JP2004323834A - Method for manufacturing seamless tubular polyimide film - Google Patents
Method for manufacturing seamless tubular polyimide film Download PDFInfo
- Publication number
- JP2004323834A JP2004323834A JP2004112166A JP2004112166A JP2004323834A JP 2004323834 A JP2004323834 A JP 2004323834A JP 2004112166 A JP2004112166 A JP 2004112166A JP 2004112166 A JP2004112166 A JP 2004112166A JP 2004323834 A JP2004323834 A JP 2004323834A
- Authority
- JP
- Japan
- Prior art keywords
- tetracarboxylic acid
- aromatic tetracarboxylic
- ester
- film
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
本発明は、改良された非導電性又は半導電性の無端管状ポリイミドフイルムの製造方法に関する。該半導電性の無端管状ポリイミドフイルムは、例えば電子写真方式の中間転写ベルトとして使用される。 The present invention relates to a method for producing an improved non-conductive or semi-conductive endless tubular polyimide film. The semiconductive endless tubular polyimide film is used, for example, as an electrophotographic intermediate transfer belt.
非導電性の管状ポリイミドフイルムは、一般にベルト形状に加工されて、例えば、加熱物品の搬送用ベルトとして用いられたり、電子写真方式の定着用ベルトとして用いられることは良く知られている。 It is well known that a nonconductive tubular polyimide film is generally processed into a belt shape and used as, for example, a belt for conveying heated articles or as a fixing belt of an electrophotographic system.
また、非導電性管状ポリイミドフイルムに、導電性カーボンブラックを混合分散した半導電性の管状ポリイミドフイルムが、例えば、複写機、プリンター、ファクシミリ、印刷機用の中間転写ベルトとして用いられている。 A semiconductive tubular polyimide film in which conductive carbon black is mixed and dispersed in a nonconductive tubular polyimide film is used as an intermediate transfer belt for a copying machine, a printer, a facsimile, and a printing machine, for example.
そして、これらの非導電性及び半導電性の管状ポリイミドフイルムの製法としては、所定の成形材料を一旦フラット状のフイルムに成形した後フイルムの両端を繋いで管状に加工する方法、遠心注型によって一挙に無端の管状フイルムに成形する方法が知られている。また、この遠心注型を実質的無遠心力下で実施して成形することも、例えば本願出願人による特許文献1に記載されている。 Then, as a method for producing these non-conductive and semi-conductive tubular polyimide films, a method of forming a predetermined molding material into a flat film once and then connecting both ends of the film to form a tube, and centrifugal casting. 2. Description of the Related Art A method of forming an endless tubular film at once is known. In addition, for example, Patent Document 1 by the present applicant describes that the centrifugal casting is performed under substantially no centrifugal force to perform molding.
これらの管状ポリイミドフイルムの成形原料としては、一般に、ポリイミドのポリマ前駆体である高分子量(数平均分子量は通常10000〜30000程度)のポリアミド酸(或いはポリアミック酸)溶液が用いられている。 As a raw material for forming these tubular polyimide films, a polyamic acid (or polyamic acid) solution having a high molecular weight (number average molecular weight is usually about 10,000 to 30,000), which is a polyimide polymer precursor, is generally used.
上記のポリアミド酸溶液は、具体的には例えば、1,2,4,5−ベンゼンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物等の点対称位置に酸無水物基を結合する芳香族テトラカルボン酸二無水物と、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン等の芳香族ジアミンとの等モル量を、有機極性溶媒中でイミド化しない程度の低温で重縮合反応させて製造されている。 The polyamic acid solution specifically includes, for example, 1,2,4,5-benzenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 Aromatic tetracarboxylic dianhydrides in which acid anhydride groups are bonded at point-symmetric positions such as', 4,4'-benzophenonetetracarboxylic dianhydride and 2,3,6,7-naphthalenetetracarboxylic dianhydride -Condensation reaction between an equimolar amount of a product and an aromatic diamine such as p-phenylenediamine, 4,4'-diaminodiphenylether, or 4,4'-diaminodiphenylmethane at a low temperature that does not cause imidation in an organic polar solvent. It has been manufactured.
ポリイミドフイルムの製法は、これらの成形原料であるポリアミド酸溶液を一旦製造し、これをポリアミド酸フイルムに成形して、最後にイミド化してポリイミドフイルムを得るという3工程を採用するのが通常であり、出発原料であるモノマから、直接、実質的に1工程でポリイミドフイルムに成形する方法は採られていない。 The method for producing a polyimide film usually employs three steps of once producing a polyamic acid solution as a raw material for forming these, forming this into a polyamic acid film, and finally imidizing to obtain a polyimide film. A method of directly forming a polyimide film from a monomer as a starting material in substantially one step has not been adopted.
しかし、上記の成形方法で得られるポリアミド酸溶液にはポットライフがあるため、保存により徐々に部分的ゲル化が起こり易いという欠点がある。このゲル化は、温度が高い程進行し易いが低温でも経時的に進行し、ゲル化が極微量あっても最終物であるポリイミドフイルムの物性に悪影響を与えることは勿論、平面性の悪化も招いてしまう。これが、導電性カーボンブラックを混合した該フイルムにあっては、電気抵抗のバラツキの増大にまで及んでしまう。 However, since the polyamic acid solution obtained by the above-mentioned molding method has a pot life, there is a disadvantage that partial gelation easily occurs gradually during storage. This gelation is easy to progress as the temperature is high, but it progresses with time even at a low temperature, and even if there is a very small amount of gelation, it will not only adversely affect the physical properties of the final polyimide film, but also deteriorate the flatness. I will invite you. This leads to an increase in variation in electric resistance in the film mixed with conductive carbon black.
また、ポリアミド酸樹脂は有機極性溶媒に対する溶解性に限度があり、高濃度化ができない(溶液中の不揮発分濃度としてせいぜい25重量%まで)という欠点もある。低濃度ポリアミド酸溶液では、一度により厚いフイルムを成形することが困難であることと、多くの該溶媒を必要とするとともにその蒸発除去に多くの時間を必要とする。 Further, the polyamic acid resin has a drawback that its solubility in an organic polar solvent is limited and its concentration cannot be increased (the concentration of nonvolatile components in the solution is up to 25% by weight at most). With a low-concentration polyamic acid solution, it is difficult to form a thicker film at one time, and a large amount of the solvent is required, and much time is required for removing the solvent by evaporation.
また、前記の通り3工程を必要とするので、全工程に要する時間とコストがかかり効率性及び経済的性の観点からも改善の余地がある。 Further, since three steps are required as described above, the time and cost required for all the steps are required, and there is room for improvement in terms of efficiency and economy.
ところで、前記のポリアミド酸溶液からのポリイミドフイルム成形に対して、新たな原料組成物を用いた成形方法が特許文献2に記載されている。これは、非対称性の芳香族テトラカルボン酸又はそのエステルを主成分(具体的には2,3,3’,4’−ビフェニルテトラカルボン酸又はそのエステル60モル%以上)とする芳香族テトラカルボン酸成分と芳香族ジアミン成分との等モルを混合した、モノマを主とする溶液組成物を用いる成形方法である。そして、特許文献2には、該溶液組成物をガラス板に塗布流延して加熱(80〜350℃の間で階段的に昇温)してフラットフイルム成形に供する方法、銀粉、銅粉、カーボンブラック等を混合して耐熱導電ペーストに供する方法が開示されている。
本発明は、従来のポリアミド酸溶液を経て管状ポリイミドフイルムを成形する方法に替えて、芳香族テトラカルボン酸成分及び芳香族ジアミン成分からなる実質的モノマの状態の原料溶液を、回転成形機の回転ドラム内に直接供給して、実質的に1工程によって簡便且つ経済的に高品質の無端状(繋目なし)の非導電性又は半導電性の無端管状ポリイミドフイルムを成形する方法を提供することを目的とする。 The present invention replaces the conventional method of forming a tubular polyimide film through a polyamic acid solution, and feeds a raw material solution in a substantially monomer state comprising an aromatic tetracarboxylic acid component and an aromatic diamine component to a rotary molding machine. Disclosed is a method of forming a high-quality endless (seamless) non-conductive or semi-conductive endless tubular polyimide film in a simple and economical manner by feeding directly into a drum in substantially one step. With the goal.
本発明者は、上記の課題を解決するため鋭意検討を行った結果、特定量の非対称性芳香族テトラカルボン酸又はそのエステルと特定量の対称性芳香族テトラカルボン酸又はそのエステルとからなる芳香族テトラカルボン酸成分と芳香族ジアミン成分とが略等モル量で混合されてなる実質的モノマ状態の混合溶液を、回転成形法にて管状物に成形し、加熱処理してイミド化することにより、高品質の無端管状ポリイミドフイルムを製造し得ることを見出した。 The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that an aromatic compound comprising a specific amount of an asymmetric aromatic tetracarboxylic acid or an ester thereof and a specific amount of a symmetric aromatic tetracarboxylic acid or an ester thereof A mixed solution in a substantially monomer state, in which an aromatic tetracarboxylic acid component and an aromatic diamine component are mixed in substantially equimolar amounts, is formed into a tubular material by a rotational molding method, and is heat-treated for imidization. It was found that a high quality endless tubular polyimide film could be produced.
また、本発明者は、特定量の非対称性芳香族テトラカルボン酸又はそのエステルと特定量の対称性芳香族テトラカルボン酸又はそのエステルとからなる芳香族テトラカルボン酸成分と芳香族ジアミン成分とが略等モル量で混合されてなる実質的モノマ状態の混合溶液に、特定量のカーボンブラックが分散された半導電性ポリイミド前駆体組成物を、回転成形法にて管状物に成形し、加熱処理してイミド化することにより、高品質の半導電性無端管状ポリイミドフイルムを製造し得ることを見出した。 Further, the present inventors have found that an aromatic tetracarboxylic acid component and an aromatic diamine component consisting of a specific amount of an asymmetric aromatic tetracarboxylic acid or an ester thereof and a specific amount of a symmetric aromatic tetracarboxylic acid or an ester thereof. A semiconductive polyimide precursor composition in which a specific amount of carbon black is dispersed in a substantially monomeric mixed solution mixed in substantially equimolar amounts is formed into a tubular article by a rotational molding method, and heat-treated. It has been found that a high-quality semiconductive endless tubular polyimide film can be produced by imidization.
これらの知見に基づいて、さらに研究を重ねることにより、本発明を完成するに至った。 The present invention has been completed by further research based on these findings.
すなわち、本発明は以下の非導電性又は半導電性無端管状ポリイミドフイルムの製造方法を提供する。 That is, the present invention provides the following method for producing a nonconductive or semiconductive endless tubular polyimide film.
項1.非対称性芳香族テトラカルボン酸又はそのエステル15〜55モル%と対称性芳香族テトラカルボン酸又はそのエステル85〜45モル%とからなる芳香族テトラカルボン酸成分と芳香族ジアミン成分とが略等モル量で混合されてなる実質的モノマ状態の混合溶液を、回転成形法にて管状物に成形し、加熱処理してイミド化することを特徴とする無端管状ポリイミドフイルムの製造方法。 Item 1. A substantially equimolar amount of an aromatic tetracarboxylic acid component and an aromatic diamine component comprising 15 to 55 mol% of an asymmetric aromatic tetracarboxylic acid or an ester thereof and 85 to 45 mol% of a symmetric aromatic tetracarboxylic acid or an ester thereof. A method for producing an endless tubular polyimide film, comprising: forming a mixed solution in a substantially monomer state, which is mixed in an amount, into a tubular material by a rotational molding method, and heat-treating the mixture to imidize it.
項2.非対称性芳香族テトラカルボン酸又はそのエステル15〜55モル%と対称性芳香族テトラカルボン酸又はそのエステル85〜45モル%とからなる芳香族テトラカルボン酸成分と芳香族ジアミン成分とが略等モル量で混合されてなる実質的モノマ状態の混合溶液に、芳香族テトラカルボン酸成分と芳香族ジアミン成分の合計量100重量部に対し1〜35重量部のカーボンブラックが分散された半導電性のモノマ混合溶液を、回転成形法にて管状物に成形し、加熱処理してイミド化することを特徴とする半導電性無端管状ポリイミドフイルムの製造方法。 Item 2. A substantially equimolar amount of an aromatic tetracarboxylic acid component and an aromatic diamine component comprising 15 to 55 mol% of an asymmetric aromatic tetracarboxylic acid or an ester thereof and 85 to 45 mol% of a symmetric aromatic tetracarboxylic acid or an ester thereof. In a substantially monomeric mixed solution mixed in an amount, 1 to 35 parts by weight of carbon black is dispersed with respect to 100 parts by weight of the total amount of the aromatic tetracarboxylic acid component and the aromatic diamine component. A method for producing a semiconductive endless tubular polyimide film, wherein a monomer mixture solution is formed into a tubular material by a rotational molding method, and is heat-treated to be imidized.
項3.項2に記載の製造方法により製造される電子写真方式の中間転写ベルトに用いられる半導電性無端管状ポリイミドフイルム。 Item 3. Item 3. A semiconductive endless tubular polyimide film used for an electrophotographic intermediate transfer belt manufactured by the manufacturing method according to Item 2.
以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.
本発明の無端管状ポリイミドフイルム(以下、「管状PIフイルム」とも呼ぶ)は、特定の芳香族テトラカルボン酸成分と芳香族ジアミン成分を成形原料とする。具体的には、本発明の非導電性管状PIフイルムは、特定の芳香族テトラカルボン酸成分と芳香族ジアミン成分を成形原料とする。本発明の半導電性管状PIフイルムは、上記の成形原料に加え、導電性を付与するために所定量のカーボンブラック(以下、「CB」とも呼ぶ)を原料とする。 The endless tubular polyimide film of the present invention (hereinafter, also referred to as “tubular PI film”) uses a specific aromatic tetracarboxylic acid component and an aromatic diamine component as molding materials. Specifically, the non-conductive tubular PI film of the present invention uses a specific aromatic tetracarboxylic acid component and an aromatic diamine component as molding materials. The semiconductive tubular PI film of the present invention uses a predetermined amount of carbon black (hereinafter, also referred to as “CB”) as a raw material in order to impart conductivity, in addition to the above-mentioned forming raw material.
芳香族テトラカルボン酸成分
成形原料である芳香族テトラカルボン酸成分としては、非対称性芳香族テトラカルボン酸成分(非対称性芳香族テトラカルボン酸又はそのエステルの少なくとも1種)と対称性芳香族テトラカルボン酸成分(対称性芳香族テトラカルボン酸又はそのエステルの少なくとも1種)との混合物が用いられる。
Aromatic tetracarboxylic acid component The aromatic tetracarboxylic acid component, which is a forming raw material, includes an asymmetric aromatic tetracarboxylic acid component (at least one of asymmetric aromatic tetracarboxylic acid or an ester thereof) and a symmetric aromatic tetracarboxylic acid. A mixture with an acid component (at least one of symmetric aromatic tetracarboxylic acids or esters thereof) is used.
非対称性芳香族テトラカルボン酸とは、単環若しくは多環の芳香環(ベンゼン核、ナフタレン核、ビフェニル核、アントラセン核等)に4個のカルボキシル基が点対象でない位置に結合した化合物、或いは2個の単環芳香環(ベンゼン核等)が−CO−、−CH2−、−SO2−等の基又は単結合で架橋された化合物に4個のカルボキシル基が点対象でない位置に結合した化合物が挙げられる。 The asymmetric aromatic tetracarboxylic acid is a compound in which four carboxyl groups are bonded to a monocyclic or polycyclic aromatic ring (benzene nucleus, naphthalene nucleus, biphenyl nucleus, anthracene nucleus, etc.) at a position which is not symmetrical, or number of monocyclic aromatic rings (benzene nucleus, etc.) -CO -, - CH 2 -, - SO 2 - group or 4 carboxyl groups in compounds crosslinked with a single bond or the like attached to a position which is not the point symmetry Compounds.
非対称性芳香族テトラカルボン酸の具体例としては、1,2,3,4−ベンゼンテトラカルボン酸、1,2,6,7−ナフタレンテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ベンゾフェノンテトラカルボン酸、2,3,3’,4’−ジフェニルエーテルテトラカルボン酸、2,3,3’,4’−ジフェニルメタンテトラカルボン酸、2,3,3’,4’−ジフェニルスルフォンテトラカルボン酸等が挙げられる。 Specific examples of the asymmetric aromatic tetracarboxylic acid include 1,2,3,4-benzenetetracarboxylic acid, 1,2,6,7-naphthalenetetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, 2,3,3 ', 4'-benzophenonetetracarboxylic acid, 2,3,3', 4'-diphenylethertetracarboxylic acid, 2,3,3 ', 4'-diphenylmethanetetracarboxylic acid, , 3,3 ', 4'-diphenylsulfonetetracarboxylic acid and the like.
本発明で用いられる非対称性芳香族テトラカルボン酸エステルとしては、上記の非対称性芳香族テトラカルボン酸のジエステル(ハーフエステル)を挙げることができ、具体的には、上記非対称性芳香族テトラカルボン酸の4個のカルボキシル基のうち2個のカルボキシル基がエステル化されており、かつ芳香環上の隣接する2個のカルボキシル基の一方がエステル化された化合物が挙げられる。 Examples of the asymmetric aromatic tetracarboxylic acid ester used in the present invention include diesters (half esters) of the above-mentioned asymmetric aromatic tetracarboxylic acids, and specifically, the above-mentioned asymmetric aromatic tetracarboxylic acids And two carboxyl groups of the four carboxyl groups are esterified, and one of two adjacent carboxyl groups on the aromatic ring is esterified.
上記非対称性芳香族テトラカルボン酸ジエステルにおける2個のエステルとしては、ジ低級アルキルエステル、好ましくはジメチルエステル、ジエチルエステル、ジプロピルエステル等のジC1-3アルキルエステル(特に、ジメチルエステル)が挙げられる。 Examples of the two esters in the asymmetric aromatic tetracarboxylic acid diester include di-lower alkyl esters, preferably di-C 1-3 alkyl esters such as dimethyl ester, diethyl ester and dipropyl ester (particularly, dimethyl ester). Can be
上記非対称性芳香族テトラカルボン酸ジエステルのうち、2,3,3’,4’−ビフェニルテトラカルボン酸ジメチルエステル、2,3,3’,4’−ビフェニルテトラカルボン酸ジエチルエステルが好ましく、特に、2,3,3’,4’−ビフェニルテトラカルボン酸ジメチルエステルが好ましく使用される。 Among the asymmetric aromatic tetracarboxylic acid diesters, 2,3,3 ′, 4′-biphenyltetracarboxylic acid dimethyl ester and 2,3,3 ′, 4′-biphenyltetracarboxylic acid diethyl ester are preferable, and in particular, 2,3,3 ', 4'-Biphenyltetracarboxylic acid dimethyl ester is preferably used.
なお、上記非対称性芳香族テトラカルボン酸ジエステルは、市販又は公知の方法により製造することができる。例えば、対応する非対称性芳香族テトラカルボン酸二無水物1に対し、対応するアルコール(低級アルコール、好ましくはC1-3アルコール等)2(モル比)を反応させる等の公知の方法により容易に製造することができる。これにより、原料の酸無水物がアルコールと反応して開環して、芳香環上の隣接する炭素上にそれぞれエステル基とカルボキシル基を有するジエステル(ハーフエステル)が製造される。 The asymmetric aromatic tetracarboxylic acid diester can be commercially available or can be produced by a known method. For example, it is easily prepared by a known method such as reacting the corresponding asymmetric aromatic tetracarboxylic dianhydride 1 with the corresponding alcohol (lower alcohol, preferably C 1-3 alcohol or the like) 2 (molar ratio). Can be manufactured. Thereby, the acid anhydride of the raw material reacts with the alcohol to open the ring, thereby producing a diester (half ester) having an ester group and a carboxyl group on adjacent carbons on the aromatic ring.
また、対称性芳香族テトラカルボン酸とは、単環若しくは多環の芳香環(ベンゼン核、ナフタレン核、ビフェニル核、アントラセン核等)に4個のカルボキシル基が点対称な位置に結合した化合物、或いは2個の単環芳香環(ベンゼン核等)が−CO−、−O−、−CH2−、−SO2−等の基又は単結合で架橋された化合物に4個のカルボキシル基が点対称な位置に結合した化合物が挙げられる。 In addition, a symmetric aromatic tetracarboxylic acid is a compound in which four carboxyl groups are bonded to point-symmetric positions on a monocyclic or polycyclic aromatic ring (benzene nucleus, naphthalene nucleus, biphenyl nucleus, anthracene nucleus, etc.) or two monocyclic aromatic ring (benzene nucleus, etc.) -CO -, - O -, - CH 2 -, - SO 2 - groups or 4 carboxyl groups in compounds crosslinked with a single bond, such as a point Compounds bound at symmetrical positions are included.
対称性芳香族テトラカルボン酸の具体例としては、1,2,4,5−ベンゼンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸、3,3’,4,4’−ジフェニルメタンテトラカルボン酸、3,3’,4,4’−ジフェニルスルフォンテトラカルボン酸等が挙げられる。 Specific examples of the symmetric aromatic tetracarboxylic acid include 1,2,4,5-benzenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyl Tetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3,3 ′, 4,4′-diphenylethertetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, , 3 ', 4,4'-diphenylsulfonetetracarboxylic acid and the like.
本発明で用いられる対称性芳香族テトラカルボン酸エステルとしては、上記の対称性芳香族テトラカルボン酸のジエステル(ハーフエステル)を挙げることができ、具体的には、上記対称性芳香族テトラカルボン酸の4個のカルボキシル基のうち2個のカルボキシル基がエステル化されており、かつ芳香環上の隣接する2個のカルボキシル基の一方がエステル化された化合物が挙げられる。 Examples of the symmetric aromatic tetracarboxylic acid ester used in the present invention include the diesters (half esters) of the above-mentioned symmetric aromatic tetracarboxylic acids, and specifically, the above-mentioned symmetric aromatic tetracarboxylic acids And two carboxyl groups of the four carboxyl groups are esterified, and one of two adjacent carboxyl groups on the aromatic ring is esterified.
上記対称性芳香族テトラカルボン酸ジエステルにおける2個のエステルとしては、ジ低級アルキルエステル、好ましくはジメチルエステル、ジエチルエステル、ジプロピルエステル等のC1-3アルキルエステル(特に、ジメチルエステル)が挙げられる。 Examples of the two esters in the symmetric aromatic tetracarboxylic diester include di-lower alkyl esters, preferably C 1-3 alkyl esters such as dimethyl ester, diethyl ester and dipropyl ester (particularly, dimethyl ester). .
上記対称性芳香族テトラカルボン酸ジエステルのうち、3,3’,4,4’−ビフェニルテトラカルボン酸ジメチルエステル、3,3’,4,4’−ビフェニルテトラカルボン酸ジエチルエステル、2,3,5,6−ベンゼンテトラカルボン酸ジメチルエステルが好ましく、特に、3,3’,4,4’−ビフェニルテトラカルボン酸ジメチルエステル、が好ましく使用される。 Among the above symmetric aromatic tetracarboxylic diesters, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dimethyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid diethyl ester, 2,3 5,6-benzenetetracarboxylic acid dimethyl ester is preferable, and 3,3 ′, 4,4′-biphenyltetracarboxylic acid dimethyl ester is particularly preferably used.
なお、上記対称性芳香族テトラカルボン酸ジエステルは、市販又は公知の方法により製造することができる。例えば、対応する対称性芳香族テトラカルボン酸二無水物1に対し、対応するアルコール(低級アルコール、好ましくはC1-3アルコール等)2(モル比)を反応させて容易に製造することができる。これにより、原料の酸無水物がアルコールと反応して開環して、芳香環上の隣接する炭素上にそれぞれエステル基とカルボキシル基を有するジエステル(ハーフエステル)が製造される。 In addition, the said symmetric aromatic tetracarboxylic acid diester can be manufactured commercially or by a well-known method. For example, it can be easily produced by reacting a corresponding symmetric aromatic tetracarboxylic dianhydride 1 with a corresponding alcohol (lower alcohol, preferably C 1-3 alcohol or the like) 2 (molar ratio). . Thereby, the acid anhydride of the raw material reacts with the alcohol to open the ring, thereby producing a diester (half ester) having an ester group and a carboxyl group on adjacent carbons on the aromatic ring.
非対称性及び対称性の芳香族テトラカルボン酸又はそのエステルの混合比は、非対称性芳香族テトラカルボン酸又はそのエステルが15〜55モル%(好ましくは20〜50モル%)程度であり、対称性芳香族テトラカルボン酸又はそのエステルが85〜45モル%(好ましくは80〜50モル%)程度で特定される。特に、非対称性及テトラカルボン酸ジエステルを20〜50モル%程度、対称性芳香族テトラカルボン酸ジエステルを80〜50モル%程度用いるのが好適である。 The mixing ratio of the asymmetric and symmetric aromatic tetracarboxylic acids or esters thereof is about 15 to 55 mol% (preferably 20 to 50 mol%) of the asymmetric aromatic tetracarboxylic acids or esters thereof. The aromatic tetracarboxylic acid or its ester is specified at about 85 to 45 mol% (preferably 80 to 50 mol%). In particular, it is preferable to use about 20 to 50 mol% of an asymmetric and tetracarboxylic diester and about 80 to 50 mol% of a symmetric aromatic tetracarboxylic diester.
なお、前記の対称性及び非対称性の芳香族テトラカルボン酸成分を配合することを必須とするのは、次の理由による。対称性の芳香族テトラカルボン酸又はそのエステルのみでは、ポリイミドフイルムが結晶性を発現するため加熱処理中に被膜が粉化してしまいフイルム化することが出来ない。一方、非対称性の芳香族テトラカルボン酸又はそのエステルのみでは、無端管状PIフイルムとして成形はされるが、得られた該フイルムの降伏強度と弾性率が弱く、回転ベルトとして使用した場合、駆動での応答性が悪いだけでなく、初期の段階でベルト伸びが発生してしまうなどの問題がある。 In addition, it is essential to mix | blend the said symmetric and asymmetric aromatic tetracarboxylic acid component for the following reasons. If only the symmetric aromatic tetracarboxylic acid or its ester is used, the polyimide film exhibits crystallinity, so that the film is powdered during the heat treatment and cannot be formed into a film. On the other hand, only an asymmetric aromatic tetracarboxylic acid or an ester thereof can be formed as an endless tubular PI film, but the yield strength and elastic modulus of the obtained film are weak, and when the film is used as a rotating belt, it can be driven. In addition to the poor response, there is a problem that belt elongation occurs at an early stage.
これに対し、上記混合比からなる芳香族テトラカルボン酸又はそのエステルを使用すると、極めて高い製膜性(成形性)が可能であり、しかも高い降伏強度と弾性率を有する半導電性の無端管状PIフイルムが得られる。 On the other hand, when an aromatic tetracarboxylic acid or an ester thereof having the above mixing ratio is used, an extremely high film-forming property (formability) is possible, and a semiconductive endless tube having a high yield strength and elastic modulus is provided. A PI film is obtained.
また、非対称性芳香族テトラカルボン酸又はそのエステルを添加することによりポリアミド酸分子が曲がって、フレキシブル性が生まれると考えられる。 In addition, it is considered that the addition of the asymmetric aromatic tetracarboxylic acid or its ester causes the polyamic acid molecule to bend, resulting in flexibility.
そして、前記の対称性と非対称性の芳香族テトラカルボン酸又はそのエステルの共存効果は、両者が前記に示した混合比の場合に最も有効に発揮される。 The above-mentioned coexistence effect of the symmetric and asymmetric aromatic tetracarboxylic acids or esters thereof is most effectively exerted when the two are in the above-mentioned mixing ratio.
芳香族ジアミン成分
芳香族ジアミン成分としては、1つの芳香環上に2個のアミノ基を有する化合物、又は2つ以上の芳香環(ベンゼン核等)が−O−、−S−、−CO−、−CH2−、−SO−、−SO2−等の基若しくは単結合で架橋された2個のアミノ基を有する化合物が挙げられる。具体的には、例えば、p−フェニレンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、4,4’―ジアミノジフェニルエーテル、4,4’―ジアミノジフェニルチオエーテル、4,4’―ジアミノジフェニルカルボニル、4,4’―ジアミノジフェニルメタン、1,4―ビス(4―アミノフェノキシ)ベンゼン等が挙げられる。中でも、4,4’―ジアミノジフェニルエーテルが特に好ましい。これらの芳香族ジアミン成分を用いることにより、反応がより円滑に進行すると共に、より強靭かつ高い耐熱性のフイルムを製造することができるからである。
Aromatic diamine component As the aromatic diamine component, a compound having two amino groups on one aromatic ring, or two or more aromatic rings (such as a benzene nucleus) represented by -O-, -S-, -CO- , -CH 2 -, - SO - , - SO 2 - compound having a group or two amino groups which are crosslinked with a single bond, and the like. Specifically, for example, p-phenylenediamine, o-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylether, 4,4′-diaminodiphenylthioether, 4,4′-diaminodiphenylcarbonyl, 4, 4'-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, and the like. Among them, 4,4′-diaminodiphenyl ether is particularly preferred. By using these aromatic diamine components, the reaction proceeds more smoothly, and a tougher and higher heat-resistant film can be produced.
有機極性溶媒
実質的モノマ状態の混合溶液に用いる有機極性溶媒としては、非プロトン系有機極性溶媒が好ましく、例えばN−メチル−2−ピロリドン(以下、「NMP」と呼ぶ。)、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、1,3−ジメチル−2−イミダゾリジノン等が使用される。これらのうちの1種又は2種以上の混合溶媒であってもよい。特に、NMPが好ましい。有機極性溶媒の使用量は、原料の芳香族テトラカルボン酸成分と芳香族ジアミン成分の合計量100重量部に対し、65〜300重量部程度(好ましくは、80〜230重量部程度、更に好ましくは、100〜200重量部程度)になるように決めればよい。
Organic polar solvent As the organic polar solvent used in the mixed solution in a substantially monomer state, an aprotic organic polar solvent is preferable, for example, N-methyl-2-pyrrolidone (hereinafter, referred to as "NMP"), N, N-. Dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphamide, 1,3-dimethyl-2-imidazolidinone and the like are used. One or more of these may be a mixed solvent. In particular, NMP is preferred. The amount of the organic polar solvent used is about 65 to 300 parts by weight (preferably about 80 to 230 parts by weight, more preferably about 80 to 230 parts by weight, based on 100 parts by weight of the total amount of the raw material aromatic tetracarboxylic acid component and aromatic diamine component). , About 100 to 200 parts by weight).
カーボンブラック(CB)
本発明の半導電性管状PIフイルムを製造するにあたり、上記した各成分に加え、電気抵抗特性付与のためにCB粉体が使用される。カーボンブラックが用いられる理由は、他の一般に知られている金属や金属酸化物の導電材と比較して)調製されたモノマ混合溶液との混合分散性と安定性(混合分散後の経時変化)に優れ、且つ重縮合反応への悪影響がないことによる。
Carbon black (CB)
In producing the semiconductive tubular PI film of the present invention, CB powder is used for imparting electric resistance characteristics in addition to the above components. The reason why carbon black is used is that its dispersibility and stability with the prepared monomer mixture solution (compared to other commonly known conductive materials of metals and metal oxides) (change over time after mixing and dispersing). And no adverse effect on the polycondensation reaction.
このCB粉体は、その製造原料(天然ガス、アセチレンガス、コ−ルタ−ル等)と製造条件(燃焼条件)とによって種々の物性(電気抵抗、揮発分、比表面積、粒径、PH値、DBP吸油量等)を有したものがある。ストラクチャーの発達した導電指標の高いものは(これはアセチレンガスを原料として製造したCB粉体に多い)、比較的少量の充填量で所定の電気抵抗が得られるが、混合分散性はあまり良くない。導電指標は高くないが、PH値が低い酸化処理したCB粉体、揮発分を多く含有するCB粉体は、所定の電気抵抗に対して比較的多くの充填が必要となるが、混合分散性と貯蔵安定性に優れ、そして均質な電気抵抗を持つベルトが得られやすい。 The CB powder has various physical properties (electrical resistance, volatile matter, specific surface area, particle size, PH value) depending on the production raw materials (natural gas, acetylene gas, coal tar, etc.) and production conditions (combustion conditions). , DBP oil absorption, etc.). In the case of a structure having a high conductivity index (which is common in CB powders produced using acetylene gas as a raw material), a predetermined electric resistance can be obtained with a relatively small filling amount, but the mixing and dispersibility is not so good. . Oxidized CB powder having a low PH value but low PH value, and CB powder containing a large amount of volatile matter require a relatively large amount of filling for a given electric resistance. It is easy to obtain a belt with excellent storage stability and uniform electric resistance.
この導電性CB粉体は、通常平均粒子径が15〜65nm程度であり、特にトナー複写機、カラー複写機等の電子写真方式の中間転写用ベルト用フイルム用途に用いる場合、平均粒子径20〜40nm程度のものが好適である。 This conductive CB powder usually has an average particle size of about 15 to 65 nm, and particularly when used for a film for an intermediate transfer belt of an electrophotographic system such as a toner copying machine and a color copying machine, the average particle size is 20 to 65 nm. Those having a thickness of about 40 nm are preferred.
例えば、チャンネルブラック、酸化処理したファーネスブラック等が挙げられる。具体的には、デグサ社製のスペシャルブラック4(PH3、揮発分14%、粒子径25nm)やスペシャルブラック5(PH3、揮発分15%、粒子径20nm)などが例示される。 For example, channel black, oxidized furnace black, and the like can be given. Specific examples include Special Black 4 (PH3, volatile matter 14%, particle diameter 25 nm) and Special Black 5 (PH3, volatile matter 15%, particle diameter 20 nm) manufactured by Degussa.
添加されるCB粉体の量は、実質的モノマ状態の混合溶液の成形原料である芳香族テトラカルボン酸成分と芳香族ジアミン成分の合計量100重量部に対し、1〜35重量部程度(好ましくは5〜25重量部程度)用いるのが好ましい。 The amount of the CB powder to be added is about 1 to 35 parts by weight (preferably 100 parts by weight of the total amount of the aromatic tetracarboxylic acid component and the aromatic diamine component, which are the raw materials for forming the mixed solution in a substantially monomer state). Is about 5 to 25 parts by weight).
ここでCB粉体を上記の範囲で用いるのは、フイルムに半導電領域にある体積抵抗率(Ω・cm)(VR)及び表面抵抗率(Ω/□)(SR)を付与するためである。なお、下限が1重量部程度以上であるのは十分な導電性を得るためにはこの程度の量が必要であるためであり、上限が35重量部程度以下であるのは、より低い抵抗を発現するとともに、成形性を維持しフイルム自身の物性の低下を防ぐためである。 The reason why the CB powder is used in the above range is to give the film a volume resistivity (Ω · cm) (VR) and a surface resistivity (Ω / □) (SR) in the semiconductive region. . Note that the lower limit is about 1 part by weight or more because this amount is necessary to obtain sufficient conductivity, and the upper limit is about 35 parts by weight or less, lower resistance is lower. The reason is that, in addition to the development, the formability is maintained and the physical properties of the film itself are prevented from being reduced.
モノマ混合溶液の調製
芳香族テトラカルボン酸成分、芳香族ジアミン成分及び有機極性溶媒の所定量を混合して、成形用の実質的モノマ状態の混合溶液(以下、「モノマ混合溶液」とも呼ぶ)が調製される。本発明の非導電性管状PIフイルムと半導電管状PIフイルムとは、CB粉体の有無だけの差で、成形原料となるモノマ混合溶液は、両者同じ条件で調製される。その調製手順には特に制限はない。これは、本発明で用いられる芳香族テトラカルボン酸成分は、反応性の高い芳香族テトラカルボン酸二無水物を用いる場合と異なり、低温(例えば30〜40℃以下)でジアミン成分とは実質的に反応しないためであり、モノマ混合溶液を調製する上で有利な点の一つでもある。
Preparation of Monomer Mixed Solution A predetermined amount of an aromatic tetracarboxylic acid component, an aromatic diamine component and an organic polar solvent is mixed to form a mixed solution in a substantially monomer state for molding (hereinafter, also referred to as a “monomer mixed solution”). Be prepared. The difference between the non-conductive tubular PI film and the semiconductive tubular PI film of the present invention is only the presence or absence of CB powder, and the monomer mixed solution as a forming raw material is prepared under the same conditions. The preparation procedure is not particularly limited. This is because the aromatic tetracarboxylic acid component used in the present invention is substantially different from the diamine component at a low temperature (for example, 30 to 40 ° C. or lower), unlike the case where a highly reactive aromatic tetracarboxylic dianhydride is used. This is one of the advantages in preparing a monomer mixture solution.
モノマ混合溶液は、上述した芳香族テトラカルボン酸成分と芳香族ジアミン成分の略等モル量の反応比で有機極性溶媒に混合、溶解して調製される。これらの成分はモノマであるため有機極性溶剤に溶解しやすく、高濃度で均一に溶解させることができ、得られる溶液は実質的にモノマの状態で保持することができる。本発明は、該モノマ状態の混合溶液を成形原料として使用するものである。 The monomer mixture solution is prepared by mixing and dissolving the aromatic tetracarboxylic acid component and the aromatic diamine component in an organic polar solvent at a reaction ratio of approximately equimolar amounts. Since these components are monomers, they are easily dissolved in an organic polar solvent, can be uniformly dissolved at a high concentration, and the resulting solution can be kept substantially in a monomer state. The present invention uses the mixed solution in the monomer state as a forming raw material.
尚、ここで略等モル量とは、芳香族テトラカルボン酸成分と芳香族ジアミン成分との重縮合反応が円滑に進行し、所定の高分子量のポリイミドが得られる反応比を意味する。また、該実質的モノマ状態とは、混合溶液中において各成分のほとんどがモノマの状態にあると言う意味であるが、本発明に悪影響を与えない範囲でオリゴマー程度の低分子重縮合反応物が少量含有していてもよい。 Here, the substantially equimolar amount means a reaction ratio at which a polycondensation reaction between an aromatic tetracarboxylic acid component and an aromatic diamine component proceeds smoothly to obtain a polyimide having a predetermined high molecular weight. Further, the substantially monomeric state means that most of each component is in a monomeric state in a mixed solution, but a low-molecular-weight polycondensation reaction product of an oligomer or the like within a range not adversely affecting the present invention. A small amount may be contained.
また、有機極性溶媒の使用量は、原料の芳香族テトラカルボン酸成分と芳香族ジアミン成分の合計量100重量部に対し、65〜300重量部程度(好ましくは、80〜230重量部程度、更に好ましくは、100〜200重量部程度)になるように決めればよい。製造される実質的モノマ状態の混合溶液は、上記有機極性溶媒に溶解しやすい為、使用する溶媒の量を極力低減できるというメリットがある。 Further, the amount of the organic polar solvent used is about 65 to 300 parts by weight (preferably about 80 to 230 parts by weight, based on 100 parts by weight of the total amount of the raw material aromatic tetracarboxylic acid component and aromatic diamine component). Preferably, it is determined to be about 100 to 200 parts by weight. Since the produced mixed solution in a substantially monomeric state is easily dissolved in the above-mentioned organic polar solvent, there is an advantage that the amount of the solvent used can be reduced as much as possible.
以下、モノマ混合溶液の調製方法を例示する。 Hereinafter, a method for preparing a monomer mixture solution will be exemplified.
第1例として、まず、前記した所定モル%の対称性及び非対称性の芳香族テトラカルボン酸成分を有機極性溶媒に混合し溶解させる。この溶液に、芳香族テトラカルボン酸成分と略等モルの芳香族ジアミン成分を攪拌しながら添加し、均一溶解して成形用のモノマ混合溶液とする。 As a first example, first, a predetermined mol% of the symmetric and asymmetric aromatic tetracarboxylic acid components is mixed and dissolved in an organic polar solvent. To this solution, an aromatic diamine component having substantially the same mole as the aromatic tetracarboxylic acid component is added with stirring and uniformly dissolved to obtain a monomer mixture solution for molding.
第2例として、前記の所定量の対称性芳香族テトラカルボン酸成分とこれと等モルの芳香族ジアミン成分からなる溶液と、所定量の非対称性芳香族テトラカルボン酸成分とこれと等モルの芳香族ジアミン成分からなる溶液を、各々別個に調製する。この各々の溶液を、2種の芳香族テトラカルボン酸成分が所定のモル%になるように混合して、成形用のモノマ混合溶液とする。 As a second example, a solution consisting of the predetermined amount of the symmetric aromatic tetracarboxylic acid component and an equimolar amount of the aromatic diamine component, and a predetermined amount of the asymmetric aromatic tetracarboxylic acid component and an equimolar amount of the same Solutions comprising the aromatic diamine component are each separately prepared. The respective solutions are mixed so that the two kinds of aromatic tetracarboxylic acid components have a predetermined mol% to obtain a monomer mixture solution for molding.
第3例として、有機極性溶媒中に各々所定量の対称性及び非対称性の芳香族テトラカルボン酸成分、並びに芳香族ジアミン成分を同時に添加して、均一なモノマ混合溶液を調製する。 As a third example, a predetermined amount of a symmetric and asymmetric aromatic tetracarboxylic acid component and an aromatic diamine component are simultaneously added to an organic polar solvent to prepare a uniform monomer mixed solution.
本発明のモノマ混合溶液における不揮発分濃度は、従来のポリアミド酸溶液がせいぜい25重量%までであるのに対して、45重量%程度(特に30〜45重量%程度)まで高濃度溶液とすることができる。なお、本明細書で用いる「不揮発分濃度」とは、実施例に記載の方法により測定された濃度を意味する。高濃度のモノマ混合溶液を用いることにより、重合反応が迅速に進行し成形時間の短縮が図れる。また、容易に膜厚のあるフイルムを製造することができ、使用する溶媒の量が少ないためコストが抑えられ溶媒の蒸発除去が簡便になる。 The non-volatile component concentration in the monomer mixture solution of the present invention is a high concentration solution up to about 45% by weight (particularly about 30 to 45% by weight), while the conventional polyamic acid solution is at most 25% by weight. Can be. The “non-volatile concentration” used in the present specification means a concentration measured by the method described in Examples. By using a high-concentration monomer mixed solution, the polymerization reaction proceeds rapidly and the molding time can be shortened. Further, a film having a large thickness can be easily produced, and the amount of the solvent to be used is small, so that the cost is suppressed and the evaporation and removal of the solvent are simplified.
なお、本発明の効果に悪影響を与えない範囲で、上記モノマ混合溶液中にイミダゾール系化合物(2-メチルイミダゾール、1,2−ジメチルイミダゾール、2-メチル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニルイミダゾール)、界面活性剤(フッ素系界面活性剤等)等の添加剤を加えてもよい。 The imidazole-based compound (2-methylimidazole, 1,2-dimethylimidazole, 2-methyl-4-methylimidazole, 2-ethyl-4) is contained in the above-mentioned monomer mixed solution within a range that does not adversely affect the effects of the present invention. Additives such as -ethylimidazole, 2-phenylimidazole) and surfactants (fluorinated surfactants and the like) may be added.
また、半導電管状PIフイルムの製造には、モノマ混合溶液に、カーボンブラックが分散された半導電性のモノマ混合溶液を用いる。モノマ混合溶液へのCB粉体の混合方法は、撹拌等の公知の方法を用いればよく特に制限はない。この撹拌の場合、ボールミルを使うのが良く、これによりCBが均一に分散された成形用の半導電性モノマ混合溶液が得られる。 For the production of a semiconductive tubular PI film, a semiconductive monomer mixed solution in which carbon black is dispersed is used for the monomer mixed solution. The method of mixing the CB powder with the monomer mixture solution may be a known method such as stirring, and is not particularly limited. In the case of this stirring, it is preferable to use a ball mill, whereby a mixed semiconductive monomer solution for molding in which CB is uniformly dispersed is obtained.
カーボンブラックの使用量は、上述した様に、芳香族テトラカルボン酸成分と芳香族ジアミン成分の合計量100重量部に対し1〜35重量部、好ましくは5〜25重量部が用いられる。 As described above, the amount of carbon black used is 1 to 35 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the total amount of the aromatic tetracarboxylic acid component and the aromatic diamine component.
無端管状ポリイミドフイルムの製造方法
次に、前記調製されたモノマ混合溶液又は半導電性のモノマ混合溶液を使った管状PIフイルムの成形手段について説明する。以下、モノマ混合溶液を用いた成形手段について説明するが、半導電性のモノマ混合溶液を用いた成形手段も同様にして実施できる。
Next, a method for forming a tubular PI film using the prepared monomer mixed solution or semiconductive monomer mixed solution will be described. Hereinafter, the molding means using the monomer mixed solution will be described, but the molding means using the semiconductive monomer mixed solution can be similarly implemented.
この成形手段は、回転ドラムを使う回転成形方法が採用される。まずモノマ混合溶液を回転ドラムの内面に注入し、内面全体に均一に流延する。 As the forming means, a rotary forming method using a rotary drum is adopted. First, the monomer mixed solution is poured into the inner surface of the rotating drum and uniformly cast over the entire inner surface.
注入・流延の方法は、例えば停止している回転ドラムに、最終フイルム厚さを得るに相当する量のモノマ混合溶液を注入した後、遠心力が働く速度にまで徐々に回転速度を上げる。遠心力でもって内面全体に均一に流延する。或いは注入・流延は遠心力を使わなくてもできる。例えば、横長のスリット状のノズルを回転ドラム内面に配置し、該ドラムをゆっくりと回転しつつ、(その回転速度よりも速い速度で)該ノズルも回転する。そして成形用のモノマ混合溶液を該ノズルから該ドラム内面に向って全体に均一に噴射する方法である。 In the casting / casting method, for example, an amount of the monomer mixed solution corresponding to a final film thickness is injected into a stopped rotating drum, and then the rotation speed is gradually increased to a speed at which centrifugal force acts. It is uniformly cast over the entire inner surface by centrifugal force. Alternatively, casting and casting can be performed without using centrifugal force. For example, a horizontally long slit-shaped nozzle is arranged on the inner surface of a rotating drum, and the nozzle is rotated (at a speed higher than the rotation speed) while slowly rotating the drum. In this method, a monomer mixture solution for molding is uniformly sprayed from the nozzle toward the inner surface of the drum.
尚、いずれの方法も回転ドラムは、内面が鏡面仕上げされ、両端縁には、液モレ防止のためのバリヤーが周設される。該ドラムは、回転ローラ上に載置し、該ローラの回転により間接的に回転が行われる。 In either method, the inner surface of the rotating drum is mirror-finished, and barriers are provided around both edges to prevent liquid leakage. The drum is mounted on a rotating roller, and is rotated indirectly by the rotation of the roller.
また加熱は、該ドラムの周囲に例えば遠赤外線ヒータ等の熱源が配置され外側からの間接加熱が行われる。また該ドラムの大きさは、所望する半導電管状PIフイルムの大きさにより決まる。 For heating, a heat source such as a far-infrared heater is arranged around the drum, and indirect heating is performed from the outside. The size of the drum is determined by the size of the desired semiconductive tubular PI film.
加熱は、ドラム内面を徐々に昇温し、まず100〜190℃程度、好ましくは110℃〜130℃程度に到達せしめる(第1加熱段階)。昇温速度は、例えば、1〜2℃/min程度であればよい。上記の温度で30〜120分維持し、およそ半分以上の溶剤を揮発させて自己支持性のある管状フイルムを成形する。イミド化を行うためには280℃以上の温度まで達する必要があるが、最初からこのような高温で加熱するとポリイミドが高い結晶化を発現し、CBの分散状態に影響を与えるだけでなく、強靭な被膜が形成されないなどの問題がある。そのため、第1加熱段階として、せいぜい上限温度を190℃程度に抑え、この温度で重縮合反応を終了させて強靭な管状PIフイルムを得る。 In the heating, the inner surface of the drum is gradually heated to first reach about 100 to 190 ° C., preferably about 110 to 130 ° C. (first heating stage). The heating rate may be, for example, about 1 to 2 ° C./min. The above temperature is maintained for 30 to 120 minutes, and about half or more of the solvent is volatilized to form a self-supporting tubular film. In order to perform imidization, it is necessary to reach a temperature of 280 ° C or higher, but heating at such a high temperature from the beginning causes the polyimide to exhibit high crystallization and not only affect the dispersion state of CB, but also toughness. However, there is a problem that a thin film is not formed. Therefore, in the first heating step, the upper limit temperature is kept at most to about 190 ° C., and the polycondensation reaction is terminated at this temperature to obtain a tough tubular PI film.
この段階が終了したら次に第2加熱段階としてイミド化を完結するため加熱を行うが、その温度は280〜400℃程度(好ましくは300〜380℃程度)である。この場合も、第1加熱段階の温度から一挙にこの温度に到達するのではなく、徐々に昇温して、その温度に達するようにするのが良い。 After this step is completed, heating is performed as a second heating step to complete the imidization, and the temperature is about 280 to 400 ° C (preferably about 300 to 380 ° C). Also in this case, it is preferable that the temperature is not increased at once from the temperature of the first heating stage, but is gradually increased to reach that temperature.
なお、第2加熱段階は、無端管状フイルムを回転ドラムの内面に付着したまま行っても良いし、第1加熱段階を終わったら、回転ドラムから無端管状フイルムを剥離し、取出して別途イミド化のための加熱手段に供して、280〜400℃に加熱してもよい。このイミド化の所用時間は、通常約2〜3時間程度である。従って、第1及び第2加熱段階の全工程の所要時間は、通常4〜7時間程度となる。 The second heating step may be performed with the endless tubular film adhered to the inner surface of the rotating drum. After the first heating step, the endless tubular film is peeled from the rotating drum, taken out, and separately imidized. To 280 to 400 ° C. for heating. The time required for this imidization is usually about 2 to 3 hours. Therefore, the time required for all the steps of the first and second heating steps is usually about 4 to 7 hours.
かくして本発明の非導電性(又は半導電性)PIフイルムが製造される。このフイルムの厚みは特に限定はないが、通常30〜200μm程度、好ましくは60〜120μm程度である。特に、電子写真方式の中間転写ベルトとして用いる場合は、75〜100μm程度が好ましい。 Thus, the non-conductive (or semi-conductive) PI film of the present invention is manufactured. The thickness of this film is not particularly limited, but is usually about 30 to 200 μm, preferably about 60 to 120 μm. In particular, when used as an electrophotographic intermediate transfer belt, the thickness is preferably about 75 to 100 μm.
半導電性PIフイルムの場合、このフイルムの半導電性は、体積抵抗率(Ω・cm)(VR)と表面抵抗率(Ω/□)(SR)との両立によって決まる電気抵抗特性であり、この特性は、CB粉体の混合分散により付与される。そしてこの抵抗率の範囲は、基本的には該CB粉体の混合量によって自由に変えられる。本発明のフイルムにおける抵抗率の範囲としては、VR:102〜1014、SR:103〜1015であり、好ましい範囲としては、VR:106〜1013、SR:107〜1014が例示できる。これらの抵抗率の範囲は、上述のCB粉体の配合量を採用することにより容易に達成することができる。なお、本発明のフイルム中におけるCBの含有量は、通常5〜25重量%程度、好ましくは8〜20重量%程度となる。 In the case of a semiconductive PI film, the semiconductivity of this film is an electrical resistance characteristic determined by a balance between volume resistivity (Ω · cm) (VR) and surface resistivity (Ω / □) (SR). This property is imparted by mixing and dispersing the CB powder. Basically, the range of the resistivity can be freely changed by the mixing amount of the CB powder. The range of the resistivity of the film of the present invention is VR: 10 2 to 10 14 , SR: 10 3 to 10 15 , and the preferable ranges are VR: 10 6 to 10 13 , SR: 10 7 to 10 14. Can be exemplified. These ranges of resistivity can be easily attained by employing the compounding amount of the CB powder described above. The content of CB in the film of the present invention is usually about 5 to 25% by weight, preferably about 8 to 20% by weight.
本発明の半導電性PIフイルムは、極めて均質な電気抵抗率を有している。すなわち、本発明の半導電性PIフイルムは、表面抵抗率SR及び体積抵抗率VRの対数換算値のバラツキが小さいという特徴を有し、それぞれフイルム内全測定点の対数換算値の標準偏差が0.2以内、好ましくは、0.15以下である。 The semiconductive PI film of the present invention has a very uniform electric resistivity. That is, the semiconductive PI film of the present invention has a feature that the logarithmic conversion values of the surface resistivity SR and the volume resistivity VR are small, and the standard deviation of the logarithmic conversion values of all the measurement points in the film is 0.2. Within, preferably 0.15 or less.
本発明の半導電性PIフイルムはその優れた電気抵抗特性等の機能によって、その用途は多岐にわたる。例えば、帯電特性を必要とする重要な用途として、カラー複写機、カラープリンター等の電子写真方式の中間転写ベルト等が挙げられる。該ベルトとして必要な半導電性(抵抗率)は、例えばVR109〜1012、SR1010〜1013であり、本発明の半導電性無端管状PIフイルムを好適に用いることができる。 The semiconductive PI film of the present invention has a wide variety of uses due to its excellent electric resistance characteristics and other functions. For example, as an important use requiring charging characteristics, an electrophotographic intermediate transfer belt such as a color copying machine and a color printer can be used. The belt required semiconductive as (resistivity), for example VR10 9 to 10 12, SR10 is 10 10 13, it can be used semi-conductive endless tubular PI film of the present invention suitably.
本発明は、前記の通り構成されているので、次のような効果を奏する。 Since the present invention is configured as described above, it has the following effects.
特定組成からなるポリイミドのモノマ原料と回転成形手段との組合せによって、直接無端管状ポリイミドフイルムを得ることができるようになった。 An endless tubular polyimide film can be directly obtained by combining a polyimide raw material having a specific composition with a rotational molding means.
従来のポリアミド酸を経由する無端管状ポリイミドフイルムの製造に対して、大幅な時間短縮が図れるようになった。これは時間の短縮のみではなく、工程管理の大幅な合理化と共に、より安定した品質の該フイルムが得られることにも繋がった。 Compared with the conventional endless tubular polyimide film production via a polyamic acid, the time can be greatly reduced. This not only shortens the time, but also leads to a drastic rationalization of the process control and to obtain a more stable quality of the film.
得られた無端管状ポリイミドフイルムは、更なる各種用途に多用されるようになり、中でも半導電無端管状フイルムは、例えばカラー複写機、カラープリンター等の電子写真方式の中間転写ベルトとして、より一層有効に使用されるようにもなった。 The obtained endless tubular polyimide film has come to be widely used for various applications.In particular, a semiconductive endless tubular film is more effective as an electrophotographic intermediate transfer belt such as a color copying machine and a color printer. Also used to.
次に比較例と共に、実施例によって更に詳述する。 Next, the present invention will be described in more detail with reference to Examples along with Comparative Examples.
尚、本例で云う降伏強度(降伏点応力)、破断強度、体積抵抗率(VR)、表面抵抗率(SR)及び不揮発分濃度は、次の通り測定された値である。
<降伏強度(MPa)(σYと略す。)及び破断強度(MPa)(σcrと略す。)>
各例で得られたフイルムを幅5mm、長さ100mmにカットし、これを試験片として一軸引張試験機(株式会社 島津製作所製 オートグラフ)にて、引張スパン40mm、ひずみ速度200mm/分で測定した。記録されたS―Sカーブ曲線からσY及びσcrとを読み取った。
The yield strength (yield point stress), rupture strength, volume resistivity (VR), surface resistivity (SR) and non-volatile content referred to in this example are values measured as follows.
<Yield strength (MPa) (abbreviated as σ Y ) and breaking strength (MPa) (abbreviated as σ cr )>
The film obtained in each example was cut into a width of 5 mm and a length of 100 mm, and this was used as a test piece and measured with a uniaxial tensile tester (Autograph manufactured by Shimadzu Corporation) at a tensile span of 40 mm and a strain rate of 200 mm / min. did. Σ Y and σ cr were read from the recorded SS curve curve.
この降伏強度と破断強度とは、ベルトとしての材料設計において、重要な強度因子であり、少なくとも降伏強度は120MPa必要とされる。実装中に負荷される場合の応力にて塑性変形(伸びによる寸法変化)があってはならないからである。 The yield strength and the breaking strength are important strength factors in designing the material of the belt, and at least the yield strength is required to be 120 MPa. This is because there should be no plastic deformation (dimensional change due to elongation) due to the stress applied during mounting.
又、破断強度は、降伏強度より大きいことも必要で、ベルト回転の耐寿命(タフネス)に寄与する。この目安として少なくともσcr/σY=1.10以上必要とされる。
<VR及びSR>
得られた管状フイルムを長さ400mmにカットしたものをサンプルとして、三菱化学株式会社製の抵抗測定器“ハイレスタIP・HRブロ−ブ”を使って、幅方向に等ピッチで5カ所と縦(周)方向に8カ所の合計40ヶ所について各々測定し、全体の平均値で示した。
Also, the breaking strength needs to be higher than the yield strength, which contributes to the service life (toughness) of the belt rotation. As a guide, at least σ cr / σ Y = 1.10 or more is required.
<VR and SR>
A sample obtained by cutting the obtained tubular film to a length of 400 mm was used as a sample, and a resistance measuring instrument “Hiresta IP / HR Brobe” manufactured by Mitsubishi Chemical Corporation was used to make five locations at equal pitches in the width direction. The measurement was carried out at a total of 40 locations, eight locations in the circumferential direction, and the average value was shown.
尚、VRは電圧100V印加の下、10秒経過後に、SRは電圧500V印加の下、10秒経過後に測定した。
<不揮発分濃度>
試料(モノマ混合溶液等)を金属カップ等の耐熱性容器で精秤し、この時の試料の重量をAgとする。試料を入れた耐熱性容器を電気オーブンに入れて、120℃×12分、180℃×12分、260℃×30分、及び300℃×30分で順次昇温しながら加熱、乾燥し、得られる固形分の重量(不揮発分重量)をBgとする。同一試料について5個のサンプルのA及びBの値を測定し(n=5)、次式(I)にあてはめて不揮発分濃度を求めた。その5個のサンプルの平均値を、本発明における不揮発分濃度として採用した。
VR was measured after 10 seconds under a voltage of 100 V, and SR was measured after 10 seconds under a voltage of 500 V.
<Non-volatile content>
A sample (monomer mixed solution or the like) is precisely weighed in a heat-resistant container such as a metal cup, and the weight of the sample at this time is defined as Ag. The heat-resistant container containing the sample was placed in an electric oven, and heated and dried at 120 ° C x 12 minutes, 180 ° C x 12 minutes, 260 ° C x 30 minutes, and 300 ° C x 30 minutes while heating sequentially. The weight of the solid content (the weight of the non-volatile content) is Bg. The values of A and B of five samples of the same sample were measured (n = 5), and the non-volatile content was determined by applying the following formula (I). The average value of the five samples was adopted as the nonvolatile content concentration in the present invention.
不揮発分濃度=B/A×100(%) (I)
実施例1
2,3,3′,4′−ビフェニルテトラカルボン酸ジメチルエステル(1モルの2,3,3′,4′−ビフェニルテトラカルボン酸二無水物と2モルのメチルアルコールとの反応物でハーフエステル)716.0g(2.0モル)と4,4′−ジアミノジフェニルエーテル400.0g(2.0モル)とを1540gのNMP溶媒の中に常温で混合し均一に溶解した。この溶液は不揮発分濃度34.6重量%で、溶液粘度約250mPa・sであり、実質的に重縮合反応はなく、モノマ状態で安定した溶液となっていた。以下これを非対称性モノマ溶液Aと呼ぶ。
Non-volatile content concentration = B / A x 100 (%) (I)
Example 1
2,3,3 ', 4'-biphenyltetracarboxylic acid dimethyl ester (half ester of a reaction product of 1 mol of 2,3,3', 4'-biphenyltetracarboxylic dianhydride and 2 mol of methyl alcohol ) 716.0 g (2.0 mol) and 400.0 g (2.0 mol) of 4,4'-diaminodiphenyl ether were mixed at room temperature in 1540 g of NMP solvent and uniformly dissolved. This solution had a nonvolatile content of 34.6% by weight, a solution viscosity of about 250 mPa · s, had substantially no polycondensation reaction, and was a stable solution in a monomer state. Hereinafter, this is referred to as asymmetric monomer solution A.
一方3,3′,4,4′−ビフェニルテトラカルボン酸ジメチルエステル(1モルの3,3′,4,4′−ビフェニルテトラカルボン酸二無水物と2モルのメチルアルコールとの反応物でハーフエステル)716.0g(2.0モル)と4,4′−ジアミノジフェニルエーテル400.0g(2.0モル)とを1540gのNMP溶媒の中に常温で混合し均一に溶解した。この溶液は不揮発分濃度34.6重量%で、溶液粘度約250mPa・sであり、実質的に重縮合反応はなく、モノマ状態で安定した溶液となっていた。以下これを対称性モノマ溶液Bと呼ぶ。 On the other hand, 3,3 ', 4,4'-biphenyltetracarboxylic acid dimethyl ester (half the reaction product of 1 mol of 3,3', 4,4'-biphenyltetracarboxylic dianhydride and 2 mol of methyl alcohol) Ester) 716.0 g (2.0 mol) and 4,4'-diaminodiphenyl ether 400.0 g (2.0 mol) were mixed at room temperature in 1540 g of NMP solvent and uniformly dissolved. This solution had a nonvolatile content of 34.6% by weight, a solution viscosity of about 250 mPa · s, had substantially no polycondensation reaction, and was a stable solution in a monomer state. Hereinafter, this is referred to as a symmetric monomer solution B.
そして、前記非対称性モノマ溶液Aと対称性モノマ溶液Bとを表1に示したEX・1とEX・2に記載する各々の量比で、フッ素系界面活性剤(株式会社トーケムプロダクツ製 EF−351)0.037重量%(対不揮発分)と共に、両者を十分に混合し脱泡を行った。これを各々の成形用モノマ溶液として、この各々の該溶液の中から所定量を採取し、回転ドラム内に注入し、次の条件で各々成型した。 Then, the asymmetric monomer solution A and the symmetric monomer solution B were mixed at the respective quantitative ratios EX · 1 and EX · 2 shown in Table 1 with a fluorine-based surfactant (EF manufactured by Tochem Products Co., Ltd.). -351) With 0.037% by weight (vs. non-volatile content), both were thoroughly mixed and defoamed. This was used as each monomer solution for molding, and a predetermined amount was collected from each of the solutions, poured into a rotating drum, and molded under the following conditions.
回転ドラム・・・内径100mm、幅530mmの内面鏡面仕上げの金属ドラムが2本の回転ローラ上に載置され、該ローラの回転とともに回転する状態に配置した。 Rotating Drum: A metal drum with an inner mirror surface having an inner diameter of 100 mm and a width of 530 mm was placed on two rotating rollers, and was arranged so as to rotate with the rotation of the rollers.
成型用モノマ溶液Cの注入量・・・45.9g
加熱温度・・・該ドラムの外側面に遠赤外線ヒータを配置し、該ドラムの内面温度が170℃に制御されるようにした。
Injection amount of molding monomer solution C: 45.9 g
Heating temperature: A far-infrared heater was arranged on the outer surface of the drum, and the inner surface temperature of the drum was controlled at 170 ° C.
まず回転ドラムが停止した状態で、45.9gの各同の該モノマ溶液を該ドラム底面に均一に注入した。その後、直ちに回転を開始し徐々に速度を上げて、24rad/sに達して、内全面に均一に流延して、加熱を開始した。加熱は徐々に昇温して170℃に達して、その温度で90分間その回転を維持しつつ加熱した。 First, with the rotating drum stopped, 45.9 g of the same monomer solution was uniformly injected into the bottom of the drum. Thereafter, the rotation was started immediately, and the speed was gradually increased to reach 24 rad / s. The heating gradually increased to 170 ° C., and heating was performed at that temperature for 90 minutes while maintaining the rotation.
90分間の回転・加熱が終了したら常温に冷却し、そのまま回転ドラムを離脱して熱風滞留式オーブン中に静置してイミド化のための加熱を開始した。この加熱も徐々に昇温しつつ350℃に達した。そしてこの温度で、30分間加熱したら、常温に冷却して該ドラム内面に形成された管状PIフイルムを剥離し取出した。各例での結果は、表2に記載した。 When the rotation and heating for 90 minutes were completed, the mixture was cooled to room temperature, the rotating drum was detached as it was, and left standing in a hot-air stagnation oven to start heating for imidization. This heating also reached 350 ° C. while gradually increasing the temperature. After heating at this temperature for 30 minutes, the tube was cooled to room temperature and the tubular PI film formed on the inner surface of the drum was peeled and taken out. The results in each case are described in Table 2.
実施例1の非対称性モノマ溶液Aと対称性モノマ溶液Bとを使って、表1に示したEX・3〜6に記載する各々の量比で混合する以外は、該例と同一条件で各々に成形、イミド化し、回転ドラムから剥離し、取出して測定した。各々の場合の結果は表2に記載した。
Each of the asymmetric monomer solution A and the symmetric monomer solution B of Example 1 was mixed under the same conditions as in Example 1 except that mixing was performed at the respective ratios shown in EX.3 to 6 shown in Table 1. And imidized, peeled from the rotating drum, taken out and measured. The results in each case are shown in Table 2.
実施例2
実施例1での非対称性モノマ溶液Aと対称性モノマ溶液Bとを使って、表1に示したEX・7に記載する量比で、該例と同様にまず均一に混合した後、この中にCB粉体(pH3、粒径23nm)14.0g(全モノマ合計量100重量部に対して8.33重量部)添加し、ボールミル機で十分に混合分散し、最後に脱泡した。これを成形用半導電性モノマ溶液とした。該半導電性モノマ溶液中の不揮発分濃度は36.8重量%であり、該不揮発分中のCB濃度は9.19重量%であった。
Example 2
First, using the asymmetric monomer solution A and the symmetric monomer solution B in Example 1 and uniformly mixing them in a quantitative ratio described in EX.7 shown in Table 1, as in the example, 14.0 g (8.33 parts by weight based on 100 parts by weight of the total amount of all monomers) was added to the mixture, and the mixture was sufficiently mixed and dispersed by a ball mill, and finally defoamed. This was used as a semiconductive monomer solution for molding. The nonvolatile content in the semiconductive monomer solution was 36.8% by weight, and the CB concentration in the nonvolatile content was 9.19% by weight.
そして該溶液から45.9g採取して、これを実施例1と同様に回転ドラム内に注入し、同様条件で成形し後、イミド化した。得られたイミド化フイルムを回転ドラムから剥離し、取出して測定した。結果は表2に記載した。 Then, 45.9 g of the solution was collected, poured into a rotating drum in the same manner as in Example 1, molded under the same conditions, and then imidized. The obtained imidized film was peeled from the rotating drum, taken out and measured. The results are shown in Table 2.
比較例2
実施例1の非対称性モノマ溶液Aと対称性モノマ溶液Bとを使って、表1に示したEX・8、9に記載する各々の量比で、該例と同様にまず均一に混合した後、各々この中に実施例2と同様に、CB粉体を全モノマ合計量100重量部に対して8.33重量部を添加し、ボールミル機で十分に混合分散し、最後に脱泡した。これを成形用半導電性モノマ溶液とした。該半導電性モノマ溶液中の不揮発分濃度は36.8重量%であり、該不揮発分中のCB濃度は9.19重量%であった。
Comparative Example 2
First, the asymmetric monomer solution A and the symmetric monomer solution B of Example 1 were uniformly mixed in the same ratios as those of EX.8 and 9 shown in Table 1 in the same manner as in this example. In the same manner as in Example 2, 8.33 parts by weight of CB powder was added to 100 parts by weight of the total amount of all monomers, mixed and dispersed sufficiently by a ball mill, and finally defoamed. This was used as a semiconductive monomer solution for molding. The nonvolatile content in the semiconductive monomer solution was 36.8% by weight, and the CB concentration in the nonvolatile content was 9.19% by weight.
そして該液Aと液Bとから各45.9g採取して、これを実施例1と同様に回転ドラム内に注入し、同様条件で成形した。イミド化後回転ドラムから剥離し、取出して測定した。各々の場合の結果は表2に記載した。 Then, 45.9 g of each of the liquid A and the liquid B was collected, poured into a rotary drum as in Example 1, and molded under the same conditions. After imidation, the film was peeled from the rotating drum, taken out, and measured. The results in each case are shown in Table 2.
Claims (3)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004112166A JP4993846B2 (en) | 2003-04-10 | 2004-04-06 | Method for producing endless tubular polyimide film |
CN2009101590363A CN101638480B (en) | 2004-03-03 | 2004-10-08 | Aromatic amic acid composition and a preparing method thereof, and a seamless tubular polyimide film and a preparing method thereof |
KR1020067020029A KR20060134129A (en) | 2004-03-03 | 2004-10-08 | Endless tubular polyimide film |
KR1020137009810A KR101544112B1 (en) | 2004-03-03 | 2004-10-08 | Endless tubular polyimide film |
US10/591,326 US8097693B2 (en) | 2004-03-03 | 2004-10-08 | Endless tubular polyimide film |
KR1020117021427A KR101443830B1 (en) | 2004-03-03 | 2004-10-08 | Endless tubular polyimide film |
PCT/JP2004/015309 WO2005085324A1 (en) | 2004-03-03 | 2004-10-08 | Endless tubular polyimide film |
EP04773760.6A EP1721924B1 (en) | 2004-03-03 | 2004-10-08 | Endless tubular polyimide film |
HK07110940.3A HK1105650A1 (en) | 2004-03-03 | 2007-10-10 | Endless tubular polyimide film |
HK10104420.0A HK1138302A1 (en) | 2004-03-03 | 2010-05-05 | Aromatic amic acid composition and method of preparing the same, and endless tubular polyimide film and method of preparing the same |
US13/280,713 US8314204B2 (en) | 2004-03-03 | 2011-10-25 | Endless tubular polyimide film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003106053 | 2003-04-10 | ||
JP2003106053 | 2003-04-10 | ||
JP2004112166A JP4993846B2 (en) | 2003-04-10 | 2004-04-06 | Method for producing endless tubular polyimide film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004323834A true JP2004323834A (en) | 2004-11-18 |
JP4993846B2 JP4993846B2 (en) | 2012-08-08 |
Family
ID=33513027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004112166A Expired - Fee Related JP4993846B2 (en) | 2003-04-10 | 2004-04-06 | Method for producing endless tubular polyimide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4993846B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005085324A1 (en) * | 2004-03-03 | 2005-09-15 | Gunze Limited | Endless tubular polyimide film |
JP2005247987A (en) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | Semiconducting polyimide precursor composition and manufacturing method of semiconducting polyimide tubular product using the same |
JP2005247988A (en) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | Semiconducting high-concentration polyimide precursor composition and semiconducting polyimide tubular product using the same |
JP2005247986A (en) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | Semiconducting aromatic amic acid composition and manufacturing method of semiconducting endless tubular polyimide film using the same |
JP2008074900A (en) * | 2006-09-19 | 2008-04-03 | Gunze Ltd | Semiconductive polyimide resin belt and method for producing the same |
JP2008076518A (en) * | 2006-09-19 | 2008-04-03 | Gunze Ltd | Semiconductive polyimide resin belt and method for manufacturing the same |
JP2010255002A (en) * | 2010-08-06 | 2010-11-11 | Gunze Ltd | Semiconducting aromatic amic acid composition and manufacturing method of semiconducting endless tubular polyimide film using the same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638324A (en) * | 1979-09-06 | 1981-04-13 | Ube Ind Ltd | Preparation of polyimide solution |
JPH10182820A (en) * | 1996-10-29 | 1998-07-07 | Ube Ind Ltd | Polyimide precursor composition and polyimide film |
JP2001047451A (en) * | 1999-08-12 | 2001-02-20 | Gunze Ltd | Endless tubular semiconductive aromatic polyimide film and its manufacture |
JP2001227265A (en) * | 2001-01-25 | 2001-08-24 | Shin Nikkei Co Ltd | Screen device for window sash |
JP2001241313A (en) * | 2000-02-29 | 2001-09-07 | Yanmar Diesel Engine Co Ltd | Lubricating oil supplying device of internal combustion engine |
JP2001277265A (en) * | 2000-03-30 | 2001-10-09 | Unitika Ltd | Polyimide seamless tube and method for preparing it |
JP2001277264A (en) * | 2000-03-30 | 2001-10-09 | Unitika Ltd | Polyimide seamless tube and method for preparing it |
JP2002292656A (en) * | 2001-03-29 | 2002-10-09 | Nitto Denko Corp | Method for manufacturing semiconductive polyimide belt |
JP2003213014A (en) * | 2002-01-17 | 2003-07-30 | Gunze Ltd | Tubular film of semiconductive wholly aromatic polyimide and method for producing the same |
JP2003261768A (en) * | 2002-03-12 | 2003-09-19 | Hitachi Chem Co Ltd | Semiconductive tubular polyamide-imide film and method for producing the same |
JP2003277502A (en) * | 2002-03-27 | 2003-10-02 | Nitto Denko Corp | Process for preparing polyamic acid solution having carbon black dispersed therein and electrically semiconductor polyimide belt using it |
JP2005025052A (en) * | 2003-07-04 | 2005-01-27 | Fuji Xerox Co Ltd | Semiconductive belt, its manufacturing method, and intermediate transfer belt and image forming apparatus using the same |
-
2004
- 2004-04-06 JP JP2004112166A patent/JP4993846B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638324A (en) * | 1979-09-06 | 1981-04-13 | Ube Ind Ltd | Preparation of polyimide solution |
JPH10182820A (en) * | 1996-10-29 | 1998-07-07 | Ube Ind Ltd | Polyimide precursor composition and polyimide film |
JP2001047451A (en) * | 1999-08-12 | 2001-02-20 | Gunze Ltd | Endless tubular semiconductive aromatic polyimide film and its manufacture |
JP2001241313A (en) * | 2000-02-29 | 2001-09-07 | Yanmar Diesel Engine Co Ltd | Lubricating oil supplying device of internal combustion engine |
JP2001277265A (en) * | 2000-03-30 | 2001-10-09 | Unitika Ltd | Polyimide seamless tube and method for preparing it |
JP2001277264A (en) * | 2000-03-30 | 2001-10-09 | Unitika Ltd | Polyimide seamless tube and method for preparing it |
JP2001227265A (en) * | 2001-01-25 | 2001-08-24 | Shin Nikkei Co Ltd | Screen device for window sash |
JP2002292656A (en) * | 2001-03-29 | 2002-10-09 | Nitto Denko Corp | Method for manufacturing semiconductive polyimide belt |
JP2003213014A (en) * | 2002-01-17 | 2003-07-30 | Gunze Ltd | Tubular film of semiconductive wholly aromatic polyimide and method for producing the same |
JP2003261768A (en) * | 2002-03-12 | 2003-09-19 | Hitachi Chem Co Ltd | Semiconductive tubular polyamide-imide film and method for producing the same |
JP2003277502A (en) * | 2002-03-27 | 2003-10-02 | Nitto Denko Corp | Process for preparing polyamic acid solution having carbon black dispersed therein and electrically semiconductor polyimide belt using it |
JP2005025052A (en) * | 2003-07-04 | 2005-01-27 | Fuji Xerox Co Ltd | Semiconductive belt, its manufacturing method, and intermediate transfer belt and image forming apparatus using the same |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005085324A1 (en) * | 2004-03-03 | 2005-09-15 | Gunze Limited | Endless tubular polyimide film |
JP2005247987A (en) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | Semiconducting polyimide precursor composition and manufacturing method of semiconducting polyimide tubular product using the same |
JP2005247988A (en) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | Semiconducting high-concentration polyimide precursor composition and semiconducting polyimide tubular product using the same |
JP2005247986A (en) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | Semiconducting aromatic amic acid composition and manufacturing method of semiconducting endless tubular polyimide film using the same |
US8097693B2 (en) | 2004-03-03 | 2012-01-17 | Gunze Limited | Endless tubular polyimide film |
US8314204B2 (en) | 2004-03-03 | 2012-11-20 | Gunze Limited | Endless tubular polyimide film |
JP2008074900A (en) * | 2006-09-19 | 2008-04-03 | Gunze Ltd | Semiconductive polyimide resin belt and method for producing the same |
JP2008076518A (en) * | 2006-09-19 | 2008-04-03 | Gunze Ltd | Semiconductive polyimide resin belt and method for manufacturing the same |
JP2010255002A (en) * | 2010-08-06 | 2010-11-11 | Gunze Ltd | Semiconducting aromatic amic acid composition and manufacturing method of semiconducting endless tubular polyimide film using the same |
Also Published As
Publication number | Publication date |
---|---|
JP4993846B2 (en) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8314204B2 (en) | Endless tubular polyimide film | |
JP5834930B2 (en) | Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition | |
JP4993845B2 (en) | Semiconductive high concentration polyimide precursor composition and semiconductive polyimide tubular product using the same | |
WO2010050491A1 (en) | Polyimide precursor solution composition | |
JP5473601B2 (en) | POLYIMIDE RESIN COMPOSITION, POLYIMIDE PRECURSOR RESIN COMPOSITION PROVIDING THE POLYIMIDE RESIN COMPOSITION AND METHOD FOR PRODUCING THEM, POLYIMIDE FILM AND METHOD FOR PRODUCING THE SAME | |
JP2013144751A (en) | Polyimide-precursor alcohol solution composition and method for producing polyimide-precursor alcohol solution composition | |
JP2017052877A (en) | Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body | |
JP5136441B2 (en) | Method for producing polyimide film using amido acid oligomer solution composition, and amido acid oligomer solution composition | |
JP2017149796A (en) | Polyimide precursor composition, and method for producing polyimide precursor composition | |
KR101819783B1 (en) | Polyimide seamless belt and process for production thereof, and polyimide precursor solution composition | |
JP4993846B2 (en) | Method for producing endless tubular polyimide film | |
JP4803963B2 (en) | Semiconductive polyimide precursor composition and method for producing semiconductive polyimide tubular product using the same | |
JP2009091470A (en) | Polyimide film producing method, and aromatic polyimide | |
JP5428172B2 (en) | Method for producing polyimide film | |
JP5175021B2 (en) | Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same | |
JP2010085450A (en) | Seamless belt and method of manufacturing the same | |
JP2008076518A (en) | Semiconductive polyimide resin belt and method for manufacturing the same | |
JP5233344B2 (en) | Method for producing polyamic acid solution | |
JP5121426B2 (en) | Semiconductive copolymer polyimide belt, method for producing the same, and intermediate transfer belt | |
JP5171000B2 (en) | Semiconductive polyimide resin belt and method for manufacturing the same | |
JP5175318B2 (en) | Semiconductive aromatic amic acid composition and process for producing semiconductive endless tubular polyimide film using the same | |
KR101240955B1 (en) | Polyimide film having excellent high temperature stability and substrate for display device using the same | |
CN114854011B (en) | Polyamide acid solution, polyimide film and preparation method thereof | |
JPS59500867A (en) | Method for producing polyetherimide | |
JPH08100062A (en) | Novel aromatic polyimide powder and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120417 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120508 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4993846 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |