JP2004331434A - 水素製造用のマイクロリアクターおよびその製造方法 - Google Patents
水素製造用のマイクロリアクターおよびその製造方法 Download PDFInfo
- Publication number
- JP2004331434A JP2004331434A JP2003127731A JP2003127731A JP2004331434A JP 2004331434 A JP2004331434 A JP 2004331434A JP 2003127731 A JP2003127731 A JP 2003127731A JP 2003127731 A JP2003127731 A JP 2003127731A JP 2004331434 A JP2004331434 A JP 2004331434A
- Authority
- JP
- Japan
- Prior art keywords
- metal substrate
- microreactor
- aluminum
- fine groove
- heating element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
【課題】小型高効率であり、かつ、機械的安定性に優れた水素製造用改質器を可能とするマイクロリアクターと、このマイクロリアクターを簡便に製造することが可能な製造方法を提供する。
【解決手段】マイクロリアクターの構成を、一方の面に微細溝部を備えたアルミニウムまたはアルミニウム合金からなる金属基板と、微細溝部内に担持された触媒と、微細溝部を覆うように金属基板に接合され原料導入口とガス排出口を有するカバー部材とを備えたものとし、上記のカバー部材がアルミニウムおよびアルミニウム合金のいずれかであり、かつ、少なくとも金属基板との接合面に表面処理層を有するものとする。このようなマイクロリアクターは、発熱体から担持触媒への熱の伝達効率が高く、機械的強度も高く、また、金属基板の加工が容易で、製造が簡便である。
【選択図】 図2
【解決手段】マイクロリアクターの構成を、一方の面に微細溝部を備えたアルミニウムまたはアルミニウム合金からなる金属基板と、微細溝部内に担持された触媒と、微細溝部を覆うように金属基板に接合され原料導入口とガス排出口を有するカバー部材とを備えたものとし、上記のカバー部材がアルミニウムおよびアルミニウム合金のいずれかであり、かつ、少なくとも金属基板との接合面に表面処理層を有するものとする。このようなマイクロリアクターは、発熱体から担持触媒への熱の伝達効率が高く、機械的強度も高く、また、金属基板の加工が容易で、製造が簡便である。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
本発明は、水素製造用改質器に使用するマイクロリアクター、特にメタノール等の原料を改質して水素ガスを得るためのマイクロリアクターと、このマイクロリアクターの製造方法に関する。
【0002】
【従来の技術】
【特許文献1】特開2002−252014号公報
近年、地球環境保護の観点で二酸化炭素等の地球温暖化ガスの発生がなく、また、エネルギー効率が高いことから、水素を燃料とすることが注目されている。特に、燃料電池は水素を直接電力に変換できることや、発生する熱を利用するコジェネレーションシステムにおいて高いエネルギー変換効率が可能なことから注目されている。これまで燃料電池は宇宙開発や海洋開発等の特殊な条件において採用されてきたが、最近では自動車や家庭用分散電源用途への開発が進んでおり、また、携帯機器用の燃料電池も開発されている。
【0003】
燃料電池の中で、天然ガス、ガソリン、ブタンガス、メタノール等の炭化水素系燃料を改質して得られる水素ガスと、空気中の酸素とを電気化学的に反応させて電気を取り出す燃料電池は、一般に炭化水素系燃料を水蒸気改質して水素ガスを生成する改質器と、電気を発生させる燃料電池本体等で構成される。
メタノール等を原料として水蒸気改質により水素ガスを得るための改質器では、主にCu−Zn系触媒を使用し、吸熱反応により原料の水蒸気改質が行われる。産業用の燃料電池では、起動・停止が頻繁に行われることがないため、改質器の温度変動は生じにくい。しかし、自動車用や携帯機器用の燃料電池では、起動・停止が頻繁に行われるため、停止状態から始動したときの改質器の立ち上がりが速い(原料の水蒸気改質温度に達するまでの時間が短い)ことが要求される。
一方、特に携帯機器用では、燃料電池の小型化が必須であり、改質器の小型化が種々検討されている。例えば、シリコン基板やセラミックス基板にマイクロチャネルを形成し、このマイクロチャネル内に触媒を担持したマイクロリアクターが開発されている(特許文献1)。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のマイクロリアクターは、熱の利用効率が悪く、停止状態から始動したときの改質器の立ち上がり速度が遅いという問題があった。また、マイクロマシーンによる加工等を必要とし、製造コストが高いという問題もあった。
本発明は上述のような事情に鑑みてなされたものであり、小型高効率であり、かつ、機械的安定性に優れた水素製造用改質器を可能とするマイクロリアクターと、このマイクロリアクターを簡便に製造することが可能な製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このような目的を達成するために、本発明は、原料を改質して水素ガスを得るためのマイクロリアクターにおいて、一方の面に微細溝部を備えたアルミニウムまたはアルミニウム合金からなる金属基板と、該微細溝部内に担持された触媒と、前記微細溝部を覆うように前記金属基板に接合され原料導入口とガス排出口を有するカバー部材とを備え、前記カバー部材はアルミニウムおよびアルミニウム合金のいずれかであり、かつ、少なくとも前記金属基板との接合面に表面処理層を有するような構成とした。
【0006】
本発明の他の態様として、カバー部材が有する前記表面処理層は亜鉛、スズ、金および銅の少なくとも1種を含有するような構成とした。
本発明の他の態様として、前記金属基板は、前記微細溝部形成面の反対側の面に絶縁膜を介して発熱体を備えるような構成、前記絶縁膜は前記金属基板を陽極酸化して形成した金属酸化膜であるような構成とした。
本発明の他の態様として、前記微細溝部内にも前記金属酸化膜が形成されているような構成とした。
本発明の他の態様として、前記発熱体の電極を露出させて前記発熱体を被覆するように設けられた発熱体保護層を備えるような構成とした。
【0007】
また、本発明は、原料を改質して水素ガスを得るためのマイクロリアクターの製造方法において、アルミニウムまたはアルミニウム合金からなる金属基板の一方の面に微細溝部を形成する溝部形成工程と、前記微細溝部内に触媒を担持する触媒担持工程と、原料導入口とガス排出口が形成されたアルミニウムまたはアルミニウム合金からなるカバー部材の少なくとも前記金属基板と接合される面に表面処理層を形成する表面処理工程と、前記カバー部材を、前記微細溝部を覆うように前記金属基板に拡散接合する接合工程と、を有するような構成とした。
【0008】
本発明の他の態様として、前記表面処理工程は、亜鉛、スズ、金および銅の少なくとも1種を含有する薄膜を形成する工程であるような構成とした。
本発明の他の態様として、前記表面処理工程は、ダブルジンケート処理であるような構成とした。
本発明の他の態様として、前記溝部形成工程と前記触媒担持工程との間に、少なくとも前記微細溝部が形成されていない前記金属基板面上に絶縁膜を設ける絶縁膜形成工程と、前記絶縁膜上に発熱体を設ける発熱体配設工程と、を有するような構成とした。
本発明の他の態様として、前記絶縁膜形成工程は、前記金属基板を陽極酸化して金属酸化膜を形成する工程であるような構成とした。
【0009】
上記のような本発明では、アルミニウムまたはアルミニウム合金からなる金属基板の熱伝導率が高く、熱容量が小さいので、発熱体から担持触媒へ熱が高効率で伝達され、また、金属基板とカバー部材との間に介在する表面処理層が両者の密着性を向上させる作用をなす。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
マイクロリアクター
図1は本発明のマイクロリアクターの一実施形態を示す斜視図であり、図2は図1に示されるマイクロリアクターのII−II線における拡大縦断面図である。図1および図2において、本発明のマイクロリアクター1は、アルミニウムまたはアルミニウム合金からなる金属基板2と、この金属基板2の一方の面2aに形成された微細溝部3と、この微細溝部3内部および金属基板2の両面2a,2bと側面2cに形成された金属酸化膜からなる絶縁膜4と、金属基板2の表面2b上に絶縁膜4を介して設けられた発熱体5と、微細溝部3内に担持された触媒Cと、上記微細溝部3を覆うように金属基板2に接合されたカバー部材8と、を備えている。また、発熱体5には電極6,6が形成され、この電極6,6が露出するような電極開口部7a,7aを有する発熱体保護層7が、発熱体5を覆うように設けられている。また、上記カバー部材8はアルミニウムまたはアルミニウム合金からなり、原料導入口8aとガス排出口8bが設けられているとともに、両面に表面処理層9を備えている。そして、この表面処理層9を介してカバー部材8が金属基板2に接合されており、両者の接合面には絶縁膜4は存在しない。
【0011】
図3は、図1に示されるマイクロリアクター1の金属基板2の微細溝部3形成面側を示す斜視図である。図3に示されるように、微細溝部3は櫛状のリブ2A,2Bを残すように形成され、端部3aから端部3bまで連続する形状である。そして、カバー部材8の原料導入口8aを端部3aに位置させ、ガス排出口8bを端部3bに位置させることにより、原料導入口8aからガス排出口8bまで連続した流路が構成される。
本発明のマイクロリアクター1を構成する金属基板2は、上述のようにアルミニウムまたはアルミニウム合金からなる。アルミニウム合金としては、JIS1000、2000、3000、5000、6000、7000番台の材料等を使用することができる。このような金属基板2は、陽極酸化により金属酸化膜(絶縁膜4)を形成することができ、さらに、加工適性や、熱容量、熱伝導率等の特性、単価の点から好ましく使用される。金属基板2の厚みは、マイクロリアクター1の大きさ、使用する金属材料の熱容量、熱伝導率等の特性、形成する微細溝部3の大きさ等を考慮して適宜設定することができるが、例えば、50〜2000μm程度の範囲で設定することができる。
【0012】
このような金属基板2への陽極酸化による金属酸化膜(絶縁膜4)の形成は、金属基板2を外部電極の陽極に接続した状態で、陽極酸化溶液に浸漬して陰極と対向させ通電することにより行うことができる。金属酸化膜(絶縁膜4)の厚みは、例えば、5〜150μm程度の範囲で設定することができる。
金属基板2に形成される微細溝部3は、図3に示されるような形状に限定されるものではなく、微細溝部3内に担持する触媒Cの量が多くなり、かつ、原料が触媒Cと接触する流路長が長くなるような任意の形状とすることができる。通常、微細溝部3の深さは100〜1000μm程度の範囲内、幅は100〜1000μm程度の範囲内で設定することができ、流路長は30〜300mm程度の範囲とすることができる。
【0013】
本発明では、微細溝部3内部にも金属酸化膜からなる絶縁膜4が形成されているので、微細孔を有する金属酸化膜の表面構造により、触媒Cの担持量が増大するとともに、安定した触媒担持が可能となる。
触媒Cとしては、従来から水蒸気改質に使用されている公知の触媒を使用することができる。
本発明のマイクロリアクター1を構成する発熱体5は、吸熱反応である原料の水蒸気改質に必要な熱を供給するためのものであり、カーボンペースト、ニクロム(Ni−Cr合金)、W(タングステン)、Mo(モリブデン)等の材質を使用することができる。この発熱体5は、例えば、幅10〜200μm程度の細線を、微細溝部3が形成されている領域に相当する金属基板面2b(絶縁膜4)上の領域全面に引き回したような形状とすることができる。
【0014】
このような発熱体5には、通電用の電極6,6が形成されている。通電用の電極6,6は、Au、Ag、Pd、Pd−Ag等の導電材料を用いて形成することができる。
発熱体保護層7は、上記の電極6,6を露出させるための電極開口部7a,7aを有し、発熱体5を覆うように配設されている。この発熱体保護層7は、例えば、感光性ポリイミド、ワニス状のポリイミド等により形成することができる。また、発熱体保護層7の厚みは、使用する材料等を考慮して適宜設定することができるが、例えば、2〜25μm程度の範囲で設定することができる。
【0015】
本発明のマイクロリアクター1を構成するカバー部材8は、アルミニウムまたはアルミニウム合金からなり、両面に表面処理層9を備えている。アルミニウム合金としては、JIS1000、2000、3000、5000、6000、7000番台の材料等を使用することができる。表面処理層9は、亜鉛、スズ、金および銅の少なくとも1種を含有する層であってよく、特にジンケート処理、ダブルジンケート処理により形成した亜鉛薄膜が好ましい。カバー部材8の厚みは、使用する材料等を考慮して適宜設定することができ、例えば、220〜3000μm程度の範囲で設定することができ、表面処理層9の厚みは、例えば、2〜100μm程度の範囲で設定することができる。また、カバー部材8が備える原料導入口8aとガス排出口8bは、金属基板2に形成された微細溝部3の流路の両端部3a,3bに位置するように設けられている。
【0016】
図4は、本発明のマイクロリアクターの他の実施形態を示す図2相当の縦断面図である。図4において、本発明のマイクロリアクター1′は、アルミニウムまたはアルミニウム合金からなる金属基板2′と、この金属基板2′の一方の面2′aに形成された微細溝部3と、金属基板2′の他の面2′bに形成された絶縁膜4′と、金属基板2′の表面2′b上に絶縁膜4′を介して設けられた発熱体5と、微細溝部3内に担持された触媒Cと、上記微細溝部3を覆うように金属基板2′に接合されたカバー部材8と、を備えている。また、発熱体5には電極6,6が形成され、この電極6,6が露出するような電極開口部7a,7aを有する発熱体保護層7が、発熱体5を覆うように設けられている。また、上記カバー部材8はアルミニウムまたはアルミニウム合金からなり、原料導入口8aとガス排出口8bが設けられているとともに、両面に表面処理層9を備えている。そして、この表面処理層9を介してカバー部材8は金属基板2に接合されている。
【0017】
このようなマイクロリアクター1′は、金属部材2′、絶縁層4′が異なる点、および、微細溝部3内に金属酸化膜(絶縁層4)が形成されていない点を除いて、上述のマイクロリアクター1と同様であり、同じ構成部材には同じ部材番号を付し、説明は省略する。
本発明のマイクロリアクター1′を構成する金属基板2′は、上述のようにアルミニウムまたはアルミニウム合金からなり、厚みは、マイクロリアクター1′の大きさ、使用する金属の熱容量、熱伝導率等の特性、形成する微細溝部3の大きさ等を考慮して適宜設定することができるが、例えば、50〜2000μm程度の範囲で設定することができる。
【0018】
金属基板2′の面2′bに形成された絶縁膜4′は、例えば、ポリイミド、セラミック(Al2O3、SiO2)等により形成されたものとすることができる。このような絶縁膜4′の厚みは、使用する材料の特性等を考慮して適宜設定することができ、例えば、1〜30μm程度の範囲で設定することができる。
上述のような本発明のマイクロリアクター1,1′は、アルミニウムまたはアルミニウム合金からなる金属基板2,2′を使用しており、これらはシリコン基板やセラミックス基板に比べて、熱伝導率が高く熱容量が小さいので、発熱体5から担持触媒Cへ高効率で熱が伝達され、停止状態から始動したときの立ち上がりが速く、かつ、発熱体への投入電力の利用効率の高い水素製造用改質器が可能となる。また、金属基板2,2′とカバー部材8との間に介在する表面処理層9により両者が強固に接合されているので、マイクロリアクター1,1′は機械的安定性に優れたものとなる。
【0019】
本発明のマイクロリアクターは、水素製造用改質器において、原料の混合・気化器、改質器、CO除去器のいずれにも使用することができる。
尚、上述のマイクロリアクターの実施形態は一例であり、本発明はこれらに限定されるものではない。例えば、上述の実施形態では、カバー部材8は両面に表面処理層9を備えているが、金属基板2,2′との接合される面のみに表面処理層9を備えるものであってもよい。
【0020】
マイクロリアクターの製造方法
図5および図6は本発明のマイクロリアクター製造方法の一実施形態を説明するための工程図である。
図5、図6では、上述のマイクロリアクター1を例にして説明する。本発明の製造方法では、まず、溝部形成工程において、アルミニウムまたはアルミニウム合金からなる金属基板2の一方の面2aに微細溝部3を形成する(図5(A))。この微細溝部3は、金属基板2の面2aに所定の開口パターンを有するレジストを形成し、このレジストをマスクとしてウエットエッチングにより櫛状のリブ2A,2Bを残すように金属基板2をエッチングして形成することができ、マイクロマシーンによる加工を不要とすることができる。
【0021】
次に、絶縁膜形成工程のおいて、微細溝部3を形成した金属基板2を陽極酸化して、微細溝部3内部を含む全面に金属酸化膜(絶縁膜4)を形成する(図5(B))。この金属酸化膜(絶縁膜4)の形成は、金属基板2を外部電極の陽極に接続した状態で、陽極酸化溶液に浸漬して陰極と対向させ通電することにより行うことができる。
次いで、発熱体配設工程にて、微細溝部3が形成されていない金属基板2の面2bの金属酸化膜(絶縁膜4)上に発熱体5を設け、さらに、通電用の電極6,6を形成する(図5(C))。発熱体5は、カーボンペースト、ニクロム(Ni−Cr合金)、W、Mo等の材質を使用して形成することができる。発熱体5の形成方法としては、上記の材料を含有するペーストを用いてスクリーン印刷により形成する方法、上記の材料を含有するペーストを用いて塗布膜を形成し、その後、エッチング等によりパターニングする方法、上記材料を用いて真空成膜法により薄膜を形成し、その後、エッチング等によりパターニングする方法等を挙げることができる。
【0022】
また、通電用の電極6,6は、Au、Ag、Pd、Pd−Ag等の導電材料を用いて形成することができ、例えば、上記の導電材料を含有するペーストを用いてスクリーン印刷により形成することができる。
次に、電極6,6が露出するように発熱体保護層7を発熱体5上に形成する(図5(D))。発熱体保護層7は、ポリイミド、セラミック(Al2O3、SiO2)等の材料を用いて形成することができ、例えば、上記材料を含有するペーストを用いてスクリーン印刷により電極開口部7a,7aを有するパターンで形成することができる。
【0023】
次いで、触媒担持工程において、微細溝部3内に触媒Cを担持させる(図6(A))。この触媒担持は、金属基板2の微細溝部3が形成されている面2aを、所望の触媒溶液内に浸漬して行うことができる。その後、金属基板2を研磨して金属基板2の面2aを露出させる(図6(B))。
一方、表面処理工程において、カバー部材8の少なくとも金属基板2と接合される面(図示例では、カバー部材8の両面)に表面処理層9を形成する(図6(C))。カバー部材8は、アルミニウムまたはアルミニウム合金からなり、原料導入口8aとガス排出口8bを有するものであり、表面処理層9としては、亜鉛、スズ、金および銅の少なくとも1種を含有する層を形成する。例えば、ジンケート処理、あるいは、ダブルジンケート処理により亜鉛薄膜を表面処理層9として形成することができる。ジンケート処理やダブルジンケート処理には特に制限はなく、アルミニウムに対する従来公知のジンケート処理、ダブルジンケート処理の条件により行うことができる。また、スズ、金および銅の少なくとも1種を含有する層は、従来公知の置換めっきにより形成することができる。
【0024】
次いで、接合工程において、カバー部材8を表面処理層9を介して金属基板面2aに接合して本発明のマイクロリアクター1を得ることができる(図6(D))。カバー部材8の金属基板面2aへの接合は、例えば、拡散接合等により行うことができる。拡散接合を用いる場合、接合条件として、圧力30〜300kg/cm2、温度350〜450℃の範囲で設定することができる。
尚、接合工程では、カバー部材8に設けられている原料導入口8aとガス排出口8bが、金属基板2に形成された微細溝部3の流路の両端部に一致するように位置合わせをする。
【0025】
図7および図8は本発明のマイクロリアクター製造方法の他の実施形態を説明するための工程図である。
図7、図8では、上述のマイクロリアクター1′を例にして説明する。本発明の製造方法では、まず、溝部形成工程にて、アルミニウムまたはアルミニウム合金からなる金属基板2′の一方の面2′aに微細溝部3を形成する(図7(A))。この微細溝部3の形成は、上述の金属基板2への微細溝部3の形成と同様にして行うことができる。
次に、絶縁膜形成工程において、微細溝部3が形成されていない金属基板2′の面2′b上に絶縁膜4′を形成する(図7(B))。この絶縁膜4′は、例えば、ポリイミド、セラミック(Al2O3、SiO2)等を用いて形成することができる。絶縁膜4′の形成は、例えば、上記の絶縁材料を含有するペーストを用いたスクリーン印刷等の印刷法により、あるいは、上記絶縁材料を用いたスパッタリング、真空蒸着等の真空成膜法により薄膜を形成し、硬化させることにより行うことができる。
【0026】
次いで、発熱体配設工程において、絶縁膜4′上に発熱体5を設け、さらに、通電用の電極6,6を形成する(図7(C))。このような発熱体5、電極6,6の形成は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
次に、電極6,6が露出するように発熱体保護層7を発熱体5上に形成する(図7(D))。この発熱体保護層7の形成は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
次いで、触媒担持工程にて、微細溝部3内に触媒Cを担持させる(図8(A))。この触媒担持は、金属基板2′の微細溝部3が形成されている面2′aを、所望の触媒溶液内に浸漬して行うことができる。その後、金属基板2′を研磨して金属基板面2′aを露出させる(図8(B))。
【0027】
一方、表面処理工程において、カバー部材8の少なくとも金属基板2′と接合される面(図示例では、カバー部材8の両面)に表面処理層9を形成する(図8(C))。このカバー部材8の表面処理工程は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
次いで、接合工程において、カバー部材8を金属基板面2′aに接合して本発明のマイクロリアクター1′を得ることができる(図8(D))。このカバー部材8の接合は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
【0028】
このような本発明のマイクロリアクター製造方法では、金属基板を使用するので、微細溝部の形成でマイクロマシーン加工を行う必要がなく、エッチング加工等の安価な加工方法により容易に行うことができ、マイクロリアクターの製造コスト低減が可能となる。また、金属基板との接合の前に予めカバー部材に表面処理層を形成するので、両者を強固に接合することができる。
尚、上述のマイクロリアクター製造方法の実施形態は一例であり、本発明はこれらに限定されるものではない。
【0029】
【実施例】
次に、より具体的な実施例を示して本発明を更に詳細に説明する。
[実施例]
基材として厚み1000μmのアルミニウム基板(250mm×250mm)を準備し、このアルミニウム基板の両面に感光性レジスト材料(東京応化工業(株)製OFPR)をディップ法により塗布(膜厚7μm(乾燥時))した。次に、アルミニウム基板の微細溝部を形成する側のレジスト塗膜上に、幅1500μmのストライプ状の遮光部がピッチ2000μmで左右から交互に突出(突出長30mm)した形状のフォトマスクを配し、このフォトマスクを介してレジスト塗布膜を露光し、炭酸水素ナトリウム溶液を使用して現像した。これにより、アルミニウム基板の一方の面には、幅500μmのストライプ状の開口部がピッチ2000μmで配列され、隣接するストライプ状の開口部が、その端部において交互に連続するようなレジストパターンが形成された。
【0030】
次に、上記のレジストパターンをマスクとして、下記の条件でアルミニウム基板をエッチングした。このエッチングは、アルミニウム基板の一方の面からハーフエッチングにより微細溝部を形成するものであり、エッチングに要した時間は3分間であった。
(エッチング条件)
・温度 : 20℃
・エッチング液(HCl)濃度: 200g/L(35%HClを純水中に200g溶解して1Lとする)
【0031】
上記のエッチング処理が終了した後、水酸化ナトリウム溶液を用いてレジストパターンを除去し、水洗した。これにより、アルミニウム基板の一方の面に、幅1000μm、深さ650μm、長さ30mmのストライプ形状の微細溝が2000μmのピッチで形成され、隣接する微細溝の端部において交互に連続するような(図3に示されるような)微細溝部(流路長300mm)が8×5面付け(8面付け方向のピッチ25mm、5面付け方向のピッチ35mm)で形成された。(以上、溝部形成工程)
【0032】
次に、上記のアルミニウム基板を外部電極の陽極に接続し、陽極酸化溶液(4%シュウ酸溶液)に浸漬して陰極と対向させ、下記の条件で通電することにより、酸化アルミニウム薄膜を形成して絶縁膜とした。尚、形成した酸化アルミニウム薄膜の厚みをエリプソメーターで測定した結果、約30μmであった。(以上、絶縁膜形成工程)
(陽極酸化の条件)
・浴温 : 25℃
・電圧 : 25V(DC)
・電流密度 : 100A/m2
【0033】
次いで、微細溝部が形成されていないアルミニウム基板の酸化アルミニウム薄膜上に下記組成の発熱体用ペーストをスクリーン印刷により印刷し、200℃で硬化させて発熱体を形成した。形成した発熱体は、幅100μmの細線を、微細溝部が形成されている領域に相当する領域(35mm×25mm)全面を覆うようにアルミニウム基板上に線間隔100μmで引き回したような形状とした。
(発熱体用ペーストの組成)
・カーボン粉末 … 20重量部
・微粉末シリカ … 25重量部
・キシレンフェノール樹脂 … 36重量部
・ブチルカルビトール … 19重量部
【0034】
また、下記組成の電極用ペーストを用いて、スクリーン印刷により発熱体の所定の2ヶ所に電極(0.5mm×0.5mm)を形成した。
(電極用ペーストの組成)
・銀めっき銅粉末 … 90重量部
・フェノール樹脂 … 6.5重量部
・ブチルカルビトール … 3.5重量部
次に、発熱体上に形成された2個の電極を露出するように、下記組成の保護層用ペーストを用いて、スクリーン印刷により発熱体保護層(厚み20μm)を発熱体上に形成した。(以上、発熱体配設工程)
(保護層用ペーストの組成)
・樹脂分濃度 … 30重量部
・シリカフィラー … 10重量部
・ラクトン系溶剤(ペンタ1−4−ラクトン) … 60重量部
【0035】
次いで、アルミニウム基板の微細溝部形成面側を下記組成の触媒水溶液内に浸漬(10分間)し、その後、250℃、6時間の乾燥還元処理を施して、微細溝部内に触媒を担持させた。(以上、触媒担持工程)
(触媒水溶液の組成)
・Al … 41.2重量%
・Cu … 2.6重量%
・Zn … 2.8重量%
【0036】
次に、アルミニウム基板の微細溝部形成面側をアルミナ粉により研磨してアルミニウム面を露出させた。
一方、カバー部材として、厚み100μmのアルミニウム板(250mm×250mm)を準備し、このアルミニウム板に開口部(原料導入口とガス排出口の2個、各開口部の寸法は0.6mm×0.6mm)を8×5面付け(面付けピッチは上記のアルミニウム基板の微細溝部形成と同じものとした)で設けた。その後、脱脂剤(アセトン)を用いてカバー部材に脱脂処理を施し、下記組成のジンケート浴(浴温20℃)に60秒間浸漬して1回目のジンケート処理を施した。次いで、カバー部材を水洗し、50%硝酸水溶液(液温20℃)に30秒間浸漬して1回目のジンケート処理で形成した亜鉛薄膜を除去した。次に、カバー部材を水洗し、上記のジンケート浴(浴温20℃)に30秒間浸漬して2回目のジンケート処理を施して亜鉛薄膜を形成し、その後、水洗した。(以上、表面処理工程)
(ジンケート浴組成)
・酸化亜鉛 … 20g/L
・水酸化ナトリウム … 120g/L
・塩化第二鉄 … 2g/L
・ロッセル塩 … 50g/L
・硝酸ナトリウム … 1g/L
【0037】
次いで、カバー部材をアルミニウム基板面に下記の条件1で拡散接合した。この拡散接合では、カバー部材の各開口部がアルミニウム基板に形成された微細溝部の流路の両端部に一致するように位置合わせを行った。
(拡散接合条件1)
・雰囲気 :真空中
・接合温度 :300℃
・接合時間 :8時間
・接合圧 :50kg/cm2
【0038】
これにより、本発明のマイクロリアクターを得ることができた。得られたマイクロリアクターのアルミニウム基板とカバー部材との接合状態を走査型超音波画像探査装置(SAT)で確認した結果、極めて高い強度で接合されており、また、多面付け(8×5面付け)のピッチ精度が維持されていることが確認された。
【0039】
[比較例]
まず、実施例と同様に、溝部形成工程、絶縁膜形成工程、発熱体配設工程、触媒担持工程を経て、最後に、8×5面付けのアルミニウム基板の微細溝部形成面側をアルミナ粉により研磨してアルミニウム面を露出させた。
次いで、カバー部材として、厚み100μmのアルミニウム板(250mm×250mm)を準備し、このアルミニウム板に開口部(原料導入口とガス排出口の2個、各開口部の寸法は0.6mm×0.6mm)を8×5面付け(面付けピッチは上記のアルミニウム基板の微細溝部形成と同じものとした)で設けた。そして、このカバー部材をアルミニウム基板面に実施例と同様の接合条件で拡散接合した。この拡散接合では、カバー部材の各開口部がアルミニウム基板に形成された微細溝部の流路の両端部に一致するように位置合わせを行った。これにより、比較例のマイクロリアクターを得た。
【0040】
得られたマイクロリアクターのアルミニウム基板とカバー部材との接合状態を実施例と同様の方法で確認した。その結果、実施例と同様の接合条件1で接合したマイクロリアクターでは、アルミニウム基板とカバー部材との剥離が生じ、十分な接合状態が得られていないことが確認された。
【0041】
【発明の効果】
以上詳述したように、本発明によれば、マイクロリアクターを構成する金属基板がアルミニウムまたはアルミニウム合金からなり、シリコン基板やセラミックス基板に比べて、熱伝導率が高く熱容量が小さいので、担持触媒への熱伝達が高効率で行われ、停止状態から始動したときの立ち上がり速度が速く、かつ、発熱体への投入電力の利用効率の高い水素製造用改質器が可能となる。また、金属基板とカバー部材との間に介在する表面処理層により両者が強固に接合されているので機械的安定性に優れたマイクロリアクターであり、さらに、金属基板への微細溝部の形成は、マイクロマシーンによる加工を必要とせず、エッチング加工等の安価な加工方法により容易に行えるので、マイクロリアクターの製造コスト低減が可能となる。
【図面の簡単な説明】
【図1】本発明のマイクロリアクターの一実施形態を示す斜視図である。
【図2】図1に示されるマイクロリアクターのII−II線における拡大縦断面図である。
【図3】図1に示されるマイクロリアクターの金属基板の微細溝部形成面側を示す斜視図である。
【図4】本発明のマイクロリアクターの他の実施形態を示す図2相当の縦断面図である。
【図5】本発明のマイクロリアクター製造方法の一実施形態を説明するための工程図である。
【図6】本発明のマイクロリアクター製造方法の一実施形態を説明するための工程図である。
【図7】本発明のマイクロリアクター製造方法の他の実施形態を説明するための工程図である。
【図8】本発明のマイクロリアクター製造方法の他の実施形態を説明するための工程図である。
【符号の説明】
1,1′…マイクロリアクター
2,2′…金属基板
3…微細溝部
4…絶縁膜(金属酸化膜)
4′…絶縁膜
5…発熱体
6…電極
7…発熱体保護層
8…カバー部材
9…表面処理層
C…触媒
【発明の属する技術分野】
本発明は、水素製造用改質器に使用するマイクロリアクター、特にメタノール等の原料を改質して水素ガスを得るためのマイクロリアクターと、このマイクロリアクターの製造方法に関する。
【0002】
【従来の技術】
【特許文献1】特開2002−252014号公報
近年、地球環境保護の観点で二酸化炭素等の地球温暖化ガスの発生がなく、また、エネルギー効率が高いことから、水素を燃料とすることが注目されている。特に、燃料電池は水素を直接電力に変換できることや、発生する熱を利用するコジェネレーションシステムにおいて高いエネルギー変換効率が可能なことから注目されている。これまで燃料電池は宇宙開発や海洋開発等の特殊な条件において採用されてきたが、最近では自動車や家庭用分散電源用途への開発が進んでおり、また、携帯機器用の燃料電池も開発されている。
【0003】
燃料電池の中で、天然ガス、ガソリン、ブタンガス、メタノール等の炭化水素系燃料を改質して得られる水素ガスと、空気中の酸素とを電気化学的に反応させて電気を取り出す燃料電池は、一般に炭化水素系燃料を水蒸気改質して水素ガスを生成する改質器と、電気を発生させる燃料電池本体等で構成される。
メタノール等を原料として水蒸気改質により水素ガスを得るための改質器では、主にCu−Zn系触媒を使用し、吸熱反応により原料の水蒸気改質が行われる。産業用の燃料電池では、起動・停止が頻繁に行われることがないため、改質器の温度変動は生じにくい。しかし、自動車用や携帯機器用の燃料電池では、起動・停止が頻繁に行われるため、停止状態から始動したときの改質器の立ち上がりが速い(原料の水蒸気改質温度に達するまでの時間が短い)ことが要求される。
一方、特に携帯機器用では、燃料電池の小型化が必須であり、改質器の小型化が種々検討されている。例えば、シリコン基板やセラミックス基板にマイクロチャネルを形成し、このマイクロチャネル内に触媒を担持したマイクロリアクターが開発されている(特許文献1)。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のマイクロリアクターは、熱の利用効率が悪く、停止状態から始動したときの改質器の立ち上がり速度が遅いという問題があった。また、マイクロマシーンによる加工等を必要とし、製造コストが高いという問題もあった。
本発明は上述のような事情に鑑みてなされたものであり、小型高効率であり、かつ、機械的安定性に優れた水素製造用改質器を可能とするマイクロリアクターと、このマイクロリアクターを簡便に製造することが可能な製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このような目的を達成するために、本発明は、原料を改質して水素ガスを得るためのマイクロリアクターにおいて、一方の面に微細溝部を備えたアルミニウムまたはアルミニウム合金からなる金属基板と、該微細溝部内に担持された触媒と、前記微細溝部を覆うように前記金属基板に接合され原料導入口とガス排出口を有するカバー部材とを備え、前記カバー部材はアルミニウムおよびアルミニウム合金のいずれかであり、かつ、少なくとも前記金属基板との接合面に表面処理層を有するような構成とした。
【0006】
本発明の他の態様として、カバー部材が有する前記表面処理層は亜鉛、スズ、金および銅の少なくとも1種を含有するような構成とした。
本発明の他の態様として、前記金属基板は、前記微細溝部形成面の反対側の面に絶縁膜を介して発熱体を備えるような構成、前記絶縁膜は前記金属基板を陽極酸化して形成した金属酸化膜であるような構成とした。
本発明の他の態様として、前記微細溝部内にも前記金属酸化膜が形成されているような構成とした。
本発明の他の態様として、前記発熱体の電極を露出させて前記発熱体を被覆するように設けられた発熱体保護層を備えるような構成とした。
【0007】
また、本発明は、原料を改質して水素ガスを得るためのマイクロリアクターの製造方法において、アルミニウムまたはアルミニウム合金からなる金属基板の一方の面に微細溝部を形成する溝部形成工程と、前記微細溝部内に触媒を担持する触媒担持工程と、原料導入口とガス排出口が形成されたアルミニウムまたはアルミニウム合金からなるカバー部材の少なくとも前記金属基板と接合される面に表面処理層を形成する表面処理工程と、前記カバー部材を、前記微細溝部を覆うように前記金属基板に拡散接合する接合工程と、を有するような構成とした。
【0008】
本発明の他の態様として、前記表面処理工程は、亜鉛、スズ、金および銅の少なくとも1種を含有する薄膜を形成する工程であるような構成とした。
本発明の他の態様として、前記表面処理工程は、ダブルジンケート処理であるような構成とした。
本発明の他の態様として、前記溝部形成工程と前記触媒担持工程との間に、少なくとも前記微細溝部が形成されていない前記金属基板面上に絶縁膜を設ける絶縁膜形成工程と、前記絶縁膜上に発熱体を設ける発熱体配設工程と、を有するような構成とした。
本発明の他の態様として、前記絶縁膜形成工程は、前記金属基板を陽極酸化して金属酸化膜を形成する工程であるような構成とした。
【0009】
上記のような本発明では、アルミニウムまたはアルミニウム合金からなる金属基板の熱伝導率が高く、熱容量が小さいので、発熱体から担持触媒へ熱が高効率で伝達され、また、金属基板とカバー部材との間に介在する表面処理層が両者の密着性を向上させる作用をなす。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
マイクロリアクター
図1は本発明のマイクロリアクターの一実施形態を示す斜視図であり、図2は図1に示されるマイクロリアクターのII−II線における拡大縦断面図である。図1および図2において、本発明のマイクロリアクター1は、アルミニウムまたはアルミニウム合金からなる金属基板2と、この金属基板2の一方の面2aに形成された微細溝部3と、この微細溝部3内部および金属基板2の両面2a,2bと側面2cに形成された金属酸化膜からなる絶縁膜4と、金属基板2の表面2b上に絶縁膜4を介して設けられた発熱体5と、微細溝部3内に担持された触媒Cと、上記微細溝部3を覆うように金属基板2に接合されたカバー部材8と、を備えている。また、発熱体5には電極6,6が形成され、この電極6,6が露出するような電極開口部7a,7aを有する発熱体保護層7が、発熱体5を覆うように設けられている。また、上記カバー部材8はアルミニウムまたはアルミニウム合金からなり、原料導入口8aとガス排出口8bが設けられているとともに、両面に表面処理層9を備えている。そして、この表面処理層9を介してカバー部材8が金属基板2に接合されており、両者の接合面には絶縁膜4は存在しない。
【0011】
図3は、図1に示されるマイクロリアクター1の金属基板2の微細溝部3形成面側を示す斜視図である。図3に示されるように、微細溝部3は櫛状のリブ2A,2Bを残すように形成され、端部3aから端部3bまで連続する形状である。そして、カバー部材8の原料導入口8aを端部3aに位置させ、ガス排出口8bを端部3bに位置させることにより、原料導入口8aからガス排出口8bまで連続した流路が構成される。
本発明のマイクロリアクター1を構成する金属基板2は、上述のようにアルミニウムまたはアルミニウム合金からなる。アルミニウム合金としては、JIS1000、2000、3000、5000、6000、7000番台の材料等を使用することができる。このような金属基板2は、陽極酸化により金属酸化膜(絶縁膜4)を形成することができ、さらに、加工適性や、熱容量、熱伝導率等の特性、単価の点から好ましく使用される。金属基板2の厚みは、マイクロリアクター1の大きさ、使用する金属材料の熱容量、熱伝導率等の特性、形成する微細溝部3の大きさ等を考慮して適宜設定することができるが、例えば、50〜2000μm程度の範囲で設定することができる。
【0012】
このような金属基板2への陽極酸化による金属酸化膜(絶縁膜4)の形成は、金属基板2を外部電極の陽極に接続した状態で、陽極酸化溶液に浸漬して陰極と対向させ通電することにより行うことができる。金属酸化膜(絶縁膜4)の厚みは、例えば、5〜150μm程度の範囲で設定することができる。
金属基板2に形成される微細溝部3は、図3に示されるような形状に限定されるものではなく、微細溝部3内に担持する触媒Cの量が多くなり、かつ、原料が触媒Cと接触する流路長が長くなるような任意の形状とすることができる。通常、微細溝部3の深さは100〜1000μm程度の範囲内、幅は100〜1000μm程度の範囲内で設定することができ、流路長は30〜300mm程度の範囲とすることができる。
【0013】
本発明では、微細溝部3内部にも金属酸化膜からなる絶縁膜4が形成されているので、微細孔を有する金属酸化膜の表面構造により、触媒Cの担持量が増大するとともに、安定した触媒担持が可能となる。
触媒Cとしては、従来から水蒸気改質に使用されている公知の触媒を使用することができる。
本発明のマイクロリアクター1を構成する発熱体5は、吸熱反応である原料の水蒸気改質に必要な熱を供給するためのものであり、カーボンペースト、ニクロム(Ni−Cr合金)、W(タングステン)、Mo(モリブデン)等の材質を使用することができる。この発熱体5は、例えば、幅10〜200μm程度の細線を、微細溝部3が形成されている領域に相当する金属基板面2b(絶縁膜4)上の領域全面に引き回したような形状とすることができる。
【0014】
このような発熱体5には、通電用の電極6,6が形成されている。通電用の電極6,6は、Au、Ag、Pd、Pd−Ag等の導電材料を用いて形成することができる。
発熱体保護層7は、上記の電極6,6を露出させるための電極開口部7a,7aを有し、発熱体5を覆うように配設されている。この発熱体保護層7は、例えば、感光性ポリイミド、ワニス状のポリイミド等により形成することができる。また、発熱体保護層7の厚みは、使用する材料等を考慮して適宜設定することができるが、例えば、2〜25μm程度の範囲で設定することができる。
【0015】
本発明のマイクロリアクター1を構成するカバー部材8は、アルミニウムまたはアルミニウム合金からなり、両面に表面処理層9を備えている。アルミニウム合金としては、JIS1000、2000、3000、5000、6000、7000番台の材料等を使用することができる。表面処理層9は、亜鉛、スズ、金および銅の少なくとも1種を含有する層であってよく、特にジンケート処理、ダブルジンケート処理により形成した亜鉛薄膜が好ましい。カバー部材8の厚みは、使用する材料等を考慮して適宜設定することができ、例えば、220〜3000μm程度の範囲で設定することができ、表面処理層9の厚みは、例えば、2〜100μm程度の範囲で設定することができる。また、カバー部材8が備える原料導入口8aとガス排出口8bは、金属基板2に形成された微細溝部3の流路の両端部3a,3bに位置するように設けられている。
【0016】
図4は、本発明のマイクロリアクターの他の実施形態を示す図2相当の縦断面図である。図4において、本発明のマイクロリアクター1′は、アルミニウムまたはアルミニウム合金からなる金属基板2′と、この金属基板2′の一方の面2′aに形成された微細溝部3と、金属基板2′の他の面2′bに形成された絶縁膜4′と、金属基板2′の表面2′b上に絶縁膜4′を介して設けられた発熱体5と、微細溝部3内に担持された触媒Cと、上記微細溝部3を覆うように金属基板2′に接合されたカバー部材8と、を備えている。また、発熱体5には電極6,6が形成され、この電極6,6が露出するような電極開口部7a,7aを有する発熱体保護層7が、発熱体5を覆うように設けられている。また、上記カバー部材8はアルミニウムまたはアルミニウム合金からなり、原料導入口8aとガス排出口8bが設けられているとともに、両面に表面処理層9を備えている。そして、この表面処理層9を介してカバー部材8は金属基板2に接合されている。
【0017】
このようなマイクロリアクター1′は、金属部材2′、絶縁層4′が異なる点、および、微細溝部3内に金属酸化膜(絶縁層4)が形成されていない点を除いて、上述のマイクロリアクター1と同様であり、同じ構成部材には同じ部材番号を付し、説明は省略する。
本発明のマイクロリアクター1′を構成する金属基板2′は、上述のようにアルミニウムまたはアルミニウム合金からなり、厚みは、マイクロリアクター1′の大きさ、使用する金属の熱容量、熱伝導率等の特性、形成する微細溝部3の大きさ等を考慮して適宜設定することができるが、例えば、50〜2000μm程度の範囲で設定することができる。
【0018】
金属基板2′の面2′bに形成された絶縁膜4′は、例えば、ポリイミド、セラミック(Al2O3、SiO2)等により形成されたものとすることができる。このような絶縁膜4′の厚みは、使用する材料の特性等を考慮して適宜設定することができ、例えば、1〜30μm程度の範囲で設定することができる。
上述のような本発明のマイクロリアクター1,1′は、アルミニウムまたはアルミニウム合金からなる金属基板2,2′を使用しており、これらはシリコン基板やセラミックス基板に比べて、熱伝導率が高く熱容量が小さいので、発熱体5から担持触媒Cへ高効率で熱が伝達され、停止状態から始動したときの立ち上がりが速く、かつ、発熱体への投入電力の利用効率の高い水素製造用改質器が可能となる。また、金属基板2,2′とカバー部材8との間に介在する表面処理層9により両者が強固に接合されているので、マイクロリアクター1,1′は機械的安定性に優れたものとなる。
【0019】
本発明のマイクロリアクターは、水素製造用改質器において、原料の混合・気化器、改質器、CO除去器のいずれにも使用することができる。
尚、上述のマイクロリアクターの実施形態は一例であり、本発明はこれらに限定されるものではない。例えば、上述の実施形態では、カバー部材8は両面に表面処理層9を備えているが、金属基板2,2′との接合される面のみに表面処理層9を備えるものであってもよい。
【0020】
マイクロリアクターの製造方法
図5および図6は本発明のマイクロリアクター製造方法の一実施形態を説明するための工程図である。
図5、図6では、上述のマイクロリアクター1を例にして説明する。本発明の製造方法では、まず、溝部形成工程において、アルミニウムまたはアルミニウム合金からなる金属基板2の一方の面2aに微細溝部3を形成する(図5(A))。この微細溝部3は、金属基板2の面2aに所定の開口パターンを有するレジストを形成し、このレジストをマスクとしてウエットエッチングにより櫛状のリブ2A,2Bを残すように金属基板2をエッチングして形成することができ、マイクロマシーンによる加工を不要とすることができる。
【0021】
次に、絶縁膜形成工程のおいて、微細溝部3を形成した金属基板2を陽極酸化して、微細溝部3内部を含む全面に金属酸化膜(絶縁膜4)を形成する(図5(B))。この金属酸化膜(絶縁膜4)の形成は、金属基板2を外部電極の陽極に接続した状態で、陽極酸化溶液に浸漬して陰極と対向させ通電することにより行うことができる。
次いで、発熱体配設工程にて、微細溝部3が形成されていない金属基板2の面2bの金属酸化膜(絶縁膜4)上に発熱体5を設け、さらに、通電用の電極6,6を形成する(図5(C))。発熱体5は、カーボンペースト、ニクロム(Ni−Cr合金)、W、Mo等の材質を使用して形成することができる。発熱体5の形成方法としては、上記の材料を含有するペーストを用いてスクリーン印刷により形成する方法、上記の材料を含有するペーストを用いて塗布膜を形成し、その後、エッチング等によりパターニングする方法、上記材料を用いて真空成膜法により薄膜を形成し、その後、エッチング等によりパターニングする方法等を挙げることができる。
【0022】
また、通電用の電極6,6は、Au、Ag、Pd、Pd−Ag等の導電材料を用いて形成することができ、例えば、上記の導電材料を含有するペーストを用いてスクリーン印刷により形成することができる。
次に、電極6,6が露出するように発熱体保護層7を発熱体5上に形成する(図5(D))。発熱体保護層7は、ポリイミド、セラミック(Al2O3、SiO2)等の材料を用いて形成することができ、例えば、上記材料を含有するペーストを用いてスクリーン印刷により電極開口部7a,7aを有するパターンで形成することができる。
【0023】
次いで、触媒担持工程において、微細溝部3内に触媒Cを担持させる(図6(A))。この触媒担持は、金属基板2の微細溝部3が形成されている面2aを、所望の触媒溶液内に浸漬して行うことができる。その後、金属基板2を研磨して金属基板2の面2aを露出させる(図6(B))。
一方、表面処理工程において、カバー部材8の少なくとも金属基板2と接合される面(図示例では、カバー部材8の両面)に表面処理層9を形成する(図6(C))。カバー部材8は、アルミニウムまたはアルミニウム合金からなり、原料導入口8aとガス排出口8bを有するものであり、表面処理層9としては、亜鉛、スズ、金および銅の少なくとも1種を含有する層を形成する。例えば、ジンケート処理、あるいは、ダブルジンケート処理により亜鉛薄膜を表面処理層9として形成することができる。ジンケート処理やダブルジンケート処理には特に制限はなく、アルミニウムに対する従来公知のジンケート処理、ダブルジンケート処理の条件により行うことができる。また、スズ、金および銅の少なくとも1種を含有する層は、従来公知の置換めっきにより形成することができる。
【0024】
次いで、接合工程において、カバー部材8を表面処理層9を介して金属基板面2aに接合して本発明のマイクロリアクター1を得ることができる(図6(D))。カバー部材8の金属基板面2aへの接合は、例えば、拡散接合等により行うことができる。拡散接合を用いる場合、接合条件として、圧力30〜300kg/cm2、温度350〜450℃の範囲で設定することができる。
尚、接合工程では、カバー部材8に設けられている原料導入口8aとガス排出口8bが、金属基板2に形成された微細溝部3の流路の両端部に一致するように位置合わせをする。
【0025】
図7および図8は本発明のマイクロリアクター製造方法の他の実施形態を説明するための工程図である。
図7、図8では、上述のマイクロリアクター1′を例にして説明する。本発明の製造方法では、まず、溝部形成工程にて、アルミニウムまたはアルミニウム合金からなる金属基板2′の一方の面2′aに微細溝部3を形成する(図7(A))。この微細溝部3の形成は、上述の金属基板2への微細溝部3の形成と同様にして行うことができる。
次に、絶縁膜形成工程において、微細溝部3が形成されていない金属基板2′の面2′b上に絶縁膜4′を形成する(図7(B))。この絶縁膜4′は、例えば、ポリイミド、セラミック(Al2O3、SiO2)等を用いて形成することができる。絶縁膜4′の形成は、例えば、上記の絶縁材料を含有するペーストを用いたスクリーン印刷等の印刷法により、あるいは、上記絶縁材料を用いたスパッタリング、真空蒸着等の真空成膜法により薄膜を形成し、硬化させることにより行うことができる。
【0026】
次いで、発熱体配設工程において、絶縁膜4′上に発熱体5を設け、さらに、通電用の電極6,6を形成する(図7(C))。このような発熱体5、電極6,6の形成は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
次に、電極6,6が露出するように発熱体保護層7を発熱体5上に形成する(図7(D))。この発熱体保護層7の形成は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
次いで、触媒担持工程にて、微細溝部3内に触媒Cを担持させる(図8(A))。この触媒担持は、金属基板2′の微細溝部3が形成されている面2′aを、所望の触媒溶液内に浸漬して行うことができる。その後、金属基板2′を研磨して金属基板面2′aを露出させる(図8(B))。
【0027】
一方、表面処理工程において、カバー部材8の少なくとも金属基板2′と接合される面(図示例では、カバー部材8の両面)に表面処理層9を形成する(図8(C))。このカバー部材8の表面処理工程は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
次いで、接合工程において、カバー部材8を金属基板面2′aに接合して本発明のマイクロリアクター1′を得ることができる(図8(D))。このカバー部材8の接合は、上述のマイクロリアクター1の製造方法と同様に行うことができる。
【0028】
このような本発明のマイクロリアクター製造方法では、金属基板を使用するので、微細溝部の形成でマイクロマシーン加工を行う必要がなく、エッチング加工等の安価な加工方法により容易に行うことができ、マイクロリアクターの製造コスト低減が可能となる。また、金属基板との接合の前に予めカバー部材に表面処理層を形成するので、両者を強固に接合することができる。
尚、上述のマイクロリアクター製造方法の実施形態は一例であり、本発明はこれらに限定されるものではない。
【0029】
【実施例】
次に、より具体的な実施例を示して本発明を更に詳細に説明する。
[実施例]
基材として厚み1000μmのアルミニウム基板(250mm×250mm)を準備し、このアルミニウム基板の両面に感光性レジスト材料(東京応化工業(株)製OFPR)をディップ法により塗布(膜厚7μm(乾燥時))した。次に、アルミニウム基板の微細溝部を形成する側のレジスト塗膜上に、幅1500μmのストライプ状の遮光部がピッチ2000μmで左右から交互に突出(突出長30mm)した形状のフォトマスクを配し、このフォトマスクを介してレジスト塗布膜を露光し、炭酸水素ナトリウム溶液を使用して現像した。これにより、アルミニウム基板の一方の面には、幅500μmのストライプ状の開口部がピッチ2000μmで配列され、隣接するストライプ状の開口部が、その端部において交互に連続するようなレジストパターンが形成された。
【0030】
次に、上記のレジストパターンをマスクとして、下記の条件でアルミニウム基板をエッチングした。このエッチングは、アルミニウム基板の一方の面からハーフエッチングにより微細溝部を形成するものであり、エッチングに要した時間は3分間であった。
(エッチング条件)
・温度 : 20℃
・エッチング液(HCl)濃度: 200g/L(35%HClを純水中に200g溶解して1Lとする)
【0031】
上記のエッチング処理が終了した後、水酸化ナトリウム溶液を用いてレジストパターンを除去し、水洗した。これにより、アルミニウム基板の一方の面に、幅1000μm、深さ650μm、長さ30mmのストライプ形状の微細溝が2000μmのピッチで形成され、隣接する微細溝の端部において交互に連続するような(図3に示されるような)微細溝部(流路長300mm)が8×5面付け(8面付け方向のピッチ25mm、5面付け方向のピッチ35mm)で形成された。(以上、溝部形成工程)
【0032】
次に、上記のアルミニウム基板を外部電極の陽極に接続し、陽極酸化溶液(4%シュウ酸溶液)に浸漬して陰極と対向させ、下記の条件で通電することにより、酸化アルミニウム薄膜を形成して絶縁膜とした。尚、形成した酸化アルミニウム薄膜の厚みをエリプソメーターで測定した結果、約30μmであった。(以上、絶縁膜形成工程)
(陽極酸化の条件)
・浴温 : 25℃
・電圧 : 25V(DC)
・電流密度 : 100A/m2
【0033】
次いで、微細溝部が形成されていないアルミニウム基板の酸化アルミニウム薄膜上に下記組成の発熱体用ペーストをスクリーン印刷により印刷し、200℃で硬化させて発熱体を形成した。形成した発熱体は、幅100μmの細線を、微細溝部が形成されている領域に相当する領域(35mm×25mm)全面を覆うようにアルミニウム基板上に線間隔100μmで引き回したような形状とした。
(発熱体用ペーストの組成)
・カーボン粉末 … 20重量部
・微粉末シリカ … 25重量部
・キシレンフェノール樹脂 … 36重量部
・ブチルカルビトール … 19重量部
【0034】
また、下記組成の電極用ペーストを用いて、スクリーン印刷により発熱体の所定の2ヶ所に電極(0.5mm×0.5mm)を形成した。
(電極用ペーストの組成)
・銀めっき銅粉末 … 90重量部
・フェノール樹脂 … 6.5重量部
・ブチルカルビトール … 3.5重量部
次に、発熱体上に形成された2個の電極を露出するように、下記組成の保護層用ペーストを用いて、スクリーン印刷により発熱体保護層(厚み20μm)を発熱体上に形成した。(以上、発熱体配設工程)
(保護層用ペーストの組成)
・樹脂分濃度 … 30重量部
・シリカフィラー … 10重量部
・ラクトン系溶剤(ペンタ1−4−ラクトン) … 60重量部
【0035】
次いで、アルミニウム基板の微細溝部形成面側を下記組成の触媒水溶液内に浸漬(10分間)し、その後、250℃、6時間の乾燥還元処理を施して、微細溝部内に触媒を担持させた。(以上、触媒担持工程)
(触媒水溶液の組成)
・Al … 41.2重量%
・Cu … 2.6重量%
・Zn … 2.8重量%
【0036】
次に、アルミニウム基板の微細溝部形成面側をアルミナ粉により研磨してアルミニウム面を露出させた。
一方、カバー部材として、厚み100μmのアルミニウム板(250mm×250mm)を準備し、このアルミニウム板に開口部(原料導入口とガス排出口の2個、各開口部の寸法は0.6mm×0.6mm)を8×5面付け(面付けピッチは上記のアルミニウム基板の微細溝部形成と同じものとした)で設けた。その後、脱脂剤(アセトン)を用いてカバー部材に脱脂処理を施し、下記組成のジンケート浴(浴温20℃)に60秒間浸漬して1回目のジンケート処理を施した。次いで、カバー部材を水洗し、50%硝酸水溶液(液温20℃)に30秒間浸漬して1回目のジンケート処理で形成した亜鉛薄膜を除去した。次に、カバー部材を水洗し、上記のジンケート浴(浴温20℃)に30秒間浸漬して2回目のジンケート処理を施して亜鉛薄膜を形成し、その後、水洗した。(以上、表面処理工程)
(ジンケート浴組成)
・酸化亜鉛 … 20g/L
・水酸化ナトリウム … 120g/L
・塩化第二鉄 … 2g/L
・ロッセル塩 … 50g/L
・硝酸ナトリウム … 1g/L
【0037】
次いで、カバー部材をアルミニウム基板面に下記の条件1で拡散接合した。この拡散接合では、カバー部材の各開口部がアルミニウム基板に形成された微細溝部の流路の両端部に一致するように位置合わせを行った。
(拡散接合条件1)
・雰囲気 :真空中
・接合温度 :300℃
・接合時間 :8時間
・接合圧 :50kg/cm2
【0038】
これにより、本発明のマイクロリアクターを得ることができた。得られたマイクロリアクターのアルミニウム基板とカバー部材との接合状態を走査型超音波画像探査装置(SAT)で確認した結果、極めて高い強度で接合されており、また、多面付け(8×5面付け)のピッチ精度が維持されていることが確認された。
【0039】
[比較例]
まず、実施例と同様に、溝部形成工程、絶縁膜形成工程、発熱体配設工程、触媒担持工程を経て、最後に、8×5面付けのアルミニウム基板の微細溝部形成面側をアルミナ粉により研磨してアルミニウム面を露出させた。
次いで、カバー部材として、厚み100μmのアルミニウム板(250mm×250mm)を準備し、このアルミニウム板に開口部(原料導入口とガス排出口の2個、各開口部の寸法は0.6mm×0.6mm)を8×5面付け(面付けピッチは上記のアルミニウム基板の微細溝部形成と同じものとした)で設けた。そして、このカバー部材をアルミニウム基板面に実施例と同様の接合条件で拡散接合した。この拡散接合では、カバー部材の各開口部がアルミニウム基板に形成された微細溝部の流路の両端部に一致するように位置合わせを行った。これにより、比較例のマイクロリアクターを得た。
【0040】
得られたマイクロリアクターのアルミニウム基板とカバー部材との接合状態を実施例と同様の方法で確認した。その結果、実施例と同様の接合条件1で接合したマイクロリアクターでは、アルミニウム基板とカバー部材との剥離が生じ、十分な接合状態が得られていないことが確認された。
【0041】
【発明の効果】
以上詳述したように、本発明によれば、マイクロリアクターを構成する金属基板がアルミニウムまたはアルミニウム合金からなり、シリコン基板やセラミックス基板に比べて、熱伝導率が高く熱容量が小さいので、担持触媒への熱伝達が高効率で行われ、停止状態から始動したときの立ち上がり速度が速く、かつ、発熱体への投入電力の利用効率の高い水素製造用改質器が可能となる。また、金属基板とカバー部材との間に介在する表面処理層により両者が強固に接合されているので機械的安定性に優れたマイクロリアクターであり、さらに、金属基板への微細溝部の形成は、マイクロマシーンによる加工を必要とせず、エッチング加工等の安価な加工方法により容易に行えるので、マイクロリアクターの製造コスト低減が可能となる。
【図面の簡単な説明】
【図1】本発明のマイクロリアクターの一実施形態を示す斜視図である。
【図2】図1に示されるマイクロリアクターのII−II線における拡大縦断面図である。
【図3】図1に示されるマイクロリアクターの金属基板の微細溝部形成面側を示す斜視図である。
【図4】本発明のマイクロリアクターの他の実施形態を示す図2相当の縦断面図である。
【図5】本発明のマイクロリアクター製造方法の一実施形態を説明するための工程図である。
【図6】本発明のマイクロリアクター製造方法の一実施形態を説明するための工程図である。
【図7】本発明のマイクロリアクター製造方法の他の実施形態を説明するための工程図である。
【図8】本発明のマイクロリアクター製造方法の他の実施形態を説明するための工程図である。
【符号の説明】
1,1′…マイクロリアクター
2,2′…金属基板
3…微細溝部
4…絶縁膜(金属酸化膜)
4′…絶縁膜
5…発熱体
6…電極
7…発熱体保護層
8…カバー部材
9…表面処理層
C…触媒
Claims (11)
- 原料を改質して水素ガスを得るためのマイクロリアクターにおいて、
一方の面に微細溝部を備えたアルミニウムまたはアルミニウム合金からなる金属基板と、該微細溝部内に担持された触媒と、前記微細溝部を覆うように前記金属基板に接合され原料導入口とガス排出口を有するカバー部材とを備え、前記カバー部材はアルミニウムおよびアルミニウム合金のいずれかであり、かつ、少なくとも前記金属基板との接合面に表面処理層を有することを特徴とするマイクロリアクター。 - カバー部材が有する前記表面処理層は亜鉛、スズ、金および銅の少なくとも1種を含有することを特徴とする請求項1に記載のマイクロリアクター。
- 前記金属基板は、前記微細溝部形成面の反対側の面に絶縁膜を介して発熱体を備えることを特徴とする請求項1または請求項2に記載のマイクロリアクター。
- 前記絶縁膜は前記金属基板を陽極酸化して形成した金属酸化膜であることを特徴とする請求項3に記載のマイクロリアクター。
- 前記微細溝部内にも前記金属酸化膜が形成されていることを特徴とする請求項4に記載のマイクロリアクター。
- 前記発熱体の電極を露出させて前記発熱体を被覆するように設けられた発熱体保護層を備えることを特徴とする請求項3乃至請求項5のいずれかに記載のマイクロリアクター。
- 原料を改質して水素ガスを得るためのマイクロリアクターの製造方法において、
アルミニウムまたはアルミニウム合金からなる金属基板の一方の面に微細溝部を形成する溝部形成工程と、
前記微細溝部内に触媒を担持する触媒担持工程と、
原料導入口とガス排出口が形成されたアルミニウムまたはアルミニウム合金からなるカバー部材の少なくとも前記金属基板と接合される面に表面処理層を形成する表面処理工程と、
前記カバー部材を、前記微細溝部を覆うように前記金属基板に拡散接合する接合工程と、を有することを特徴とするマイクロリアクターの製造方法。 - 前記表面処理工程は、亜鉛、スズ、金および銅の少なくとも1種を含有する薄膜を形成する工程であることを特徴とする請求項7に記載のマイクロリアクターの製造方法。
- 前記表面処理工程は、ダブルジンケート処理であることを特徴とする請求項7に記載のマイクロリアクターの製造方法。
- 前記溝部形成工程と前記触媒担持工程との間に、少なくとも前記微細溝部が形成されていない前記金属基板面上に絶縁膜を設ける絶縁膜形成工程と、前記絶縁膜上に発熱体を設ける発熱体配設工程と、を有することを特徴とする請求項7乃至請求項9のいずれかに記載のマイクロリアクターの製造方法。
- 前記絶縁膜形成工程は、前記金属基板を陽極酸化して金属酸化膜を形成する工程であることを特徴とする請求項10に記載のマイクロリアクターの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003127731A JP2004331434A (ja) | 2003-05-06 | 2003-05-06 | 水素製造用のマイクロリアクターおよびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003127731A JP2004331434A (ja) | 2003-05-06 | 2003-05-06 | 水素製造用のマイクロリアクターおよびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004331434A true JP2004331434A (ja) | 2004-11-25 |
Family
ID=33504126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003127731A Pending JP2004331434A (ja) | 2003-05-06 | 2003-05-06 | 水素製造用のマイクロリアクターおよびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004331434A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004356003A (ja) * | 2003-05-30 | 2004-12-16 | Sony Corp | 反応装置とその製造方法、改質装置、電源供給システム |
JP2007314353A (ja) * | 2006-05-23 | 2007-12-06 | Toppan Printing Co Ltd | 水素製造用マイクロリアクターおよびその製造方法 |
CN100463270C (zh) * | 2005-08-24 | 2009-02-18 | 三星电机株式会社 | 薄式微型重组器 |
JP2009233564A (ja) * | 2008-03-27 | 2009-10-15 | Dainippon Printing Co Ltd | マイクロリアクターの製造方法 |
US7867297B2 (en) | 2005-09-08 | 2011-01-11 | Casio Computer Co., Ltd. | Reactor, fuel cell system and electronic equipment |
US8038959B2 (en) * | 2005-09-08 | 2011-10-18 | Casio Computer Co., Ltd. | Reacting device |
US8273141B2 (en) | 2006-02-03 | 2012-09-25 | Samsung Sdi Co., Ltd. | Fuel reforming apparatus and manufacturing method thereof |
CN103693617A (zh) * | 2013-12-16 | 2014-04-02 | 浙江大学 | 带星型微凸台阵列的层叠自热型醇类制氢微反应器 |
-
2003
- 2003-05-06 JP JP2003127731A patent/JP2004331434A/ja active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004356003A (ja) * | 2003-05-30 | 2004-12-16 | Sony Corp | 反応装置とその製造方法、改質装置、電源供給システム |
JP4587016B2 (ja) * | 2003-05-30 | 2010-11-24 | ソニー株式会社 | 反応装置とその製造方法、改質装置、電源供給システム |
CN100463270C (zh) * | 2005-08-24 | 2009-02-18 | 三星电机株式会社 | 薄式微型重组器 |
US7867297B2 (en) | 2005-09-08 | 2011-01-11 | Casio Computer Co., Ltd. | Reactor, fuel cell system and electronic equipment |
US8038959B2 (en) * | 2005-09-08 | 2011-10-18 | Casio Computer Co., Ltd. | Reacting device |
US8273141B2 (en) | 2006-02-03 | 2012-09-25 | Samsung Sdi Co., Ltd. | Fuel reforming apparatus and manufacturing method thereof |
JP2007314353A (ja) * | 2006-05-23 | 2007-12-06 | Toppan Printing Co Ltd | 水素製造用マイクロリアクターおよびその製造方法 |
JP2009233564A (ja) * | 2008-03-27 | 2009-10-15 | Dainippon Printing Co Ltd | マイクロリアクターの製造方法 |
CN103693617A (zh) * | 2013-12-16 | 2014-04-02 | 浙江大学 | 带星型微凸台阵列的层叠自热型醇类制氢微反应器 |
CN103693617B (zh) * | 2013-12-16 | 2016-01-27 | 浙江大学 | 带星型微凸台阵列的层叠自热型醇类制氢微反应器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8123825B2 (en) | Microreactor and production method thereof | |
US20110041986A1 (en) | Micro-reactor and method of manufacturing the same | |
TWI229013B (en) | Chemical reaction apparatus and power supply system | |
JP2008063166A (ja) | 被加工材の変形量低減方法、被加工材の加工方法及び反応器の製造方法 | |
JP3899985B2 (ja) | 微小反応炉構成体およびその製造方法 | |
JP4414780B2 (ja) | 水素製造用のマイクロリアクターおよびその製造方法 | |
JP2004331434A (ja) | 水素製造用のマイクロリアクターおよびその製造方法 | |
JP4504751B2 (ja) | 水素製造用のマイクロリアクター | |
TWI338406B (en) | Reactor and power supply system | |
JP2003265949A (ja) | 微小流路構成体およびその製造方法 | |
JP4486429B2 (ja) | 水素製造用のマイクロリアクターおよびその製造方法 | |
JP4366483B2 (ja) | 反応器 | |
JP4537685B2 (ja) | 水素製造用のメンブレンリアクター | |
JP4559790B2 (ja) | 水素製造用のマイクロリアクターおよびその製造方法 | |
JP2007207672A (ja) | 薄膜ヒーター及びその製造方法 | |
JP4867357B2 (ja) | 水素製造用のマイクロリアクター | |
TW200830602A (en) | Microreactor | |
JP4438569B2 (ja) | 反応器 | |
JP2007296495A (ja) | マイクロリアクターおよびその製造方法 | |
JP2004121899A (ja) | 水素製造用フィルタに用いる薄膜支持基板および水素製造用フィルタの製造方法 | |
JP2008069018A (ja) | マイクロ改質装置製造方法およびマイクロ改質装置 | |
JP4928491B2 (ja) | マイクロリアクターの製造方法 | |
JP2007136345A (ja) | マイクロリアクターおよびその製造方法 | |
JP4228583B2 (ja) | 陽極接合構造物および陽極接合方法 | |
KR100828489B1 (ko) | 마이크로 리액터 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100119 |