JP2004321894A - Exhaust gas cleaning catalyst and method for producing the same - Google Patents
Exhaust gas cleaning catalyst and method for producing the same Download PDFInfo
- Publication number
- JP2004321894A JP2004321894A JP2003118112A JP2003118112A JP2004321894A JP 2004321894 A JP2004321894 A JP 2004321894A JP 2003118112 A JP2003118112 A JP 2003118112A JP 2003118112 A JP2003118112 A JP 2003118112A JP 2004321894 A JP2004321894 A JP 2004321894A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- purification
- exhaust gas
- layer
- adsorption purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、排気ガス浄化触媒及びその製造方法に係り、更に詳細には、150℃以下の低温での炭化水素(HC)吸着浄化性能、150〜250℃の低温及び酸素過剰雰囲気下(リーン域)での窒素酸化物(NOx)吸着浄化性能に優れた排気ガス浄化触媒及びその製造方法に関する。
【0002】
【従来の技術】
従来からリーン域のNOxを浄化する触媒は種々提案されており、例えば、白金とランタンを多孔質担体に担持した触媒(例えば、特許文献1参照。)に代表されるように、リーン域でNOxを吸着し、ストイキからリッチ域の時にNOxを放出させて浄化する触媒が知られている。
また、エンジン始動時等の低排温時にHCを浄化する触媒としては、例えば、ゼオライトを含む触媒が知られている(例えば、特許文献2参照。)。
【0003】
【特許文献1】
特開平5−168860号公報
【特許文献2】
特開平11−47596号公報
【0004】
【発明が解決しようとする課題】
しかしながら、リーンバーンエンジンやディーゼルエンジンでは、低温でのHC吸着浄化、リーン域でのNOx浄化のために上記のような触媒を2個配置する必要があり、貴金属使用量の増加や排圧の上昇などの多くの問題点が存在した。本発明のように、2つの触媒の機能を1つの触媒で満たせるようにすれば、上記のような問題は解決できると考えられ、具体的には、HC吸着材であるゼオライト層の上に貴金属とNOx吸着材であるアルカリを含む層を積層し、下層において、低温でのHCの吸着、上層において、NOxの吸着、浄化及び下層で吸着したHCの浄化を行わせるという触媒が挙げられる。
しかし、このような触媒は、それぞれの触媒層が薄くなるため、それぞれの機能が十分に発揮できないという問題がある。
【0005】
本発明者らが細かく解析すると、上層のNOx浄化を行う層からのNOx脱離、浄化が十分に行われていないことがわかった。これは、触媒入口温度が250℃以下であると、より顕著であり、この温度範囲でも十分にNOxを脱離、浄化するためにはH2が必要であることも明らかになった。近年、低燃費化のためエンジンの燃焼効率が上がり、低排温化が進むにつれて、この問題は益々大きくなりつつある。
【0006】
本発明は、このような知見に鑑みてなされたものであり、その目的とするところは、150℃以下の低温での炭化水素(HC)吸着浄化、150〜250℃の低温及びリーン域での窒素酸化物(NOx)浄化を1つの触媒で実現でき、NOx浄化性能を向上した排気ガス浄化触媒及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、HC吸着浄化層に、ゼオライトと白金等の貴金属を担持したセリア材を共存させ、更に吸着浄化内層及び吸着浄化外層に、所定量のセリウムを存在させることなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の排気ガス浄化触媒は、一体構造型担体に、HCを吸着・浄化するHC吸着浄化層、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層、及びNOxを吸着・浄化し且つHCを浄化する吸着浄化外層の少なくとも3つの触媒層をこの順で積層して成る。
上記HC吸着浄化層が、ゼオライトと、白金(Pt)及び/又はパラジウム(Pd)と、セリア材とを含有し、かかるセリア材にはPt及び/又はPdが担持されており、上記吸着浄化内層が、アルカリ金属及び/又はアルカリ土類金属と、セリウム(Ce)と、Pt及び/又はPdと、アルミナとを含有し、上記吸着浄化外層が、アルカリ金属及び/又はアルカリ土類金属と、Ceと、ロジウム(Rh)と、Pt及び/又はPdと、アルミナとを含有し、上記吸着浄化内層及び外層のCe量の合計がCeO2換算で、この触媒1L当り40〜100g/Lであって、低温でのHC吸着浄化能、低温及び酸素過剰雰囲気下でのNOx吸着浄化能を併有する排気ガス浄化触媒である。
【0009】
また、本発明の排気ガス浄化触媒の製造方法は、上述の如き排気ガス浄化触媒を製造する方法であって、下記の工程▲1▼〜▲4▼を含むものである。
▲1▼セリア材にPt及び/又はPdを含有するアルカリ性水溶液を含浸させてPt及び/又はPd担持粉末を作成し、次いで、この粉末とゼオライトを用いてHC吸着浄化層を形成するためのHC吸着浄化層スラリーを作成する工程。
▲2▼アルミナにCeとアルカリ金属及び/又はアルカリ土類金属を担持した粉末を作成し、次いで、この粉末にPt及び/又はPdを含有するアルカリ性水溶液を含浸させてPt及び/又はPd担持粉末を作成し、これら粉末を用いて吸着浄化内層を形成するための内層スラリーを作成する工程。
▲3▼アルミナにCeとアルカリ金属及び/又はアルカリ土類金属を担持した粉末を作成し、次いで、この粉末にPt及び/又はPdを含有するアルカリ性水溶液を含浸させてPt及び/又はPd担持粉末を作成し、一方、アルミナに硝酸ロジウム水溶液を含浸させてRh担持粉末を作成し、これら粉末を用いて吸着浄化外層を形成するための外層スラリーを作成する工程。
▲4▼その後、一体構造型担体に、▲1▼〜▲3▼工程で得られたHC吸着浄化層スラリー、内層スラリー及び外層スラリーをこの順で、コートし、乾燥し、焼成して、HC吸着浄化層、吸着浄化内層及び吸着浄化外層を積層形成する工程。
【0010】
【発明の実施の形態】
以下、本発明の排気ガス浄化触媒について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。
【0011】
上述の如く、本発明の排気ガス浄化触媒は、一体構造型担体に、HCを吸着・浄化するHC吸着浄化層、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層、及びNOxを吸着・浄化し且つHCを浄化する吸着浄化外層の少なくとも3つの触媒層をこの順で積層して構成され、低温でのHC吸着浄化能、低温及び酸素過剰雰囲気下でのNOx吸着浄化能を併有する。
ここで、一体構造型担体としては、例えばコーディエライトなどのセラミックスやフェライト系ステンレスなどの金属等の耐熱性材料から成るモノリス担体やハニカム担体が用いられる。
【0012】
従来技術によれば、HCを吸着する触媒とリーン時のNOxを浄化する触媒のすくとも2種の触媒が必要となり、これにより、排圧上昇が生じて燃費に悪影響を及ぼし、また少なくとも触媒2個分の貴金属量が必要となり資源枯渇を招くが、本発明の排気ガス浄化触媒は、上述した複合機能を1個の触媒に集約した触媒であり、このような問題を改善することができる。
【0013】
また、本発明の排気ガス浄化触媒のHC吸着浄化層は、ゼオライトとPt及びPdの一方又は双方を担持したセリア材とを含有し、吸着浄化内層は、アルカリ金属及びアルカリ土類金属の一方又は双方と、Ceと、Pt及びPdの一方又は双方と、アルミナとを含有し、吸着浄化外層は、アルカリ金属及びアルカリ土類金属の一方又は双方と、Ceと、Rhと、Pt及びPdの一方又は双方と、アルミナとを含有する。
ここで、「セリア材」とは、少なくともCeを含有する酸化物のことをいう。
【0014】
かかるHC吸着浄化層において、ゼオライトは、150℃以下の低温でHCの吸着や浄化を行い、PtやPdを担持したセリア材は、水(H2O)とゼオライトのHC浄化で発生した一酸化炭素(CO)からCOシフト反応によって、NOx浄化に有効な水素(H2)を生成する。
一方、かかる吸着浄化内層及び外層において、アルミナは高表面積基材として触媒成分を担持し、アルカリ金属やアルカリ土類金属が形成する化合物(NOx吸着材)はNOxの吸着を行い、Pt、Pd及びRhはNOx浄化やHC浄化を行うが、特にRhはNOx浄化に優れた性能を示し、セリア材は上述したH2生成によるNOxの脱離や浄化の機能を向上させる。
これにより、150℃以下の低温でのHC吸着や浄化が可能となり、150〜250℃の低温でのNOx浄化性能を向上させることができる。
【0015】
更に、本発明の排気ガス浄化触媒は、吸着浄化内層及び外層のCe量の合計がCeO2換算で、この触媒1L当り40〜100g/Lであることを要する。
40g/L未満では、COシフト反応を十分に進行させることができない可能性があり、100g/Lを超えると、HC、CO、H2などの還元材を酸化する機能の方が強く発現し、NOxの脱離が行われなくなる可能性がある。
【0016】
本発明の排気ガス浄化触媒においては、吸着浄化内層のCe量が吸着浄化外層のCe量より多いことが好ましく、吸着浄化内層のCe量と吸着浄化外層のCe量の比がCeO2換算で6:4〜8:2であることが更に好ましい。
吸着浄化内層のCe量より吸着浄化外層のCe量が多いと、上述の還元材を酸化して消費してしまい、NOxの脱離や浄化に悪影響を及ぼす可能性がある。Ceが吸着浄化外層にあると、NOxの浄化に必要な上述の還元材を酸化してしまうため、Ceは理想的には吸着浄化外層には含有されないことが望ましい。
しかし、含有されない場合は、硫黄化合物(S)被毒解除に有効なH2は、PtやPdを担持したセリア材によって生成することから、S被毒によってNOx浄化性能に悪影響が及ぶ可能性が高い。
このような観点から、上述の比率で吸着浄化内層及び外層に含有させることが好ましく、これにより、内層及び外層の双方において、NOxの吸着、脱離及び浄化ができるようになり、更にS被毒解除性能も向上する。
【0017】
また、本発明の排気ガス浄化触媒においては、吸着浄化外層に含まれるアルカリ金属及びアルカリ土類金属の一方又は双方の量が、吸着浄化内層に含まれるアルカリ金属及びアルカリ土類金属の一方又は双方の量より対応するそれぞれの酸化物換算で、多いことが好ましい。
本発明の触媒は250℃以下の低温で使用するので、NOx吸着性能を最大限発揮するためである。また、S被毒解除も吸着浄化外層側ほど起こり易いので、S被毒解除に関しても有効なアルカリ金属やアルカリ土類金属の配置となる。
【0018】
更に、本発明の排気ガス浄化触媒においては、吸着浄化内層及び外層のアルカリ金属及びアルカリ土類金属の一方又は双方の金属が、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)又はナトリウム(Na)及びこれらの任意の組合せに係る金属を含有することが望ましく、これら金属が形成する化合物の一部又は全部が、炭酸バリウムマグネシウム(BaMg(CO3)2)であることが特に望ましい。
【0019】
本発明の触媒は250℃以下の低温で使用するので、上記アルカリ金属やアルカリ土類金属を含有する化合物より弱いアルカリ(例えば、希土類などが挙げられる。)では、NOxの吸着ができず、また、強いアルカリ(例えば、カリウム(K)やセシウム(Cs)などが挙げられる。)では、これらが吸着したNOxが脱離することができず、NOx浄化性能に悪影響を及ぼす可能性がある。
このようなNOx吸着材としては、BaやNaを含有する化合物が好適であるが、Naはその化合物(例えば、炭酸ナトリウム(Na2CO3)が挙げられる。)が、水溶性であるため、触媒作成時にゼオライトを含有するHC吸着浄化層に溶け出してしまい、HC吸着性能に悪影響を及ぼす可能性が高い。
【0020】
一方、S被毒解除を考慮した場合には、NOx吸着材の安定性が非常に重要な課題となり、この点はNOx浄化性能に関しても同様であるが、そのためには、複合化という手段を用いることが有効である。現時点において、本発明の触媒を用いる温度範囲において好適なNOx浄化性能を発揮し、且つ複合化することができる良好なものとして、例えばBaMg(CO3)2が挙げられる。また、複合化することは、ゼオライトへの吸着材の溶け出しを考慮した場合にも有効である。
このように吸着材を複合化することにより、S被毒を抑制、NOx浄化性能の低下を抑制、及びゼオライトへの溶け出しを防止などの多くの問題点を解決することができる。
【0021】
また、本発明の排気ガス浄化触媒のHC吸着浄化層において、PtやPdを担持したセリア材に、更にアルカリ土類金属を含有させることが望ましい。
NOx吸着材をHC吸着浄化層に含有させることにより、NOx浄化性能を向上させることが可能となり、ゼオライト以外のPtやPdを担持したセリア材にアルカリ土類金属を担持させることにより、ゼオライトへ溶け出し、及びその結果発生する細孔閉塞が防止されHC吸着性能を維持することができる。
【0022】
更に、本発明の排気ガス浄化触媒のHC吸着浄化層において、PtやPdを担持したセリア材に、更にジルコニウム(Zr)を含有させることが好ましく、セリア材中のCeとZrとの含有比率が、それぞれCeO2、ZrO2換算の重量比で70:30〜80:20であることが更に好ましく、その重量比が75:25であることが特に好ましい。
セリア材の安定性を向上させるためにジルコニウムと複合化させることは有効であり、また、H2生成機能の劣化を抑制することもできる。現時点における、その好適形態は上述のCe−Zr複合酸化物である。
【0023】
次に、本発明の排気ガス浄化触媒の製造方法につき詳細に説明する。
この製造方法は、上述した本発明の排気ガス浄化触媒を製造する方法であり、上記HC吸着浄化層、吸着浄化内層及び吸着浄化外層を形成するためのHC吸着浄化層スラリー、内層スラリー及び外層スラリーを調製し、これらスラリーをハニカム担体などの一体構造型担体に順次塗布し、乾燥及び焼成等を行う方法であり、具体的には、下記の▲1▼〜▲4▼の工程を含む。
【0024】
▲1▼セリア材にPt及びPdの一方又は双方を含有するアルカリ性水溶液を含浸させて、Pt及びPdの一方又は双方を担持する粉末を作成し、次いで、この粉末とゼオライトを用いてHC吸着浄化層スラリーを作成する工程。
▲2▼アルミナにCeとアルカリ金属及びアルカリ土類金属の一方又は双方を担持した粉末を作成し、次いで、この粉末にPt及びPdの一方又は双方を含有するアルカリ性水溶液を含浸させてPt及びPdの一方又は双方を担持する粉末を作成し、これら粉末を用いて内層スラリーを作成する工程。
▲3▼アルミナにCeとアルカリ金属及びアルカリ土類金属の一方又は双方を担持した粉末を作成し、次いで、この粉末にPt及びPdの一方又は双方を含有するアルカリ性水溶液を含浸させてPt及びPdの一方又は双方を担持した粉末を作成し、一方、アルミナに硝酸ロジウム水溶液を含浸させてRh担持粉末を作成し、これら粉末を用いて外層スラリーを作成する工程。
▲4▼しかる後、ハニカム担体などの一体構造型担体に、▲1▼〜▲3▼工程で得られたHC吸着浄化層スラリー、内層スラリー及び外層スラリーをこの順で、コートし、乾燥し、焼成して、HC吸着浄化層、吸着浄化内層及び吸着浄化外層を積層形成する工程。
【0025】
▲1▼工程、▲2▼工程及び▲3▼工程において、PtやPdをセリア材に担持させるのは、このような粉末がHC吸着浄化層において、上述したようにH2生成に寄与するからである。
また、HC吸着浄化層にアルカリ土類金属を含有させる場合には、▲1▼工程において、まず、セリア材にアルカリ土類金属を担持させることが望ましい。このように、ゼオライト以外のセリア材に担持させることによって、ゼオライトの細孔がNOx吸着材によって閉塞されることが防止され、HC吸着性能を維持でき、また、NOx浄化性能を向上することが可能となる。
【0026】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0027】
(実施例1)
酢酸セリウム水溶液と酢酸バリウム水溶液とを混合、攪拌し、この中にアルミナを投入し、1時間室温で攪拌し、120℃で一昼夜乾燥した後、600℃で1時間焼成し、2種担持粉末を得た。これを粉末Aとした(粉末AのBa担持濃度はBaOとして7.3%、Ce担持濃度はCeO2として20%)。
粉末Aに2%のテトラアンミンPt水酸塩溶液(pH=10.5)を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pt担持粉末を得た。これを粉末Bとした(粉末BのPt担持濃度は1.04%)。
【0028】
酢酸ジルコニウム水溶液中にアルミナを投入し、1時間室温で攪拌し、120℃で一昼夜乾燥した後、900℃で1時間焼成して粉末を得、得られた粉末に6%の硝酸ロジウム水溶液を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Rh担持粉末を得た。これを粉末Cとした(粉末CのRh担持濃度は2.4%、Zrの担持濃度はZrO2として3%)。
粉末Aに2%のテトラアンミンPt水酸塩溶液(pH=10.5)を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pt担持粉末を得た。これを粉末Dとした(粉末DのPt担持濃度は3.41%)。
酸化セリウムに2%のテトラアンミンPt水酸塩溶液(pH=10.5)を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pt担持粉末を得た。これを粉末Eとした(粉末EのPt担持濃度は3.2%)。
【0029】
ベータゼオライトを627.5g、粉末Eを92.6g、シリカゾルを179.9g、水900gを磁性ボールミルに投入し、混合粉砕して、HC吸着浄化層スラリーを得た。
粉末Bを767.8g、粉末Aを50.5g、酸化Ceを47.8g、アルミナゾル33.9g、水900gを磁性ボールミルに投入し、混合粉砕して、内層スラリーを得た。
粉末Cを272.0g、粉末Dを403.9g、粉末Aを84.8、酸化セリウムを81.1g、アルミナゾルを58.1g、水900gを磁性ボールミルに投入し、混合粉砕して、外層スラリーを得た。
【0030】
HC吸着浄化層スラリーをコーデェライト質モノリス担体(1.2L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層172.1g/Lの触媒を得た。これを触媒aとした。
内層スラリーを触媒aに付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層167.5g/Lの触媒を得た。これを触媒bとした。
外層スラリーを触媒bに付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層97.6g/Lの本例の排気ガス浄化触媒を得た。
【0031】
(実施例2)
粉末Aに12%の硝酸パラジウム溶液を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pd担持粉末を得た。これを粉末Fとした(粉末FのPd担持濃度は1.04%)。
粉末Aに12%の硝酸パラジウム溶液を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pd担持粉末を得た。これを粉末Gとした(粉末FのPd担持濃度は3.41%)。
酸化セリウムに12%の硝酸パラジウム溶液を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pd担持粉末を得た。これを粉末Hとした(粉末HのPd担持濃度は3.2%)。
【0032】
ベータゼオライトを627.5g、粉末Eを69.4g、粉末Hを23.2g、シリカゾルを179.9g、水900gを磁性ボールミルに投入し、混合粉砕して、HC吸着浄化層スラリーを得た。
粉末Bを575.8g、粉末Fを192.0g、粉末Aを50.5g、酸化Ceを47.8g、アルミナゾル33.9g、水900gを磁性ボールミルに投入し、混合粉砕して、内層スラリーを得た。
粉末Cを272.0g、粉末Dを302.9g、粉末Gを101.0g、粉末Aを84.8、酸化Ceを81.1g、アルミナゾルを58.1g、水900gを磁性ボールミルに投入し、混合粉砕して、外層スラリーを得た。
【0033】
HC吸着浄化層スラリーをコーデェライト質モノリス担体(1.2L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層172.1g/Lの触媒を得た。これを触媒cとした。
内層スラリーを触媒cに付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層167.5g/Lの触媒を得た。これを触媒dとした。
外層スラリーを触媒dに付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層97.6g/Lの本例の排気ガス浄化触媒を得た。
【0034】
(実施例3)
粉末Aの酢酸バリウム水溶液を酢酸カルシウム水溶液に変えた(この粉末のCa担持濃度はCaOとして、2.65%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0035】
(実施例4)
粉末Aの酢酸バリウム水溶液を酢酸ストロンチウム水溶液に変えた(この粉末のSr担持濃度はSrOとして、4.91%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0036】
(実施例5)
粉末Aの酢酸バリウム水溶液を酢酸ナトリウム水溶液に変えた(この粉末のNa担持濃度はNa2Oとして、2.99%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0037】
(実施例6)
粉末Aの酢酸バリウム水溶液を酢酸バリウムと酢酸マグネシウムの混合溶液に変えた(この粉末のBa担持濃度はBaOとして、7.3%、Mg担持濃度はMgOとして、2.3%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0038】
(実施例7)
粉末Aの酢酸バリウム水溶液を酢酸バリウムと酢酸ナトリウムの混合溶液に変えた(この粉末のBa担持濃度はBaOとして、7.3%、Na担持濃度はNa2Oとして、3.48%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0039】
(実施例8)
粉末Aの酢酸バリウム水溶液を酢酸バリウムと酢酸ストロンチウムの混合溶液に変えた(この粉末のBa担持濃度はBaOとして、7.3%、Sr担持濃度はSrOとして、5.85%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0040】
(実施例9)
内層スラリーの粉末BのCe担持濃度をCeO2として25%、粉末AのCe担持濃度をCeO2として25%、外層スラリーの粉末DのCe担持濃度をCeO2として15%、粉末AのCe担持濃度をCeO2として15%とした以外は実施例6と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0041】
(実施例10)
内層スラリーの粉末BのBa担持濃度をBaOとして3%、粉末AのBa担持濃度をBaOとして3%、外層スラリーの粉末DのBa担持濃度をBaOとして20%、粉末AのBa担持濃度をBaOとして20%とした以外は実施例6と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0042】
(実施例11)
酸化セリウムに酢酸バリウム水溶液を含浸させ、120℃で一昼夜乾燥した後、600℃で1時間焼成して粉末を得、得られた粉末に2%のテトラアンミンPt水酸塩溶液(pH=10.5)を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pt担持粉末を得た。これを粉末Iとした(粉末IのPt担持濃度は3.2%、Ba担持濃度はBaOとして7.6%)。HC吸着浄化層スラリーの粉末Eの代わりに粉末Iを用いた以外は実施例10と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0043】
(実施例12)
CeO2(75%)−ZrO2(25%)の複合酸化物に2%のテトラアンミンPt水酸塩溶液(pH=10.5)を含浸させ、120℃で一昼夜乾燥した後、400℃で1時間焼成し、Pt担持粉末を得た。これを粉末Jとした(粉末JのPt担持濃度は3.2%)。HC吸着浄化層スラリーの粉末Eの代わりに粉末Jを用いた以外は実施例10と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0044】
(比較例1)
ベータゼオライトを720.1g、シリカゾルを179.9g、水900gを磁性ボールミルに投入し、混合粉砕して、HC吸着浄化層スラリーを得、これを代わりに使用した以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0045】
(比較例2)
粉末Aの酢酸バリウム水溶液を酢酸カリウム水溶液に変えた(この粉末のK担持濃度はK2Oとして、4.51%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0046】
(比較例3)
粉末Aの酢酸バリウム水溶液を酢酸セシウム水溶液に変えた(この粉末のCs担持濃度はCs2Oとして、13.41%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0047】
(比較例4)
粉末Aの酢酸バリウム水溶液を酢酸ランタン水溶液に変えた(この粉末のLa担持濃度はLa2O3として、15.53%)以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0048】
(比較例5)
粉末AのCe担持濃度をCeO2として10%とした以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0049】
(比較例6)
内層スラリーの粉末BのCe担持濃度をCeO2として25%、粉末AのCe担持濃度をCeO2として25%、外層スラリーの粉末DのCe担持濃度をCeO2として3%、粉末AのCe担持濃度をCeO2として3%とした以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0050】
(比較例7)
内層スラリーの粉末BのCe担持濃度をCeO2として13%、粉末AのCe担持濃度をCeO2として13%、外層スラリーの粉末DのCe担持濃度をCeO2として40%、粉末AのCe担持濃度をCeO2として40%とした以外は実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0051】
上記各例の排気ガス浄化触媒の仕様を表1に示す。なお、表1中の第一層、第二層及び第三層は、それぞれHC吸着浄化層、吸着浄化内層及び吸着浄化外層を表すものである。
【0052】
【表1】
【0053】
[性能評価]
(試験例1)
排気量4500ccのエンジンの排気系に上記各例の触媒を装着して、軽油(S=10ppm以下)を使用し、触媒入口温度を650℃とし、50時間運転して耐久させた。
排気量2500ccのディーゼルエンジンの排気系に上記耐久後の各例の触媒を装着して、11モードを走り、排気浄化率(11モード−HC転化率)を求めた。
【0054】
(試験例2)
排気量4500ccのエンジンの排気系に上記各例の触媒を装着して、軽油(S=10ppm以下)を使用し、触媒入口温度を650℃とし、50時間運転して耐久させた。
その後、軽油(S=400ppm)を使用し、触媒入口温度250℃とし、3時間運転してS被毒処理を行った後、軽油(S=10ppm以下)を使用し、触媒入口温度を650℃とし、30分運転してS脱離処理を行った。
排気量2500ccのディーゼルエンジンの排気系に上記耐久後の各例の触媒を装着して、リーン(A/F=30)40秒、次いで、リッチ(A/F=11)4秒の運転を行い、この区間における排気浄化率(S被毒処理前NOx転化率及びS被毒・脱離処理後NOx転化率)を求めた。触媒入口温度は250℃とした。得られた結果を表2に示す。
【0055】
【表2】
【0056】
表2より、本発明の範囲に属する実施例1〜12の排気ガス浄化触媒は、本発明外の比較例1〜7よりも、S被毒解除性能とNOx浄化性能の双方に優れていることが分かる。
また、現時点では、NOx浄化性能、HC浄化性能、S被毒解除性能の全てが優れているという観点から、実施例10が最も良好な結果をもたらすものと思われる。
【0057】
【発明の効果】
以上説明してきたように、本発明によれば、HC吸着浄化層に、ゼオライトとPt等の貴金属を担持したセリア材を共存させ、更に吸着浄化内層及び吸着浄化外層に、所定量のCeを存在させることなどとしたため、150℃以下の低温でのHC吸着浄化、150〜250℃の低温及びリーン域でのNOx浄化を1つの触媒で実現でき、NOx浄化性能を向上した排気ガス浄化触媒及びその製造方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification catalyst and a method for producing the same, and more particularly, to a hydrocarbon (HC) adsorption purification performance at a low temperature of 150 ° C. or lower, a low temperature of 150 to 250 ° C., and an oxygen-excess atmosphere (lean region). The present invention relates to an exhaust gas purifying catalyst excellent in nitrogen oxide (NOx) adsorption purifying performance and a method for producing the same.
[0002]
[Prior art]
Conventionally, various catalysts for purifying NOx in a lean region have been proposed. For example, as represented by a catalyst in which platinum and lanthanum are supported on a porous carrier (for example, see Patent Document 1), NOx in a lean region is represented. There is known a catalyst that adsorbs NOx and releases NOx when stoichiometric is in a rich region to purify NOx.
Further, as a catalyst for purifying HC at the time of low exhaust temperature at the time of starting the engine or the like, for example, a catalyst containing zeolite is known (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP-A-5-168860
[Patent Document 2]
JP-A-11-47596
[0004]
[Problems to be solved by the invention]
However, in a lean burn engine or a diesel engine, it is necessary to arrange two catalysts as described above for HC adsorption purification at a low temperature and NOx purification in a lean region. There were many problems. If the functions of the two catalysts can be satisfied by one catalyst as in the present invention, it is considered that the above problem can be solved. Specifically, the noble metal is placed on the zeolite layer as the HC adsorbent. And a layer comprising a layer containing an alkali that is a NOx adsorbent, wherein the lower layer adsorbs HC at a low temperature, the upper layer adsorbs and purifies NOx, and purifies the HC adsorbed in the lower layer.
However, such a catalyst has a problem in that the respective catalyst layers cannot be sufficiently exhibited because each catalyst layer becomes thin.
[0005]
Detailed analysis by the present inventors has revealed that NOx desorption and purification from the upper layer that performs NOx purification are not sufficiently performed. This is more remarkable when the catalyst inlet temperature is 250 ° C. or less. In order to sufficiently desorb and purify NOx even in this temperature range, H is required. 2 It became clear that it was necessary. In recent years, as the combustion efficiency of the engine has increased due to the reduction in fuel consumption and the exhaust temperature has been reduced, this problem has been increasing.
[0006]
The present invention has been made in view of such findings, and has as its object to purify hydrocarbon (HC) adsorption and purification at a low temperature of 150 ° C. or lower, and at a low temperature of 150 to 250 ° C. and in a lean region. An object of the present invention is to provide an exhaust gas purifying catalyst capable of purifying nitrogen oxides (NOx) with one catalyst and having improved NOx purifying performance, and a method of manufacturing the same.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, a ceria material carrying a noble metal such as zeolite and platinum coexists in the HC adsorption purification layer, and further, in the adsorption purification inner layer and the adsorption purification outer layer, It has been found that the above object can be achieved by the presence of a predetermined amount of cerium, and the present invention has been completed.
[0008]
That is, the exhaust gas purifying catalyst of the present invention has an integral structure type carrier, which is an HC adsorbing and purifying layer for adsorbing and purifying HC, an adsorbing and purifying inner layer for adsorbing and purifying NOx and purifying HC, and adsorbing and purifying NOx. In addition, at least three catalyst layers of an adsorption purification outer layer for purifying HC are laminated in this order.
The HC adsorption and purification layer contains zeolite, platinum (Pt) and / or palladium (Pd), and a ceria material, and the ceria material carries Pt and / or Pd. Contains an alkali metal and / or an alkaline earth metal, cerium (Ce), Pt and / or Pd, and alumina, and the adsorption and purification outer layer contains an alkali metal and / or an alkaline earth metal, Ce , Rhodium (Rh), Pt and / or Pd, and alumina, and the total amount of Ce in the inner and outer layers of the adsorption purification is CeO. 2 In terms of conversion, the catalyst is 40 to 100 g / L per liter of the catalyst, and is an exhaust gas purifying catalyst having both the ability to purify HC at low temperature and the ability to purify NOx at low temperature and in an atmosphere containing excess oxygen.
[0009]
Further, the method for producing an exhaust gas purifying catalyst of the present invention is a method for producing an exhaust gas purifying catalyst as described above, and includes the following steps (1) to (4).
{Circle around (1)} Ct material is impregnated with an alkaline aqueous solution containing Pt and / or Pd to prepare Pt and / or Pd-supported powder, and then HC is used to form an HC adsorption purification layer using this powder and zeolite. A step of preparing an adsorption purification layer slurry.
(2) A powder in which Ce and an alkali metal and / or an alkaline earth metal are supported on alumina is prepared, and then this powder is impregnated with an alkaline aqueous solution containing Pt and / or Pd to form a powder supporting Pt and / or Pd. And forming an inner layer slurry for forming an adsorption purification inner layer using these powders.
(3) A powder in which Ce and an alkali metal and / or an alkaline earth metal are supported on alumina is prepared, and then this powder is impregnated with an aqueous alkaline solution containing Pt and / or Pd to obtain a powder supporting Pt and / or Pd. On the other hand, impregnating alumina with an aqueous rhodium nitrate solution to produce Rh-supported powders, and using these powders to produce an outer layer slurry for forming an adsorption purification outer layer.
{Circle around (4)} Thereafter, the HC-adsorbing / purifying layer slurry, the inner layer slurry and the outer layer slurry obtained in steps (1) to (3) are coated on the monolithic carrier in this order, dried, and calcined to form HC A step of laminating an adsorption purification layer, an adsorption purification inner layer, and an adsorption purification outer layer.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail. In addition, in this specification, "%" represents a mass percentage unless otherwise specified.
[0011]
As described above, the exhaust gas purifying catalyst of the present invention has an integrated structure-type carrier in which an HC adsorbing / purifying layer that adsorbs and purifies HC, an inner layer that adsorbs and purifies NOx, and an adsorbing and purifying inner layer that adsorbs and purifies HC. At least three catalyst layers of an outer purification layer for purifying and purifying HC are laminated in this order, and have both an ability to purify HC at low temperature and an ability to adsorb and purify NOx at low temperature and in an oxygen-excess atmosphere.
Here, as the monolithic carrier, for example, a monolith carrier or a honeycomb carrier made of a heat-resistant material such as ceramics such as cordierite or a metal such as ferritic stainless steel is used.
[0012]
According to the prior art, at least two types of catalysts are required: a catalyst for adsorbing HC and a catalyst for purifying NOx during lean operation. This causes an increase in exhaust pressure, which adversely affects fuel economy. The amount of noble metal for each individual is required, which leads to resource depletion. However, the exhaust gas purifying catalyst of the present invention is a catalyst in which the above-described composite function is integrated into one catalyst, and such a problem can be solved.
[0013]
Further, the HC adsorption purification layer of the exhaust gas purification catalyst of the present invention contains zeolite and a ceria material supporting one or both of Pt and Pd, and the adsorption purification inner layer contains one or both of an alkali metal and an alkaline earth metal. It contains both, Ce, one or both of Pt and Pd, and alumina, and the adsorption purification outer layer contains one or both of an alkali metal and an alkaline earth metal, Ce, Rh, and one of Pt and Pd. Or it contains both and alumina.
Here, the “ceria material” refers to an oxide containing at least Ce.
[0014]
In such an HC adsorption purification layer, zeolite adsorbs and purifies HC at a low temperature of 150 ° C. or less, and the ceria material supporting Pt or Pd is water (H). 2 O) and hydrogen (H) effective for NOx purification by CO shift reaction from carbon monoxide (CO) generated by HC purification of zeolite. 2 ).
On the other hand, in the inner and outer layers of the adsorption purification, alumina supports a catalyst component as a high surface area substrate, and a compound formed by an alkali metal or an alkaline earth metal (NOx adsorbent) adsorbs NOx, and Pt, Pd and Rh performs NOx purification and HC purification. In particular, Rh exhibits excellent performance in NOx purification. 2 The function of desorbing and purifying NOx by generation is improved.
This makes it possible to adsorb and purify HC at a low temperature of 150 ° C. or lower, and improve NOx purification performance at a low temperature of 150 to 250 ° C.
[0015]
Further, in the exhaust gas purifying catalyst of the present invention, the total amount of Ce in the inner layer and the outer layer 2 In terms of conversion, it is required to be 40 to 100 g / L per 1 L of the catalyst.
If it is less than 40 g / L, the CO shift reaction may not be able to proceed sufficiently. If it exceeds 100 g / L, HC, CO, H 2 Thus, the function of oxidizing the reducing agent such as the above may be more strongly expressed, and the desorption of NOx may not be performed.
[0016]
In the exhaust gas purifying catalyst of the present invention, the Ce amount of the inner layer of the adsorption purification is preferably larger than the Ce amount of the outer layer of the adsorption purification, and the ratio of the amount of Ce in the inner layer of the adsorption purification and the amount of Ce in the outer layer of the adsorption purification is CeO. 2 More preferably, it is 6: 4 to 8: 2 in conversion.
If the amount of Ce in the outer layer of adsorption purification is larger than the amount of Ce in the inner layer of adsorption purification, the above-described reducing agent is oxidized and consumed, which may adversely affect the desorption and purification of NOx. If Ce is present in the outer adsorption purification layer, it oxidizes the above-described reducing agent necessary for NOx purification. Therefore, it is ideally desirable that Ce is not contained in the outer adsorption purification layer.
However, when it is not contained, H which is effective for detoxification of sulfur compound (S) is effective. 2 Is generated by a ceria material carrying Pt or Pd, and therefore, there is a high possibility that S poisoning will adversely affect the NOx purification performance.
From such a viewpoint, it is preferable that the above-described ratio is contained in the inner layer and the outer layer of the adsorption purification, so that both the inner layer and the outer layer can adsorb, desorb and purify NOx, and furthermore, the S poisoning. Release performance is also improved.
[0017]
In the exhaust gas purifying catalyst of the present invention, the amount of one or both of the alkali metal and the alkaline earth metal contained in the outer layer of the adsorption purification is one or both of the alkali metal and the alkaline earth metal contained in the inner layer of the adsorption purification. Is preferably larger in terms of the corresponding oxide than the amount of.
This is because the catalyst of the present invention is used at a low temperature of 250 ° C. or lower, so that the NOx adsorption performance is maximized. In addition, since the removal of S poison is more likely to occur on the outer side of the adsorption purification layer, an effective arrangement of alkali metals and alkaline earth metals is also provided for the removal of S poison.
[0018]
Further, in the exhaust gas purifying catalyst of the present invention, one or both of the alkali metal and the alkaline earth metal of the inner layer and the outer layer of the adsorption purification are magnesium (Mg), calcium (Ca), strontium (Sr), barium ( Ba) or sodium (Na) and a metal according to any combination thereof is desirably contained, and some or all of the compounds formed by these metals are composed of barium magnesium carbonate (BaMg (CO 3 ) 2 ) Is particularly desirable.
[0019]
Since the catalyst of the present invention is used at a low temperature of 250 ° C. or lower, NOx cannot be adsorbed with an alkali (for example, rare earth or the like) weaker than the compound containing an alkali metal or an alkaline earth metal. In the case of a strong alkali (for example, potassium (K), cesium (Cs), etc.), NOx adsorbed by these cannot be desorbed, which may adversely affect NOx purification performance.
As such a NOx adsorbent, a compound containing Ba or Na is preferable, and Na is a compound of the compound (for example, sodium carbonate (Na 2 CO 3 ). ) Is water-soluble, so that it is likely to dissolve into the zeolite-containing HC-adsorbing / purifying layer during the preparation of the catalyst, adversely affecting the HC-adsorbing performance.
[0020]
On the other hand, in consideration of the release of S poisoning, the stability of the NOx adsorbent becomes a very important issue, and this point is the same as for the NOx purification performance. It is effective. At present, as a good material that exhibits suitable NOx purification performance in the temperature range using the catalyst of the present invention and can be combined, for example, BaMg (CO 3 ) 2 Is mentioned. Further, the compounding is effective also in consideration of the dissolution of the adsorbent into the zeolite.
By combining the adsorbent in this way, it is possible to solve many problems such as suppressing S poisoning, suppressing reduction in NOx purification performance, and preventing leaching into zeolite.
[0021]
Further, in the HC adsorption purification layer of the exhaust gas purification catalyst of the present invention, it is desirable that the ceria material supporting Pt or Pd further contain an alkaline earth metal.
By including the NOx adsorbent in the HC adsorption purification layer, it is possible to improve the NOx purification performance, and by dissolving the zeolite by supporting an alkaline earth metal on a ceria material supporting Pt or Pd other than zeolite. And the resulting pore blockage is prevented, and the HC adsorption performance can be maintained.
[0022]
Further, in the HC adsorption purification layer of the exhaust gas purification catalyst of the present invention, it is preferable that the ceria material supporting Pt or Pd further contain zirconium (Zr), and the content ratio of Ce and Zr in the ceria material is reduced. , Respectively CeO 2 , ZrO 2 It is more preferable that the weight ratio is 70:30 to 80:20 in terms of reduced weight, and it is particularly preferable that the weight ratio is 75:25.
It is effective to form a composite with zirconium in order to improve the stability of the ceria material. 2 Deterioration of the generation function can also be suppressed. At present, the preferred form is the above-mentioned Ce-Zr composite oxide.
[0023]
Next, the method for producing the exhaust gas purifying catalyst of the present invention will be described in detail.
This production method is a method for producing the above-described exhaust gas purification catalyst of the present invention, and includes an HC adsorption purification layer slurry, an inner layer slurry and an outer layer slurry for forming the HC adsorption purification layer, the adsorption purification inner layer and the adsorption purification outer layer. Is prepared, and these slurries are sequentially applied to a carrier having an integral structure such as a honeycomb carrier, followed by drying and firing, and specifically includes the following steps (1) to (4).
[0024]
{Circle around (1)} Ceria material is impregnated with an alkaline aqueous solution containing one or both of Pt and Pd to prepare a powder carrying one or both of Pt and Pd, and then HC adsorption purification using this powder and zeolite. A step of forming a layer slurry.
{Circle around (2)} A powder in which Ce and one or both of an alkali metal and an alkaline earth metal are supported on alumina is prepared, and then this powder is impregnated with an alkaline aqueous solution containing one or both of Pt and Pd to form Pt and Pd. Preparing powder supporting one or both of the above, and preparing an inner layer slurry using these powders.
{Circle around (3)} A powder is prepared by supporting Ce and one or both of an alkali metal and an alkaline earth metal on alumina, and then this powder is impregnated with an alkaline aqueous solution containing one or both of Pt and Pd to form Pt and Pd. A step of preparing a powder carrying one or both of the above, and impregnating alumina with an aqueous rhodium nitrate solution to prepare a Rh-supported powder, and preparing an outer layer slurry using these powders.
(4) Thereafter, the HC adsorption purification layer slurry, the inner layer slurry, and the outer layer slurry obtained in the steps (1) to (3) are coated on a monolithic carrier such as a honeycomb carrier in this order, and dried. Baking to form a stacked layer of an HC adsorption purification layer, an adsorption purification inner layer, and an adsorption purification outer layer.
[0025]
In the step (1), the step (2) and the step (3), the Pt or Pd is supported on the ceria material because such powder is used in the HC adsorption purification layer as described above. 2 This is because it contributes to generation.
In addition, when the alkaline earth metal is contained in the HC adsorption purification layer, it is desirable that the ceria material first support the alkaline earth metal in the step (1). As described above, by being supported on a ceria material other than zeolite, pores of zeolite can be prevented from being blocked by the NOx adsorbent, HC adsorption performance can be maintained, and NOx purification performance can be improved. It becomes.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0027]
(Example 1)
A cerium acetate aqueous solution and a barium acetate aqueous solution are mixed and stirred. Alumina is put therein, stirred at room temperature for 1 hour, dried at 120 ° C. all day and night, and calcined at 600 ° C. for 1 hour to obtain two kinds of supported powder. Obtained. This powder was used as powder A (Ba concentration of powder A was 7.3% as BaO, Ce concentration was CeO 2 20%).
The powder A was impregnated with a 2% tetraammine Pt hydroxide solution (pH = 10.5), dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a Pt-supported powder. This was designated as Powder B (Pt carrying concentration of Powder B was 1.04%).
[0028]
Alumina was put into an aqueous solution of zirconium acetate, stirred at room temperature for 1 hour, dried at 120 ° C. for 24 hours, and calcined at 900 ° C. for 1 hour to obtain a powder. The obtained powder was impregnated with a 6% rhodium nitrate aqueous solution. After drying at 120 ° C. for 24 hours, it was baked at 400 ° C. for 1 hour to obtain a Rh-supported powder. This was used as powder C (the concentration of Rh supported on powder C was 2.4%, and the supported concentration of Zr was ZrO 2 3%).
The powder A was impregnated with a 2% tetraammine Pt hydroxide solution (pH = 10.5), dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a Pt-supported powder. This was designated as Powder D (Pt carrying concentration of Powder D was 3.41%).
Cerium oxide was impregnated with a 2% tetraammine Pt hydroxide solution (pH = 10.5), dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a Pt-supported powder. This was designated as Powder E (Pt carrying concentration of Powder E was 3.2%).
[0029]
627.5 g of beta zeolite, 92.6 g of powder E, 179.9 g of silica sol, and 900 g of water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry for the HC adsorption purification layer.
767.8 g of powder B, 50.5 g of powder A, 47.8 g of Ce oxide, 33.9 g of alumina sol, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain an inner layer slurry.
272.0 g of powder C, 403.9 g of powder D, 84.8 g of powder A, 81.1 g of cerium oxide, 58.1 g of alumina sol, and 900 g of water were charged into a magnetic ball mill, mixed and pulverized, and mixed with an outer layer slurry. Got.
[0030]
The HC adsorption purification layer slurry is attached to a cordierite-based monolithic carrier (1.2 L, 400 cells), excess slurry in the cells is removed by an air flow, dried at 130 ° C., and calcined at 400 ° C. for 1 hour. Thus, a catalyst having a coat layer of 172.1 g / L was obtained. This was designated as catalyst a.
The inner layer slurry was adhered to the catalyst a, the excess slurry in the cell was removed with an air stream, dried at 130 ° C., and fired at 400 ° C. for 1 hour to obtain a catalyst of 167.5 g / L of a coat layer. This was designated as catalyst b.
The outer layer slurry is adhered to the catalyst b, the excess slurry in the cell is removed by an air stream, dried at 130 ° C., and then baked at 400 ° C. for 1 hour to obtain 97.6 g / L of the exhaust gas of the present example of the coat layer. A purification catalyst was obtained.
[0031]
(Example 2)
Powder A was impregnated with a 12% palladium nitrate solution, dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a Pd-supported powder. This was designated as Powder F (Pd carrying concentration of Powder F was 1.04%).
Powder A was impregnated with a 12% palladium nitrate solution, dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a Pd-supported powder. This was designated as Powder G (Pd-supporting concentration of Powder F was 3.41%).
Cerium oxide was impregnated with a 12% palladium nitrate solution, dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a Pd-supported powder. This was designated as Powder H (Pd carrying concentration of Powder H was 3.2%).
[0032]
627.5 g of beta zeolite, 69.4 g of powder E, 23.2 g of powder H, 179.9 g of silica sol, and 900 g of water were charged into a magnetic ball mill, mixed and pulverized to obtain an HC adsorption purification layer slurry.
575.8 g of powder B, 192.0 g of powder F, 50.5 g of powder A, 47.8 g of Ce oxide, 33.9 g of alumina sol, and 900 g of water were charged into a magnetic ball mill, mixed and pulverized, and the inner layer slurry was formed. Obtained.
272.0 g of powder C, 302.9 g of powder D, 101.0 g of powder G, 84.8 g of powder A, 81.1 g of Ce oxide, 58.1 g of alumina sol, and 900 g of water were charged into a magnetic ball mill, The mixture was pulverized to obtain an outer layer slurry.
[0033]
The HC adsorption purification layer slurry is attached to a cordierite-based monolithic carrier (1.2 L, 400 cells), excess slurry in the cells is removed by an air flow, dried at 130 ° C., and calcined at 400 ° C. for 1 hour. Thus, a catalyst having a coat layer of 172.1 g / L was obtained. This was designated as catalyst c.
The inner layer slurry was adhered to the catalyst c, the excess slurry in the cell was removed by an air stream, dried at 130 ° C., and fired at 400 ° C. for 1 hour to obtain a catalyst of 167.5 g / L of a coat layer. This was designated as catalyst d.
The outer layer slurry is adhered to the catalyst d, the excess slurry in the cell is removed by an air flow, dried at 130 ° C., and then baked at 400 ° C. for 1 hour, and the exhaust gas of the present example having a coat layer of 97.6 g / L is obtained. A purification catalyst was obtained.
[0034]
(Example 3)
The same operation as in Example 1 was repeated except that the aqueous barium acetate solution of the powder A was changed to an aqueous calcium acetate solution (the concentration of Ca supported in the powder was 2.65% as CaO) to obtain the exhaust gas purification catalyst of the present example. Was.
[0035]
(Example 4)
The same operation as in Example 1 was repeated except that the barium acetate aqueous solution of the powder A was changed to a strontium acetate aqueous solution (the Sr carrying concentration of this powder was 4.91% as SrO), to obtain the exhaust gas purification catalyst of the present example. Was.
[0036]
(Example 5)
The aqueous barium acetate solution of powder A was changed to an aqueous sodium acetate solution (the Na carrying concentration of this powder was Na 2 The same operation as in Example 1 was repeated except for O (2.99%) to obtain an exhaust gas purifying catalyst of this example.
[0037]
(Example 6)
The barium acetate aqueous solution of powder A was changed to a mixed solution of barium acetate and magnesium acetate (the Ba carrying concentration of this powder was 7.3% as BaO, and the Mg carrying concentration was 2.3% as MgO). The same operation as in Example 1 was repeated to obtain an exhaust gas purifying catalyst of this example.
[0038]
(Example 7)
The aqueous barium acetate solution of powder A was changed to a mixed solution of barium acetate and sodium acetate (Ba concentration of this powder was BaO as 7.3%, and Na concentration was Na. 2 The same operation as in Example 1 was repeated except for O (3.48%) to obtain an exhaust gas purifying catalyst of this example.
[0039]
(Example 8)
The barium acetate aqueous solution of powder A was changed to a mixed solution of barium acetate and strontium acetate (Ba carrying concentration of this powder is 7.3% as BaO, Sr carrying concentration is 5.85% as SrO). The same operation as in Example 1 was repeated to obtain an exhaust gas purifying catalyst of this example.
[0040]
(Example 9)
The Ce supported concentration of the powder B of the inner layer slurry was CeO 2 25%, and the Ce loading concentration of powder A is CeO 2 25%, the Ce supported concentration of the powder D of the outer layer slurry was CeO 2 15%, and the Ce loading concentration of powder A was CeO 2 The same operation as in Example 6 was repeated except that the value was set to 15% to obtain an exhaust gas purification catalyst of this example.
[0041]
(Example 10)
The Ba carrying concentration of the powder B of the inner layer slurry is 3% as BaO, the Ba carrying concentration of the powder A is 3% as BaO, the Ba carrying concentration of the powder D of the outer slurry is 20% as BaO, and the Ba carrying concentration of the powder A is BaO. The same operation as in Example 6 was repeated except that the value was set to 20% to obtain an exhaust gas purification catalyst of this example.
[0042]
(Example 11)
Cerium oxide was impregnated with an aqueous barium acetate solution, dried at 120 ° C. for 24 hours, and calcined at 600 ° C. for 1 hour to obtain a powder. The obtained powder was mixed with a 2% tetraammine Pt hydroxide solution (pH = 10.5). ), Dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a Pt-supported powder. This was used as Powder I (Pt carrying concentration of Powder I was 3.2%, Ba carrying concentration was 7.6% as BaO). The same operation as in Example 10 was repeated except that the powder I was used instead of the powder E of the HC adsorption purification layer slurry, to obtain an exhaust gas purification catalyst of this example.
[0043]
(Example 12)
CeO 2 (75%)-ZrO 2 (25%) composite oxide was impregnated with 2% tetraammine Pt hydroxide solution (pH = 10.5), dried at 120 ° C. all day and night, and calcined at 400 ° C. for 1 hour to obtain a Pt-supported powder. Was. This was designated as Powder J (Pt carrying concentration of Powder J was 3.2%). The same operation as in Example 10 was repeated except that powder J was used instead of powder E of the HC adsorption purification layer slurry, to obtain an exhaust gas purification catalyst of this example.
[0044]
(Comparative Example 1)
The same operation as in Example 1 was carried out except that 720.1 g of beta zeolite, 179.9 g of silica sol, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry for an HC adsorption purification layer, which was used instead. Was repeated to obtain an exhaust gas purifying catalyst of this example.
[0045]
(Comparative Example 2)
The aqueous barium acetate solution of the powder A was changed to an aqueous potassium acetate solution. 2 The same operation as in Example 1 was repeated except for 4.51% as O) to obtain an exhaust gas purifying catalyst of this example.
[0046]
(Comparative Example 3)
The barium acetate aqueous solution of powder A was changed to a cesium acetate aqueous solution (the Cs carrying concentration of this powder was Cs 2 Except for 13.41% as O), the same operation as in Example 1 was repeated to obtain an exhaust gas purifying catalyst of this example.
[0047]
(Comparative Example 4)
The barium acetate aqueous solution of the powder A was changed to a lanthanum acetate aqueous solution (the La carrying concentration of this powder was La 2 O 3 (Except for 15.53%), the same operation as in Example 1 was repeated to obtain an exhaust gas purifying catalyst of this example.
[0048]
(Comparative Example 5)
The Ce loading concentration of powder A was CeO 2 The same operation as in Example 1 was repeated except that the value was set to 10% to obtain an exhaust gas purification catalyst of this example.
[0049]
(Comparative Example 6)
The Ce supported concentration of the powder B of the inner layer slurry was CeO 2 25%, and the Ce loading concentration of powder A is CeO 2 25%, the Ce supported concentration of the powder D of the outer layer slurry was CeO 2 3%, and the Ce loading concentration of powder A was CeO 2 The same operation as that of Example 1 was repeated except that the value was set to 3% to obtain an exhaust gas purification catalyst of this example.
[0050]
(Comparative Example 7)
The Ce supported concentration of the powder B of the inner layer slurry was CeO 2 13%, and the Ce loading concentration of powder A was CeO 2 13%, the Ce supported concentration of powder D of the outer layer slurry was CeO 2 40%, and the Ce loading concentration of powder A was CeO 2 The same operation as in Example 1 was repeated except that the value was set to 40% to obtain an exhaust gas purification catalyst of this example.
[0051]
Table 1 shows the specifications of the exhaust gas purifying catalyst of each of the above examples. The first, second, and third layers in Table 1 represent an HC adsorption purification layer, an adsorption purification inner layer, and an adsorption purification outer layer, respectively.
[0052]
[Table 1]
[0053]
[Performance evaluation]
(Test Example 1)
The catalyst of each of the above examples was mounted on the exhaust system of an engine with a displacement of 4500 cc, and light oil (S = 10 ppm or less) was used, the catalyst inlet temperature was set to 650 ° C., and the operation was performed for 50 hours to endurance.
The catalyst of each example after the above-mentioned durability was mounted on an exhaust system of a diesel engine having a displacement of 2500 cc, and the engine was run in 11 modes to determine an exhaust gas purification rate (11 mode-HC conversion rate).
[0054]
(Test Example 2)
The catalyst of each of the above examples was mounted on the exhaust system of an engine with a displacement of 4500 cc, and light oil (S = 10 ppm or less) was used, the catalyst inlet temperature was set to 650 ° C., and the operation was performed for 50 hours to endurance.
After that, light polish (S = 400 ppm) was used, the catalyst inlet temperature was set to 250 ° C., and the system was operated for 3 hours to perform S poisoning treatment. The operation was performed for 30 minutes to perform the S desorption process.
The catalyst of each example after the above-mentioned durability was attached to the exhaust system of a diesel engine with a displacement of 2500 cc, and the operation was performed for 40 seconds in a lean (A / F = 30) and then for 4 seconds in a rich (A / F = 11). The exhaust gas purification rate (NOx conversion rate before S poisoning processing and NOx conversion rate after S poisoning / desorption processing) in this section was determined. The catalyst inlet temperature was 250 ° C. Table 2 shows the obtained results.
[0055]
[Table 2]
[0056]
Table 2 shows that the exhaust gas purifying catalysts of Examples 1 to 12 belonging to the scope of the present invention are superior to both the S poisoning release performance and the NOx purifying performance than Comparative Examples 1 to 7 other than the present invention. I understand.
At the present time, from the viewpoint that the NOx purification performance, the HC purification performance, and the S poisoning release performance are all excellent, it is considered that the tenth embodiment provides the best result.
[0057]
【The invention's effect】
As described above, according to the present invention, the HC adsorption purification layer is made to coexist with a ceria material carrying a noble metal such as zeolite and Pt, and furthermore, a predetermined amount of Ce exists in the adsorption purification inner layer and the adsorption purification outer layer. As a result, it is possible to realize NOx purification at a low temperature of 150 ° C. or lower and NOx purification at a low temperature of 150 to 250 ° C. and in a lean region with a single catalyst. A manufacturing method can be provided.
Claims (11)
HC吸着浄化層は、ゼオライトと白金及び/又はパラジウムとセリア材とを含有し、このセリア材には白金及び/又はパラジウムが担持されており、
吸着浄化内層は、アルカリ金属及び/又はアルカリ土類金属とセリウムと白金及び/又はパラジウムとアルミナとを含有し、
吸着浄化外層は、アルカリ金属及び/又はアルカリ土類金属とセリウムとロジウムと白金及び/又はパラジウムとアルミナとを含有し、
吸着浄化内層及び外層のセリウム量の合計がCeO2換算で、この触媒1L当り40〜100g/Lであることを特徴とする排気ガス浄化触媒。At least three of an HC adsorption / purification layer that adsorbs and purifies HC, an inner layer that adsorbs and purifies NOx, and purifies HC, and an outer adsorption purification layer that adsorbs and purifies NOx, and purifies HC are formed on the monolithic carrier. An exhaust gas purifying catalyst comprising a stack of two catalyst layers in this order and having both a HC adsorption purification ability at a low temperature and a NOx adsorption purification ability at a low temperature and in an oxygen-excess atmosphere.
The HC adsorption purification layer contains zeolite, platinum and / or palladium and a ceria material, and the ceria material supports platinum and / or palladium,
The adsorption purification inner layer contains an alkali metal and / or an alkaline earth metal, cerium and platinum and / or palladium and alumina,
The adsorption purification outer layer contains an alkali metal and / or an alkaline earth metal, cerium, rhodium, platinum and / or palladium and alumina,
A total of CeO 2 in terms of the cerium amount of adsorption purification inner and outer layers, the exhaust gas purifying catalyst which is a catalyst 1L per 40 to 100 g / L.
▲1▼セリア材に白金及び/又はパラジウムを含有するアルカリ性水溶液を含浸させて白金及び/又はパラジウム担持粉末を作成し、次いで、この粉末とゼオライトを用いてHC吸着浄化層を形成するためのHC吸着浄化層スラリーを作成し、
▲2▼アルミナにセリウムとアルカリ金属及び/又はアルカリ土類金属を担持した粉末を作成し、次いで、この粉末に白金及び/又はパラジウムを含有するアルカリ性水溶液を含浸させて白金及び/又はパラジウム担持粉末を作成し、これら粉末を用いて吸着浄化内層を形成するための内層スラリーを作成し、
▲3▼アルミナにセリウムとアルカリ金属及び/又はアルカリ土類金属を担持した粉末を作成し、次いで、この粉末に白金及び/又はパラジウムを含有するアルカリ性水溶液を含浸させて白金及び/又はパラジウム担持粉末を作成し、一方、アルミナに硝酸ロジウム水溶液を含浸させてロジウム担持粉末を作成し、これら粉末を用いて吸着浄化外層を形成するための外層スラリーを作成し、
▲4▼しかる後、一体構造型担体に、▲1▼〜▲3▼工程で得られたHC吸着浄化層スラリー、内層スラリー及び外層スラリーをこの順で、コートし、乾燥し、焼成して、HC吸着浄化層、吸着浄化内層及び吸着浄化外層を積層形成する、
ことを特徴とする排気ガス浄化触媒の製造方法。In producing the exhaust gas purifying catalyst according to any one of claims 1 to 9,
{Circle around (1)} A ceria material is impregnated with an alkaline aqueous solution containing platinum and / or palladium to prepare a platinum- and / or palladium-supported powder, and then the HC and the zeolite are used to form an HC adsorption / purification layer. Make the adsorption purification layer slurry,
(2) A powder in which cerium and an alkali metal and / or an alkaline earth metal are supported on alumina is prepared, and then this powder is impregnated with an alkaline aqueous solution containing platinum and / or palladium to obtain a powder supporting platinum and / or palladium. The inner layer slurry for forming the adsorption purification inner layer using these powders,
(3) A powder in which cerium and an alkali metal and / or an alkaline earth metal are supported on alumina is prepared, and then the powder is impregnated with an alkaline aqueous solution containing platinum and / or palladium to obtain a powder supporting platinum and / or palladium. On the other hand, alumina is impregnated with an aqueous solution of rhodium nitrate to prepare a rhodium-supported powder, and an outer layer slurry for forming an adsorption and purification outer layer using these powders is prepared.
(4) Thereafter, the HC-adsorbing / purifying layer slurry, the inner layer slurry and the outer layer slurry obtained in the steps (1) to (3) are coated on the monolithic carrier in this order, dried, and fired. Forming a stack of an HC adsorption purification layer, an adsorption purification inner layer and an adsorption purification outer layer,
A method for producing an exhaust gas purifying catalyst, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003118112A JP2004321894A (en) | 2003-04-23 | 2003-04-23 | Exhaust gas cleaning catalyst and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003118112A JP2004321894A (en) | 2003-04-23 | 2003-04-23 | Exhaust gas cleaning catalyst and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004321894A true JP2004321894A (en) | 2004-11-18 |
Family
ID=33497751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003118112A Pending JP2004321894A (en) | 2003-04-23 | 2003-04-23 | Exhaust gas cleaning catalyst and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004321894A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053690A1 (en) * | 2006-10-30 | 2008-05-08 | Cataler Corporation | Exhaust gas purifying catalyst |
WO2011049064A1 (en) * | 2009-10-21 | 2011-04-28 | 本田技研工業株式会社 | Exhaust gas purification catalyst and exhaust gas purification apparatus using same |
DE102012224074A1 (en) | 2011-12-28 | 2013-07-04 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyzer for use in exhaust pipe of diesel engine of vehicle for reductively cleaning nitrogen oxide in exhaust gas, has catalyzer layers, where average particle sizes of catalyzer particles in layers lie in range |
JP2014226651A (en) * | 2013-05-27 | 2014-12-08 | マツダ株式会社 | Exhaust gas purification catalyst and manufacturing method thereof |
WO2017022574A1 (en) * | 2015-07-31 | 2017-02-09 | ヤマハ発動機株式会社 | Exhaust gas purification device and saddle type vehicle |
US20190358615A1 (en) * | 2017-02-08 | 2019-11-28 | Basf Corporation | Catalyst compositions |
CN116251592A (en) * | 2023-01-31 | 2023-06-13 | 昆明贵研催化剂有限责任公司 | Post-treatment catalyst for hybrid electric vehicle, preparation method and application thereof |
-
2003
- 2003-04-23 JP JP2003118112A patent/JP2004321894A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053690A1 (en) * | 2006-10-30 | 2008-05-08 | Cataler Corporation | Exhaust gas purifying catalyst |
JP2008110303A (en) * | 2006-10-30 | 2008-05-15 | Cataler Corp | Catalyst for purifying exhaust gas |
US8133837B2 (en) | 2006-10-30 | 2012-03-13 | Cataler Corporation | Exhaust gas-purifying catalyst |
WO2011049064A1 (en) * | 2009-10-21 | 2011-04-28 | 本田技研工業株式会社 | Exhaust gas purification catalyst and exhaust gas purification apparatus using same |
CN102574117A (en) * | 2009-10-21 | 2012-07-11 | 本田技研工业株式会社 | Exhaust gas purification catalyst and exhaust gas purification apparatus using same |
JP5698671B2 (en) * | 2009-10-21 | 2015-04-08 | 本田技研工業株式会社 | Exhaust gas purification catalyst and exhaust gas purification apparatus using the same |
DE102012224074A1 (en) | 2011-12-28 | 2013-07-04 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyzer for use in exhaust pipe of diesel engine of vehicle for reductively cleaning nitrogen oxide in exhaust gas, has catalyzer layers, where average particle sizes of catalyzer particles in layers lie in range |
JP2014226651A (en) * | 2013-05-27 | 2014-12-08 | マツダ株式会社 | Exhaust gas purification catalyst and manufacturing method thereof |
WO2017022574A1 (en) * | 2015-07-31 | 2017-02-09 | ヤマハ発動機株式会社 | Exhaust gas purification device and saddle type vehicle |
US20190358615A1 (en) * | 2017-02-08 | 2019-11-28 | Basf Corporation | Catalyst compositions |
CN116251592A (en) * | 2023-01-31 | 2023-06-13 | 昆明贵研催化剂有限责任公司 | Post-treatment catalyst for hybrid electric vehicle, preparation method and application thereof |
CN116251592B (en) * | 2023-01-31 | 2023-12-12 | 昆明贵研催化剂有限责任公司 | Post-treatment catalyst for hybrid electric vehicle, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3724708B2 (en) | Exhaust gas purification catalyst | |
US6221804B1 (en) | Catalyst for purifying exhaust gas and manufacturing method thereof | |
JP3859940B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
KR20030090728A (en) | SOx Tolerant NOx Trap Catalysts and Methods of Making and Using the Same | |
JP4573993B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2007196146A (en) | Catalyst for cleaning exhaust gas | |
JP3704701B2 (en) | Exhaust gas purification catalyst | |
JP2004321894A (en) | Exhaust gas cleaning catalyst and method for producing the same | |
JP2001149787A (en) | Exhaust gas purifying catalyst and manufacturing method therefor | |
JP2009208045A (en) | Exhaust gas cleaning catalyst | |
JP2004114014A (en) | Catalyst for cleaning exhaust gas and method of producing the same | |
JP2003245523A (en) | Exhaust gas cleaning system | |
JP4923412B2 (en) | Exhaust gas purification catalyst | |
JP2009248057A (en) | Catalyst for exhaust gas purification | |
JP5328133B2 (en) | Exhaust gas purification catalyst | |
JP2004209324A (en) | Catalyst for cleaning exhaust gas | |
JPH10165819A (en) | Catalyst for cleaning of exhaust gas and its use method | |
JP3965793B2 (en) | Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
JP3622893B2 (en) | NOx absorbent and exhaust gas purification catalyst using the same | |
JP2003135970A (en) | Exhaust gas cleaning catalyst | |
JP2004181430A (en) | Exhaust gas purification catalyst and production method for the same | |
JP4019351B2 (en) | NOx purification catalyst and NOx purification system | |
JP7228451B2 (en) | Exhaust gas purification catalyst for automobiles | |
JP3896706B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2004209403A (en) | Catalyst for purifying exhaust gas |