[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004324008A - Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption - Google Patents

Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption Download PDF

Info

Publication number
JP2004324008A
JP2004324008A JP2003120426A JP2003120426A JP2004324008A JP 2004324008 A JP2004324008 A JP 2004324008A JP 2003120426 A JP2003120426 A JP 2003120426A JP 2003120426 A JP2003120426 A JP 2003120426A JP 2004324008 A JP2004324008 A JP 2004324008A
Authority
JP
Japan
Prior art keywords
polyester
synthetic fiber
fiber
moisture absorption
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003120426A
Other languages
Japanese (ja)
Inventor
Sukehiro Nishida
右広 西田
Seiichi Ochi
清一 越智
Seiji Ishida
誠治 石田
Hideki Kawabata
秀樹 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003120426A priority Critical patent/JP2004324008A/en
Publication of JP2004324008A publication Critical patent/JP2004324008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester-based synthetic fiber having moisture-absorbing and releasing properties, providing excellent wear comfort, and having sufficient durability of the properties even against repeated laundry and repeated wear; and to provide a method for producing the polyester-based synthetic fiber fabric. <P>SOLUTION: The polyester-based synthetic fiber having excellent moisture absorption is obtained by introducing a vinyl monomer to the surface of the polyester-based synthetic fiber by a graft polymerization. The surface graft rate calculated from the weight ratio is ≥5% and ≤25%, and at least a part of the terminal groups introduced by the graft polymerization is formed into a salt. The method for producing the polyester-based synthetic fiber fabric having the excellent moisture absorption comprises weaving or knitting the polyester-based fiber obtained by subjecting the fiber in a yarn state to the graft polymerization in the presence of a swelling agent to modify the fiber, dying the resultant fiber in a state of being formed into the fabric, and converting the terminal group of the dyed product into the salt. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は吸放湿特性を有し着用快適性にも優れ、尚且つ該性能が繰り返し洗濯、繰り返し着用しても十分な耐久性を持つポリエステル系合成繊維及びポリエステル系合成繊維布帛の製造方法に関する。
【0002】
【従来の技術】
従来からポリエステルなど疎水性合成繊維を使用した織編物が多数上市されている。特にポリエステル系合成繊維は寸法安定性や強度面にも優れ、衣料用途を始め様々な分野への展開がなされているが、公定水分率が約0.4%と非常に低く、特に衣料用途とした場合、着用時取分け発汗時の蒸れ感、べとつき感が生じやすく、着心地や運動性の面でまだまだ改善の余地があるものであった。
【0003】
係る着用快適性を改善させる方法として疎水性表面に親水性基を導入する方法が知られている(例えば、特許文献1。)。この方法は親水性ビニルモノマーを繊維表面に重合させるものであるが、布帛構造物として薬液処理するために樹脂膜が布帛表面を覆い、風合いの硬化及び通気度低下、防しわ性の悪化、ドレープ性の低下等々が見られ、蒸れ感は改善されるものの「糊が効いた」如き張り感のあるものに仕上がってしまい着心地の観点から好ましいものにはならないという欠点を有している。
【0004】
【特許文献1】
特開2002−69846号公報(請求項1など)
【0005】
【発明が解決しようとする課題】
本発明は合成繊維、取り分け汎用疎水性合成繊維であるポリエステル系繊維の表面改質を行い、該ポリエステル系合成繊維からなる織編物に着心地を悪化させることなく高吸放湿性を付与することを課題とし、より詳しくには表面グラフト重合によって耐久性に富み、取扱性も良好な高吸放湿性ポリエステル系合成繊維及びその製造方法の提供を課題とするものであり、更に詳しくには従来から用いられているパディング法、スプレー法など疎水性繊維布帛への親水加工による風合い硬化、防皺性や通気度低下等々を抑制し、着用快適性、ドレープ性に優れ、耐久性に優れた高吸湿性を有するポリエステル系合成繊維の提供を課題とするものである。
【0006】
【課題を解決するための手段】
本発明者らは前記のような課題を解決すべく鋭意研究を重ねた結果、本発明に到達したもので、ポリエステル系合成繊維表面にビニルモノマーを主体とする重合性ポリマーで表面グラフト重合せしめ、架橋剤を導入し皮膜強度を強化することによって耐久性のある高吸湿性ポリエステル系繊維が得られる。また本発明では該表面グラフト重合を糸条の状態で実施する為、布帛で処理する場合と比較して、風合い硬化や通気度低下が抑制され、ドレープ性のある高吸湿性ポリエステル系繊維布帛を得ることが可能となる。またグラフト重合によって導入した酸末端は塩化により安定化させるのが定法であるが、塩化後の糸条は脆くなり高圧染色に耐えられない。本発明は末端基塩化の前に高圧染色を実施し、糸条及び布帛の強度低下を抑制させ、実用強力を保持させる方法を提供するものである。
【0007】
即ち、本発明は以下の構成よりなる。
1. ポリエステル系合成繊維表面に親水基を有するビニルモノマーをグラフト重合によって導入せしめた吸湿性に優れたポリエステル系合成繊維であって、重量比換算から求めた表面グラフト率が5%以上25%以下でグラフト重合により導入された末端基の少なくとも一部が塩化されてなることを特徴とする吸湿性に優れたポリエステル系合成繊維。
2. 20℃、65%RH環境における吸湿率が1.0%以上4.0%以下であることを特徴とする上記第1記載の吸湿性に優れたポリエステル系合成繊維。
3. JIS L−0217 103法による洗濯処理を50回実施後の20℃、65%RH環境における吸湿率が0.7%以上4.0%以下を保持することを特徴とする上記第1又は第2に記載の吸湿性に優れたポリエステル系合成繊維。
4. ポリエステル系繊維を糸条の状態で膨潤剤併用下、グラフト重合させ改質した糸条を製織編し、布帛とした状態で染色し、その後末端基を塩化することを特徴とする吸湿性に優れたポリエステル系合成繊維布帛の製造方法。
5. ポリエステル系繊維の表面グラフト重合による改質が高圧密閉系で処理されることを特徴とする請求項4記載の吸湿性に優れたポリエステル系合成繊維布帛の製造方法。
【0008】
【発明の実施の形態】
本発明の吸水性に優れたポリエステル系合成繊維は該繊維表面に親水基を有するビニルモノマーをグラフト重合によって導入されたものであり、重量比換算から求めた表面グラフト率は5%以上25%以下であることが好ましく、更には10%以上20%以下が好ましい。該表面グラフト率が5%未満の範囲では高吸湿性を得難く、25%以上の範囲では繊維強度が実用強度を保持し難く好ましくない。
【0009】
また本発明のポリエステル系繊維の20℃、65%RH環境における吸湿率は1.0%以上4.0%以下であることが好ましく、更に好ましくは1.5%以上4.0%以下であることが着用快適性の観点で好適である。該吸湿率が1.0%未満の範囲ではポリエステル100%使いの布帛と比較すれば着用快適性は向上しているとみるが、体感を得るにはいささか不充分なものである。また4.0%を超過する範囲は着用快適性をまさに体感し得るものであるが表面グラフト率を増加させねばならず、糸条強度が低下し易くなるので好ましくない。
【0010】
またJIS L−0217 103法による洗濯処理を50回実施後の20℃、65%RH環境における吸湿率が0.7%以上4.0%以下であることが好ましく、更に好ましくは1.0%以上4.0%以下である。市販されている他のポリエステル100%使い吸湿吸汗加工素材同様、繰り返し洗濯による吸湿性能の低下は否めないが、処理浴温40℃での50回繰り返し洗濯後の吸湿率が0.7%以上を保持すれば、市販されている該吸湿吸汗加工素材とほぼ同等かそれ以上の効果が残存しており、有効である。また吸湿率が4.0%を保持出来れば、洗濯後も洗濯前と同様の性能を保持していることとなり、極めて好ましい。
【0011】
本発明はポリエステル系合成繊維の表面を親水化するものであり、糸条を構成する重合体としてはホモポリマーのみならずブレンドポリマーや共重合ポリマーであってもよい。また複合紡糸方法により繊維長手方向に異素材が貼合わされた形態も含まれる。繊維の形態については長繊維、短繊維であってもよく、糸条形態についてもマルチフィラメント糸、紡績糸、長短複合糸など風合い、用途に応じ適宜選定することが出来る。また断面形状についても目的や用途に応じ、扁平断面、多葉断面、その他異型断面、各種中空断面等々公知の断面形状を採用することが可能であるし、勿論単独断面のみならず複数種の断面形状糸の混合使用であってもよい。
【0012】
また、ポリエステル系合成繊維には必要に応じて酸化防止剤、平滑剤、紫外線防止剤、艶消剤、顔料等々の無機粒子、有機粒子が混練・分散されていてもよい。特に二酸化チタンや硫酸バリウム、二酸化珪素、カオリナイトなどの艶消剤は防透性等の観点から好適に用いられる。該無機粒子、有機粒子の含有量や粒径等については特に限定されるものでなく、用途に応じて適宜選定すればよいが、金属酸化物微粒子など凝集し易い粒子は静止混練素子等を用いて均一分散させることが更に好ましい。
【0013】
単糸繊度、糸条総繊度についても何ら限定されるものでなく、単糸繊度としては大略0.001〜100デシテックス、糸条総繊度として大略10〜1000デシテックスの範囲で布帛の風合いや用途、要求性能等に応じ適宜選定することが出来る。単糸断面形状についても限定されるものでなく風合い、用途、力学的特性等々に応じ選定することが可能であり、ポリエステル系合成繊維の紡糸方法についても公知の溶融紡糸法等を用いて実施することが出来る。また目的に応じて仮撚加工糸、異収縮混繊糸や異繊度混繊糸、異型断面混繊糸等としてもよい。
【0014】
本発明のポリエステル系合成繊維は表面に親水基を有するビニルモノマーをグラフト重合によって導入した後、製織編し布帛として染色処理し、その後に末端基の少なくとも一部を塩化するものである。該末端塩化を染色以前に実施すれば高圧染色による糸条の顕著な脆化が生じ、消費性能を満足させるものにはならない。布帛の状態で染色した後、末端基を塩化することによって上記の脆化を抑制することが出来、実用強度を有する糸条、布帛とすることが可能になるのである。
グラフト重合で処方するビニルモノマーとしてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、スチレンスルホン酸等が例示され、単独或いは2種以上の混合物としてグラフト重合に用いることが出来る。上記布帛の製織編の方法は公知の方法、機種で実施することが出来る。
【0015】
また本発明のポリエステル系合成繊維は用途、風合い、力学的特性等に応じて高圧空気流による交絡や撚糸を実施することも出来る。交絡および撚糸は公知の方法を用いて実施することが可能であるが、特に撚糸の場合は撚糸施撚方向とは逆方向に解撚トルクが働き、びりや捩れ、スナールが発生し易くなる。その為、特にポリエステル系合成繊維など熱可塑性合成繊維については真空下高圧蒸気による撚止めセットを施すことが望ましい。処理条件については特に限定されるものではないが、一次転移点温度以上融点以下の温度で結晶化が過度に促進されぬよう温度、処理時間、熱付与方法等を調整することが望ましい。
【0016】
ポリエステル系合成繊維の表面グラフト重合にはオーバーマイヤー等を用いた吸尽法による糸処理が好適である。オーバーマイヤー等を用いた表面グラフト重合の場合は処理浴比を出来るだけ小さく留めることが加工コスト面でも好適である。適用される浴比範囲としては概ね1:3〜1:15の範囲で、高圧容器の容量や形状、パッケージの形状や捲き密度等々を考慮し適宜調整する。またパディング法による表面グラフト重合もマイクロ波加熱や紫外線照射処理、電子線放射処理等を併用し、糸条表面からの均一な水分除去を行うことによる樹脂マイグレーションの防止も期待でき好ましい。
【0017】
また本発明では上記の如く、末端基塩化の前工程で布帛の状態で染色する。液流染色機、気流染色機、ジッカー染色機、ウインス染色機、パドル染色機、ビーム染色機等の公知の染色機を用いて実施することが出来る。特にポリエステル系合成繊維など分散染料を用いる染法の場合は未吸尽の染料を極力排除することが必要であり、十分な洗浄を施すことが望ましい。また必要に応じて蛍光増白剤や紫外線吸収剤、各種機能加工剤を染色同時吸尽させることも出来る。
【0018】
本発明の特徴としてポリエステル系合成繊維表面の親水層皮膜強度をより強固なものとするため、膨潤剤等を用いて繊維表面を膨潤させた状態で表面グラフト重合させることが好ましい。膨潤状態が繊維内部にまで及ぶと繊維強度が極端に低下するため、リング染色の如く繊維内部は改質されず繊維表面外周部のみ改質されるよう、膨潤剤処方、温度条件、処理時間を目的、用途に応じて適宜設定することも可能である。特に本発明の如き表面グラフト重合は発熱反応であるため、過加熱となりやすく細かい温度制御が必要である。膨潤剤の効果としては上記のように繊維表面とグラフト皮膜をより強固に結合させることにあり、高圧密閉処理との相乗効果で処理時間の短縮、加工に要するエネルギー効率の観点からも有効である。膨潤剤としては非イオン系界面活性剤を主成分とするものが好適に用いられる。
【0019】
表面グラフト重合による重合開始剤としてはラジカル重合触媒を添加することが好ましく過硫酸アンモニウム、過硫酸カリウムなどの過酸化物系の重合開始剤若しくは過酸化ベンゾイルやAIBNなど水溶性アゾ系ラジカル重合開始剤を使用することが出来る。該ラジカル重合開始剤は加工剤中に0.1〜3重量%程度含有されることが望ましい。該重合開始剤濃度を過度に増加させるとコスト的にも不利であり、分子量の低い重合体となるため、繊維表面の親水性樹脂皮膜強度が低いものになり好ましくない。また、該重合開始剤濃度が低過ぎると重合反応が円滑に進行せず、未反応モノマーが多量に残存するため親水性樹脂皮膜を強固なものにすることが出来ない。コスト面や取扱性、開始剤効率等々を考慮すると過酸化ベンゾイル等が特に好ましく使用される。
【0020】
重合開始剤及び膨潤剤等々は水への溶解性に乏しいため、乳化剤を用い乳化分散させエマルションの状態で繊維を処理することが望ましい。その際、エマルション内には重合開始剤及び膨潤剤等々の固形分が残存せぬよう十分攪拌し、液中に均一分散させる必要がある。過酸化ベンゾイル等のラジカル重合開始剤は温度管理が重要であり、分解しないような温度条件で攪拌分散させることが望ましい。ラジカル開裂は表面グラフト重合に供するポリエステル系繊維の処理の際、生じさせることが開始剤効率を向上させる故に好ましいといえる。
【0021】
本発明のポリエステル系合成繊維を得るに際し、工程毎の水素イオン濃度(pH)の管理は極めて重要である。グラフト重合工程から湯洗、水洗を経て中和処理に至るまでは生地pHを酸性サイドで管理することが必要であり、布帛構造物等とし染色その他後加工についても精練、染色工程までは生地pHを酸性サイドで管理することが必要である。上記工程において生地pHがアルカリサイドに振れると糸条物性が低下し実用強力を保持することが出来ない。特に注意すべき点として織物に供する場合、ポリエステル系繊維では一般に経糸サイジングを施すが、汎用的に使用されるアクリル系糊剤は強アルカリで精練するため不向きであり、ノンサイジングで製織するか若しくは中性領域でも精練が可能な糊剤を選定することが望ましい。
【0022】
染色以降の工程で繊維表面のカルボキシル基やスルホン酸基末端をアルカリ金属、アルカリ土類金属、その他遷移金属、典型金属若しくは第4級アンモニウム塩等々のイオン性有機物等で少なくとも一部を置換する。例えば末端を銅イオンや銀イオン等で塩化すると抗菌性等々の効果も期待出来、好ましい。該酸末端は部分的に−COOHや−SOH等の状態でも良いが、安定性に欠け、布帛物性や諸性能の経時変化が懸念されるため、塩の状態とすることが望ましい。
【0023】
カルボキシル基やスルホン酸基末端置換後の生地pHはアルカリサイドに振れているため湯洗、水洗を繰り返した後、クエン酸やコハク酸等の水溶液処理を実施し生地pHを弱酸性とした後に乾燥、仕上セットを実施する。カルボキシル基やスルホン酸基末端置換した後の生地pHは概ねpH9程度であるが湯洗、水洗を実施し生地pHを大略8前後まで低下させ、その後に弱い酸処理を実施することが好ましい。後の酸処理によって吸湿性は低下するが、皮膚障害や生地黄変の懸念がある為、生地pHとして中性から弱酸性の領域に管理することが望まれる。弱い酸処理については1回処理のみならず複数回繰り返し処理であっても構わない。
【0024】
公知の方法による染色加工を施した後に末端基を塩化するが、該染色加工や塩化処理後の織編地乾燥には公知の熱シリンダー乾燥機、ネットコンベア式乾燥機、吊掛式(ショートループ)乾燥機等が使用出来る。特に過度の張力が生地に係らないネットコンベア式乾燥機が好適に使用される。仕上げセットについても公知のピンテンター、クリップテンター等を用いて実施出来る。乾燥温度及び仕上げセット温度はそれぞれ限定されるものではないが、染料移行昇華や分解を防止するため150〜180℃程度、より好ましくは150〜160℃程度が好適に使用される。
【0025】
【実施例】
以下、具体的実施例を挙げて、本発明を更に詳しく説明する。尚、本文中及び実施例中の各性能評価は次の方法によるものである。また、本発明はこれら実施例に何ら限定されるものではない。
【0026】
(糸条の吸湿率)
下記関係式により吸湿率Hを算出した。
H={(H1−H0)/H0}×100 (%)
ここでH0は絶乾重量でありサンプルを120℃で3時間乾燥した後の重量である。またH1は吸湿重量であり、上記乾燥後に所定の温湿度雰囲気下に6時間以上放置して調湿した後の重量である。温湿度雰囲気としては外気に相当する20±2℃、65±2%RHの恒温恒湿度条件に設定した。
尚、測定用サンプルは未洗濯(初期)、洗濯50回後とも布帛から糸条を解織、解編し、該糸条に2.0cN/dtexの荷重を掛けた状態で100cm測長し10本纏めて総長で1000cmとしてそれぞれ上皿天秤による秤量を実施した。また洗濯処理はJIS L0217 103法に準じて実施した。
【0027】
(糸条の表面グラフト率)
表面グラフト重合する以前のポリエステル系合成繊維、及び表面グラフト重合し染色、アルカリ金属塩化を完了させたポリエステル系合成繊維を20±2℃、65±2%RHの雰囲気下で上皿天秤を用いて秤量(前者の秤量値をG0、後者の秤量値をG1とする)し、下記式にて求める。尚、測定に要する繊維は2.0cN/dtexの荷重下で1000cm測長し、秤量するものとする。表面グラフト重合させたポリエステル系合成繊維については解織、解編した後に2.0cN/dtexの荷重下で100cm測長し10本纏めて総長で1000cmとし秤量した。
表面グラフト率(GT率)=[(G1−G0)/G0]×100 (%)
【0028】
(布帛の吸水性)
JIS L1096 6‐26‐1 A法(滴下法)記載の方法に準じて評価した。
(布帛の縫目滑脱抵抗)
JIS L1096 B法記載の方法に準じて負荷荷重117.7Nにて測定を実施した。
(布帛の摩擦帯電圧)
JIS L1094記載の方法に準じて20℃、40%RH環境下における摩擦帯電圧を評価した。
【0029】
(布帛の引裂強度)
JIS L1096 D法(ペンジュラム法)記載の方法に準じて評価した。
(布帛の発塵量)
JIS B9923(発塵装置;タンブリング法)記載の方法に準じ、光散乱式自動計数器(JIS B9921)を使用し、洗濯初期、洗濯20回後、洗濯50回後の各試料に対して直径0.3μmφ以上の粒子の発塵量(個/m)を評価した。
尚、上記の洗濯処理はJIS L0217 103法に準じて実施した。
【0030】
(布帛の通気度)
JIS L1096 8.27.1 A法(フラジール形法)記載の方法に準じ、試験片を通過する空気量(cm/cm・秒)を求めた。(小数点以下1桁迄)
尚、測定は20±2℃、65±2%RHの恒温恒湿度環境で実施した。
【0031】
(布帛の防しわ性)
JIS L1059‐1 5.1.2(モンサント法)記載の方法に準じ、防しわ性を評価した。尚、測定用試料は20±2℃、65±2%RHの環境下で24時間の調温調湿を実施した。実験回数5回の平均値をその測定値とし、該実験についても20±2℃、65±2%RH条件で行った。
【0032】
(実施例1)
ポリエステルセミダル丸断面マルチフィラメント(340デシテックス96フィラメント)の仮撚加工糸について、日阪製作所製オーバーマイヤー染色機(高圧密閉系)を使用し、70℃で15分間精練後、十分に湯洗水洗を繰り返し処理し、その後下記薬剤条件を用いて糸条を浸漬し、常温から序々に昇温し100℃で40分間処理した。(何れも処理液をイン−アウトに循環させて処理した)

Figure 2004324008
【0033】
上記糸処理を実施した後、引き続き湯洗いを繰り返し、ポリエステル系繊維用油剤(松本油脂製薬社製ブリアンLC−5)を仕上処理として付与しポリエステル繊維表面への親水性基導入を完了した。尚、ポリエステル仮撚加工糸の重量増加は15.0%であった(表面グラフト率)。
【0034】
上記操作により得られたポリエステル系合成繊維(以下、ポリエステル系合成繊維Aと称す)とポリエステルセミダル丸断面マルチフィラメント167デシテックス48フィラメントの仮撚加工糸B、ポリエステルセミダル丸断面マルチフィラメント340デシテックス96フィラメントの仮撚加工糸Cを用い、下記要件にて織物生機を作成した。
Figure 2004324008
【0035】
得られた生機を用い、下記薬剤レサイプにより液流染色機による精練を行った。
Figure 2004324008
湯洗い、水洗いを繰り返し、脱水後に190℃条件でプレセットを実施した。得られたプレセット生機を液流染色機にて120℃条件の高圧分散染色を実施後、湯洗、水洗を繰り返し、脱水処理後に引き続き下記条件にてカルボキシル基末端塩化処理を実施した。
Figure 2004324008
処理後、十分に湯洗、水洗を繰り返し脱水、乾燥処理後、160℃条件で仕上セットを施した。得られた織物の織密度は経45本/cm、緯26本/cm、適度な膨らみ感と防透性を兼ね備え、しかもごわつき感も伴わず着用快適性に優れた作業衣向け生地として好適な織物となった。表面グラフト糸条の吸湿率は初期3.5%、50回洗濯後も2.7%を保持し、洗濯耐久性を有するものに仕上がった。
得られた織物の物性値を表1に示す。
【0036】
(実施例2)
実施例1で得られたポリエステル系合成繊維Aとポリエステルセミダル丸断面マルチフィラメント340デシテックス96フィラメントの仮撚加工糸Cを用い、下記要件にて織物生機を作成した。
Figure 2004324008
【0037】
引き続き実施例1と同様条件で精練、プレセット、染色、カルボキシル基末端塩化処理、仕上セットを施した。得られた生地の密度は経45本/cm、緯26本/cmであり適度な膨らみ感、ドレープ性を有し、ごわつき感を伴わない、着用快適性にも優れた作業衣向け生地に仕上がった。表面グラフト糸条の吸湿性は初期2.0%、50回洗濯後も1.0%を保持し、洗濯耐久性を有するものであった。得られた織物の物性値を表1に示す。
【0038】
(実施例3)
実施例1で得られた生機を用い、下記薬剤レサイプにより液流染色機による精練を行った。
Figure 2004324008
湯粗い、水洗いを繰り返し、脱水後に190℃条件でプレセットを実施した。得られたプレセット生機を液流染色機を使用し120℃条件で染色処理をした後、湯洗、水洗を繰り返し、脱水処理後に引き続き下記条件にてカルボキシル基末端塩化処理を実施した。
Figure 2004324008
処理後、十分に湯洗、水洗を繰り返し脱水、乾燥処理後、160℃条件で仕上セットを施した。得られた織物の織密度は経45本/cm、緯26本/cm、適度な膨らみ感と防透性を兼ね備え、ごわつき感を伴わない作業衣向け生地として好適な織物となった。表面グラフト糸条の吸湿率は初期3.2%、50回洗濯後も2.4%を保持し洗濯耐久性を有するものであった。得られた織物の物性値を表1に示す。
【0039】
(比較例1)
ポリエステルセミダル丸断面マルチフィラメント167デシテックス48フィラメントの仮撚加工糸A’、ポリエステルセミダル丸断面マルチフィラメント340デシテックス96フィラメントの仮撚加工糸B’を用い、下記要件にて織物生機を作成した。
使用織機;津田駒工業社製 レピアルームR−200型
経糸;ポリエステル仮撚加工糸A’
緯糸;ポリエステル系合成繊維B’
組織;ツイル2/2
織密度;経40本/cm、緯23本/cm
【0040】
得られた生機を用い、下記薬剤レサイプにより液流染色機による精練を行った。
Figure 2004324008
湯粗い、水洗いを繰り返し、脱水後に190℃条件でプレセットを実施した。得られたプレセット生機について液流染色機を使用し120℃条件の高圧分散染色を実施した後、湯洗、水洗を繰り返し、脱水処理後にシリンダー乾燥を実施した。
【0041】
次いで該染色加工布を乾燥状態で下記レサイプによる樹脂剤水溶液を浸漬し、マングルで絞り率60%で絞り、雰囲気温度110℃の高圧スチーマで3分間の重合処理を行った後、湯洗い乾燥した。重合処理後の糸条の重量増加は12.0%であった(表面グラフト率)。
Figure 2004324008
得られた加工布について液流染色機を使用し下記条件で吸湿性発現処理を実施し、160℃の仕上セットを施した。
Figure 2004324008
【0042】
得られた織物の織密度は経45本/cm、緯26本/cm、膨らみ感と防透性を兼ね備えたものとなったが、風合いが粗硬でドレープ性に乏しいものとなり、作業性等の観点から作業着として好ましいものにはならなかった。糸条の吸湿率は初期0.7%と低く、50回洗濯後も0.5%に低下し何れも低い値に留まっており、吸湿性の観点からも不充分なものであった。得られた織物の物性値を表1に示す。
【0043】
(比較例2)
メタクリル酸モノマー濃度を65%owf.に変更した他は実施例1同様の方法でオーバーマイヤー染色機を用いた糸処理を実施した後、引き続き湯洗いを繰り返し、ポリエステル系繊維用油剤(松本油脂製薬社製ブリアンLC−5)を仕上処理として付与しポリエステル繊維表面への親水性基の導入を完了した。
尚、ポリエステル仮撚加工糸の重量増加は28.5%であった(表面グラフト率)。
得られたポリエステル系合成繊維は物性低下が著しく、製織に供するに必要な糸強度、糸伸度を保持するものにはならなかった。因みに表面グラフト糸条の吸湿率は4.8%と高いものであった。
【0044】
(比較例3)
メタクリル酸モノマー濃度を10%owf.に変更した他は実施例1同様の方法で染色加工布を得た。尚、糸処理後のポリエステル仮撚加工糸の重量増加は4.0%であった(表面グラフト率)。得られた織物の織密度は経45本/cm、緯26本/cm、適度な膨らみ感と防透性を兼ね備え、しかもごわつき感も伴わず着用快適性に優れた作業衣向け生地として好適な織物となったが、初期吸湿率が0.8%と低く、着用時の蒸れ感を伴うものとなった。表面グラフト糸条の吸湿率は初期0.8%、50回洗濯後も0.5%と何れも低く留まり、吸湿性を体感出来るものにはならなかった。得られた織物の物性値を表1に示す。
【0045】
【表1】
Figure 2004324008
【0046】
【発明の効果】
上述の如く本発明によると、吸放湿特性を有し着用快適性にも優れ、尚且つ該性能が繰り返し着用しても十分な耐久性を持つポリエステル系合成繊維を得ることが可能となる。また本発明の方法によると従来のパッドスチーム法やスプレー法等による布帛処理による表面親水化に比較し、風合いの硬化が見られず着用感を損ねることがない。また通気度低下も抑制出来、着用時の換気を損ねることが無いため蒸れ感を感じさせないものに仕上げることが出来る等々の効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polyester synthetic fiber and a polyester synthetic fiber cloth which have moisture absorption / desorption properties, are excellent in wearing comfort, and have sufficient durability even when repeatedly worn and repeatedly worn. .
[0002]
[Prior art]
Conventionally, many woven and knitted articles using hydrophobic synthetic fibers such as polyester have been put on the market. In particular, polyester synthetic fibers are excellent in dimensional stability and strength, and have been developed in various fields including clothing. However, the official moisture regain is very low at about 0.4%, and especially for clothing. In such a case, a stuffy feeling and a sticky feeling are likely to occur when sweating, especially when sweating, and there is still room for improvement in terms of comfort and mobility.
[0003]
As a method for improving such wearing comfort, a method of introducing a hydrophilic group into a hydrophobic surface is known (for example, Patent Document 1). In this method, a hydrophilic vinyl monomer is polymerized on the surface of the fiber. However, the resin film covers the surface of the fabric in order to perform a chemical treatment as a fabric structure. There is a drawback that although the stuffiness is improved, the stuffiness is improved, but it is finished with a feeling of tension such as "the glue worked" and is not preferable from the viewpoint of wearing comfort.
[0004]
[Patent Document 1]
JP-A-2002-69846 (Claim 1 etc.)
[0005]
[Problems to be solved by the invention]
The present invention provides a surface modification of a synthetic fiber, particularly a polyester fiber which is a general-purpose hydrophobic synthetic fiber, and imparts high moisture absorption / release properties to a woven or knitted fabric made of the polyester synthetic fiber without deteriorating comfort. More specifically, it is an object of the present invention to provide a highly moisture-absorbing and releasing polyester synthetic fiber which is rich in durability by surface graft polymerization and has good handleability, and a method for producing the same, and more specifically, a conventional method. High moisture absorption with excellent wear comfort, drapability, and durability by suppressing texture hardening due to hydrophilic processing on hydrophobic fiber fabrics such as padding method and spray method, wrinkle resistance and decrease in air permeability. An object of the present invention is to provide a polyester synthetic fiber having the following.
[0006]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above-described problems, and as a result, have reached the present invention.The surface of the polyester synthetic fiber is subjected to surface graft polymerization with a polymerizable polymer mainly composed of a vinyl monomer, By introducing a crosslinking agent to enhance the film strength, a durable, highly hygroscopic polyester fiber can be obtained. Further, in the present invention, since the surface graft polymerization is carried out in the form of a yarn, compared with the case of treating with a fabric, the texture hardening and the decrease in air permeability are suppressed, and a highly dampable polyester fiber fabric having a drape property is obtained. It is possible to obtain. Although it is a standard method to stabilize the acid terminal introduced by graft polymerization by salification, the yarn after salification becomes brittle and cannot withstand high-pressure dyeing. The present invention provides a method for performing high-pressure dyeing before terminal group salification, suppressing a decrease in strength of yarn and fabric, and maintaining practical strength.
[0007]
That is, the present invention has the following configurations.
1. Polyester-based synthetic fiber having excellent hygroscopicity in which a vinyl monomer having a hydrophilic group is introduced into the surface of the polyester-based synthetic fiber by graft polymerization. A polyester synthetic fiber excellent in hygroscopicity, characterized in that at least a part of terminal groups introduced by polymerization is salified.
2. 2. The synthetic polyester fiber excellent in hygroscopicity as described in 1 above, wherein the hygroscopicity in a 20 ° C., 65% RH environment is 1.0% or more and 4.0% or less.
3. The first or second above, wherein a moisture absorption rate in an environment of 20 ° C. and 65% RH is maintained at 0.7% or more and 4.0% or less after 50 times of washing processing according to JIS L-0217 103 method. Polyester synthetic fibers excellent in hygroscopicity described in 1.
4. Excellent yarn absorbability characterized by weaving and knitting a modified yarn obtained by graft-polymerizing a polyester-based fiber in the state of a yarn in combination with a swelling agent, dyeing it into a fabric, and then salting the end groups. A method for producing a polyester synthetic fiber cloth.
5. The method for producing a polyester-based synthetic fiber fabric having excellent hygroscopicity according to claim 4, wherein the modification of the polyester-based fiber by surface graft polymerization is performed in a high-pressure closed system.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The polyester synthetic fiber excellent in water absorbency of the present invention is obtained by introducing a vinyl monomer having a hydrophilic group on the surface of the fiber by graft polymerization, and the surface graft ratio determined from the weight ratio conversion is 5% or more and 25% or less. And more preferably 10% or more and 20% or less. When the surface graft ratio is less than 5%, it is difficult to obtain high hygroscopicity, and when the surface graft ratio is 25% or more, the fiber strength is difficult to maintain practical strength, which is not preferable.
[0009]
The moisture absorption of the polyester fiber of the present invention in an environment of 20 ° C. and 65% RH is preferably 1.0% or more and 4.0% or less, more preferably 1.5% or more and 4.0% or less. This is preferable from the viewpoint of wearing comfort. When the moisture absorption rate is less than 1.0%, it is considered that the wearing comfort is improved as compared with the cloth using 100% polyester, but it is somewhat insufficient to obtain the bodily sensation. Further, when the range exceeds 4.0%, the wearing comfort can be exactly experienced, but the surface graft ratio must be increased, and the yarn strength is liable to decrease, which is not preferable.
[0010]
Further, the moisture absorption rate in a 20 ° C., 65% RH environment after performing a washing process according to JIS L-0217 103 method 50 times is preferably 0.7% or more and 4.0% or less, more preferably 1.0%. Not less than 4.0%. Like other commercially available 100% polyester moisture-absorbing and sweat-treated materials, the decrease in moisture absorption performance due to repeated washing is undeniable, but the moisture absorption after repeated washing 50 times at a treatment bath temperature of 40 ° C is 0.7% or more. If retained, the effect is substantially the same as or better than that of the commercially available moisture-absorbing and sweat-absorbing material, and is effective. If the moisture absorption rate can be maintained at 4.0%, the same performance as before the washing is maintained after the washing, which is extremely preferable.
[0011]
In the present invention, the surface of the polyester-based synthetic fiber is made hydrophilic, and the polymer constituting the yarn may be not only a homopolymer but also a blend polymer or a copolymer. In addition, a form in which different materials are bonded in the longitudinal direction of the fiber by a composite spinning method is also included. The form of the fiber may be a long fiber or a short fiber, and the form of the yarn may be appropriately selected depending on the feeling and use such as a multifilament yarn, a spun yarn, and a long and short composite yarn. Also, regarding the cross-sectional shape, it is possible to adopt a known cross-sectional shape such as a flat cross-section, a multi-lobed cross-section, other irregular cross-sections, various hollow cross-sections, etc., depending on the purpose and application. Mixed use of shaped yarns may be used.
[0012]
In addition, inorganic and organic particles such as an antioxidant, a leveling agent, an ultraviolet ray inhibitor, a matting agent, and a pigment may be kneaded and dispersed in the polyester-based synthetic fiber as necessary. In particular, matting agents such as titanium dioxide, barium sulfate, silicon dioxide, kaolinite and the like are suitably used from the viewpoint of anti-permeability and the like. The content and the particle size of the inorganic particles and the organic particles are not particularly limited, and may be appropriately selected depending on the application, but particles that easily aggregate such as metal oxide fine particles use a static kneading element or the like. It is more preferable to uniformly disperse them.
[0013]
The single-fiber fineness is not limited to the total fineness of the yarn at all, and the texture or use of the fabric is in the range of approximately 0.001 to 100 decitex as the single-filament fineness and approximately 10 to 1000 decitex as the total yarn fineness, It can be appropriately selected according to the required performance and the like. The cross-sectional shape of the single yarn is not limited, and can be selected according to the feeling, application, mechanical properties, and the like. The spinning method of the polyester-based synthetic fiber is also performed using a known melt spinning method or the like. I can do it. Depending on the purpose, a false twisted yarn, a different shrinkage mixed yarn, a different fineness mixed yarn, a modified cross-section mixed yarn, or the like may be used.
[0014]
The polyester synthetic fiber of the present invention is obtained by introducing a vinyl monomer having a hydrophilic group on the surface by graft polymerization, weaving and knitting, dyeing the cloth as a fabric, and then salifying at least a part of the terminal groups. If the terminal salification is carried out before dyeing, the yarn will be remarkably embrittled by high-pressure dyeing and will not satisfy the consumption performance. After dyeing in the state of the fabric, the above embrittlement can be suppressed by salinating the terminal group, and it is possible to obtain a yarn or fabric having practical strength.
Examples of the vinyl monomer formulated by the graft polymerization include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and styrene sulfonic acid, which can be used alone or as a mixture of two or more of them for the graft polymerization. The method of weaving and knitting the cloth can be carried out by a known method and a known model.
[0015]
Further, the polyester synthetic fiber of the present invention can be entangled or twisted by a high-pressure air flow according to the use, feeling, mechanical properties and the like. The entanglement and twisting can be carried out by using a known method. In particular, in the case of twisting, untwisting torque acts in a direction opposite to the twisting direction, and chatter, twist, and snare are easily generated. For this reason, it is desirable to apply a twisting set using high-pressure steam under vacuum especially for thermoplastic synthetic fibers such as polyester synthetic fibers. The treatment conditions are not particularly limited, but it is desirable to adjust the temperature, treatment time, heat application method, and the like so that crystallization is not excessively promoted at a temperature equal to or higher than the first transition temperature and equal to or lower than the melting point.
[0016]
For surface graft polymerization of polyester-based synthetic fibers, yarn treatment by an exhaustion method using an Overmeyer or the like is suitable. In the case of surface graft polymerization using Overmeyer or the like, it is preferable from the viewpoint of processing cost to keep the treatment bath ratio as small as possible. The applied bath ratio is generally in the range of 1: 3 to 1:15, and is appropriately adjusted in consideration of the capacity and shape of the high-pressure container, the shape of the package, the winding density, and the like. Surface graft polymerization by the padding method is also preferable because it can be expected to prevent resin migration by uniformly removing water from the yarn surface by using microwave heating, ultraviolet irradiation treatment, electron beam irradiation treatment and the like in combination.
[0017]
Further, in the present invention, as described above, dyeing is performed in the state of a fabric in a step prior to terminal group salification. It can be carried out using a known dyeing machine such as a liquid jet dyeing machine, an air jet dyeing machine, a Zicker dyeing machine, a Wins dyeing machine, a paddle dyeing machine, and a beam dyeing machine. In particular, in the case of a dyeing method using a disperse dye such as a polyester synthetic fiber, it is necessary to remove unexhausted dye as much as possible, and it is desirable to sufficiently wash the dye. If necessary, a fluorescent whitening agent, an ultraviolet absorber, and various functional processing agents can be simultaneously dyed and exhausted.
[0018]
As a feature of the present invention, in order to further increase the strength of the hydrophilic layer coating on the surface of the polyester synthetic fiber, it is preferable to carry out surface graft polymerization in a state where the fiber surface is swollen using a swelling agent or the like. When the swelling state reaches the inside of the fiber, the fiber strength is extremely reduced. It can also be set appropriately according to the purpose and use. In particular, since surface graft polymerization as in the present invention is an exothermic reaction, it tends to be overheated and requires fine temperature control. The effect of the swelling agent is to bind the fiber surface and the graft film more firmly as described above, and is effective from the viewpoint of shortening the processing time and the energy efficiency required for processing due to the synergistic effect with the high-pressure sealing treatment. . As the swelling agent, those having a nonionic surfactant as a main component are preferably used.
[0019]
As a polymerization initiator by surface graft polymerization, it is preferable to add a radical polymerization catalyst. A peroxide polymerization initiator such as ammonium persulfate or potassium persulfate or a water-soluble azo radical polymerization initiator such as benzoyl peroxide or AIBN is used. Can be used. The radical polymerization initiator is desirably contained in the processing agent in an amount of about 0.1 to 3% by weight. If the concentration of the polymerization initiator is excessively increased, it is disadvantageous in terms of cost and a polymer having a low molecular weight is obtained, which is not preferable because the strength of the hydrophilic resin film on the fiber surface becomes low. On the other hand, if the concentration of the polymerization initiator is too low, the polymerization reaction does not proceed smoothly, and a large amount of unreacted monomer remains, so that the hydrophilic resin film cannot be made strong. Benzoyl peroxide and the like are particularly preferably used in consideration of cost, handleability, initiator efficiency and the like.
[0020]
Since the polymerization initiator, the swelling agent, and the like have poor solubility in water, it is desirable to emulsify and disperse using an emulsifier and treat the fiber in an emulsion state. At that time, it is necessary to sufficiently stir the emulsion so that no solid components such as a polymerization initiator and a swelling agent remain in the emulsion and to uniformly disperse the emulsion in the liquid. It is important to control the temperature of a radical polymerization initiator such as benzoyl peroxide, and it is desirable to disperse the radical polymerization initiator under a temperature condition that does not cause decomposition. It can be said that the radical cleavage is preferably performed during the treatment of the polyester-based fiber subjected to the surface graft polymerization because the efficiency of the initiator is improved.
[0021]
When obtaining the polyester synthetic fiber of the present invention, control of the hydrogen ion concentration (pH) for each step is extremely important. It is necessary to control the dough pH on the acidic side from the graft polymerization step to hot water washing, water washing and neutralization treatment, and to fabricate fabrics etc. for dyeing and other post-processing. Need to be controlled on the acidic side. If the pH of the dough fluctuates toward the alkaline side in the above process, the physical properties of the yarn decrease, and practical strength cannot be maintained. As a particular point to be noted, when used for woven fabrics, polyester fibers are generally subjected to warp sizing, but acrylic sizing agents generally used are not suitable for scouring with strong alkalis, and are woven without sizing or It is desirable to select a sizing agent that can be scoured even in the neutral region.
[0022]
In the process after dyeing, the terminal of the carboxyl group or sulfonic acid group on the fiber surface is at least partially replaced with an ionic organic substance such as an alkali metal, alkaline earth metal, other transition metal, typical metal or quaternary ammonium salt. For example, when the terminal is salified with copper ions, silver ions, or the like, effects such as antibacterial properties can be expected, which is preferable. The acid terminal is partially -COOH or -SO 3 Although it may be in the state of H or the like, it is desirable to be in the state of salt since it lacks stability and there is a concern that the physical properties of the fabric and various properties change over time.
[0023]
Since the dough pH after carboxyl group or sulfonic acid group terminal substitution is swinging to the alkaline side, repeat washing with hot water and water, then carry out an aqueous solution treatment with citric acid or succinic acid to make the dough pH weakly acidic, and then dry. Carry out a finishing set. The dough pH after carboxyl group or sulfonic acid group terminal substitution is generally about pH 9, but it is preferable to perform hot water washing and water washing to lower the dough pH to about 8, and then to carry out a weak acid treatment. Although the hygroscopicity is reduced by the subsequent acid treatment, there are concerns about skin damage and yellowing of the dough. Therefore, it is desired to control the dough pH in a neutral to weakly acidic region. The weak acid treatment may be not only one treatment but also a plurality of repeated treatments.
[0024]
After dyeing by a known method, the terminal group is salified. For the dyeing and drying of the woven or knitted fabric after the salification treatment, a known hot cylinder dryer, net conveyor dryer, hanging type (short loop) ) A dryer can be used. In particular, a net conveyor dryer in which excessive tension is not related to the dough is preferably used. The finishing set can also be performed using a known pin tenter, clip tenter, or the like. The drying temperature and the finishing set temperature are not particularly limited, but about 150 to 180 ° C, more preferably about 150 to 160 ° C, is preferably used to prevent dye transfer sublimation and decomposition.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples. In addition, each performance evaluation in the text and the examples is based on the following method. Further, the present invention is not limited to these examples.
[0026]
(Moisture absorption rate of yarn)
The moisture absorption H was calculated by the following relational expression.
H = {(H1-H0) / H0} × 100 (%)
Here, H0 is the absolute dry weight and is the weight after drying the sample at 120 ° C. for 3 hours. H1 is the weight of moisture absorption, and is the weight after the above-mentioned drying and humidity control by leaving it to stand in a predetermined temperature and humidity atmosphere for 6 hours or more. The temperature and humidity atmosphere was set to a constant temperature and humidity condition of 20 ± 2 ° C. and 65 ± 2% RH corresponding to the outside air.
The measurement sample was unwashed (initial) and after 50 times of washing, the yarn was unwoven and unknitted from the fabric, and the yarn was measured for 100 cm with a load of 2.0 cN / dtex applied thereto. The total length was set to 1000 cm, and weighing was performed using a precision balance. The washing treatment was performed according to JIS L0217 103 method.
[0027]
(Surface graft ratio of yarn)
Polyester synthetic fibers before surface graft polymerization and polyester synthetic fibers that have been subjected to surface graft polymerization and dyeing and alkali metal chloride have been completed using an upper balance in an atmosphere of 20 ± 2 ° C. and 65 ± 2% RH. Weighing (the former weighing value is G0 and the latter weighing value is G1) is determined by the following equation. The fibers required for measurement are measured and weighed at a length of 1,000 cm under a load of 2.0 cN / dtex. The polyester-based synthetic fibers subjected to the surface graft polymerization were unwoven and knitted, and then measured at 100 cm under a load of 2.0 cN / dtex.
Surface graft ratio (GT ratio) = [(G1−G0) / G0] × 100 (%)
[0028]
(Water absorption of fabric)
Evaluation was performed according to the method described in JIS L1096 6-26-1A method (drop method).
(Seam slippage resistance of fabric)
The measurement was carried out under a load of 117.7 N according to the method described in JIS L1096 B method.
(Friction voltage of fabric)
According to the method described in JIS L1094, the frictional charged voltage in a 20 ° C., 40% RH environment was evaluated.
[0029]
(Tear strength of fabric)
Evaluation was performed according to the method described in JIS L1096 D method (Pendulum method).
(Dust generation of cloth)
According to the method described in JIS B9923 (dust generating device; tumbling method), using a light scattering automatic counter (JIS B9921), the diameter of each sample at the initial stage of washing, 20 times after washing, and 50 times after washing is measured. .3μmφ or more particles (particles / m 3 ) Was evaluated.
The washing process was performed according to JIS L0217 103 method.
[0030]
(Air permeability of cloth)
According to the method described in JIS L1096 8.27.1 Method A (Fragile method), the amount of air passing through the test piece (cm 3 / Cm 2 · Seconds). (Up to one decimal place)
The measurement was performed in a constant temperature and humidity environment of 20 ± 2 ° C. and 65 ± 2% RH.
[0031]
(Wrinkle resistance of fabric)
Wrinkle resistance was evaluated according to the method described in JIS L1059-1 5.1.2 (Monsanto method). The measurement sample was subjected to temperature and humidity control for 24 hours in an environment of 20 ± 2 ° C. and 65 ± 2% RH. The average value of five experiments was used as the measured value, and the experiment was also performed under the conditions of 20 ± 2 ° C. and 65 ± 2% RH.
[0032]
(Example 1)
Polyester semi-dal round multi-filament multifilament (340 decitex 96 filament) false-twisted yarn was scoured at 70 ° C for 15 minutes using a Hisaka Overmeyer dyeing machine (high-pressure closed system), and then thoroughly washed with hot water and water. Was repeated, and then the yarn was immersed under the following chemical conditions, and the temperature was gradually raised from room temperature and the treatment was performed at 100 ° C. for 40 minutes. (In each case, the processing solution was circulated in-out and processed.)
Figure 2004324008
[0033]
After the above-mentioned yarn treatment, washing with hot water was repeated, and an oil agent for polyester fiber (Brian LC-5 manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) was applied as a finishing treatment to complete the introduction of the hydrophilic group to the polyester fiber surface. The weight increase of the polyester false twisted yarn was 15.0% (surface graft ratio).
[0034]
Polyester synthetic fiber (hereinafter referred to as polyester synthetic fiber A) obtained by the above operation, polyester semi-dal round cross-section multifilament 167 dtex, false twisted yarn B of 48 filament, polyester semi-dal round cross-section multifilament 340 decitex 96 Using the false twisted yarn C of the filament, a woven fabric machine was prepared according to the following requirements.
Figure 2004324008
[0035]
Using the obtained greige, scouring was performed by a liquid jet dyeing machine using the following chemical recipes.
Figure 2004324008
Hot water washing and water washing were repeated, and after dehydration, presetting was performed at 190 ° C. The obtained preset greige was subjected to high-pressure dispersion dyeing at 120 ° C. using a liquid jet dyeing machine, followed by repeated washing with hot water and water, followed by dehydration treatment, followed by carboxyl group terminal salification treatment under the following conditions.
Figure 2004324008
After the treatment, dehydration and drying were repeated by sufficiently washing with hot water and water, followed by finishing at 160 ° C. The obtained woven fabric has a weaving density of 45 yarns / cm and a weft of 26 yarns / cm, and has both a suitable swelling feeling and a light-transmitting property, and is suitable as a cloth for working clothes excellent in wearing comfort without stiffness. It became woven. The moisture absorption of the surface-grafted yarn was 3.5% at the initial stage, and was 2.7% even after washing 50 times, and the yarn was finished to have washing durability.
Table 1 shows the physical property values of the obtained woven fabric.
[0036]
(Example 2)
Using the polyester synthetic fiber A obtained in Example 1 and the false twisted yarn C having a polyester semi-dal dull round cross-section multifilament 340 decitex 96 filaments, a woven fabric was prepared according to the following requirements.
Figure 2004324008
[0037]
Subsequently, scouring, pre-setting, dyeing, carboxyl group terminal salification treatment, and finishing set were performed under the same conditions as in Example 1. The density of the obtained cloth is 45 lines / cm and 26 lines / cm. It has a moderate swelling and drape property, does not have a stiffness, and is excellent in wearing comfort. Was. The surface graft yarn retained 2.0% in the initial stage and 1.0% even after washing 50 times, and had washing durability. Table 1 shows the physical property values of the obtained woven fabric.
[0038]
(Example 3)
Using the greige obtained in Example 1, scouring was performed by a liquid jet dyeing machine using the following chemical recipe.
Figure 2004324008
Roughness and washing with water were repeated, and after dehydration, presetting was performed at 190 ° C. The obtained pre-set greige was dyed at 120 ° C. using a liquid jet dyeing machine, washed repeatedly with hot water and water, and after dehydration, carboxyl group terminal salification treatment was performed under the following conditions.
Figure 2004324008
After the treatment, dehydration and drying were repeated by sufficiently washing with hot water and water, followed by finishing at 160 ° C. The woven density of the obtained woven fabric was 45 warp / cm, weft 26 / cm, and had both a suitable swelling feeling and a light-transmitting property, and became a suitable woven fabric for working clothes without stiffness. The moisture absorption of the surface grafted yarn was 3.2% at the initial stage, and was 2.4% even after washing 50 times, indicating that the yarn had washing durability. Table 1 shows the physical property values of the obtained woven fabric.
[0039]
(Comparative Example 1)
Using a false twisted yarn A 'having a polyester semidal round cross section multifilament of 167 dtex and 48 filaments and a false twisting yarn B' having a polyester semidal round cross section multifilament of 340 dtex and 96 filaments, a woven fabric was prepared according to the following requirements.
Used loom: Rapier room R-200 manufactured by Tsudakoma Kogyo
Warp: Polyester false twisted yarn A '
Weft; polyester synthetic fiber B '
Tissue; Twill 2/2
Weaving density: 40 threads / cm, 23 wefts / cm
[0040]
Using the obtained greige, scouring was performed by a liquid jet dyeing machine using the following chemical recipes.
Figure 2004324008
Roughness and washing with water were repeated, and after dehydration, presetting was performed at 190 ° C. The obtained preset greige was subjected to high-pressure dispersion dyeing at 120 ° C. using a liquid jet dyeing machine, followed by repeated washing with hot water and water, followed by dehydration treatment, followed by cylinder drying.
[0041]
Next, the dyed cloth was immersed in a dry state with an aqueous solution of a resin agent by the following recipe, squeezed with a mangle at a squeezing rate of 60%, and subjected to a polymerization treatment for 3 minutes by a high-pressure steamer at an ambient temperature of 110 ° C., followed by washing with hot water. . The weight increase of the yarn after the polymerization treatment was 12.0% (surface graft ratio).
Figure 2004324008
The obtained processed cloth was subjected to a hygroscopic expression treatment using a liquid jet dyeing machine under the following conditions, and a finishing set at 160 ° C. was performed.
Figure 2004324008
[0042]
The obtained woven fabric had a weaving density of 45 threads / cm and a weft of 26 threads / cm, and had both a feeling of swelling and an impermeability. However, the texture was coarse and hard, and the drape property was poor. From the point of view, it was not preferable as work clothes. The moisture absorption rate of the yarn was as low as 0.7% in the initial stage, and decreased to 0.5% even after washing 50 times, and remained at a low value in all cases, and was insufficient from the viewpoint of hygroscopicity. Table 1 shows the physical property values of the obtained woven fabric.
[0043]
(Comparative Example 2)
The methacrylic acid monomer concentration was reduced to 65% owf. After performing the yarn treatment using an Overmeyer dyeing machine in the same manner as in Example 1 except for changing to, the washing with hot water was repeated and the oil agent for polyester fibers (Brian LC-5 manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) was finished. This treatment was applied to complete the introduction of the hydrophilic group to the polyester fiber surface.
Incidentally, the weight increase of the polyester false twisted yarn was 28.5% (surface graft ratio).
The obtained polyester synthetic fibers had a remarkable decrease in physical properties, and did not maintain the yarn strength and yarn elongation required for weaving. Incidentally, the moisture absorption of the surface graft yarn was as high as 4.8%.
[0044]
(Comparative Example 3)
When the methacrylic acid monomer concentration is 10% owf. A dyed cloth was obtained in the same manner as in Example 1 except for changing to. Incidentally, the weight increase of the polyester false twisted yarn after the yarn treatment was 4.0% (surface graft ratio). The obtained woven fabric has a weaving density of 45 yarns / cm and a weft of 26 yarns / cm. It has both a suitable swelling feeling and a light-transmitting property, and is suitable as a cloth for working clothes excellent in wearing comfort without stiffness. Although it became a woven fabric, the initial moisture absorption was as low as 0.8%, and accompanied by a stuffy feeling when worn. The moisture absorption of the surface grafted yarn was 0.8% in the initial stage, and was 0.5% even after washing 50 times, and both remained low, so that it was not possible to experience the moisture absorption. Table 1 shows the physical property values of the obtained woven fabric.
[0045]
[Table 1]
Figure 2004324008
[0046]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a polyester synthetic fiber having moisture absorption / desorption characteristics, excellent wear comfort, and sufficient durability even when worn repeatedly. Further, according to the method of the present invention, hardening of the texture is not observed and the wearing feeling is not impaired, as compared with the conventional surface hydrophilicization by cloth treatment by the pad steam method, the spray method or the like. In addition, a decrease in air permeability can be suppressed, and the ventilation during wearing is not impaired.

Claims (5)

ポリエステル系合成繊維表面に親水基を有するビニルモノマーをグラフト重合によって導入せしめた吸湿性に優れたポリエステル系合成繊維であって、重量比換算から求めた表面グラフト率が5%以上25%以下でグラフト重合により導入された末端基の少なくとも一部が塩化されてなることを特徴とする吸湿性に優れたポリエステル系合成繊維。Polyester-based synthetic fiber having excellent hygroscopicity in which a vinyl monomer having a hydrophilic group is introduced into the surface of the polyester-based synthetic fiber by graft polymerization. A polyester synthetic fiber excellent in hygroscopicity, characterized in that at least a part of terminal groups introduced by polymerization is salified. 20℃、65%RH環境における吸湿率が1.0%以上4.0%以下であることを特徴とする請求項1記載の吸湿性に優れたポリエステル系合成繊維。2. The synthetic polyester fiber having excellent hygroscopicity according to claim 1, wherein a moisture absorption rate in an environment of 20 ° C. and 65% RH is 1.0% or more and 4.0% or less. JIS L−0217 103法による洗濯処理を50回実施後の20℃、65%RH環境における吸湿率が0.7%以上4.0%以下を保持することを特徴とする請求項1又は2に記載の吸湿性に優れたポリエステル系合成繊維。3. The method according to claim 1, wherein the moisture absorption in a 20 ° C., 65% RH environment after the washing process according to JIS L-0217 103 method is performed 50 times is maintained at 0.7% or more and 4.0% or less. Polyester-based synthetic fibers having excellent hygroscopicity as described. ポリエステル系繊維を糸条の状態で膨潤剤併用下、グラフト重合させ改質した糸条を製織編し、布帛とした状態で染色し、その後末端基を塩化することを特徴とする吸湿性に優れたポリエステル系合成繊維布帛の製造方法。Excellent yarn absorbability characterized by weaving and knitting a modified yarn obtained by graft-polymerizing a polyester-based fiber in the state of a yarn in combination with a swelling agent, dyeing it into a fabric, and then salting the end groups. A method for producing a polyester synthetic fiber cloth. ポリエステル系繊維の表面グラフト重合による改質が高圧密閉系で処理されることを特徴とする請求項4記載の吸湿性に優れたポリエステル系合成繊維布帛の製造方法。The method for producing a polyester synthetic fiber cloth having excellent hygroscopicity according to claim 4, wherein the modification of the polyester fiber by surface graft polymerization is performed in a high-pressure closed system.
JP2003120426A 2003-04-24 2003-04-24 Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption Pending JP2004324008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120426A JP2004324008A (en) 2003-04-24 2003-04-24 Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120426A JP2004324008A (en) 2003-04-24 2003-04-24 Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption

Publications (1)

Publication Number Publication Date
JP2004324008A true JP2004324008A (en) 2004-11-18

Family

ID=33499337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120426A Pending JP2004324008A (en) 2003-04-24 2003-04-24 Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption

Country Status (1)

Country Link
JP (1) JP2004324008A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041518A1 (en) * 2007-09-26 2009-04-02 Toray Industries, Inc. Polyester fiber, process for producing the same, and textile structure employing the same
JP2009249450A (en) * 2008-04-03 2009-10-29 Teijin Ltd Polylactic acid molded article and manufacturing method
JP2009263840A (en) * 2007-09-26 2009-11-12 Toray Ind Inc Polyester-based fiber, method for producing the same, and textile structure using the same
JP2018135620A (en) * 2017-02-23 2018-08-30 帝人株式会社 Woven fabric and textile product
JP2020041233A (en) * 2018-09-11 2020-03-19 東洋紡Stc株式会社 Anti-bacterial fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041518A1 (en) * 2007-09-26 2009-04-02 Toray Industries, Inc. Polyester fiber, process for producing the same, and textile structure employing the same
JP2009263840A (en) * 2007-09-26 2009-11-12 Toray Ind Inc Polyester-based fiber, method for producing the same, and textile structure using the same
CN101809223B (en) * 2007-09-26 2013-05-08 东丽株式会社 Polyester fiber, process for producing the same, and textile structure employing the same
JP2009249450A (en) * 2008-04-03 2009-10-29 Teijin Ltd Polylactic acid molded article and manufacturing method
JP2018135620A (en) * 2017-02-23 2018-08-30 帝人株式会社 Woven fabric and textile product
JP2020041233A (en) * 2018-09-11 2020-03-19 東洋紡Stc株式会社 Anti-bacterial fiber
JP6998847B2 (en) 2018-09-11 2022-01-18 東洋紡Stc株式会社 Antibacterial fiber

Similar Documents

Publication Publication Date Title
JP2004324008A (en) Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption
JPH04361666A (en) Processing of fiber
JP3783334B2 (en) Polyester filament warp knitted fabric
JP2920966B2 (en) Cloth for clothing
JPH09268476A (en) Dress shirt
JP4110447B2 (en) Highly moisture-absorbing / releasing polyester fiber and fabric comprising the same
JP3780624B2 (en) Hygroscopic / deodorant woven or knitted fabric
JP3897153B2 (en) Method for producing highly durable polyester dust-free garment with excellent wearing comfort
JPH03130416A (en) Sheath-core conjugate polyester fiber and its fabric composed
JPH0327670B2 (en)
JPH10331071A (en) Production of fiber material
JP2001172870A (en) Moisture-absorbing fiber structure
JP2000017575A (en) Modified polyester-based fiber-structured material and production thereof
JP3897155B2 (en) Method for producing polyester dust-free garment with excellent wearing comfort
JPS6329037B2 (en)
JP2018104836A (en) Polyester fiber, and fiber structure
JP2000017576A (en) Modified polyester-based fiber-structured material and production thereof
JP2023150376A (en) Manufacturing method of carboxylic acid metal salt grafted cellulose fiber and manufacturing method of hygroscopic heat-generating fiber structure
JP2015166502A (en) polyester fiber structure
JP2004218093A (en) Polyester fiber woven or knitted fabric and method for producing the same
JP2019210578A (en) Antistatic fiber fabric
JP2002030573A (en) Polyester-based fiber structure
JP2000154475A (en) Hygroscopic fiber structure
JPH06280164A (en) Treatment of textile material
JPH09143875A (en) Modified polyester-based fabric and its production