organic silanes have been conventionally synthesized by various methods, and among them, a method is known in which a halogenated organic silane is used as a starting material and hydrogenated with a hydrogenating agent in the presence of a solvent to obtain a hydrogenated organic silane. I have.
[0004]
In hydrogenated organic silanes, by-products derived from the production process are mixed in trace amounts as impurities, but when used as raw materials for conventional applications such as silicone, silane coupling agents, silylating agents, etc. Trace impurities did not affect much. However, when used for film forming materials in the field of semiconductors, contamination of impurities leading to deterioration of insulation performance is not preferable even though it is a very small amount, so in order to purify the hydrogenated organosilane obtained by the conventional production method, A purification method of cooling, solidifying, and evacuating (for example, see Patent Document 1) and a method of contacting with water and then contacting with an adsorbent for purification (for example, see Patent Document 2) have been attempted.
However, among impurities, hydrocarbon-based by-products derived from the solvent have a boiling point very close to the boiling point of the target hydrogenated organosilane, and it is necessary to increase the number of distillation stages in order to achieve high purity. This was a high cost factor.
[Patent Document 1] JP-A-2000-044576 [Patent Document 2] JP-A-2002-173495
[Problems to be solved by the invention]
The present invention provides a method for producing a hydrogenated organosilane that can easily remove hydrocarbon-based by-products derived from a solvent, and provides a technique that can reduce the cost for high purification.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that by performing a hydrogenation reaction in the presence of a specific solvent, the burden of removing by-products can be reduced in advance in a subsequent purification step. We have completed a method that can be easily implemented.
[0007]
That is, the present invention
(1) A method for producing a hydrogenated organic silane by reacting a halogenated organic silane with a hydrogenating agent in the presence of an ether solvent represented by the general formula (1), wherein the product is a hydrogenated organic silane. A method for producing a hydrogenated organic silane, wherein an ether solvent is selected and used so that the difference in boiling point between silane and all by-products derived from the ether solvent is 5 ° C. or more.
R-O-R '(1)
(In the formula, R and R ′ are each represented by a linear, branched or cyclic alkyl group, aryl group or aralkyl group, and may be the same or different.)
(2) The method for producing a hydrogenated organosilane according to (1), wherein the hydrogenating agent is a metal hydride.
(3) The method for producing a hydrogenated organosilane according to (2), wherein the hydrogenating agent is lithium aluminum hydride.
(4) The hydrogenated organic silane is represented by the general formula SiH n R ″ 4-n (n represents an integer of 1 to 3, and R ″ represents an alkyl group, an alkenyl group, an alkynyl group, or an aryl group). The method for producing a hydrogenated organic silane according to any one of (1) to (3), wherein:
(5) A method for purifying a hydrogenated organic silane, which comprises separating and purifying a hydrogenated organic silane obtained by the production method according to any one of (1) to (4).
(6) A hydrogenated organosilane obtained by the production method according to any one of (1) to (5).
(7) The above-mentioned hydrogenated organic silane, which is a hydrogenated organic silane for a film forming material for a semiconductor. About.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a method for producing a hydrogenated organic silane by reacting a halogenated organic silane with a hydrogenating agent in the presence of an ether-based solvent.
The hydrogenated organic silane is not particularly limited, but may be, for example, a compound represented by the general formula SiH n R ″ 4-n (n represents an integer of 1 to 3, and R ″ represents an alkyl group, an alkenyl group, and an alkynyl group. , or those represented by aryl group), the alkyl group, -CH 3, -C 2 H 5 , - (CH 2) 2 CH 2, -CH (CH 2) 2, -C ( CH 3 ) 3 , etc., and examples of the alkenyl group include —CH = CH 2 , —CH 2 —CH = CH 2 , — (CH 2 ) 2 —CH = CH 2 , and the alkynyl group includes , -CH≡CH, such as -CH 2 C≡CH, the aryl group, -C 6 H 5, -C 6 H 5 (CH 3) , and the like. The hydrogenated organic silane is not particularly limited, but trimethylsilane is desirable.
[0009]
The halogenated organic silane is not particularly limited, but is preferably a chlorinated organic silane, and particularly preferably trimethylchlorosilane.
[0010]
As the hydrogenating agent, a solid metal hydride or an organic metal hydride is used.
Specifically mentioned solid metal hydrides, like for example LiH, NaH, hydrides consisting of one metal such as AlH 3, or LiAlH 4, NaAlH 4, the composite solid metal hydride such as NaBH 4, LiBH 4 is Can be Further, specific examples of the organic metal hydride, LiAl (OMe) H 3, LiAl (OBu n) H 3, LiAl (OPh) H 3, NaAl (OBu n) H 3, NaAl (OPh) H 3, KAl (OBu n) H 3, KAl (OPh) H 3 ( the Me in the formula methyl group, Bu n is n- butyl group, Ph represents phenyl group.) are exemplified. Of these, lithium aluminum hydride can be preferably used.
Further, an ether solvent is used as the solvent used in the present invention.
Specific examples include diethyl ether, diisopropyl ether, di-n-propyl ether, dibutyl ether, tert-butyl methyl ether, diisopentyl ether, di-n-hexyl ether, ethyl vinyl ether, n-butyl vinyl ether, and methylphenyl ether. And ether solvents such as ethyl phenyl ether, n-butyl phenyl ether, pentyl phenyl ether, benzyl methyl ether, dicyclohexyl ether, diphenyl ether and dibenzyl ether.
Among them, methylphenyl ether or n-butyl ether is preferably used because it is chemically inert and stably exists even when a hydrogenating agent is added.
In the reaction method, the above-mentioned solvent and the hydrogenating agent are mixed in advance, and a halogenated organic silane is added thereto to recover the generated hydrogenated organic silane.
Although a preferable ratio of the solvent and LiAlH 4 is not specified, preferably, LiAlH 4 is used in an amount of 5 to 20% by weight based on the solvent.
Also, the reaction temperature is not specified, but the reaction is carried out at 40 to 100 ° C.
In particular, when LiAlH 4 is used as the hydrogenating agent, the self-decomposition temperature of LiAlH 4 is set to 120 ° C. However, when the temperature exceeds 100 ° C. in a solvent, the reaction temperature is increased because LiAlH 4 gradually self-decomposes. It is desirable to carry out at 100 ° C. or lower. The reaction temperature is controlled by using a reactor equipped with a jacket and passing hot or cold water through the jacket to control the temperature of the reaction solution inside.
The boiling point difference between the hydrogenated organic silane and the by-product derived from the solvent is desirably a boiling point difference that can be separated by distillation, usually 5 ° C. or higher, more preferably 10 ° C. or higher.
When a hydrogenated organosilane is synthesized using the above-mentioned raw materials, a solvent-derived by-product is generated regardless of which solvent is used. The type and amount of by-products vary depending on the type of solvent, and examples thereof include methane (boiling point −161.4 ° C.), ethane (boiling point −89 ° C.), propane (boiling point −45 ° C.), and n-butane (boiling point Saturated hydrocarbons such as isobutane (boiling point -11.9 ° C), 1-butene (boiling point -6.3 ° C), cis-2-butene (boiling point 3.7 ° C), trans-2 -Butene (boiling point -0.9 ° C), 2-methylpropene (boiling point -6.9 ° C), and methanol (boiling point 65 ° C) ethanol (boiling point 78.3 ° C), 1-butanol (boiling point 117.9 ° C) And benzene (boiling point: 80.1 ° C.) phenol (boiling point: 182 ° C.), and the amount of these formed is also from several tens Volppm to several Vol%.
The solvent is not particularly limited as long as it satisfies the above requirements, and for example, a phenyl group-containing ether such as methylphenyl ether or ethylphenyl ether is preferable.
[0011]
Hydrogenated organosilanes are highly purified by distillation separation and purification, but the distillation separation and purification are not particularly limited, and examples thereof include methods such as simple distillation, azeotropic distillation, extractive distillation, batch distillation, and continuous distillation. Can be Also, it can be used in combination with other conventionally known purification methods.
By distillation separation and purification, the by-products derived from these solvents are preferably reduced to 10 ppm or less, preferably 1 ppm or less.
[0012]
The use of the high-purity hydrogenated organosilane thus obtained is not particularly limited, but it can be suitably used as a film forming material in the field of semiconductors.
[0013]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to only these Examples.
In the following, "%" means "% by weight" unless otherwise specified.
[0014]
Example 1
10 L of methylphenyl ether and 25 mol of LiAlH 4 powder were charged into a jacketed 30 L stainless steel reactor equipped with a stirrer, a thermometer, a raw material supply pipe, and a gas outlet pipe, and stirred and mixed. The solution was passed, and the temperature of the slurry in the reactor was adjusted to 50 ° C.
Next, 80 mol of trimethylchlorosilane was transferred to a raw material container having a capacity of 10 L, from which 11 mol / hrs. The whole amount of trimethylchlorosilane was added dropwise at the speed described above to synthesize trimethylsilane (boiling point: 6.9 ° C.).
A part of this gas was led to a calibration tube for gas chromatography, and qualitative and quantitative analyzes of by-products were performed. As a result, methane (boiling point -164 ° C), benzene (boiling point 80.1 ° C) and methanol (boiling point 64.7 ° C) ° C) and phenol (boiling point: 182 ° C) were detected at the values shown in Table 1, and all by-products had a boiling point difference of 50 ° C or more, and were sufficiently separable by distillation.
In addition, GC-14B type (FID) manufactured by Shimadzu was used for gas chromatography, and analysis was performed using a wide bore column GS-Alumina (0.53 mmφ × 30 m) manufactured by Agilent Technologies as an analytical column.
Further, using a batch type laboratory distillation apparatus having 20 distillation stages, 100 ml of the above-obtained trimethylsilane was charged into the bottom and distilled.
The bottom was heated to 100 ° C with an external heater and the top condenser was cooled at 0 ° C.
After setting the reflux ratio to 2 and cutting off the first 20 ml, 65 ml of the extract was recovered and analyzed in the same manner as described above.
As a result, all of these by-products were 1 ppm or less.
[0015]
Example 2
Trimethylchlorosilane was dropped into a trimethylsilane reactor in the same manner as in Example 1 except that the production solvent for trimethylsilane was changed to 10 L of ethylphenyl ether to synthesize trimethylsilane. As a result of qualitative and quantitative analysis of by-products derived from the solvent from a part of the generated gas, ethane (boiling point −89 ° C.), benzene (boiling point 80.1 ° C.), ethanol (boiling point 78.3 ° C.), phenol ( (Boiling point: 182 ° C.) was detected by the values shown in Table 1, and the boiling point difference of all by-products was 70 ° C. or more, and they could be separated sufficiently by a distillation operation.
Further, 100 ml of the above-obtained trimethylsilane was distilled in the same manner as in Example 1. As a result, all of these by-products were 1 ppm or less.
[0016]
Comparative Example 1
Trimethylchlorosilane was dropped into a trimethylsilane reactor in the same manner as in Example 1 except that the production solvent for trimethylsilane was changed to 10 L of n-butyl ether, to produce trimethylsilane as a target product. After being collected in a bomb, qualitative and quantitative analyzes of the by-products derived from the solvent were performed. As a result, n-butane (boiling point -0.5 ° C), isobutane (boiling point-11.9 ° C), 1-butene (boiling point -6.3 ° C), cis-2-butene (boiling point 3.7 ° C), trans-2-butene (boiling point -0.9 ° C), 2-methylpropene (boiling point -6.9 ° C) and 1-butanol (Boiling point 117.9 ° C.) was detected at the value shown in Table 1.
As shown in the results, the difference in boiling point between trimethylsilane (boiling point: 6.9 ° C.) and cis-2-butene was the closest, and was 3.7 ° C.
Further, 100 ml of the above-obtained trimethylsilane was distilled in the same manner as in Example 1. As a result, by-products other than 1-butanol were hardly reduced.
Therefore, the distillation was carried out in the same manner as in Example 1 except that the length of the distillation column and the filler were changed to 30 distillation stages. However, by-products other than 1-butanol were hardly reduced.
Therefore, in the case of separation by a distillation operation, the number of distillation stages is required to be 30 or more, and the equipment cost at the design stage becomes high.
[0017]
Comparative Example 2
Except that the production solvent for trimethylsilane was changed to 10 L of tetrahydrofuran, trimethylchlorosilane was dropped into a trimethylsilane reactor in the same manner as in Example 1 to produce a target product, trimethylsilane (boiling point: 6.9 ° C.). Was. After being collected in a cylinder, qualitative and quantitative analyzes of by-products derived from the solvent were performed. -6.3 ° C), cis-2-butene (boiling point 3.7 ° C), trans-2-butene (boiling point -0.9 ° C), 2-methylpropene (boiling point -6.9 ° C) and 1-butanol (Boiling point 117.9 ° C.) was detected at the value shown in Table 1.
As shown in this result, similarly to Comparative Example 1, the difference in boiling point between trimethylsilane (boiling point: 6.9 ° C.) and cis-2-butene was the closest to 3.7 ° C.
Therefore, when the separation is performed by the distillation operation, as in Comparative Example 1, the number of distillation stages is required to be 30 or more, and the equipment cost at the design stage becomes high.
[Table 1]
[0018]
【The invention's effect】
The present invention focuses on solvents that were not particularly considered in the prior art for the production of hydrogenated organosilanes, and reduces the load of subsequent distillation separation and purification, enabling hydrogenation that can be highly purified without complicated steps. It has made it possible to produce organosilanes.
The production method of the present invention has made it possible to produce hydrogenated organosilane with higher purity than ever before at lower cost. At the same time, it has become possible to reduce costs in the semiconductor field using this as a film forming material.
Claims (7)
R−O−R’ (1)
(式中、R及びR’は、直鎖状、分岐状若しくは環状アルキル基、アリール基又はアラルキル基を表し、それぞれ同一であっても異なってもよい)A method for producing a hydrogenated organic silane by reacting a halogenated organic silane with a hydrogenating agent in the presence of an ether solvent represented by the general formula (1), wherein the product is a hydrogenated organic silane and an ether A method for producing a hydrogenated organosilane, wherein an ether-based solvent is selected and used so that the difference in boiling point from all by-products derived from the system solvent is 5 ° C. or more.
R-O-R '(1)
(Wherein, R and R ′ represent a linear, branched or cyclic alkyl group, an aryl group or an aralkyl group, and may be the same or different)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003128526A JP2004331549A (en) | 2003-05-07 | 2003-05-07 | Method for producing hydrogenated organosilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003128526A JP2004331549A (en) | 2003-05-07 | 2003-05-07 | Method for producing hydrogenated organosilane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004331549A true JP2004331549A (en) | 2004-11-25 |
Family
ID=33504618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003128526A Withdrawn JP2004331549A (en) | 2003-05-07 | 2003-05-07 | Method for producing hydrogenated organosilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004331549A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008127352A (en) * | 2006-11-22 | 2008-06-05 | Nippon Shokubai Co Ltd | Process for producing n-alkyl borazine |
CN115028656A (en) * | 2022-07-08 | 2022-09-09 | 全椒亚格泰电子新材料科技有限公司 | Method and reaction system for continuously producing high-purity trimethylsilane |
-
2003
- 2003-05-07 JP JP2003128526A patent/JP2004331549A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008127352A (en) * | 2006-11-22 | 2008-06-05 | Nippon Shokubai Co Ltd | Process for producing n-alkyl borazine |
CN115028656A (en) * | 2022-07-08 | 2022-09-09 | 全椒亚格泰电子新材料科技有限公司 | Method and reaction system for continuously producing high-purity trimethylsilane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9034292B2 (en) | Method and apparatus for producing disilane through pyrolysis of monosilane | |
JP5879283B2 (en) | Method for producing trichlorosilane | |
WO2018163517A1 (en) | Method for producing dialkylaminosilane | |
KR102044434B1 (en) | Method for purifying silane compound containing unsaturated bond and method for producing the same | |
CN107868098B (en) | Method for purifying unsaturated bond-containing silane compound and method for producing the same | |
JP5423039B2 (en) | High purity trialkylgallium and method for producing the same | |
JPH0273024A (en) | Production of halogenated alkyl | |
WO1983000140A1 (en) | Novel process for producing silicon hydride | |
JP2004331549A (en) | Method for producing hydrogenated organosilane | |
Kadikova et al. | The efficient method for the preparation of alkenylsilanes from organoaluminums | |
JPH052601B2 (en) | ||
JP2009126835A (en) | High-purity trialkylgallium and method for producing the same | |
CN105693455B (en) | A kind of synthetic method of 1,5,9- cyclodoecatrienes | |
CN106103454B (en) | The preparation of trialkyl gallium compound with and application thereof | |
EP3661874A1 (en) | Method of preparing pentachlorodisilane and purified reaction product comprising same | |
KR20200019721A (en) | Synthesis of 1,1,1-trichlorodisilane | |
JP4530145B2 (en) | Method for producing norbornenyl group-containing siloxane compound | |
JP4192031B2 (en) | Method for recovering solvent and method for producing hydrogenated organosilane using the same | |
JP2008050268A (en) | High-purity trialkylgallium and method for producing the same | |
JPH06116278A (en) | Cycloalkenylalkylsilane | |
JP2023537859A (en) | Monosubstituted cyclopentadiene and metal cyclopentadienyl complexes, and methods for synthesizing the same | |
JP5761401B2 (en) | High-purity trialkylgallium and its production method | |
JP2004131439A (en) | Method for producing 2,5-disubstituted cyclopentanone compound and 2,5-disubstituted cyclopentanol compound | |
JPH034486B2 (en) | ||
WO2006064628A1 (en) | Method for producing vinyl silane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050715 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20080404 |