JP2004321065A - 細胞の培養方法、細胞の培養装置、細胞組織の培養に使用される立体フレームの形成方法、細胞組織の培養に使用される立体フレームの形成装置、及び細胞組織の培養に使用される立体フレーム - Google Patents
細胞の培養方法、細胞の培養装置、細胞組織の培養に使用される立体フレームの形成方法、細胞組織の培養に使用される立体フレームの形成装置、及び細胞組織の培養に使用される立体フレーム Download PDFInfo
- Publication number
- JP2004321065A JP2004321065A JP2003119672A JP2003119672A JP2004321065A JP 2004321065 A JP2004321065 A JP 2004321065A JP 2003119672 A JP2003119672 A JP 2003119672A JP 2003119672 A JP2003119672 A JP 2003119672A JP 2004321065 A JP2004321065 A JP 2004321065A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- dimensional frame
- cell
- frame
- laser light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Materials For Medical Uses (AREA)
Abstract
【解決手段】本発明においては、3次元ワイヤーフレーム50に培養媒質内で細胞61を生着させ、この3次元ワイヤーフレーム50に生着した細胞61が3次元ワイヤーフレーム50の形状に応じた配向で配列するように、生着した細胞61を3次元ワイヤーフレーム50上で成長させて生体組織62を培養する。
【選択図】 図3
Description
【発明の属する技術分野】
本発明は、生体組織の培養装置、生体組織、及び生体組織の培養方法に関し、特に、3次元的な生体組織の培養装置、生体組織、及び生体組織の培養方法に関するものである。
【0002】
【従来の技術】
従来、細胞の培養法は、医学・生物学分野での研究において、基本的な実験技術として用いられてきた。この細胞の培養技術は生体組織の構築にも応用され、特に再生医学分野では、臓器等の生体組織を形成するために種々の生体組織の培養方法が研究されている。
【0003】
このような生体組織の培養方法として、種々の培養方法が開発されているが、例えば、表面処理を施された2次元平面上で細胞を培養する方法が知られている。2次元平面上で細胞を培養する方法では、基板表面上の微細構造又は化学的・生物学的に性質が異なる表面パターンを形成して細胞の成長を空間的に抑制する。しかしながら、2次元平面上の細胞培養法では、3次元的な組織を構築すること自体が困難なだけでなく、2次元平面上での細胞技術自体もいまだ確立されたとは言い難く、そこに残された課題も多い。
【0004】
細胞が生体組織として機能するためには、細胞が3次元的な組織を構築し、その空間の中でお互いにコミュニケーションをとる必要がある。例えば、心臓を構成する主たる細胞は、同種の心筋細胞であるにもかかわらず、ペースメーキングを行う部位、心拍のリズムを作る部位、実際に力強く血流を生み出す部位と、心臓の各部位で異なった機能をもっている。それぞれの部位での実際の相違は細胞の密度や配列であり、その違いによって細胞間コミュニケーションの違いが生まれ、機能の違いをもたらしている。従って、細胞の培養において、生体内での細胞配列に近似した配列で、細胞組織を形成することが望まれる。
【0005】
3次元的に細胞を培養する技術として、充填層型培養装置において細胞を培養する方法(特許文献1)が知られている。これは、多孔質担体を立体構造物に支持させ、各担体に間隔を持たせることによって充填層を上下に貫通する流路を形成する。流路によって培地が供給され、多孔質担体内の細胞の活性が維持される。あるいは、特定の形状もしくは材料によって多孔質担体を形成し、その担体で細胞の培養を行う方法がある(特許文献2、3)。多孔質担体の間に培養液の流通を維持する空隙が設けられ、多孔質担体内で培養される細胞の活性を維持する。しかし、多孔質担体内の細胞は配列が制御されることなく培養されるに過ぎない。そのため、細胞同士のコミュニケーションが可能な環境を細胞にもたらすことはできない。
【0006】
【特許文献1】
特開平6−181748号公報
【特許文献2】
特開2001−178445号公報
【特許文献3】
特開2002−300872号公報
【0007】
【発明が解決しようとする課題】
このように、従来の細胞組織の培養方法では、細胞の形状、細胞レベルでの配向あるいは配置を制御して、細胞組織を培養することができないという問題点があった。本発明は、上記従来の技術に鑑みてなされたものであって、細胞の形状、細胞レベルでの配置、あるいは配向を制御し、3次元的な細胞組織の培養する技術を提供することを一つの目的とする。
【0008】
【課題を解決するための手段】
本発明の第1の態様は、3次元細胞組織を形成する細胞の培養方法であって、集光されたレーザ光によって硬化された光硬化性材料で形成された立体フレームを準備するステップと、前記立体フレームに細胞を付着するステップと、前記細胞を前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成するステップと、を備える。これにより、細胞培養のコントロールを効果的に行うことができる。
【0009】
他方、本発明の第1の態様は、3次元細胞組織を形成する、細胞の培養方法であって、集光されたレーザ光によって破壊された樹脂材料で形成された立体フレームを準備するステップと、前記立体フレームに細胞を付着するステップと、前記細胞を前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成するステップと、を備える。これにより、細胞培養のコントロールを効果的に行うことができる。
【0010】
上記第1の態様において、前記立体フレームは、生体材料で形成されていることが好ましい。これにより、細胞組織の培養後の立体フレームの影響を小さくすることができる。さらに、前記立体フレームは、光硬化性ゼラチンもしくは光硬化性生体吸収性ポリマーで形成されていることが好ましい。
【0011】
上記第1の態様において、前記立体フレームは所定の間隔をおいて配置された複数のワイヤー部を備えることが好ましい。あるいは、上記第1の態様の細胞の培養方法において、前記立体フレームは、前記樹脂材料内で所定の間隔をおいて配置された複数の空洞部を備えることが好ましい。そして、前記細胞組織の各細胞は、前記ワイヤー部若しくは前記空洞部によって配列が制御される。これにより、細胞の成長を効果的に制御することができる。
【0012】
上記第1の態様において、前記立体フレームを準備するステップは、レーザ光を前記光硬化性材料に集光するステップと、前記レーザ光の集光点近傍において前記光硬化性材料の多光子吸収を引き起こし、前記光硬化性材料を硬化させるステップと、前記集光点を3次元的に走査し、前記立体フレームを形成するステップと、を備えることが好ましい。あるいは、上記第1の態様の細胞の培養方法において、前記立体フレームを準備するステップは、レーザ光を前記樹脂材料に集光するステップと、前記レーザ光の集光点近傍において前記樹脂材料の多光子吸収を引き起こし、前記樹脂性材料を破壊させるステップと、前記集光点を3次元的に走査し、前記立体フレームを形成するステップと、を備える。これにより、微細な立体フレームを正確に形成することができる。
【0013】
本発明の第2の態様は、細胞組織の培養に使用される立体フレームの形成方法であって、レーザ光源からの光を光硬化性材料に集光するステップと、前記集光されたレーザ光によって前記光硬化性材料による多光子吸収を引き起こし、前記光硬化性材料を硬化させるステップと、前記レーザ光の集光点を3次元的に走査し、前記光硬化性材料による立体フレームを形成するステップと、を備える。これにより、微細な立体フレームを正確に形成することができる。
【0014】
他方、本発明の第2の態様は、細胞組織の培養に使用される立体フレームの形成方法であって、レーザ光源からの光を、樹脂材料に集光するステップと、前記集光されたレーザ光によって前記樹脂材料による多光子吸収を引き起こし、前記樹脂材料を破壊させるステップと、前記レーザ光の集光点を3次元的に走査し、前記樹脂材料による立体フレームを形成するステップと、を備える。これにより、微細な立体フレームを正確に形成することができる。
【0015】
上記第2の態様において、前記レーザ光源からの光は、フェムト秒パルスレーザ光である、ことが好ましい。これにより、効果的に多光子吸収を引き起こすことができる。
【0016】
本発明の第3の態様は、3次元細胞組織を形成する、細胞の培養装置であって、培地と、前記培地内に収容され、集光された光によって硬化した光硬化性材料で形成された立体フレームと、を備え、前記立体フレーム上に付着された細胞を、前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成する。これにより、細胞培養のコントロールを効果的に行うことができる。
【0017】
他方、本発明の第3の態様は、3次元細胞組織を形成する、細胞の培養装置であって、培地と、前記培地内に収容され、集光された光によって破壊した樹脂材料で形成された立体フレームと、を備え、前記立体フレーム上に付着された細胞を、前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成する。これにより、細胞培養のコントロールを効果的に行うことができる。
【0018】
上記第3の態様において、前記立体フレームは、所定の間隔をおいて配置された複数のワイヤー部を備え、前記細胞組織の各細胞は、前記ワイヤー部によって配列が制御されることが好ましい。あるいは、上記第3の態様において、前記立体フレームは、前記樹脂材料内で所定の間隔をおいて配置された複数の空洞部を備え、前記細胞組織の各細胞は、前記空洞部によって配列が制御されることが好ましい。これにより、所望の配列で細胞組織の培養を行うことができる。
【0019】
上記第3の態様において、前記立体フレームは、生体吸収材料で形成されていることが好ましい。これにより、細胞組織の培養後の立体フレームの影響を小さくすることができる。
【0020】
本発明の第4の態様は、3次元細胞組織を形成するため、細胞を培養する立体フレームであって、所定の間隔をおいて3次元的に配置された複数のワイヤー部を備え、前記細胞組織の各細胞は、前記フレーム上において、前記ワイヤー部によって配列が制御されて培養される、細胞を培養するものである。これにより、これにより、所望の配列で細胞組織の培養を行うことができる。
【0021】
他方、本発明の第4の態様は、3次元細胞組織を形成するため、細胞を培養する立体フレームであって、樹脂材料内で所定の間隔をおいて3次元的に配置された複数の空洞部を備え、前記細胞組織の各細胞は、前記フレーム上において、前記空洞部によって形状と配列が制御されて培養されるものである。これにより、これにより、所望の配列で細胞組織の培養を行うことができる。
【0022】
本発明の第5の態様は、細胞組織の培養に使用される立体フレームの形成装置であって、レーザ光源と、前記レーザ光源からの光を、光硬化性材料に集光するレンズと、前記レーザ光の集光点を3次元的に走査する手段と、を備え、前記集光されたレーザ光によって前記光硬化性材料による多光子吸収を引き起こし、前記光硬化性材料を硬化させるものである。これにより、細胞組織の培養に使用される微細な立体フレームを正確に形成することができる。あるいは、他の態様は、細胞組織の培養に使用される立体フレームの形成装置であって、レーザ光源と、前記レーザ光源からの光を、樹脂材料に集光するレンズと、前記レーザ光の集光点を3次元的に走査する手段と、を備え、前記集光されたレーザ光によって前記樹脂材料による多光子吸収を引き起こし、前記樹脂材料の一部を破壊するものである。これにより、細胞組織の培養に使用される微細な立体フレームを正確に形成することができる。
【0023】
【発明の実施の形態】
以下に、本発明を適用可能な実施の形態が説明される。以下の説明は、本発明の実施形態を説明するものであり、本発明が以下の実施形態に限定されるものではない。説明の明確化のため、以下の記載は、適宜、省略及び簡略化がなされている。又、当業者であれば、以下の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能であろう。
【0024】
発明の実施の形態1.
本形態は、レーザ光学系を使用して、細胞培養のための3次元フレームを形成する。3次元フレームを培養媒質に配置し、細胞をフレーム上で成長させることによって3次元生体組織の構築を行う。以下においては、本形態にかかるレーザ光造形装置について説明した後、細胞の培養に用いる3次元フレーム、この3次元フレームを用いた生体組織の培養について説明する。
【0025】
まず、図1を用いて、本形態におけるレーザ光造形装置について説明する。図1は、本形態におけるレーザ光造形装置100の構成を示す模式図である。図1において、101はレーザ光源である。レーザ光源101としては、例えば、チタンサファイアレーザを使用することができる。102はシャッターを備えるアッテネータ、103はビームエキスパンダである。ビームエキスパンダ103は、2枚のレンズ104、105を備えている。106はピンホールであって、レンズ104、105の間に配置されている。107はミラー、108はガルバノスキャナーである。
【0026】
ガルバノスキャナー108は、2つのガルバノメータミラー109と110を有している。111、112はミラー、113はビームエキスパンダである。ビームエキスパンダ113は、2枚のレンズ114、115を備えている。116はλ/2板、117は偏光ビームスプリッタ、118はミラー、119は対物レンズである。120はピエゾ作動ステージ、121はステージ120上の光硬化性樹脂である。122はファイバー光源、123はカラーフィルター、124はイメージングレンズ43、125はCCDである。
【0027】
図1に示すように、レーザ光源101から出射されたレーザ光は、シャッターを有するアッテネータ22を通過して、ビームエキスパンダ103に入射する。ビームエキスパンダ103は入射したレーザの径を拡大する。本形態のビームエキスパンダ103は、レンズ104と105の間の集光部位に、空間フィルターとしてのピンホールを備えている。これにより良好な解像度を得ることができる。ピンホールの直径は、例えば、およそ50μmとすることができる。
【0028】
ビームエキスパンダ103によって広げられたレーザ光は、ミラー107によって反射され、光路方向が変更された後、ガルバノスキャナー108に入射する。ガルバノスキャナー108は、2つのガルバノメータミラー109と110を備えており、X−Y平面内でレーザ・スポットが樹脂試料を走査することを可能とする。ガルバノメータミラー109と110は、それぞれ異なる回転軸と回転方向とを備えている。例えば、一方のミラーの回転により露光ビームの集光部位のX方向への移動を実現し、他方のミラーの回転によりY方向への露光ビームの集光部位の移動を実現する構成とすることができる。また、ガルバノスキャナー108のミラー109、110でビームパスを遮ることによって、レーザ光のON/OFFを行うことができる。
【0029】
ガルバノスキャナー108を通過したレーザ光は、ミラー111、112によって反射され、光路方向が変更された後、ビームエキスパンダ113に入射する。ビームエキスパンダ113は2つのレンズ114、115を備えており、入射レーザ光の径を拡大する。ビームエキスパンダ113からの射出光は、1/2λ板116を通過した後、偏光ビームスプリッタ117入射する。偏光ビームスプリッタ117からの射出光はミラー118を介して、対物レンズ119に入射する。対物レンズ119は入射光を試料内の所定位置に集光する。
【0030】
図1に示すように、光硬化性樹脂121が、ピエゾ作動ステージ120のカバーガラス上に滴下され、ピエゾ作動ステージ120上に配置されている。対物レンズ119によって集光された光は、光硬化性樹脂121に下方よりカバーガラスを介して入射され、光硬化性樹脂121を硬化させる。このとき、露光ビームの集光部位は、ガルバノスキャナー27により焦平面内でXY軸方向に走査され、ピエゾ作動ステージ120によって光軸方向(Z軸方向)に走査される。
【0031】
カバーガラス上の光硬化性樹脂121は、上方からファイバー光源122を用いて光を照明される。照射光は対物レンズ119、ミラー118を介して偏光ビームスプリッタ117に入射する。偏光ビームスプリッタ117で反射された照明光は、イメージングレンズ124を介してCCD44に結像している。また、ファイバー光源122からの照明光によって光硬化性樹脂121が硬化するのを防ぐために、例えば波長560nm以下というように一定の波長をカットするカラーフィルター123を設けることができる。CCD44によって3次元フレームの形成状況を視認することができる。
【0032】
上記のようなレーザ光造形装置100は、例えば、GP−IB、DAボードを介して、コンピュータ・システム(不図示)に接続され、コンピュータ・システムから自動的にコントロールすることができる。また、このコンピュータ・システム上のCADソフトにより、造形する光硬化性樹脂121の形状を設計することができる。設計されたCADデータは、制御ソフトにより読み込まれ、この形状データに沿ってレーザ光造形装置100は3次元フレームの造形を行うことができる。
【0033】
続いて、図2を用いて、上記のレーザ光造形装置100により形成される3次元フレームについて説明する。細胞が生体組織として機能するためには、細胞が3次元的な組織を構築し、その空間の中でお互いにコミュニケーションをとる必要がある。細胞の密度あるいは配列などによって、同種の細胞が異なる機能を担う。本形態は、3次元フレーム上で細胞を成長・増殖させることによって、細胞を用いた3次元的な組織を構築する。これにより、生体内の条件に近い細胞組織を構築することができる。3次元フレームは、細胞が実際の生体中でとる3次元配列、例えば配置密度は配向などを人工的に再現する構造が好ましい。
【0034】
図2は、3次元フレームの一つの構造例を示す斜視図である。図2の3次元フレーム50は、ワイヤー51で構成される3次元ワイヤーフレームである。3次元ワイヤーフレーム50は、ワイヤー51を立体的に組むことにより形作られた3次元構造体である。3次元ワイヤーフレームは、3次元フレームの好ましい例である。ワイヤーフレームは、細胞の形状や配列をコントロールして成長・増殖させるために好適な構造である。ワイヤーの形状、寸法、ワイヤー間隔、フレーム全体形状などを変化させることによって、様々な細胞の培養のそれぞれに適した細胞組織形成のための足場を形成することができる。
【0035】
例えば、このワイヤー51により形作られた3次元ワイヤーフレームは、ワイヤー51の組み方により種々の形状とすることができる。一例として示された3次元ワイヤーフレーム50は、ワイヤー51により構成された球状構造を有する。3次元ワイヤーフレーム50の形状は、後述のように培養される生体組織の構造に従って設計される。3次元ワイヤーフレーム50の形状は、球体、円筒体、回転楕円体状、立方体状、直方体状、ひょうたん、あるいは尖部をもつ構造体など、様々な形状を選択することができる。3次元ワイヤーフレームは、所定形状の外郭のみを形成し、その内部が空洞である構成とすることができる。あるいいは、所定形状の外郭及びその内部に組み立てられたワイヤーを配置することができる。
【0036】
また、ワイヤー51の断面形状は、培養される細胞に従って設計される。図2においては、ワイヤー51の断面形状は円形であるが、これに限らず、楕円形、楕円形、矩形、多角形とすることができる。また、断面形状が円形のワイヤー51を用いて3次元ワイヤーフレーム50全てが形成する他、一部のワイヤー51の断面形状を変更し、複数の種類のワイヤー51を用いて3次元ワイヤーフレーム50を構成しても良い。連続的に変化する断面形状を有することもできる。
【0037】
ワイヤー51間のスペースは、培養される生体組織の大きさ、個々の細胞の大きさやなどに従って、好適なものが選択される。ワイヤー51間のスペースは、最初に細胞が各ワイヤーに付着するための通路となると同時に、付着した細胞が成長するスペースとなる。細胞によるが、ワイヤー51間のスペースは、例えば10μm〜100μmとすることができる。また、ワイヤー51の長さや径などの寸法も、培養される細胞の大きさや細胞組織の構造に従って適切なものが選択される。例えば10μmほどの細胞を密に培養する場合にはワイヤー51間の幅、ワイヤー51の寸法を約10μmとすることができる。
【0038】
3次元ワイヤーフレーム50は、上記の光硬化性樹脂121を用いて形成される。この光硬化性樹脂121として、培養した生体組織に最終的に吸収される材料が好ましい。3次元ワイヤーフレーム50上で生体組織を培養するからである。光硬化性樹脂121としては、たとえば、光硬化性ゼラチン、光硬化性生体吸収性ポリマー等を用いることが好ましい。
【0039】
一般に、光硬化性樹脂は、主成分として、樹脂成分、光重合開始剤から構成される。この樹脂成分として、重合度が2〜20程度の重合体で、末端に多数の反応基を有するオリゴマー、光硬化性樹脂の粘度、硬化性等を調整する反応性希釈剤とを含む。細胞培養において使用可能であるならば、例えば、アクリレート系樹脂、ウレタンアクリレート系樹脂、エポキシ系樹脂を光硬化性樹脂121に用いることができる。ワイヤーフレームは、形状、寸法、材料のほか、表面処理など適切な条件において形成される。
【0040】
次に、上記レーザ光造形装置100による3次元ワイヤーフレーム50の造形方法について説明する。本形態のレーザ光造形装置100による3次元ワイヤーフレーム50の造形は、多光子吸収を利用して行われる。多光子吸収により、集光点近傍においてのみ樹脂材料を硬化させることができる。これによって、樹脂材料内に所望の3次元フレーム形状を形成することができる。対物レンズ119を透過した光は樹脂材料の一部を透過し、集光点近傍において樹脂材料に吸収され、樹脂を硬化する。多光子吸収の典型的な例として、2光子吸収について説明する。2光子吸収とは、非線形光学効果の一種であり、分子が2個の光子を同時に吸収して励起される現象をいう。この2光子吸収においては、1光子あたりのエネルギーが通常の吸収と比べ、およそ半分となる。すなわち、2光子吸収の光は、1光子吸収の光に比べ、その周波数がおよそ半分であり、波長はおよそ倍である。
【0041】
通常の1光子吸収の発生確率は入射光強度に比例するが、2光子吸収においては、入射光強度の2乗に比例する。そのため、より空間的に小さな領域の分子を励起することができる。2光子吸収においては、波長が倍になることにより、より長い波長で励起が行われる。そのため、光硬化性樹脂に対する透過率が良くなり、より深い位置の分子を励起することができる。さらに、より長い波長で励起が行われるため、光硬化性樹脂121中の散乱、屈折の影響を受け難くなる。
【0042】
2光子吸収は、通常の吸収と異なり、2光子吸収の吸収断面積は非常に小さく非常に起こり難い現象である。2光子吸収が顕著に現れるのは光強度が非常に大きいときに限られるため、好ましくは、瞬間的な光強度が非常に大きいフェムト秒(fs)パルスレーザが用いられる。例えば、波長750〜850nm、パルス幅50〜150fs、繰り返し周波数70〜90MHzのパルスレーザを用いることができる。好適なレーザ光源は、チタンサファイアレーザである。レーザ光波長、露光時間、強度、スキャン速度などは、装置あるいはフレームによって、適切なものが選択される。
【0043】
続いて、レーザ光造形装置100による3次元ワイヤーフレーム50の造形について説明する。ここで、2光子吸収を発生させるために、例えば、モードロックされた波長780nm、パルス幅80fs、繰り返し周波数82MHzのチタンサファイアレーザを用いることができる。また、このようなチタンサファイアレーザを用いる場合、波長780nm周辺に吸収を持たず、かつその半分の波長390nm周辺に吸収を持つ光硬化性樹脂121が用いられる。
【0044】
チタンサファイアレーザからの露光ビームを光硬化性樹脂121に照射したとき、光硬化性樹脂121が波長780nm周辺には吸収を持たないため、光硬化性樹脂121では1光子吸収は発生しない。対物レンズ119からのレーザ光は、光硬化性樹脂121の一部を透過して、光硬化性樹脂121内で集光される。これに対して、露光ビームが光硬化性樹脂121内において集光されると、光硬化性樹脂121が波長780nmの半分の390nm周辺に吸収を持つため、集光された位置の光硬化性樹脂121で2光子吸収が発生する。2光子吸収は、光強度が非常に大きいときに顕著に発生するので、対物レンズ119による露光ビームの集光部位のみで発生し、光硬化性樹脂121の内部の集光部位が硬化する。また、2光子吸収の吸収断面積は非常に小さいため、露光ビームにより、光硬化性樹脂121の内部の特定の点のみ硬化を行うことができる。
【0045】
2光子吸収により露光ビームを吸収した光硬化性樹脂121は、重合反応を起こし、液体から固体へと変化する。露光ビームを3次元的にスキャンさせることにより、光硬化性樹脂121が点露光されて硬化し、所望の形状を有する3次元ワイヤーフレーム50が形成される。露光ビームは、ガルバノスキャナー108の動作に従って試料のXY面内を走査し、ピエゾ作動ステージ120のZ軸方向の移動によってZ軸方向に走査する。なお、ガルバノスキャナー108の加減速の影響を低減するため、露光はベクトルスキャンではなく、点露光の繰り返しであるラスタースキャンにより行うのが好ましい。
【0046】
また、チタンサファイアレーザ21からの露光ビームは、ピエゾ作動ステージ40のカバーガラス下側から光硬化性樹脂121を照射し、これを硬化する。これにより、3次元ワイヤーフレーム50がカバーガラスに付着することができ、作製中の3次元ワイヤーフレーム50が光硬化性樹脂121中でゆらぐのを軽減することができる。
【0047】
このように、光硬化性樹脂121に露光ビームを照射し、集光部位で2光子吸収を生じさせて光硬化性樹脂121を加工する。これにより、3次元ワイヤーフレーム50を効率良く形成することができる。さらに、2光子吸収を利用して光硬化性樹脂121を加工するため、露光ビームの集光部位の光硬化性樹脂121のみを硬化させることができ、微細な3次元ワイヤーフレーム50を精度良く形成することができる。
【0048】
続いて、図3を用いて、3次元フレームを用いた細胞組織の培養方法について説明する。細胞による3次元構造の構築のため、3次元的な細胞の足場を形成し、その上に単離した細胞を播き培養する。図3は、この生体組織の培養例を示す模式図である。ここで、心筋細胞の培養を例として説明するが、これに限らず、種々の細胞組織を同様に培養することができる。
【0049】
まず、所定の方法により、心筋細胞が取り出される。この心筋細胞には、心筋細胞を細片化するときに傷害を受けていない心筋細胞、傷害を受けた心筋細胞が含まれている。この取り出された心筋細胞は、シャーレにゲル状の培養媒質を入れた培地に懸濁される。培地内には3次元ワイヤーフレーム50が配置されており、CO2インキュベーター等の中で心筋細胞は培養される。すると、図3(a)に示すように、心筋細胞61が3次元ワイヤーフレーム50に生着する。このとき、3次元ワイヤーフレーム50に接着していない心筋細胞は、ほとんどが傷害を受けた心筋細胞である。心筋細胞61が3次元ワイヤーフレーム50に生着した状態で培養した後、培地を交換する。これにより、傷害を受けた心筋細胞が除去され、純度の高い心筋細胞61が得られる。なお、図3においては、傷害を受けた心筋細胞、培地については、図示せずに省略している。
【0050】
得られた心筋細胞61は、図3(b)に示すように、シャーレ内で再培養されて成長・増殖する。このとき、各心筋細胞61はワイヤーに従って成長・増殖し、細胞組織が3次元ワイヤーフレーム50の形状に従って形成される。より具体的には、図3(b)に示すように、個々の心筋細胞61は3次元ワイヤーフレーム50のワイヤー51に沿うようにして成長し、個々の心筋細胞61がワイヤー51上に配列する。すなわち、心筋細胞61のその長手方向と3次元ワイヤーフレームのワイヤー51の長手方向とがほぼ同じ方向となるように成長し、配列される。
【0051】
培養が進むと、心筋細胞組織62は、3次元ワイヤーフレーム50の形状とほぼ同じ形状となるように、各細胞が成長し、配列される。成長した個々の心筋細胞61は、ワイヤー51に従った形状となり、その配向もワイヤー51によって制御され、ワイヤー51上に配置される。また、3次元ワイヤーフレーム50の材料として、生体組織に吸収される材料を用いた場合、図3(c)に示すように、3次元ワイヤーフレーム50は心筋細胞61に分解されて無くなる。
【0052】
以上のように、3次元ワイヤーフレーム50を用いることにより、細胞の形状、配置(密度を含む)、配向を制御しつつ3次元的な生体組織を培養することが可能となる。細胞レベルで形状及び配列が制御されているため、培養された細胞に生体組織としての機能を持たせることが可能となる。細胞の配列は、細胞の配向及び/または配置を意味する。さらに、3次元ワイヤーフレーム50の形状を適宜変更することにより、様々な配列を有する生体組織を培養することができる。さらにまた、上記のように3次元ワイヤーフレーム50を用いて細胞を培養する場合には、3次元ワイヤーフレーム50のワイヤー51間の間隙が培養液の流路となっている。これにより、培養する細胞に培養液を確実に供給することができるので、細胞の活性を維持することができ、良質な細胞を得ることが可能となる。
【0053】
発明の実施の形態2.
実施の形態2において、まず生体組織の培養に用いる3次元ワイヤーフレームの他の構造例について図4を用いて説明し、生体組織の培養について図5を用いて説明する。図4は、3次元ワイヤーフレームの他の構造例を示す斜視図である。図4に示すように、3次元ワイヤーフレーム501は、長手方向に垂直な断面形状が円形となるようにワイヤー51が巻かれた螺旋状構造を有する。この螺旋状構造の断面形状は、後述のように培養される生体組織の形状に従って設計される。図4においては、螺旋状構造を有する3次元ワイヤーフレーム501の断面形状は円形であるが、これに限らず、楕円形、矩形、多角形とすることができる。
【0054】
また、ワイヤー51の断面形状、ワイヤー51間の幅、ワイヤー51の寸法、3次元ワイヤーフレーム501の断面寸法などは、培養される細胞の種類、培養される細胞組織の大きさ、個々の細胞の大きさや数などに従って設計される。3次元ワイヤーフレーム501を構成する材料は、光硬化性ゼラチン、光硬化性生体吸収性ポリマー等の光硬化性生体材料を用いることができる。
【0055】
図5は、この生体組織の他の培養例を示す模式図である。まず、図5(a)に示すように、3次元ワイヤーフレーム501上に単離した細胞611が播かれる。細胞611は、図5(b)に示すように、3次元ワイヤーフレーム501の形状に従い、シャーレ内で培養される。細胞611は、3次元ワイヤーフレーム501のワイヤー51に沿うようにして成長・増殖し、個々の細胞611がワイヤーフレーム501上に配列する。細胞611は、その長手方向と3次元ワイヤーフレームのワイヤー51の長手方向とがほぼ同じ方向となるように成長・増殖する。培養が進むと、図5(c)に示すように、3次元ワイヤーフレーム501の形状とほぼ同じ形状を有する、細胞組織621が形成される。成長した個々の細胞611は、形状及び配向が制御され、ワイヤー51上に配置される。
【0056】
このように、3次元ワイヤーフレーム502を螺線状構造とすることにより、螺旋状に細胞が配列された筒状の細胞組織を形成することが可能となる。また、3次元ワイヤーフレーム501の螺旋状構造を適宜変更することにより、細胞の配置、方向などを変更することができる。
【0057】
発明の実施の形態3.
図6は、3次元ワイヤーフレームの他の構造例を示す斜視図である。図6に示すように、3次元ワイヤーフレーム502は、格子上の複数のフレーム要素を備えており、全体として、ワイヤー51が直方体状に組まれた立体格子状構造を有する。
図7を用いて、上記3次元ワイヤーフレーム502を用いた細胞組織の培養方法について説明する。図7は、この細胞組織の他の培養例を示す模式図である。まず、図7(a)に示すように、3次元ワイヤーフレーム502上に単離した細胞612が播かれる。細胞612は、図7(b)に示すように、3次元ワイヤーフレーム502の形状に従い、シャーレ内で培養されて成長・増殖する。細胞612は、3次元ワイヤーフレーム502のワイヤー51に沿うようにして成長・増殖し、個々の細胞612が3次元ワイヤーフレーム502上に配列される。細胞612は、その長手方向と3次元ワイヤーフレームのワイヤー51の長手方向とがほぼ同じ方向となるように成長・増殖する。培養が進むと、図7(c)に示すように、3次元ワイヤーフレーム502の形状とほぼ同じ形状を有する細胞組織622が、形成される。このとき、成長した個々の細胞612は、その形状及び配向を制御され、ワイヤー51上に配置される。
【0058】
このように、3次元ワイヤーフレーム502を立体格子状構造とすることにより、個々の細胞がほぼ同じ方向を向き、平面上に延在した生体組織を形成することが可能となる。また、3次元ワイヤーフレーム502は直方体形状の立体格子状構造を有するために平面状に延在した生体組織が形成されたが、これに限らず、3次元ワイヤーフレーム502に曲面をつけることによって個々の細胞がほぼ同じ方向を向く曲面状の生体組織を形成することができる。
【0059】
発明の実施の形態4.
実施の形態4において、まず生体組織の培養に用いる3次元ワイヤーフレームの他の構造例について図8を用いて説明し、生体組織の培養について図9を用いて説明する。ここで、上記実施の形態1乃至実施の形態3においては、光硬化性樹脂121をワイヤー状に硬化したワイヤー51により構成された3次元ワイヤーフレームを用いたが、本実施の形態4においては、樹脂内部に空間が形成された3次元フレームを用いる。図8(a)は、3次元フレームの他の構造例を示す斜視図である。図8(b)及び図8(c)は、図8(a)に示す3次元フレームのA−A‘断面図及びB−B’断面図を示す。
【0060】
図8に示す3次元フレーム503は、硬化された樹脂材料221の一部を、レーザ光を使用して削除、もしくは破壊することで加工し、形成することができる。樹脂材料221をレーザ光によって加工するための装置は、図1に示された装置に適切な変更を加えて実現することができる。例えば、レーザ加工に適したレーザ光源を使用し、図1に示した光学系と基本的に同様のシステムによって、加工装置を構成することができる。レーザ光源としては、チタンサファイアレーザなどのパルスレーザ光源を使用することができる。レーザ光のパルス幅は、好ましくは10ナノ秒以下である。レーザ光による樹脂材料221の加工は、レーザ光を対物レンズによって樹脂221内部で集光させ、この集光部位の樹脂221を部分的に破壊することにより、樹脂221内部に穴をあけることができる。空間的に小さな領域であるレーザ光の集光部位の樹脂221を破壊して形成することができる。集光部における樹脂材料の破壊は、樹脂材料の多光子吸収を利用して行われる。多光子吸収を利用することによって、集光部のみでの樹脂材料の加工を行うことができる。3次元的な樹脂材料の加工は、レーザ光を3次元的に走査することにより、3次元フレーム503を形成することができる。3次元フレーム503を構成する樹脂材料221として、例えば、ポリ無水物、ポリオルトエステル、ポリ乳酸、ポリグルコール酸、コポリマー、これらの混合物から構成される生体吸収ポリマーを用いることが好ましい。
【0061】
図8(a)に示すように、3次元フレーム503は、樹脂材料221が部分的に除去され、複数の空洞である培養穴222が形成された構造を有する。すなわち、3次元フレーム503は、培養穴222が樹脂221中に離間した状態で形成されている構造を有する。そして、後述するように、この培養穴222の中で細胞が培養される。
【0062】
図8(b)に示すように、培養穴222の断面形状は、培養穴222間の樹脂221の幅、培養穴222の寸法などは、培養される細胞の種類、培養される細胞組織の大きさ、個々の細胞の大きさ、形状、数等に従って設計される。図8に示す培養穴222は、長手方向に対して垂直な断面形状が円形状であるが、これに限らず、楕円形状、多角形状等の種々の形状とすることができる。例えば、培養穴222の断面形状は、ラットの心筋細胞を培養する場合には、幅40μm、高さ20μmの楕円形状となるように形成することができる。
【0063】
図8(b)に示すように、個々の培養穴222は、樹脂221により離間された状態で、ほぼ等間隔に形成されている。また、各培養穴222は、他の培養穴222により八方から囲まれるようにして密に配置されている。培養穴222は、これに限らず、ランダムな間隔で形成してもよいし、また培養穴222間の距離を空けて疎に形成してもよい。あるいは、複数の培養穴22からなるパターンを繰り返して配置してもよい。
【0064】
図8(c)に示すように、培養穴222は、図8(a)において紙面表面から紙面裏面に直線状に延在し、それぞれが長手方向に関して平行に形成されている。培養穴222は、これに限らず、球状、立体格子状、球状、チューブ状、袋状等の様々な立体構造とすることができ、形成する生体組織の形状に応じて設計される。図8(c)に示すように、3次元フレーム503には、複数の流路223が形成されている。この流路223は、培養穴222の長手方向に対して垂直に形成されており、各培養穴222を通って樹脂221表面の間を貫通している。また、流路223の形状、配置分布、寸法等は、培養される細胞の種類、大きさ、数等の培養される細胞によって定められ、細胞間を培養液が確実に流れるように形成される。この流路223は、細胞を培養する際、培養液を培養穴222内に引き入れ、培養穴222内の細胞に培養液を供給する。
【0065】
図9は、この生体組織の他の培養例を示す模式図である。まず、3次元フレーム503上に単離した細胞613が播かれると、図9(a)及び図9(b)に示すように細胞613が培養穴222内に入り込み、培養穴222内側面に付着する。細胞613は、図9(c)及び図9(d)に示すように、3次元フレーム503の形状に従い、シャーレ内などで培養される。細胞613は、3次元フレーム503の培養穴222の内側面に沿うようにして成長・増殖し、個々の細胞613が培養穴222内に配列する。細胞613は、その長手方向と3次元フレーム503の培養穴222の長手方向とがほぼ同じ方向となるように成長・増殖する。培養が進むと、図9(e)及び図9(f)に示すように、培養穴222の形状とほぼ同じ形状を有する、細胞組織623が形成される。成長した個々の細胞613は、形状及び配向が制御され、培養穴222内に配置される。また、3次元フレーム503の樹脂221が生体吸収性を有する場合、細胞613の成長後、3次元フレーム503が分解される。分解された樹脂221は、例えば、細胞613自身の作り出す細胞外気質となる。
【0066】
このように、3次元フレーム503を樹脂221内部に培養穴222が形成された構造とすることにより、個々の細胞がほぼ同じ方向を向き、束となって直線状に延在する生体組織を形成することが可能となる。また、3次元フレーム503の培養穴222が直方状に延びた構造を有するために直線状に延在する生体組織が形成されたが、これに限らず、3次元フレーム503の培養穴222に曲面をつけることによって個々の細胞が束となってほぼ同じ方向を向く曲線状の生体組織を形成することができる。
【0067】
本発明によれば、上記のように、3次元フレームを足場として細胞培養を行うことによって、細胞の形状、配向、配置を制御しつつ、細胞組織の形成を行うことができる。このように培養した細胞や生体組織の機能を、タンパク質の発現の様子を観察することで、生物学的な知見を得ることができる。例えば、細胞間コミュニケーションを担うタンパク質、や細胞接着、細胞骨格を形成するタンパク等、細胞や組織の形状と機能との関連について知見を得ることができる。あるいは、上記方法に従って人工的に構築した生体組織を医療目的に使用することが可能である。特に、生体内への機能する細胞組織の移植や臓器の再生、あるいは生態の機能を有するバイオマイクロマシンの構築に利用することができる。さらに、本発明の方法によって形成された細胞組織は、細胞の形態異常由来した疾患における研究において力を発揮する。形態異常とたんぱく質発現の関係を明らかにすることで、治療法や新薬の開発に利用することができる。
【0068】
【発明の効果】
本発明によれば、細胞の形状や細胞レベルでの配置・配向を制御して3次元的な細胞組織を培養することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるレーザ光造形装置の構成を示す模式図である。
【図2】本発明の実施の形態における3次元ワイヤーフレームの構造例を示す斜視図である。
【図3】本発明の実施の形態における生体組織の培養例を示す模式図である。
【図4】本発明の実施の形態における3次元ワイヤーフレームの他の構造例を示す斜視図である。
【図5】本発明の実施の形態における生体組織の他の培養例を示す模式図である。
【図6】本発明の実施の形態における3次元ワイヤーフレームの他の構造例を示す斜視図である。
【図7】本発明の実施の形態における生体組織の他の培養例を示す模式図である。
【図8】本発明の実施の形態における3次元ワイヤーフレームの他の構造例を示す斜視図である。
【図9】本発明の実施の形態における生体組織の他の培養例を示す模式図である。
【符号の説明】
100 レーザ光造形装置、101 レーザ光源、102 アッテネータ、103 ビームエキスパンダ、104、105 レンズ、106 ピンホール、107 ミラー、108 ガルバノスキャナー、109、110 ガルバノメータミラー、111、112 ミラー、113 ビームエキスパンダ、114、115レンズ、116 λ/2板、117 偏光ビームスプリッタ、118 ミラー、119 対物レンズ、120 ピエゾ作動ステージ、121 光硬化性樹脂、122 ファイバー光源、123 カラーフィルター、124 イメージングレンズ、125 CCD、50、501、502 3次元ワイヤーフレーム、503 3次元フレーム、221 樹脂、222 培養穴、51 ワイヤー、61、611、612、613 細胞、62、621、622、623 細胞組織
Claims (22)
- 3次元細胞組織を形成する、細胞の培養方法であって、
集光されたレーザ光によって硬化された光硬化性材料で形成された立体フレームを準備するステップと、
前記立体フレームに細胞を付着するステップと、
前記細胞を前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成するステップと、を備える細胞の培養方法。 - 3次元細胞組織を形成する、細胞の培養方法であって、
集光されたレーザ光によって破壊された樹脂材料で形成された立体フレームを準備するステップと、
前記立体フレームに細胞を付着するステップと、
前記細胞を前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成するステップと、を備える細胞の培養方法。 - 前記立体フレームは、生体吸収材料で形成されている、請求項1又は2に記載の細胞の培養方法。
- 前記立体フレームは、光硬化性ゼラチンもしくは光硬化性生体吸収性ポリマーで形成されている、請求項3に記載の細胞の培養方法。
- 前記立体フレームは、所定の間隔をおいて配置された複数のワイヤー部を備える、請求項1に記載の細胞の培養方法。
- 前記立体フレームは、前記樹脂材料内で所定の間隔をおいて配置された複数の空洞部を備える、請求項2に記載の細胞の培養方法。
- 前記細胞組織の各細胞は、前記ワイヤー部若しくは前記空洞部によって配列が制御される、請求項5又は6に記載の細胞の培養方法。
- 前記立体フレームを準備するステップは、レーザ光を前記光硬化性材料に集光するステップと、
前記レーザ光の集光点近傍において前記光硬化性材料の多光子吸収を引き起こし、前記光硬化性材料を硬化させるステップと、
前記集光点を3次元的に走査し、前記立体フレームを形成するステップと、を備える、請求項1に記載の細胞の培養方法。 - 前記立体フレームを準備するステップは、レーザ光を前記樹脂材料に集光するステップと、
前記レーザ光の集光点近傍において前記樹脂材料の多光子吸収を引き起こし、前記樹脂性材料を破壊させるステップと、
前記集光点を3次元的に走査し、前記立体フレームを形成するステップと、を備える、請求項2に記載の細胞の培養方法。 - 細胞組織の培養に使用される立体フレームの形成方法であって、
レーザ光源からの光を、光硬化性材料に集光するステップと、
前記集光されたレーザ光によって前記光硬化性材料による多光子吸収を引き起こし、前記光硬化性材料を硬化させるステップと、
前記レーザ光の集光点を3次元的に走査し、前記光硬化性材料による立体フレームを形成するステップと、を備える立体フレームの形成方法。 - 細胞組織の培養に使用される立体フレームの形成方法であって、
レーザ光源からの光を、樹脂材料に集光するステップと、
前記集光されたレーザ光によって前記樹脂材料による多光子吸収を引き起こし、前記樹脂材料を破壊するステップと、
前記レーザ光の集光点を3次元的に走査し、前記樹脂材料による立体フレームを形成するステップと、を備える立体フレームの形成方法。 - 前記レーザ光源からの光は、フェムト秒パルスレーザ光である、請求項10又は11に記載の立体フレームの形成方法。
- 3次元細胞組織を形成する、細胞の培養装置であって、
培地と、
前記培地内に収容され、集光された光によって硬化した光硬化性材料で形成された立体フレームと、
を備え、前記立体フレーム上に付着された細胞を、前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成する、細胞の培養装置。 - 3次元細胞組織を形成する、細胞の培養装置であって、
培地と、
前記培地内に収容され、集光された光によって破壊した樹脂材料で形成された立体フレームと、
を備え、前記立体フレーム上に付着された細胞を、前記立体フレーム上で培養し、前記立体フレームに従った3次元細胞組織を形成する、細胞の培養装置。 - 前記立体フレームは、所定の間隔をおいて配置された複数のワイヤー部を備え、前記細胞組織の各細胞は、前記ワイヤー部によって配列が制御される、請求項13に記載の細胞の培養装置。
- 前記立体フレームは、前記樹脂材料内で所定の間隔をおいて配置された複数の空洞部を備え、前記細胞組織の各細胞は、前記空洞部によって配列が制御される、請求項14に記載の細胞の培養装置。
- 前記立体フレームは、生体吸収材料で形成されている、請求項13又は14に記載の細胞の培養装置。
- 請求項13又は14に記載の培養装置によって形成された細胞組織。
- 3次元細胞組織を形成するため、細胞を培養する立体フレームであって、
所定の間隔をおいて3次元的に配置された複数のワイヤー部を備え、
前記細胞組織の各細胞は、前記フレーム上において、前記ワイヤー部によって形状と配列が制御されて培養される、細胞を培養する立体フレーム。 - 3次元細胞組織を形成するため、細胞を培養する立体フレームであって、
樹脂材料内で所定の間隔をおいて3次元的に配置された複数の空洞部を備え、
前記細胞組織の各細胞は、前記フレーム上において、前記空洞部によって形状と配列が制御されて培養される、細胞を培養する立体フレーム。 - 細胞組織の培養に使用される立体フレームの形成装置であって、
レーザ光源と、
前記レーザ光源からの光を、光硬化性材料に集光するレンズと、
前記レーザ光の集光点を3次元的に走査する手段と、を備え、
前記集光されたレーザ光によって前記光硬化性材料による多光子吸収を引き起こし、前記光硬化性材料を硬化させる、立体フレームの形成装置。 - 細胞組織の培養に使用される立体フレームの形成装置であって、
レーザ光源と、
前記レーザ光源からの光を、樹脂材料に集光するレンズと、
前記レーザ光の集光点を3次元的に走査する手段と、を備え、
前記集光されたレーザ光によって前記樹脂材料による多光子吸収を引き起こし、前記樹脂材料の一部を破壊する、立体フレームの形成装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119672A JP3733127B2 (ja) | 2003-04-24 | 2003-04-24 | 細胞の培養方法、細胞の培養装置、細胞組織の培養に使用される立体フレームの形成方法、細胞組織の培養に使用される立体フレームの形成装置、及び細胞組織の培養に使用される立体フレーム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119672A JP3733127B2 (ja) | 2003-04-24 | 2003-04-24 | 細胞の培養方法、細胞の培養装置、細胞組織の培養に使用される立体フレームの形成方法、細胞組織の培養に使用される立体フレームの形成装置、及び細胞組織の培養に使用される立体フレーム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004321065A true JP2004321065A (ja) | 2004-11-18 |
JP3733127B2 JP3733127B2 (ja) | 2006-01-11 |
Family
ID=33498836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003119672A Expired - Fee Related JP3733127B2 (ja) | 2003-04-24 | 2003-04-24 | 細胞の培養方法、細胞の培養装置、細胞組織の培養に使用される立体フレームの形成方法、細胞組織の培養に使用される立体フレームの形成装置、及び細胞組織の培養に使用される立体フレーム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3733127B2 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006223672A (ja) * | 2005-02-18 | 2006-08-31 | Sii Nanotechnology Inc | 生体組織構造を模倣したナノバイオデバイス |
JP2009038981A (ja) * | 2007-08-06 | 2009-02-26 | Dainippon Printing Co Ltd | 心筋細胞培養支持体 |
WO2009048314A1 (en) * | 2007-10-08 | 2009-04-16 | Sureshan Sivananthan | A scalable matrix for the in vivo cultivation of bone and cartilage |
JPWO2015005349A1 (ja) * | 2013-07-09 | 2017-03-02 | 国立大学法人 東京大学 | 細胞培養支持体、細胞培養装置、細胞培養キット、及び細胞シート |
JP6256853B1 (ja) * | 2016-09-13 | 2018-01-10 | 次郎 大野 | 3次元細胞構造体の製造方法およびそれに用いる支持体 |
JP6439223B1 (ja) * | 2018-03-19 | 2018-12-19 | 次郎 大野 | 細胞構造体の製造装置、製造システムおよび製造方法 |
JP2019513179A (ja) * | 2016-03-30 | 2019-05-23 | ユニヴェルシテ グルノーブル アルプ | 三次元製造のための多光子吸収によって活性化され得る感光性組成物 |
CN111304152A (zh) * | 2020-03-06 | 2020-06-19 | 上海市第十人民医院 | 一种运用飞秒激光改善类器官体外3d培养微环境的方法 |
CN118086048A (zh) * | 2024-03-27 | 2024-05-28 | 苏州大学 | 一种三维细胞球培养装置及其培养方法 |
-
2003
- 2003-04-24 JP JP2003119672A patent/JP3733127B2/ja not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006223672A (ja) * | 2005-02-18 | 2006-08-31 | Sii Nanotechnology Inc | 生体組織構造を模倣したナノバイオデバイス |
US7736893B2 (en) | 2005-02-18 | 2010-06-15 | Sii Nanotechnology Inc. | Nanobio device of imitative anatomy structure |
JP2009038981A (ja) * | 2007-08-06 | 2009-02-26 | Dainippon Printing Co Ltd | 心筋細胞培養支持体 |
WO2009048314A1 (en) * | 2007-10-08 | 2009-04-16 | Sureshan Sivananthan | A scalable matrix for the in vivo cultivation of bone and cartilage |
JPWO2015005349A1 (ja) * | 2013-07-09 | 2017-03-02 | 国立大学法人 東京大学 | 細胞培養支持体、細胞培養装置、細胞培養キット、及び細胞シート |
JP2020036621A (ja) * | 2013-07-09 | 2020-03-12 | 国立大学法人 東京大学 | 細胞培養支持体、細胞培養装置、細胞培養キット、及び細胞シート |
US11061325B2 (en) | 2016-03-30 | 2021-07-13 | Universite Grenoble Alpes | Photosensitive composition that can be activated by multiphoton absorption for three-dimensional fabrication |
JP2019513179A (ja) * | 2016-03-30 | 2019-05-23 | ユニヴェルシテ グルノーブル アルプ | 三次元製造のための多光子吸収によって活性化され得る感光性組成物 |
US10513684B2 (en) | 2016-09-13 | 2019-12-24 | Jiro Ono | Manufacturing method and device for three-dimensional engineered tissue |
JP6256853B1 (ja) * | 2016-09-13 | 2018-01-10 | 次郎 大野 | 3次元細胞構造体の製造方法およびそれに用いる支持体 |
WO2019180776A1 (ja) * | 2018-03-19 | 2019-09-26 | ティシューバイネット株式会社 | 細胞構造体の製造装置、製造システムおよび製造方法 |
JP6439223B1 (ja) * | 2018-03-19 | 2018-12-19 | 次郎 大野 | 細胞構造体の製造装置、製造システムおよび製造方法 |
CN111315864A (zh) * | 2018-03-19 | 2020-06-19 | 细胞网络株式会社 | 细胞结构体的制造装置、制造系统以及制造方法 |
CN111304152A (zh) * | 2020-03-06 | 2020-06-19 | 上海市第十人民医院 | 一种运用飞秒激光改善类器官体外3d培养微环境的方法 |
CN118086048A (zh) * | 2024-03-27 | 2024-05-28 | 苏州大学 | 一种三维细胞球培养装置及其培养方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3733127B2 (ja) | 2006-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liao et al. | A material odyssey for 3D nano/microstructures: two photon polymerization based nanolithography in bioapplications | |
Ovsianikov et al. | Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications | |
Torgersen et al. | Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms | |
Harley et al. | Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: a comprehensive review | |
US20220025322A1 (en) | Compositions and methods for printing three-dimensional structures corresponding to biological material | |
Zhang et al. | Femtosecond laser nanofabrication of hydrogel biomaterial | |
WO2021146466A1 (en) | Methods and systems for model generation | |
JP3733127B2 (ja) | 細胞の培養方法、細胞の培養装置、細胞組織の培養に使用される立体フレームの形成方法、細胞組織の培養に使用される立体フレームの形成装置、及び細胞組織の培養に使用される立体フレーム | |
McCullen et al. | Laser ablation imparts controlled micro-scale pores in electrospun scaffolds for tissue engineering applications | |
Baldacchini et al. | Translation of laser-based three-dimensional printing technologies | |
Maharjan et al. | Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications | |
DE102019132211B3 (de) | 3D-Gerüst aus biokompatiblem Polymer mit einem nach oben offenen Besiedlungsraum für biologische Zellen und mit einem den Besiedlungsraum umgebenden kanalförmigen Gefäß | |
Wang et al. | Two-photon polymerization-based 3D micro-scaffolds toward biomedical devices | |
US11993767B2 (en) | Method for producing 3D, biocompatible polymer scaffold with a cell-filled cavity | |
Jonušauskas et al. | Femtosecond laser-made 3D micro-chainmail scaffolds towards regenerative medicine | |
CN113481163B (zh) | 复合材料及其制备方法、肿瘤模型及其制备方法 | |
Danilevičius et al. | Direct laser fabrication of polymeric implants for cardiovascular surgery | |
Torgersen | Novel biocompatible materials for in vivo two-photon polymerisation | |
Ovsianikov et al. | Photonic and biomedical applications of the Two-photon polymerization technique | |
US7736893B2 (en) | Nanobio device of imitative anatomy structure | |
Lee et al. | Development of three-dimensional hybrid scaffold using chondrocyte-encapsulated alginate hydrogel | |
Malinauskas et al. | Laser two-photon polymerization micro-and nanostructuring over a large area on various substrates | |
Michas | High-precision fabrication enables on-chip modeling with organ-level structural and mechanical complexity | |
Flamourakis et al. | A low-autofluorescence, transparent resin for multiphoton 3D printing | |
Yu | Three-dimensional printing of neuron-inspired structures by direct laser writing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051014 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081021 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091021 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091021 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121021 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121021 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131021 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |