[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004321022A - Method for producing processed soybean whey - Google Patents

Method for producing processed soybean whey Download PDF

Info

Publication number
JP2004321022A
JP2004321022A JP2003116655A JP2003116655A JP2004321022A JP 2004321022 A JP2004321022 A JP 2004321022A JP 2003116655 A JP2003116655 A JP 2003116655A JP 2003116655 A JP2003116655 A JP 2003116655A JP 2004321022 A JP2004321022 A JP 2004321022A
Authority
JP
Japan
Prior art keywords
lectin
soybean whey
kti
soybean
whey protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003116655A
Other languages
Japanese (ja)
Inventor
Kazunobu Tsumura
和伸 津村
Wataru Kugimiya
渉 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2003116655A priority Critical patent/JP2004321022A/en
Publication of JP2004321022A publication Critical patent/JP2004321022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Beans For Foods Or Fodder (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a soybean whey protein hydrolyzate in which a KTI (Kunitz type trypsin inhibitor) in principal constituent components of the soybean whey protein is selectively hydrolyzed and to provide a method for producing lectin which is another constituent component of the soybean whey protein. <P>SOLUTION: The KTI in a low-denatured soybean whey protein is selectively thermally denatured and a proteolytic enzyme is then made to act thereon to thereby selectively hydrolyze the KTI in the soybean whey protein. A processed soybean whey in which the KTI is selectively hydrolyzed and the lectin which is the constituent component of the soybean whey protein can simply be obtained at an ultrahigh concentration by using the soybean whey which is a by-product of soybean products as a raw material. Thereby, utilization of the soybean whey which cannot but conventionally dispose of at high levels can be expected and a contribution can be made even to an improvement in a technique for producing the lectin in which actions, etc., of enhancing immunological functions are recently expected as a biological function regulating factor thereof such as especially aggregation of platelets, activation of lymphocytes or aggregation of tumorous cells. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、加工大豆ホエーの製造方法及び該加工大豆ホエーからレクチンを製造する方法に関する。
【0002】
【従来の技術】
【特許文献1】特開平6−145198号公報
【特許文献2】特公昭57−11636号公報
【特許文献3】特公昭57−52386号公報
【特許文献4】特開平7−107974号公報
【特許文献5】特開昭61−254153号公報
【非特許文献1】大豆たん白質研究、Vol.2,59−64(1999)
【非特許文献2】J.Agric.Food Chem.,39,862−866(1991)
【非特許文献3】J.Food Biochem. 23, 489−507(1999)
【0003】
大豆ホエー蛋白質は、大豆ホエー中に含まれる蛋白質であり、Kunitz型トリプシンインヒビター(以下、「KTI」と称する。)、レクチン、β−アミラーゼ等から構成されるそれぞれ固有の物理化学的特性を有する蛋白質の混合物である。
そのうち大豆に約0.1%含まれるレクチンは赤血球の凝固を起こすヘマグルチニンの1種で、大豆の有害物質の1つとされている一方で、血小板の凝集、リンパ球の活性化、腫瘍細胞の凝集など、その生体機能調節因子としても注目されつつある(非特許文献1)。
【0004】
大豆ホエー蛋白質中の各成分を利用すべく、それぞれの成分を分離する多くの試みがなされている。例えば、大豆ホエーから限外ろ過膜と陰イオン交換樹脂を組み合わせてKTIを製造する方法(特許文献1)、KTI、レクチンを分離する研究(非特許文献2)、β−アミラーゼを製造する方法(特許文献2〜4)が知られている。
【0005】
また大豆ホエー蛋白質は、栄養的に優れていることから、大豆ホエー蛋白質原料を酵素分解してペプチド混合物を製造する方法が開示されている(特許文献5)。しかし、この方法では得られるペプチド混合物は平均ペプチド鎖長は10〜30と高度に分解されてしまっているため、大豆ホエー蛋白質の特定の成分を未分解の状態で有効利用することができなくなる。
【0006】
このように、大豆ホエー蛋白質のように複数成分が混在した混合物からレクチンのような特定成分を高濃度に簡便に分離する方法はこれまで知られていなかった。
【0007】
【発明が解決しようとする課題】
以上の実情に鑑み、本発明は、大豆ホエーから大豆ホエー蛋白質中の特定成分を高濃度に分離することが可能な加工大豆ホエーの製造方法を提供すること、並びに該加工大豆ホエーからレクチンを製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究した結果、大豆ホエー蛋白質の主要構成成分のKTIとレクチンの変性の程度が異なることに着目し、特定の温度範囲でKTIを選択的に熱変性させ、蛋白分解酵素を作用することにより、KTIが選択的に分解された加工大豆ホエーを得ることが可能であることを見いだした。更に、KTIが選択的に分解された加工大豆ホエーから分子篩法、塩析法、沈澱法から選ばれる濃縮方法でレクチンを高濃度に得られることを見いだし本発明を完成した。
【0009】
即ち、本発明は以下に記載の通り、
(1)大豆ホエー中のKunitz型トリプシンインヒビターを選択的に熱変性させた状態で、蛋白質分解酵素を作用させることを特徴とする加工大豆ホエーの製造方法、
(2)Kunitz型トリプシンインヒビターを選択的に熱変性させる温度帯が65℃以上90℃未満である(1)記載の製造方法、
(3)大豆ホエー蛋白質中のKunitz型トリプシンインヒビターの分解前の含量に対する分解後の残存率が10%以下、且つ大豆ホエー蛋白質中の分解前の含量に対する分解後のレクチンの残存率が30%以上である(1)又は(2)記載の加工大豆ホエーの製造方法、
(4)(1)〜(3)の何れかの製造法により得られた加工大豆ホエーからレクチンに富む蛋白を濃縮するレクチンの製造方法。
(5)濃縮方法が分子篩法、塩析法又は沈澱法である(4)記載のレクチンの製造方法。を開示するものである。
【0010】
【発明の実施の形態】
本発明に適用される大豆ホエーとしては、分離大豆蛋白あるいは濃縮大豆蛋白等の製造工程で副生される、大豆ホエー蛋白質が低変性の大豆ホエーが好ましく、原料大豆の品種、産地等には限定されない。一般的には、n−ヘキサンにて低温抽出処理を行った脱脂大豆、特にNSI(窒素可溶係数)が80以上の低変性脱脂大豆を出発原料として水抽出された脱脂豆乳を塩酸等により酸沈澱させた分離大豆蛋白を分離して得られる大豆ホエーが好適に用いられる。また低変性脱脂大豆を酸性水で洗浄して製造される濃縮大豆蛋白の製造工程で副生される、大豆ホエーも適用できる。なお、大豆の種類や調製方法によって異なってくるものの、通常大豆ホエーの全蛋白質中のレクチンの純度は20〜30%程度であり、KTIの純度は15〜25%程度である。
【0011】
大豆ホエー蛋白質が加熱等により変性を受けているか否かは、蛋白質のDSC(Differential Scanning Calorimetry)分析を行うことにより判別することができる。低変性大豆ホエー蛋白質ではその主要構成成分である、KTIやレクチンに由来するそれぞれの吸熱ピークが観察される(非特許文献3参照)。しかし、過度の変性を受けた大豆ホエー蛋白質の場合では構成成分の吸熱ピークが認められない。したがって、それぞれの吸熱ピークの有無から蛋白質の変性を判断できる。
【0012】
本発明では、先ず大豆ホエー中のKTIを選択的に熱変性させることが重要である。すなわち大豆ホエーを65℃以上90℃未満、好ましくは65〜85℃、より好ましくは70〜80℃に温度調整することにより、KTIを熱変性させることが重要である。かかる温度帯においては、KTIのみ熱変性を受けやすく、一方レクチンは変性を受けにくい。65℃未満ではKTIの熱変性が不十分となり、蛋白質分解酵素によりKTIを十分に分解できない。また90℃以上ではKTIとレクチンの両方が熱変性してしまい、これらの成分を分離することが困難となる。ちなみにKTIの熱変性温度は74℃であることが知られている(非特許文献3参照)が、大豆ホエー中の蛋白含量、イオン強度等により、多少変動する。
また温度調整後に上記温度帯で保持する時間は1〜60分、好ましくは5〜30分程度で充分であるが、実際にはDSC分析でKTIの吸熱ピークから変性を確認して、適切な条件を決定することができる。
【0013】
次にKTIを選択的に熱変性させた大豆ホエーに蛋白質分解酵素を作用させることにより、大豆ホエー中のKTIを選択的に分解させることが出来る。一方、レクチンは熱変性をあまり受けていないため、酵素分解されにくい。KTIの熱変性は非可逆的であるので、蛋白質分解酵素を作用させる際の大豆ホエーの温度は、前記の温度帯に保持したままでも良いし、あるいは使用する蛋白質分解酵素の最適温度範囲に冷却しても良い。特に前記温度帯に保持したまま作用させた方が、温度調整後に再度温度操作を行わずに簡便に大豆ホエー蛋白質中のKTIを選択的に分解させることが可能である。
【0014】
本発明に使用する蛋白質分解酵素としては、動物由来のパンクレアチン、ペプシン、トリプシン等、植物由来のパパイン、ブロメライン等、或いはかび、細菌、乳酸菌等の微生物由来の「アルカラーゼ」(ノボ社製)、「プロテアーゼS」(天野製薬(株)製)、「プロテアーゼM」(天野製薬(株)製)、「プロチンAC−10」(大和化成(株)製)等が例示できる。
【0015】
加水分解の条件は用いる蛋白分解酵素の種類により異なるが、概してその蛋白分解酵素の作用pH域、作用温度域で、加水分解するに充分な量を用いる。通常、未変性大豆ホエー蛋白質を含む水性懸濁液の粗蛋白質量に対して、0.001〜0.5重量%、好ましくは0.01〜0.1%の範囲で添加し、酵素反応を実施する。反応pHは特に限定されず、使用する蛋白質分解酵素が作用する最適なpH範囲であれば良い。作用する時間は、通常5分〜2時間、好ましくは、10〜30分程度反応させればよく、固定化酵素を充填したカラムに通液することにより連続処理も実施できる。65℃以上90℃未満でKTIの選択的分解反応を行う場合でも、65℃以上90℃未満で分解活性を有する酵素であれば、その起源も特に限定されない。
【0016】
酵素分解による大豆ホエー蛋白質中の各成分の変化は、SDS電気泳動法により各成分を分離し、クマシーブルー染色したバンドの濃淡から簡単に調べることが出来る。本発明によれば、大豆ホエー蛋白質中のKTIの分解前の含量に対する分解後の残存率が10%以下、好ましくは5%以下であり、且つ大豆ホエー蛋白質中のレクチンの分解前の含量に対する分解後の残存率が30%以上、好ましくは50%以上となることが好ましい。
【0017】
以上のようにして得られた加工大豆ホエーはKTIが選択的に分解されており、一方、レクチンは多くが分解されずに残存するものである。
【0018】
次に大豆ホエー蛋白質分解物からレクチンを製造する方法を説明する。レクチンは上記製造方法により得られた大豆ホエー蛋白質分解物からレクチンに富む蛋白質を濃縮することにより得ることができる。濃縮方法としては、分子篩法、塩析法又は沈澱法を用いることができる。
【0019】
分子量の差を利用した分子篩法、具体的には限外ろ過法では、大豆ホエー蛋白質分解物を限外ろ過膜で、透過液側(KTIの分解物が主体)を除き、保留側(未分解のレクチンが主体)を分離することで、未分解のレクチンが得られる。使用する限外ろ過膜の孔径は分画分子量として2,000〜30,000程度が適当であり、材質は特に限定されず、ポリスルフォン、ポリアクリロニトリルなどの有機膜或いはセラミックなどの無機膜のいずれを使用してもよい。分画分子量が低すぎると濃縮効率が低く、逆に分画分子量が大きすぎると目的蛋白の収量が低下する。また、分子量差によるゲルろ過カラムクロマトグラフィー法も適用可能であり、レクチンにアフィニティーを持つリガンドを固定したアフィニティーカラムクロマトグラフィーも可能である。
【0020】
塩析法では得られた大豆ホエー蛋白質分解物に、例えば硫酸アンモニウムを30〜70%飽和となるように加えることで、レクチンを塩析させて濃縮できる。沈殿法では、得られた大豆ホエー蛋白質分解物にメタノール、エタノール、イソプロパノール、アセトンなどの有機溶媒を加えて沈殿を生じさせて、レクチンを濃縮する。次いで得られた沈殿物を必要があれば水に溶解させた後、水に対して透析を行い、通風乾燥、熱風乾燥、噴霧乾燥、ドラム乾燥、減圧乾燥、凍結乾燥などの方法により乾燥することも可能である。
【0021】
以上説明したように大豆ホエー蛋白質の主要構成成分のKTIが選択的に分解された大豆ホエー蛋白質分解物が得られる。また、ホエー蛋白質の構成成分である未分解のレクチンを濃縮することにより高濃度、例えば純度80重量%以上のレクチンが得られ、様々な分野での素材として利用が期待される。
【0022】
【実施例】
以下、実施例により本発明の実施様態を具体的に説明する。ただし、本発明はこれらの実施例にその技術範囲が限定されるものではない。
【0023】
〔実施例1〕
低変性脱脂大豆(窒素可溶指数;NSI≧80)100gに12倍量の水を加え、室温、pH7において1時間抽出後、遠心分離し、脱脂豆乳1,100gを得た。この脱脂豆乳に塩酸を加え、pH4.5とし、遠心分離して大豆ホエー1,000gを得た(粗蛋白量0.6% as is)。該大豆ホエーを苛性ソーダで中和し(pH7.0)、温度を70℃に調整して、30分保持し、その後40℃に冷却して、粗蛋白量当たり0.1重量%の「プロテアーゼS」(天野製薬(株)製)を加え、30分酵素反応を行った。酵素反応物を140℃,15秒加熱した溶液を噴霧乾燥し、加工大豆ホエー20gを得た。
【0024】
〔実施例2〕
実施例1と同様に調製した大豆ホエーを中和後、温度を70℃に調整し、この温度に保持したまま粗蛋白量当たり0.1重量%のパパイン(シグマ社製)を加え、30分酵素反応を行った。酵素反応物を140℃,15秒加熱した溶液を噴霧乾燥し、加工大豆ホエー20gを得た。得られた加工大豆ホエーをSDS電気泳動に供したところ、全蛋白質中のレクチンの純度は43%、KTIの純度は0%であった。
【0025】
〔対照区〕
また実施例1及び2の対照区として、実施例1と同様に調製した大豆ホエーを苛性ソーダで中和後、温度調整をせず、またパパインを加えず、140℃,15秒加熱した溶液を噴霧乾燥したものを調製した。得られた未分解大豆ホエーをSDS電気泳動に供したところ、全蛋白質中のレクチンの純度は24%、KTIの純度は21%であった。
【0026】
〔実施例3〕
実施例1と同様に調製した大豆ホエーを中和後、温度を85℃に調整し、この温度に保持したまま粗蛋白量当たり0.1重量%のパパイン(シグマ社製)を加え、30分酵素反応を行った。酵素反応物を140℃,15秒加熱した溶液を噴霧乾燥し、加工大豆ホエーを調製した。
【0027】
〔比較例1〕
実施例1と同様に調製した大豆ホエーを中和後、温度を60℃に調整し、この温度に保持したまま粗蛋白量当たり0.1重量%のパパイン(シグマ社製)を加え、30分酵素反応を行った。酵素反応物を140℃,15秒加熱した溶液を噴霧乾燥し、加工大豆ホエーを調製した。
【0028】
〔比較例2〕
実施例1と同様に調製した大豆ホエーを中和後、予め100℃、10分加熱した。これを60℃に調整して粗蛋白量当たり0.1重量%のパパイン(シグマ社製)を加え、30分酵素反応を行った。酵素反応物を140℃,15秒加熱した溶液を噴霧乾燥し、加工大豆ホエーを調製した。
【0029】
対照区、実施例1〜3並びに比較例1及び2で得られた加工大豆ホエー25μgをSDS電気泳動で分離し、クマシーブルー染色後バンドの濃淡をデンシトメーターで調べた。各サンプルのKTI及びレクチンの分解前の含量に対する分解後の残存率を求めた(表1)。また対照区、実施例2及び3並びに比較例1及び2のSDS電気泳動パターンを図1に示した。
【0030】
【表1】

Figure 2004321022
【0031】
実施例1及び2では大豆ホエー蛋白質中のKTIのみが選択的に分解され、レクチンは全く分解されなかった。実施例3では、実施例2と同様に大豆ホエー蛋白質中のKTIが選択的に分解されているが、レクチンも若干分解を受けていた。比較例1のように、調整温度を60℃にするとKTI、レクチン共に殆ど分解されず、また比較例2のように分解に先立ち予め過度の加熱変性を受けたものは、KTIのみならずレクチンも共に分解され、選択的分解物は得られなかった。
【0032】
〔実施例4〕
低変性脱脂大豆(窒素可溶指数;NSI≧80)10Kgに12倍量の水を加え、室温、pH7において1時間抽出後、遠心分離し、脱脂豆乳110Kgを得た。この脱脂豆乳に塩酸を加え、pH4.5とし、遠心分離してホエー画分100Kgを得た(粗蛋白量0.6% as is)。該ホエー画分を苛性ソーダで中和し(pH=7.0)、温度を70℃に調整し、粗蛋白量当たり0.1重量%のパパイン(シグマ社製)を加え、30分酵素反応を行った。次に酵素反応物を140℃,15秒加熱した溶液を限外ろ過モジュール;ACP−1050(旭化成(株)製、分画分子量13,000)を用いて、濃縮を行った(平均圧力1.0kg/cm、流量500リットル/hr、温度50℃)。得られた濃縮液を噴霧乾燥し、レクチン画分1,200gを得た。得られたレクチン画分をSDS電気泳動で蛋白質の純度を分析したところ、全蛋白質中のレクチンの純度は85%と極めて高純度であった。
【0033】
【発明の効果】
本発明によれば、大豆製品の副産物である大豆ホエーを原料として、KTIが選択的に分解された加工大豆ホエー並びに大豆ホエー蛋白質の構成成分であるレクチンが極めて高濃度で簡単に得られることが可能となった。したがって、従来廃棄せざるを得なかった大豆ホエーの高度利用が期待できる。特に血小板の凝集、リンパ球の活性化、腫瘍細胞の凝集など、その生体機能調節因子として免疫機能を高める働き等が近年期待されているレクチンの製造技術の向上にも貢献しうるものである。
【0034】
【図面の簡単な説明】
【図1】実施例2及び3並びに比較例1及び2において製造された加工大豆ホエーのSDS電気泳動パターンである。
【符号の説明】
M 分子量マーカー
1 対照区(未分解)
2 比較例1
3 実施例2
4 実施例3
5 比較例2[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing processed soy whey and a method for producing lectin from the processed soy whey.
[0002]
[Prior art]
[Patent Document 1] JP-A-6-145198 [Patent Document 2] JP-B-57-11636 [Patent Document 3] JP-B-57-52386 [Patent Document 4] JP-A-7-107974 [Patent Document 4] Reference 5: Japanese Patent Application Laid-Open No. 61-254153 Non-patent Reference 1: Soybean Protein Research, Vol. 2,59-64 (1999)
[Non-Patent Document 2] Agric. Food Chem. , 39, 862-866 (1991).
[Non-Patent Document 3] Food Biochem. 23, 489-507 (1999)
[0003]
The soybean whey protein is a protein contained in soybean whey and has unique physicochemical properties, such as Kunitz-type trypsin inhibitor (hereinafter referred to as “KTI”), lectin, β-amylase, and the like. Is a mixture of
Lectin, about 0.1% of which is contained in soybeans, is a type of hemagglutinin that causes red blood cells to coagulate and is considered to be one of the harmful substances in soybeans. On the other hand, platelet aggregation, lymphocyte activation, and tumor cell aggregation For example, it has been attracting attention as a biological function regulator (Non-Patent Document 1).
[0004]
Many attempts have been made to separate each component in order to utilize each component in soy whey protein. For example, a method for producing KTI from soybean whey by combining an ultrafiltration membrane and an anion exchange resin (Patent Document 1), a study for separating KTI and lectin (Non-patent Document 2), a method for producing β-amylase ( Patent documents 2 to 4) are known.
[0005]
Further, since soy whey protein is excellent in nutrition, a method for producing a peptide mixture by enzymatically decomposing soy whey protein raw material is disclosed (Patent Document 5). However, according to this method, the obtained peptide mixture is highly degraded with an average peptide chain length of 10 to 30, so that a specific component of the soy whey protein cannot be effectively used in a non-degraded state.
[0006]
As described above, a method for easily separating a specific component such as lectin at a high concentration from a mixture of a plurality of components such as soybean whey protein has not been known so far.
[0007]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention provides a method for producing processed soy whey capable of separating a specific component in soy whey protein from soy whey at a high concentration, and producing a lectin from the processed soy whey. It is to provide a way to do it.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, focused on the fact that the degree of denaturation of lectin differs from KTI, which is a main component of soy whey protein, and selectively heats KTI in a specific temperature range. It has been found that by denaturing and acting with a protease, processed soy whey in which KTI has been selectively degraded can be obtained. Furthermore, they have found that a high concentration of lectin can be obtained from processed soy whey in which KTI has been selectively decomposed by a molecular sieve method, a salting-out method, or a precipitation method, thereby completing the present invention.
[0009]
That is, the present invention, as described below,
(1) A method for producing processed soy whey, which comprises allowing a protease to act in a state in which Kunitz-type trypsin inhibitor in soy whey is selectively heat-denatured,
(2) The production method according to (1), wherein the temperature zone in which the Kunitz-type trypsin inhibitor is selectively thermally denatured is 65 ° C. or more and less than 90 ° C.
(3) The residual ratio of Kunitz-type trypsin inhibitor in soybean whey protein after decomposition is 10% or less with respect to the content before decomposition, and the residual ratio of lectin after decomposition with respect to the content in soybean whey protein before decomposition is 30% or more. (1) or (2), the method for producing processed soy whey,
(4) A method for producing a lectin, wherein a lectin-rich protein is concentrated from the processed soy whey obtained by the production method according to any one of (1) to (3).
(5) The method for producing a lectin according to (4), wherein the concentration method is a molecular sieve method, a salting-out method, or a precipitation method. Is disclosed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The soy whey applied to the present invention is preferably soy whey with low denaturation of soy whey protein, which is by-produced in the process of producing isolated soy protein or concentrated soy protein. Not done. Generally, defatted soybeans which have been subjected to a low-temperature extraction treatment with n-hexane, particularly low-denatured defatted soybeans having an NSI (nitrogen solubility coefficient) of 80 or more, are used as starting materials to oxidize defatted soymilk with hydrochloric acid or the like. Soy whey obtained by separating the precipitated separated soy protein is preferably used. Further, soybean whey produced as a by-product in the process of producing concentrated soybean protein produced by washing low-denatured defatted soybeans with acidic water can also be used. The purity of lectin in the total protein of soy whey is generally about 20 to 30%, and the purity of KTI is about 15 to 25%, although it varies depending on the type and preparation method of soybean.
[0011]
Whether or not soy whey protein has been denatured by heating or the like can be determined by performing differential scanning calorimetry (DSC) analysis of the protein. In the case of the low-denatured soybean whey protein, respective endothermic peaks derived from KTI and lectin, which are main components thereof, are observed (see Non-Patent Document 3). However, in the case of the soy whey protein which has been excessively denatured, no endothermic peak of the component is observed. Therefore, protein denaturation can be determined from the presence or absence of each endothermic peak.
[0012]
In the present invention, first, it is important to selectively thermally denature KTI in soy whey. That is, it is important to thermally denature KTI by adjusting the temperature of soy whey to 65 ° C. or more and less than 90 ° C., preferably 65-85 ° C., and more preferably 70-80 ° C. In such a temperature range, only KTI is susceptible to thermal denaturation, while lectins are less susceptible to denaturation. When the temperature is lower than 65 ° C., thermal denaturation of KTI becomes insufficient, and KTI cannot be sufficiently degraded by a protease. At 90 ° C. or higher, both KTI and lectin are thermally denatured, making it difficult to separate these components. Incidentally, the thermal denaturation temperature of KTI is known to be 74 ° C. (see Non-Patent Document 3), but it slightly fluctuates depending on the protein content in soybean whey, ionic strength, and the like.
After the temperature adjustment, the holding time in the above temperature range is 1 to 60 minutes, preferably about 5 to 30 minutes. However, actually, denaturation was confirmed from the endothermic peak of KTI by DSC analysis, and appropriate conditions were determined. Can be determined.
[0013]
Next, KTI in the soy whey can be selectively decomposed by allowing a protease to act on soy whey in which KTI is selectively heat-denatured. On the other hand, lectins are not easily subjected to thermal denaturation and thus are not easily decomposed by enzymes. Since the thermal denaturation of KTI is irreversible, the temperature of soy whey when the protease is allowed to act may be kept in the above temperature range, or may be cooled to the optimum temperature range of the protease used. You may. In particular, it is possible to selectively decompose KTI in the soybean whey protein easily by maintaining the temperature in the above-mentioned temperature range and performing the temperature operation again after the temperature adjustment without performing the temperature operation again.
[0014]
Examples of the proteolytic enzyme used in the present invention include animal-derived pancreatin, pepsin, trypsin, etc., plant-derived papain, bromelain, etc., or fungi, bacteria, "Alcalase" derived from microorganisms such as lactic acid bacteria (manufactured by Novo), Examples include "Protease S" (manufactured by Amano Pharmaceutical Co., Ltd.), "Protease M" (manufactured by Amano Pharmaceutical Co., Ltd.), and "Protin AC-10" (manufactured by Daiwa Kasei Co., Ltd.).
[0015]
The hydrolysis conditions vary depending on the type of the protease used, but in general, an amount sufficient for hydrolysis in the working pH range and working temperature range of the protease is used. Usually, the enzyme suspension is added in an amount of 0.001 to 0.5% by weight, preferably 0.01 to 0.1% with respect to the crude protein mass of the aqueous suspension containing the unmodified soybean whey protein to carry out the enzymatic reaction. carry out. The reaction pH is not particularly limited as long as it is an optimum pH range in which the protease used works. The reaction time is usually 5 minutes to 2 hours, preferably about 10 to 30 minutes, and continuous treatment can be performed by passing the solution through a column filled with immobilized enzyme. Even when the selective decomposition reaction of KTI is carried out at 65 ° C. or more and less than 90 ° C., the origin of the enzyme is not particularly limited as long as the enzyme has a decomposition activity at 65 ° C. or more and less than 90 ° C.
[0016]
The change of each component in the soy whey protein due to the enzymatic degradation can be easily examined by separating each component by SDS electrophoresis and the density of the band stained with Coomassie blue. According to the present invention, the residual ratio of KTI in soybean whey protein after decomposition relative to the content before decomposition is 10% or less, preferably 5% or less, and the degradation of lectin in soybean whey protein relative to the content before decomposition. It is preferable that the remaining rate after that is 30% or more, preferably 50% or more.
[0017]
In the processed soybean whey obtained as described above, KTI is selectively decomposed, while lectin remains largely without being decomposed.
[0018]
Next, a method for producing lectin from soy whey protein hydrolyzate will be described. Lectin can be obtained by concentrating a lectin-rich protein from the soy whey protein hydrolyzate obtained by the above production method. As a concentration method, a molecular sieve method, a salting-out method, or a precipitation method can be used.
[0019]
In the molecular sieving method using the difference in molecular weight, specifically, in the ultrafiltration method, the soy whey protein degradation product is removed by an ultrafiltration membrane, except for the permeate side (mainly the degradation product of KTI), and the retention side (undegraded). (Predominantly lectin) is separated to obtain undegraded lectin. The pore size of the ultrafiltration membrane to be used is suitably about 2,000 to 30,000 as the molecular weight cut off, and the material is not particularly limited, and any of an organic membrane such as polysulfone and polyacrylonitrile and an inorganic membrane such as ceramics can be used. May be used. If the molecular weight cut-off is too low, the concentration efficiency will be low, and if the molecular weight cut-off is too large, the yield of the target protein will decrease. Further, gel filtration column chromatography based on a difference in molecular weight is also applicable, and affinity column chromatography in which a ligand having affinity for lectin is immobilized is also possible.
[0020]
In the salting-out method, lectin can be salted out and concentrated by adding, for example, ammonium sulfate to the soybean whey protein hydrolyzate to a saturation of 30 to 70%. In the precipitation method, an organic solvent such as methanol, ethanol, isopropanol, or acetone is added to the soybean whey protein hydrolyzate to precipitate, and the lectin is concentrated. Then, the obtained precipitate is dissolved in water, if necessary, and then dialyzed against water, and dried by a method such as ventilation drying, hot air drying, spray drying, drum drying, reduced pressure drying, or freeze drying. Is also possible.
[0021]
As described above, a soy whey protein hydrolyzate in which KTI, a main component of soy whey protein, is selectively decomposed is obtained. Further, by concentrating undegraded lectin, which is a component of whey protein, a lectin having a high concentration, for example, a purity of 80% by weight or more can be obtained, and is expected to be used as a material in various fields.
[0022]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. However, the technical scope of the present invention is not limited to these examples.
[0023]
[Example 1]
A 12-fold amount of water was added to 100 g of low-denatured defatted soybean (nitrogen solubility index; NSI ≧ 80), extracted at room temperature and pH 7 for 1 hour, and then centrifuged to obtain 1,100 g of defatted soy milk. Hydrochloric acid was added to the defatted soy milk to adjust the pH to 4.5, followed by centrifugation to obtain 1,000 g of soybean whey (crude protein content: 0.6% as is). The soy whey was neutralized with caustic soda (pH 7.0), the temperature was adjusted to 70 ° C., held for 30 minutes, and then cooled to 40 ° C. to obtain 0.1% by weight of “protease S per crude protein amount”. (Manufactured by Amano Pharmaceutical Co., Ltd.) and an enzyme reaction was carried out for 30 minutes. The solution obtained by heating the enzyme reaction product at 140 ° C. for 15 seconds was spray-dried to obtain 20 g of processed soybean whey.
[0024]
[Example 2]
After neutralizing the soy whey prepared in the same manner as in Example 1, the temperature was adjusted to 70 ° C., and while maintaining this temperature, 0.1% by weight of papain (manufactured by Sigma) per crude protein amount was added, and the mixture was allowed to stand for 30 minutes. An enzymatic reaction was performed. The solution obtained by heating the enzyme reaction product at 140 ° C. for 15 seconds was spray-dried to obtain 20 g of processed soybean whey. When the obtained processed soybean whey was subjected to SDS electrophoresis, the purity of lectin in all proteins was 43%, and the purity of KTI was 0%.
[0025]
(Control)
As a control for Examples 1 and 2, the soybean whey prepared in the same manner as in Example 1 was neutralized with caustic soda, and the solution heated at 140 ° C. for 15 seconds without temperature adjustment and without papain was sprayed. A dried one was prepared. When the obtained undegraded soybean whey was subjected to SDS electrophoresis, the purity of lectin in all proteins was 24%, and the purity of KTI was 21%.
[0026]
[Example 3]
After neutralizing the soybean whey prepared in the same manner as in Example 1, the temperature was adjusted to 85 ° C., and at this temperature, 0.1% by weight of papain (manufactured by Sigma) per crude protein amount was added while maintaining the temperature, and the mixture was allowed to stand for 30 minutes. An enzymatic reaction was performed. A solution obtained by heating the enzyme reaction product at 140 ° C. for 15 seconds was spray-dried to prepare processed soybean whey.
[0027]
[Comparative Example 1]
After neutralizing the soy whey prepared in the same manner as in Example 1, the temperature was adjusted to 60 ° C., and while maintaining this temperature, 0.1% by weight of papain (manufactured by Sigma) per crude protein amount was added, followed by 30 minutes. An enzymatic reaction was performed. A solution obtained by heating the enzyme reaction product at 140 ° C. for 15 seconds was spray-dried to prepare processed soybean whey.
[0028]
[Comparative Example 2]
After neutralizing the soy whey prepared in the same manner as in Example 1, it was previously heated at 100 ° C. for 10 minutes. The temperature was adjusted to 60 ° C., and 0.1% by weight of papain (manufactured by Sigma) per crude protein amount was added, and an enzyme reaction was performed for 30 minutes. A solution obtained by heating the enzyme reaction product at 140 ° C. for 15 seconds was spray-dried to prepare processed soybean whey.
[0029]
25 μg of the processed soybean whey obtained in the control section, Examples 1 to 3 and Comparative Examples 1 and 2 were separated by SDS electrophoresis, and the density of the band after staining with Coomassie blue was examined with a densitometer. The KTI and lectin content of each sample before decomposition were determined, and the residual ratio after decomposition was determined (Table 1). FIG. 1 shows the SDS electrophoresis patterns of the control group, Examples 2 and 3, and Comparative Examples 1 and 2.
[0030]
[Table 1]
Figure 2004321022
[0031]
In Examples 1 and 2, only KTI in soybean whey protein was selectively degraded, and lectin was not degraded at all. In Example 3, KTI in soybean whey protein was selectively degraded as in Example 2, but lectin was also slightly degraded. As in Comparative Example 1, when the adjusted temperature was set to 60 ° C., both KTI and lectin were hardly decomposed, and those which had been subjected to excessive heat denaturation prior to decomposition as in Comparative Example 2 were not only KTI but also lectin. Both were decomposed and no selective decomposition products were obtained.
[0032]
[Example 4]
12 kg of water was added to 10 kg of low-denatured defatted soybean (nitrogen solubility index: NSI ≧ 80), extracted at room temperature and pH 7 for 1 hour, and centrifuged to obtain 110 kg of defatted soy milk. Hydrochloric acid was added to the defatted soy milk to adjust the pH to 4.5, followed by centrifugation to obtain 100 kg of a whey fraction (crude protein content: 0.6% ase). The whey fraction was neutralized with caustic soda (pH = 7.0), the temperature was adjusted to 70 ° C., and 0.1% by weight of papain (Sigma) per crude protein was added, and the enzyme reaction was carried out for 30 minutes. went. Next, the solution obtained by heating the enzyme reaction product at 140 ° C. for 15 seconds was concentrated using an ultrafiltration module; ACP-1050 (manufactured by Asahi Kasei Corporation, molecular weight cut off: 13,000) (average pressure: 1.000). 0 kg / cm 2 , flow rate 500 liter / hr, temperature 50 ° C.). The obtained concentrate was spray-dried to obtain 1,200 g of a lectin fraction. The protein purity of the obtained lectin fraction was analyzed by SDS electrophoresis. As a result, the purity of the lectin in all proteins was as high as 85%.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the soybean whey which is a by-product of a soybean product is used as a raw material. It has become possible. Therefore, high utilization of soybean whey, which had to be discarded in the past, can be expected. In particular, it can contribute to the improvement of lectin production technology, which is expected to have a function of enhancing immune functions as a biological function regulator, such as platelet aggregation, lymphocyte activation, and tumor cell aggregation.
[0034]
[Brief description of the drawings]
FIG. 1 is an SDS electrophoresis pattern of processed soybean whey produced in Examples 2 and 3 and Comparative Examples 1 and 2.
[Explanation of symbols]
M molecular weight marker 1 control (undegraded)
2 Comparative Example 1
3 Example 2
4 Example 3
5 Comparative Example 2

Claims (5)

大豆ホエー中のKunitz型トリプシンインヒビターを選択的に熱変性させた状態で、蛋白質分解酵素を作用させることを特徴とする加工大豆ホエーの製造方法。A process for producing processed soy whey, which comprises subjecting a Kunitz-type trypsin inhibitor in soy whey to heat denaturation selectively with a protease. Kunitz型トリプシンインヒビターを選択的に熱変性させる温度帯が65℃以上90℃未満である請求項1記載の製造方法。The production method according to claim 1, wherein the temperature zone in which the Kunitz-type trypsin inhibitor is selectively thermally denatured is 65 ° C or more and less than 90 ° C. 大豆ホエー蛋白質中のKunitz型トリプシンインヒビターの分解前の含量に対する分解後の残存率が10%以下、且つ大豆ホエー蛋白質中の分解前の含量に対する分解後のレクチンの残存率が30%以上である請求項1又は2記載の加工大豆ホエーの製造方法。The residual ratio of Kunitz-type trypsin inhibitor in soybean whey protein after decomposition is 10% or less based on the content before decomposition, and the residual ratio of lectin after decomposition is 30% or more based on the content in soybean whey protein before decomposition. Item 3. The method for producing a processed soy whey according to Item 1 or 2. 請求項1〜3の何れかの製造法により得られた加工大豆ホエーからレクチンに富む蛋白を濃縮するレクチンの製造方法。A method for producing a lectin, wherein a lectin-rich protein is concentrated from the processed soy whey obtained by the method according to claim 1. 濃縮方法が分子篩法、塩析法又は沈澱法である請求項4記載のレクチンの製造方法。The method for producing a lectin according to claim 4, wherein the concentration method is a molecular sieving method, a salting-out method, or a precipitation method.
JP2003116655A 2003-04-22 2003-04-22 Method for producing processed soybean whey Pending JP2004321022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116655A JP2004321022A (en) 2003-04-22 2003-04-22 Method for producing processed soybean whey

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116655A JP2004321022A (en) 2003-04-22 2003-04-22 Method for producing processed soybean whey

Publications (1)

Publication Number Publication Date
JP2004321022A true JP2004321022A (en) 2004-11-18

Family

ID=33496792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116655A Pending JP2004321022A (en) 2003-04-22 2003-04-22 Method for producing processed soybean whey

Country Status (1)

Country Link
JP (1) JP2004321022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518088A (en) * 2011-06-29 2014-07-28 ソレイ リミテッド ライアビリティ カンパニー Dessert composition comprising soy whey protein isolated from a processed stream

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518088A (en) * 2011-06-29 2014-07-28 ソレイ リミテッド ライアビリティ カンパニー Dessert composition comprising soy whey protein isolated from a processed stream

Similar Documents

Publication Publication Date Title
EP0797928B1 (en) Process for producing a soy protein hydrolysate
BE1003298A3 (en) Process for the preparation of an enzymatic hydrolyzate.
RU2084172C1 (en) Method of preparing the whey protein hydrolyzate
JP4491698B2 (en) Method for producing soy protein hydrolyzate
US4431629A (en) Method of producing an egg white substitute material
Lima et al. Two-phase partitioning and partial characterization of a collagenase from Penicillium aurantiogriseum URM4622: Application to collagen hydrolysis
EP0250501A1 (en) A process for the preparation of a heat resistant non-bitter water-soluble peptide product, the product produced by the process, and nutrients, refreshments and dietetics comprising the product.
NZ286636A (en) Comestible hydrolysate product from a protein, sterile conditions
CA2493722A1 (en) Method for recovering peptides/amino acids and oil/fat from one or more protein-containing raw materials, products produced by the method, and use of the products
EP2309874A1 (en) Method for preparing a protein hydrolysate
JP3961956B2 (en) Milk protein deamidation method and milk protein denaturation method
JPWO2004104036A1 (en) Production method of soybean whey protein and soybean whey protein degradation product
JPH04112753A (en) Hydrolyzed whey protein having decreased allergen content and production thereof
JP2004321022A (en) Method for producing processed soybean whey
Neklyudov et al. Production and purification of protein hydrolysates
JPS61233A (en) Production of water-soluble hydrolyzate of whey protein
Jeewanthi et al. Characteristics of whey proteinhydrolysates from cheese whey, favors onvarious food applications
JPS60251859A (en) Production of egg white hydrolyzate
JP2022102874A (en) Elastin peptide
JP3289770B2 (en) Proteolysate and method for producing the same
JPH05209000A (en) Peptide composition having decreased allergenicity
JP4548339B2 (en) High glutamine / glutamic acid-containing polypeptide mixture and process for producing the same
JPH03280835A (en) Decomposition product of glair and food containing same decomposition product
JPH1156250A (en) Protein degradation product and its production
JPH05252979A (en) Production of low-molecular peptide