【0001】
【発明の属する技術分野】
本発明は、半導体デバイスの配線工程に好適な金属用研磨液及びそれを用いた研磨方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路(LSI)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(CMP)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、例えば米国特許No.4944836号明細書に開示されている。
近年、LSIを高性能化するために、配線材料として銅合金の利用が試みられている。しかし、銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細配線加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜をCMPにより除去して埋め込み配線を形成する、所謂ダマシン法が主に採用されている。この技術は、例えば特開平2−278822号公報に開示されている。
【0003】
金属のCMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨液で浸し、基体の金属膜を形成した面を押し付けて、その裏面から所定の圧力(研磨圧力或いは研磨荷重)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。
CMPに用いられる金属用研磨液は、一般には酸化剤及び砥粒からなっており、必要に応じてさらに酸化金属溶解剤、金属防食剤が添加される。まず、酸化によって金属膜表面を酸化し、その酸化層を砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属表面の酸化層は研磨パッドにあまり触れず、砥粒による削り取りの効果が及ばないので、CMPの進行と共に凸部の金属層が除去されて基体表面は平坦化される。この詳細については、ジャーナル・オブ・エレクトロソサイティー誌(Journal of Electrochemical Society)の第138巻11号(1991年発行)の3460〜3464頁に開示されている。
【0004】
CMPによる研磨速度を高める方法として酸化金属溶解剤を添加することが有効とされている。砥粒によって削り取られた金属酸化物を研磨液で溶解させてしまうと砥粒による削り取り効果が増すためと解釈出来る。但し、凹部の配線金属膜表面の酸化層も溶解(エッチング)されて金属膜表面が露出すると、酸化剤によって金属表面がさらに酸化され、これが繰り返されると凹部のエッチングが進行してしまい、平坦化効果が損なわれることが懸念される。これを防ぐ為にさらに金属防食剤が添加される。平坦化特性を維持するためには、酸化金属溶解剤と金属防食剤の効果のバランスを取ることが重要であり、凹部の金属膜表面の酸化層はあまりエッチングされず、削り取られた酸化層が効率良く溶解されCMPによる研磨速度が大きいことが望ましい。
【0005】
このように酸化金属溶解剤と金属防食剤を添加して化学反応の効果を加えることにより、CMPによる研磨速度が向上すると共に、CMPされる金属層表面損傷(ダメージ)も低減される。
一方、配線金属の銅或いは銅合金等の下層には、絶縁膜中への銅拡散防止のためにバリア層として、タンタル金属や、タンタル化合物等が形成される。そして、配線金属を研磨する第1工程と、バリア層及び凹部の配線金属を研磨する第2工程とからなる2段研磨方法が検討されている。
従って、第1工程では、銅或いは銅合金を埋め込んだ配線部分を研磨した後に、タンタル等のバリア層が露出して来る。バリア層金属は、銅或いは銅合金に比べ、硬度が高いことから研磨速度は小さく、銅或いは銅合金のみを研磨し、バリア層が露出したところで銅の研磨が終了する。そして、第1工程と、第2工程とでは、被研磨膜の硬度や化学的性質が異なるために、酸化剤濃度等の組成を変更した2段研磨用の研磨剤が提案されている(例えば、特許文献1参照。)。
【0006】
【特許文献1】
特開2001−085376号公報
【0007】
【発明が解決しようとする課題】
この第1工程において、良好な電気特性を有する埋め込み配線を形成するために、バリア層を研磨しないようにしながらも金属配線部分の研磨しすぎを最小限に抑えることにより、平坦性を維持することが要求される。第1工程では、理想的には、バリア層の研磨速度が0nm/分であれば、バリア層上で研磨をストップすることが出来る。しかしながら、バリア層が削り取られると、銅配線部分も一緒に削り取られてしまい平坦性が悪化するという問題が生じる。
本発明は、銅或いはその合金の研磨速度を維持しつつ、タンタル金属或いはその化合物の研磨速度を抑制し、幅広配線部の銅の削れ過ぎ(ディシング)による平坦性の悪化を防ぎ、かつ高密度配線部の銅及び絶縁膜の削れ過ぎ(エロージョン)による平坦性の悪化を防ぎ、信頼性の高い金属膜の埋め込みパターン形成を可能とする金属用研磨液及びその研磨方法を提供するものである。
【0008】
【課題を解決するための手段】
すなわち本発明は、以下の(1)〜(13)に関する。
(1)金属の酸化剤、酸化金属溶解剤、金属防食剤、砥粒、砥粒吸着剤及び水を含む金属用研磨液。
(2)砥粒吸着剤が、ノニオン性高分子材料である前記(1)記載の金属用研磨液。
【0009】
(3)砥粒吸着剤が、シリカ粒子に吸着するノニオン性高分子材料であって、セルロース系化合物から選ばれる前記(2)記載の金属用研磨液。
(4)砥粒吸着剤が、シリカ粒子に吸着するノニオン性高分子材料であって、ポリビニルアルコール系化合物およびポリエチレングリコール系化合物から選ばれる前記(2)記載の金属用研磨液。
(5)砥粒吸着剤が、シリカ粒子に吸着するノニオン性高分子材料であって、1級窒素ポリマ化合物、2級窒素ポリマ化合物および3級窒素ポリマ化合物から選ばれる前記(2)記載の金属用研磨液。
【0010】
(6)砥粒が、シリカ粒子であって、研磨液に対して1重量%以下である前記(1)〜(5)のいずれか記載の金属用研磨液。
(7)金属の酸化剤が、過酸化水素、硝酸、硝酸セリウムアンモニウム、過ヨウ素酸カリウム、過硫酸塩及びオゾン水から選ばれる少なくとも1種である前記(1)〜(6)のいずれか記載の金属用研磨液。
【0011】
(8)酸化金属溶解剤が、有機酸、有機酸エステル、有機酸のアンモニウム塩、イミダゾール化合物から選ばれる少なくとも1種である前記(1)〜(7)のいずれか記載の金属用研磨液。
(9)金属防食剤が、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、ベンゾトリアゾール又は1−ヒドロキシルベンゾトリアゾールから選ばれる少なくとも1種である前記(1)〜(8)のいずれか記載の金属用研磨液。
【0012】
(10)研磨される金属が、銅、銅合金、銅の酸化物、銅合金の酸化物からなる群より選ばれる少なくとも1種を含み、かつタンタル金属及びタンタル化合物の研磨速度が5nm/分以下である前記(1)〜(9)のいずれか記載の金属用研磨液。
【0013】
(11)研磨定盤の研磨布と基体上に形成された金属膜との間に前記(1)〜(10)のいずれか記載の金属用研磨液を供給しながら、基体を研磨布に押圧した状態で研磨定盤と基体とを相対的に動かすことによって金属膜を研磨する研磨方法。
(12)金属膜が銅、銅合金、銅の酸化物、銅合金の酸化物から選ばれる少なくとも1種を含む前記(11)記載の研磨方法。
【0014】
(13)表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア導体層と、前記凹部を充填してバリア導体層を被覆する導電性物質層とを有する基板のうち、少なくとも導電性物質層を研磨して前記凸部のバリア導体層を露出させる第1研磨工程と、該第1研磨工程後に、少なくともバリア導体層および凹部の導電性物質層を研磨して凸部の層間絶縁膜を露出させる第2研磨工程とを含み、第1研磨工程で前記(1)〜(10)のいずれか記載の金属用研磨液を用いて研磨する研磨方法。
【0015】
【発明の実施の形態】
本発明の金属用研磨液は、主要構成成分として金属の酸化剤、酸化金属溶解剤、金属防食剤、砥粒、砥粒吸着剤及び水を含有する。
【0016】
本発明における金属の酸化剤としては、過酸化水素(H2O2)、硝酸、硝酸セリウムアンモニウム、過ヨウ素酸カリウム、過硫酸塩及びオゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。これらは1種単独で、若しくは2種類以上組合せて用いることができる。
【0017】
酸化剤の配合量は、金属用研磨液の総量に対して1〜50重量%とすることが好ましく、10〜40重量%とすることがより好ましく、20〜35重量%が特に好ましい。1重量%未満では、バリア層の研磨速度が増加し、バリア層と共に金属配線の削り過ぎ(ディシング)が増加する傾向があり、また、50重量%を超えると研磨面に荒れが生じる傾向がある。
【0018】
本発明における酸化金属溶解剤は、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等の有機酸、これらの有機酸エステル及びこれら有機酸のアンモニウム塩類等が例示できる。また、イミダゾール骨格を有する化合物も酸化金属溶解剤として用いることが出来る。イミダゾール骨格を有する化合物としては、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−プロピルイミダゾール、2−ブチルイミダゾール、4−メチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−アミノイミダゾール等を例示することが出来る。これらは1種類単独でも、2種類以上組合せても用いることが出来る。
酸化金属溶解剤成分の配合量は、金属用研磨液の総量に対して0.001〜10重量%とすることが好ましい。この配合量が0.001重量%未満では、研磨速度が極端に低下し、10重量%を超えるとエッチング抑制が困難となる傾向がある。
【0019】
本発明における金属防食剤は、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、ベンゾトリアゾール又は1−ヒドロキシルベンゾトリアゾールが例示出来る。これらは1種類単独でも、2種類以上組合せても用いることが出来る。
金属防食剤の総配合量は、研磨液の総量に対して0.001〜10重量%とすることが好ましい。0.001重量%未満ではエッチング抑制が難しく、また10重量%を超えると研磨速度が低下する傾向がある。
【0020】
本発明における砥粒は、シリカ粒子が好ましい。特に、コロイダルシリカ粒子が好ましい。セリア粒子は、酸化剤と反応し、粒子性状が変化する傾向がある。また、アルミナ粒子、ジルコニア粒子等は硬度が高く、研磨面へ傷が入りやすくなる。
砥粒の配合量は、研磨液の総量に対して1重量%以下であることが好ましい。特に0.1〜0.5重量%が好ましい。1重量%を超えるとタンタル金属或いはタンタル化合物等のバリア層研磨速度が増加し、平坦性がそこなわれる傾向にある。
【0021】
本発明の砥粒吸着剤はノニオン性高分子材料であることが好ましい。特に、シリカ粒子に吸着するノニオン性高分子材料であるのが好ましい。例えば、ヒドロキシプロピルセルロース、ヒドロキシルプロピルメチルセルロース等のセルロース系化合物;ポリビニルアルコール系、ポリエチレングリコール系等の化合物;ポリアクリルアミド等の1級窒素ポリマ化合物、ポリイソピルアクリルアミド等の2級窒素ポリマ化合物、ポリビニルピロリドン等の3級窒素ポリマ化合物などが好ましく挙げられる。これらノニオン性高分子材料に代表される砥粒吸着剤は単独または二種類以上選択されて使用される。
【0022】
砥粒吸着剤の配合量は、砥粒重量に対して0.01重量%〜50重量%が好ましい。0.01重量%未満ではタンタル金属或いはタンタル化合物等のバリア層研磨速度が増加し、平坦性がそこなわれる傾向にある。また、50重量%を超えると銅或いは銅合金の研磨速度が著しく低下する傾向がある。
【0023】
本発明の研磨液は、銅或いは銅合金と不溶化錯体を形成する水溶性ポリマを含むことが出来る。その水溶性ポリマとしては、アニオン性水溶性高分子材料が好ましく、特にポリアクリル酸、ポリメタクリル酸及びそれらの誘導体化合物が好ましい。
水溶性ポリマの配合量は、研磨液の総量に対して0〜10重量%とすることが好ましい。10重量%を超えると銅或いは銅合金の研磨速度が著しく低下する傾向がある。
【0024】
本発明の第1の研磨方法は、研磨定盤の研磨布と基体上に形成された金属膜との間に上記本発明の金属用研磨液を供給しながら、基体を研磨布に押圧した状態で研磨定盤と基体とを相対的に動かすことによって金属膜を研磨することを特徴とする。
【0025】
本発明の金属用研磨液および研磨方法を適用して研磨される金属膜の組成としては、銅、銅合金、銅の酸化物、銅合金の酸化物からなる群(以下、銅及び銅化合物という。)、タンタル、窒化タンタル、タンタル合金等(以下、タンタル及びタンタル化合物という。)、チタン、窒化チタン、チタン合金等(以下、チタン及びチタン化合物という。)、タングステン、窒化タングステン、タングステン合金等(以下、タングステン及びタングステン化合物という。)を例示することが出来る。これら金属膜は1種でまたは2種以上を組み合わせて研磨され、金属膜が、銅及び銅化合物から選ばれる少なくとも1種を含むのが好ましい。
【0026】
金属膜は、二種以上の上記金属膜を組み合わせた積層膜であってもよい。本発明を適用する積層膜としては、研磨される金属膜の積層膜のうち、先に研磨される層が前記銅及びその化合物から選ばれる少なくとも一種であり、該層と積層している層すなわち次の層が前記タンタル及びその化合物、チタン及びその化合物、タングステン及びその化合物から選ばれる少なくとも一種である積層膜の組み合わせが挙げられる。
【0027】
本発明によれば、表面が凹部および凸部からなる基体上に銅を含む金属膜が形成・充填されたものを化学機械研磨(CMP)することができる。基体の凸部の金属膜が選択的にCMPされて、凹部に金属膜が残されて所望のパターンが得られる。これを、半導体デバイスの配線層の形成における、金属配線用の導電性物質層と、層間絶縁膜へ前記導電性物質が拡散するのを防ぐバリア層と、層間絶縁膜とからなる積層膜の化学機械研磨に適用することができる。例えば、前記先に研磨される層が銅及び銅化合物等の導電性物質層であり、該層の次の層がタンタル及びタンタル化合物等のバリア層である積層膜が例示される。
【0028】
すなわち本発明の第2の研磨方法は、表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア層と、前記凹部を充填してバリア導体層を被覆する導電性物質層とを有する基板のうち、少なくとも導電性物質層を研磨して前記凸部のバリア層を露出させる第1研磨工程と、該第1研磨工程後に、少なくともバリア層および凹部の導電性物質層を研磨して凸部の層間絶縁膜を露出させる第2研磨工程とを含み、第1研磨工程で本発明の研磨液を用いて研磨することを特徴とする。
【0029】
導電性物質としては、銅および銅化合物、タングステンおよびタングステン化合物、銀、金等の、金属が主成分の物質が挙げられ、銅および銅化合物が好ましい。導電性物質層として公知のスパッタ法、メッキ法により前記物質を成膜した膜を使用できる。
【0030】
バリア層は絶縁膜中への導電性物質拡散防止、および絶縁膜と導電性物質との密着性向上のために形成される。バリア層の組成は、タンタル及びタンタル化合物、チタン及びチタン化合物、タングステン及びタングステン化合物等が挙げられ、タンタル、窒化タンタル、タンタル合金、チタン、窒化チタン、チタン合金、タングステン、窒化タングステン、タングステン合金のうちから選ばれるのが好ましい。
【0031】
層間絶縁膜としては、シリコン系被膜や有機ポリマ膜が挙げられる。シリコン系被膜としては、二酸化ケイ素、フルオロシリケートグラス、トリメチルシランやジメトキシジメチルシランを出発原料として得られるオルガノシリケートグラス、シリコンオキシナイトライド、水素化シルセスキオキサン等のシリカ系被膜や、シリコンカーバイド及びシリコンナイトライドが挙げられる。また、有機ポリマ膜としては、全芳香族系低誘電率層間絶縁膜が挙げられる。特に、オルガノシリケートグラスが好ましい。これらの膜は、CVD法、スピンコート法、ディップコート法、またはスプレー法によって成膜される。
【0032】
本発明におけるタンタル及びタンタル化合物等のバリア層の研磨速度は5nm/分であることが好ましい。これらの研磨速度が5nm/分を超えると、配線部の銅及び銅合金が一緒に削り取られ、ディシングが増加し、平坦性が損なわれる傾向がある。
【0033】
本発明の研磨方法において、研磨用装置としては、例えば研磨布(研磨パッド)により研磨する場合、被研磨面を有する基体を保持するためのホルダーと、研磨布を貼り付けてあり、回転数が変更可能なモータ等を取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。研磨定盤上の研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布には研磨液がたまるような溝加工を施すことが好ましい。研磨条件に制限はないが、定盤の回転速度は基体が飛び出さないように200rpm以下の低回転が好ましく、基体にかける圧力は研磨後に傷が発生しないように1kg/cm2(98kPa)以下が好ましい。研磨速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5kPa〜50kPaであることがより好ましい。
【0034】
研磨している間、研磨布と金属膜との間には本発明の研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。
【0035】
研磨終了後の基体は、流水中で良く洗浄後、スピンドライヤ等を用いて基体上に付着した水滴を払い落としてから乾燥させることが好ましい。
【0036】
基体に形成された被研磨面である金属膜を研磨布に押圧した状態で研磨布と基体とを相対的に動かすには、研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でも良い。これらの研磨方法は、被研磨面や研磨装置により適宜選択できる。
【0037】
以下、本発明の研磨方法の実施態様を、半導体デバイスの製造における配線層の形成に沿って説明する。
まず、シリコンの基板上に二酸化ケイ素等の層間絶縁膜を積層する。次いで、レジスト層形成、エッチング等の公知の手段によって、層間絶縁膜表面に所定パターンの凹部(基板露出部)を形成して凸部と凹部とを有する層間絶縁膜とする。この層間絶縁膜上に、表面の凸凹に沿って層間絶縁膜を被覆するタンタル等のバリア層を蒸着またはCVD等により成膜する。さらに、前記凹部を充填するようにバリア層を被覆する銅等の導電性物質層を蒸着、めっきまたはCVD等により形成する。
【0038】
次に、この半導体基板の表面の導電性物質層を、本発明の研磨液を用いて、CMPにより研磨する(第1の研磨工程)。これにより、基板上の凸部のバリア層が表面に露出し、凹部に前記導電性物質膜が残された所望の配線パターンが得られる。この研磨が進行する際に、導電性物質層と同時に凸部のバリア層の一部が研磨されても良い。
【0039】
第2の研磨工程では、導電性物質、バリア層および層間絶縁膜を研磨できる研磨液を使用して、化学機械研磨により、少なくとも、前記露出しているバリア層および凹部の導電性物質を研磨する。凸部のバリア層の下の層間絶縁膜が全て露出し、凹部に配線層となる前記導電性物質層が残され、凸部と凹部との境界にバリア層の断面が露出した所望のパターンが得られた時点で研磨を終了する。
研磨終了時のより優れた平坦性を確保するために、さらに、オーバー研磨(例えば、第2の研磨工程で所望のパターンを得られるまでの時間が100秒の場合、この100秒の研磨に加えて50秒追加して研磨することをオーバー研磨50%という。)して凸部の層間絶縁膜の一部を含む深さまで研磨しても良い。
【0040】
このようにして形成された銅等の金属配線の上に、さらに、層間絶縁膜および第2層目の金属配線を形成し、その配線間および配線上に再度層間絶縁膜を形成後、研磨して半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の配線層数を有する半導体デバイスを製造することができる。
【0041】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。
実施例1〜7
(金属用研磨液の作製1)
金属の酸化剤として過酸化水素を総量に対して30重量%、酸化金属溶解剤としてリンゴ酸を総量に対して0.15重量%、金属防食剤としてベンゾトリアゾール0.2重量%、砥粒としてコロイダルシリカ粒子(1次粒子径:20nm)を0.3重量%、砥粒吸着剤としてヒドロキシルプロピルセルロース(実施例1)、ヒドロキシルプロピルメチルセルロース(実施例2)、ポリビニルアルコール(実施例3)、ポリエチレングリコール(実施例4)、ポリアクリルアミド(実施例5)、ポリイソピルアクリルアミド(実施例6)、ポリビニルピロリドン(実施例7)をそれぞれ砥粒粒子に対して1重量%、銅と不溶化錯体を形成する水溶性ポリマとしてポリアクリル酸を0.15重量%加え、残部を水として金属用研磨液を得た。
【0042】
実施例8
(金属用研磨液の作製2)
金属の酸化剤として過酸化水素を総量に対して30重量%、酸化金属溶解剤としてリンゴ酸を総量に対して0.15重量%、金属防食剤としてベンゾトリアゾール0.2重量%とイミダゾール0.04重量%、砥粒としてコロイダルシリカ粒子(1次粒子径:20nm)を0.3重量%、砥粒吸着剤としてヒドロキシルプロピルメチルセルロースを砥粒粒子に対して1重量%、銅と不溶化錯体を形成する水溶性ポリマとしてポリアクリル酸を0.15重量%加え、残部を水として金属用研磨液を得た。
【0043】
実施例9
(金属用研磨液の作製3)
金属の酸化剤として過酸化水素を総量に対して30重量%、酸化金属溶解剤としてリンゴ酸を総量に対して0.075重量%とコハク酸を0.075重量%、金属防食剤としてベンゾトリアゾール0.2重量%とイミダゾール0.04重量%、砥粒としてコロイダルシリカ粒子(1次粒子径:20nm)を0.3重量%、砥粒吸着剤としてヒドロキシルプロピルメチルセルロースを砥粒粒子に対して1重量%、銅と不溶化錯体を形成する水溶性ポリマとしてポリアクリル酸を0.15重量%加え、残部を水として金属用研磨液を得た。
【0044】
実施例10
(金属用研磨液の作製4)
金属の酸化剤として過酸化水素を総量に対して30重量%、酸化金属溶解剤としてリンゴ酸を総量に対して0.15重量%、金属防食剤としてベンゾトリアゾール0.1重量%と1,2,3−トリアゾール0.1重量%とイミダゾール0.04重量%、砥粒としてコロイダルシリカ粒子(1次粒子径:20nm)を0.3重量%、砥粒吸着剤としてヒドロキシルプロピルメチルセルロースを砥粒粒子に対して1重量%、銅と不溶化錯体を形成する水溶性ポリマとしてポリアクリル酸を0.15重量%加え、残部を水として金属用研磨液を得た。
【0045】
(評価方法1)
厚さ1500nmの銅金属を堆積したシリコンウエハ基板と、厚さ100nmの窒化タンタルを堆積したシリコンウエハ基板とを用意した。
上記二種のウエハ基板を、上記金属用研磨液の作製1〜4で作製した金属用研磨液を用いて次の条件で研磨し、それぞれの研磨速度を測定した。測定結果および研磨液のpHを表1に示す。
すなわち、研磨装置の、保持する基板取り付け用の吸着パッドを貼り付けたホルダーに上記二種のブランケットウエハをセットし、一方、多孔質ウレタン樹脂製の研磨パッドを貼り付けたφ600mmの定盤上に金属膜面を下にして前記ホルダーを載せ、さらに加工荷重300gf/cm2(29.4kPa)に設定した。定盤上に上記金属用研磨液を200cc/分の速度で滴下しながら、定盤及びウエハを75rpmで回転して2分間それぞれの金属膜を研磨した。研磨後のウエハを純水で良く洗浄後、乾燥した。それぞれの研磨速度は、各膜の研磨前後での膜厚差を電気抵抗値から換算して求めた。
表1に示すように、実施例1〜10の銅膜の研磨速度はいずれも500nm/分以上の研磨速度が得られた。また、窒化タンタルの研磨速度はすべて5nm/分以下の十分低い研磨速度であった。
【0046】
(評価方法2)
二酸化珪素中に、配線金属部幅100μm、窒化タンタル部幅100μmが交互に並んだストライプ状パターン部の表面形状を有する深さ0.5μmの溝を形成し、その上に公知の方法によってバリア層として厚さ30nmの窒化タンタル層を形成し、さらにその上層に銅膜を1.1μm形成したウエハ基板を用意した。
研磨装置の、基板を保持する基板取り付け用の吸着パッドを貼り付けたホルダーに上記ブランケットウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けたφ600mmの定盤上に金属膜面を下にして前記ホルダーを載せ、さらに加工荷重300gf/cm2(29.4kPa)に設定した。定盤上に上記金属用研磨液を200cc/分の速度で滴下しながら、定盤及びウエハを75rpmで回転して基板表面全面において窒化タンタルが露出するまで研磨を行った。研磨後のウエハを純水で良く洗浄後、乾燥した。
触針式段差計で配線金属部幅100μm、窒化タンタル部幅100μmが交互に並んだストライプ状パターン部の表面形状から窒化タンタル部に対する配線金属部の膜減り量(ディシング)を求めた測定結果を表1に併記する。表1に示すように、実施例1〜10共に75nm以下の十分実用的な値であった。
【0047】
比較例
(金属用研磨液の作製)
金属の酸化剤として過酸化水素を総量に対して30重量%、酸化金属溶解剤としてリンゴ酸を総量に対して0.15重量%、金属防食剤としてベンゾトリアゾール0.2重量%と、砥粒としてコロイダルシリカ粒子(2次粒子径:34nm)を0.3重量%、銅と不溶化錯体を形成する水溶性ポリマとしてポリアクリル酸を0.15重量%加え、金属用研磨液を得た。この研磨液のpHは3.5であった。
【0048】
(評価方法1、2)
比較例で作製した金属用研磨液を用いた以外は実施例と同様の評価方法で研磨し、研磨速度及びディシングを測定した。結果を表1に併記する。表1に示すように、銅膜の研磨速度は、500nm/分以上の実用的な研磨速度が得られるものの、窒化タンタルの研磨速度は7.1nm/分と大きかった。また、ディシングは100nmであった。
【0049】
【表1】
【0050】
【発明の効果】
本発明によれば、半導体素子における金属配線部の金属膜研磨速度を維持しつつバリア層の研磨速度を抑制し、幅広配線部のディシングや、高密度配線部の金属配線部及び層間絶縁膜のエロージョンによる平坦性の悪化を防ぐことにより、信頼性の高い金属膜の埋め込みパターンを形成できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal polishing solution suitable for a wiring process of a semiconductor device and a polishing method using the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a new fine processing technology has been developed in accordance with high integration and high performance of a semiconductor integrated circuit (LSI). A chemical mechanical polishing (CMP) method is one of them, and is a technique frequently used in the LSI manufacturing process, particularly in the flattening of the interlayer insulating film, the formation of metal plugs, and the formation of embedded wiring in a multilayer wiring forming process. This technique is disclosed, for example, in US Pat. No. 4,944,836.
In recent years, attempts have been made to use copper alloys as wiring materials in order to improve the performance of LSIs. However, it is difficult for copper alloys to perform fine wiring processing by a dry etching method frequently used in forming conventional aluminum alloy wirings. Therefore, a so-called damascene method of depositing and embedding a copper alloy thin film on an insulating film in which a groove has been formed in advance and removing the copper alloy thin film other than the groove portion by CMP to form an embedded wiring is mainly adopted. . This technique is disclosed, for example, in Japanese Patent Application Laid-Open No. 2-278822.
[0003]
A general method of metal CMP is to attach a polishing pad on a circular polishing platen (platen), immerse the polishing pad surface with a metal polishing solution, and press the surface of the base on which the metal film is formed, and press the surface. The polishing platen is rotated while applying a predetermined pressure (polishing pressure or polishing load) from the back surface, and the metal film of the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film.
The metal polishing liquid used for CMP generally comprises an oxidizing agent and abrasive grains, and a metal oxide dissolving agent and a metal anticorrosive are further added as necessary. First, it is considered that the basic mechanism is to oxidize the surface of the metal film by oxidation and to remove the oxidized layer with abrasive grains. Since the oxide layer on the metal surface of the concave portion does not much contact the polishing pad and does not have the effect of shaving by the abrasive grains, the metal layer of the convex portion is removed with the progress of the CMP, and the substrate surface is flattened. The details are disclosed in Journal of Electrochemical Society, Vol. 138, No. 11 (issued in 1991), pp. 3460-3364.
[0004]
It has been considered effective to add a metal oxide dissolving agent as a method of increasing the polishing rate by CMP. It can be interpreted that dissolving the metal oxide scraped by the abrasive grains with the polishing liquid increases the scraping effect by the abrasive grains. However, when the oxide layer on the surface of the wiring metal film in the concave portion is also dissolved (etched) to expose the metal film surface, the metal surface is further oxidized by an oxidizing agent. There is a concern that the effect will be impaired. To prevent this, a metal corrosion inhibitor is further added. In order to maintain the flattening characteristics, it is important to balance the effects of the metal oxide dissolving agent and the metal anticorrosive, and the oxide layer on the surface of the metal film in the concave portion is not etched so much, and the scraped oxide layer is removed. It is desirable that the material is efficiently dissolved and the polishing rate by CMP is high.
[0005]
As described above, by adding the metal oxide dissolving agent and the metal anticorrosive to add the effect of the chemical reaction, the polishing rate by CMP is improved, and the metal layer surface damage (damage) by CMP is reduced.
On the other hand, a tantalum metal, a tantalum compound, or the like is formed as a barrier layer below the wiring metal such as copper or a copper alloy as a barrier layer for preventing copper diffusion into the insulating film. Then, a two-stage polishing method including a first step of polishing the wiring metal and a second step of polishing the wiring metal in the barrier layer and the concave portion is being studied.
Therefore, in the first step, after the wiring portion in which copper or a copper alloy is embedded is polished, a barrier layer such as tantalum is exposed. Since the hardness of the barrier layer metal is higher than that of copper or a copper alloy, the polishing rate is low. Only the copper or copper alloy is polished, and polishing of the copper is completed when the barrier layer is exposed. Since the hardness and chemical properties of the film to be polished are different between the first step and the second step, a polishing agent for two-step polishing in which the composition such as the oxidizing agent concentration is changed has been proposed (for example, And Patent Document 1.).
[0006]
[Patent Document 1]
JP 2001-085376 A
[Problems to be solved by the invention]
In the first step, in order to form a buried wiring having good electric characteristics, flatness is maintained by minimizing excessive polishing of a metal wiring portion while not polishing a barrier layer. Is required. In the first step, ideally, if the polishing rate of the barrier layer is 0 nm / min, the polishing can be stopped on the barrier layer. However, when the barrier layer is scraped off, the copper wiring portion is also scraped off, resulting in a problem that the flatness deteriorates.
The present invention suppresses the polishing rate of tantalum metal or a compound thereof while maintaining the polishing rate of copper or an alloy thereof, prevents the flatness from being deteriorated due to excessive cutting (dising) of copper in a wide wiring portion, and achieves high density. An object of the present invention is to provide a metal polishing liquid and a polishing method for the same, which prevent deterioration of flatness due to excessive erosion of copper and an insulating film of a wiring portion and enable formation of a highly reliable embedded pattern of a metal film.
[0008]
[Means for Solving the Problems]
That is, the present invention relates to the following (1) to (13).
(1) A metal polishing solution containing a metal oxidizing agent, a metal oxide dissolving agent, a metal corrosion inhibitor, abrasive grains, an abrasive adsorbent, and water.
(2) The metal polishing slurry according to (1), wherein the abrasive adsorbent is a nonionic polymer material.
[0009]
(3) The metal-polishing liquid according to (2), wherein the abrasive adsorbent is a nonionic polymer material adsorbed on silica particles and is selected from cellulosic compounds.
(4) The metal polishing slurry according to (2), wherein the abrasive adsorbent is a nonionic polymer material adsorbed on silica particles, and is selected from a polyvinyl alcohol-based compound and a polyethylene glycol-based compound.
(5) The metal according to (2), wherein the abrasive adsorbent is a nonionic polymer material adsorbed on silica particles and is selected from a primary nitrogen polymer compound, a secondary nitrogen polymer compound and a tertiary nitrogen polymer compound. Polishing liquid.
[0010]
(6) The metal polishing slurry according to any one of the above (1) to (5), wherein the abrasive grains are silica particles and 1% by weight or less based on the polishing slurry.
(7) The method according to any one of (1) to (6) above, wherein the metal oxidizing agent is at least one selected from hydrogen peroxide, nitric acid, cerium ammonium nitrate, potassium periodate, persulfate, and ozone water. Polishing liquid for metals.
[0011]
(8) The metal polishing slurry according to any one of (1) to (7), wherein the metal oxide dissolving agent is at least one selected from organic acids, organic acid esters, ammonium salts of organic acids, and imidazole compounds.
(9) The metal anticorrosive is at least one selected from 1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, benzotriazole and 1-hydroxylbenzotriazole. The metal polishing slurry according to any one of the above (1) to (8).
[0012]
(10) The metal to be polished contains at least one selected from the group consisting of copper, copper alloys, copper oxides, and copper alloy oxides, and the polishing rate of the tantalum metal and the tantalum compound is 5 nm / min or less. The polishing liquid for metals according to any one of the above (1) to (9).
[0013]
(11) The base is pressed against the polishing cloth while the metal polishing liquid according to any one of (1) to (10) is supplied between the polishing cloth of the polishing platen and the metal film formed on the base. A polishing method for polishing a metal film by relatively moving a polishing platen and a substrate in a state where the polishing is performed.
(12) The polishing method according to (11), wherein the metal film includes at least one selected from copper, a copper alloy, a copper oxide, and a copper alloy oxide.
[0014]
(13) An interlayer insulating film having a surface with a concave portion and a convex portion, a barrier conductor layer covering the interlayer insulating film along the surface, and a conductive material layer filling the concave portion and covering the barrier conductor layer. A first polishing step of polishing at least a conductive material layer to expose the barrier conductor layer of the projections, and polishing the at least the barrier conductor layer and the conductive material layer of the recesses after the first polishing step; And a second polishing step of exposing the interlayer insulating film of the projections, and polishing in the first polishing step using the metal polishing liquid according to any one of the above (1) to (10).
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The metal-polishing liquid of the present invention contains a metal oxidizing agent, a metal oxide dissolving agent, a metal anticorrosive, an abrasive, an abrasive adsorbent, and water as main components.
[0016]
Examples of the metal oxidizing agent in the present invention include hydrogen peroxide (H 2 O 2 ), nitric acid, cerium ammonium nitrate, potassium periodate, persulfate, and ozone water. Among them, hydrogen peroxide is particularly preferable. . These can be used alone or in combination of two or more.
[0017]
The compounding amount of the oxidizing agent is preferably 1 to 50% by weight, more preferably 10 to 40% by weight, and particularly preferably 20 to 35% by weight based on the total amount of the metal polishing liquid. If the amount is less than 1% by weight, the polishing rate of the barrier layer increases, and the metal wiring tends to be excessively diced together with the barrier layer (dishing). If the amount exceeds 50% by weight, the polished surface tends to be rough. .
[0018]
The metal oxide dissolving agent in the present invention is formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n -Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, Examples thereof include organic acids such as maleic acid, phthalic acid, malic acid, tartaric acid, and citric acid, organic acid esters thereof, and ammonium salts of these organic acids. Further, a compound having an imidazole skeleton can also be used as a metal oxide dissolving agent. Examples of the compound having an imidazole skeleton include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-propylimidazole, 2-butylimidazole, 4-methylimidazole, 2,4-dimethylimidazole and 2-ethyl Examples thereof include -4-methylimidazole and 2-aminoimidazole. These can be used alone or in combination of two or more.
The amount of the metal oxide dissolving agent component is preferably 0.001 to 10% by weight based on the total amount of the metal polishing liquid. If the amount is less than 0.001% by weight, the polishing rate is extremely reduced, and if it exceeds 10% by weight, it tends to be difficult to suppress the etching.
[0019]
Examples of the metal anticorrosive in the present invention include 1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, benzotriazole and 1-hydroxylbenzotriazole. These can be used alone or in combination of two or more.
The total amount of the metal anticorrosive is preferably 0.001 to 10% by weight based on the total amount of the polishing liquid. If the amount is less than 0.001% by weight, it is difficult to suppress the etching, and if it exceeds 10% by weight, the polishing rate tends to decrease.
[0020]
The abrasive grains in the present invention are preferably silica particles. In particular, colloidal silica particles are preferred. Ceria particles tend to react with an oxidizing agent and change in particle properties. In addition, alumina particles, zirconia particles, and the like have high hardness, and are liable to damage the polished surface.
The compounding amount of the abrasive grains is preferably 1% by weight or less based on the total amount of the polishing liquid. Particularly, 0.1 to 0.5% by weight is preferable. If it exceeds 1% by weight, the polishing rate of the barrier layer such as tantalum metal or tantalum compound increases, and the flatness tends to be deteriorated.
[0021]
The abrasive adsorbent of the present invention is preferably a nonionic polymer material. In particular, a nonionic polymer material that adsorbs to silica particles is preferable. For example, cellulosic compounds such as hydroxypropylcellulose and hydroxylpropylmethylcellulose; compounds such as polyvinyl alcohol and polyethylene glycol; primary nitrogen polymer compounds such as polyacrylamide, secondary nitrogen polymer compounds such as polyisopropylacrylamide, and polyvinylpyrrolidone And the like. Tertiary nitrogen polymer compounds such as These abrasive adsorbents represented by the nonionic polymer materials are used alone or in combination of two or more.
[0022]
The compounding amount of the abrasive adsorbent is preferably 0.01% by weight to 50% by weight based on the weight of the abrasive. If the content is less than 0.01% by weight, the polishing rate of the barrier layer such as a tantalum metal or a tantalum compound increases, and the flatness tends to deteriorate. On the other hand, if it exceeds 50% by weight, the polishing rate of copper or copper alloy tends to be remarkably reduced.
[0023]
The polishing liquid of the present invention can include a water-soluble polymer that forms an insolubilized complex with copper or a copper alloy. As the water-soluble polymer, an anionic water-soluble polymer material is preferable, and polyacrylic acid, polymethacrylic acid and a derivative compound thereof are particularly preferable.
The compounding amount of the water-soluble polymer is preferably 0 to 10% by weight based on the total amount of the polishing liquid. If it exceeds 10% by weight, the polishing rate of copper or copper alloy tends to be significantly reduced.
[0024]
The first polishing method of the present invention is a method in which the substrate is pressed against the polishing cloth while supplying the metal polishing liquid of the present invention between the polishing cloth of the polishing platen and the metal film formed on the substrate. In this method, the metal film is polished by relatively moving the polishing platen and the base.
[0025]
The composition of the metal film to be polished by applying the metal polishing liquid and the polishing method of the present invention includes a group consisting of copper, copper alloy, copper oxide, and copper alloy oxide (hereinafter, referred to as copper and copper compound). ), Tantalum, tantalum nitride, tantalum alloy, etc. (hereinafter, referred to as tantalum and tantalum compound), titanium, titanium nitride, titanium alloy, etc. (hereinafter, titanium and titanium compound), tungsten, tungsten nitride, tungsten alloy, etc. Hereinafter, these are referred to as tungsten and a tungsten compound.). These metal films are polished by one kind or a combination of two or more kinds, and the metal film preferably contains at least one kind selected from copper and a copper compound.
[0026]
The metal film may be a laminated film combining two or more of the above metal films. As the laminated film to which the present invention is applied, of the laminated film of the metal film to be polished, the layer to be polished first is at least one selected from the copper and the compound thereof, and the layer laminated with the layer, A combination of stacked films in which the next layer is at least one selected from the above-mentioned tantalum and its compound, titanium and its compound, tungsten and its compound is exemplified.
[0027]
ADVANTAGE OF THE INVENTION According to this invention, the thing by which the metal film containing copper was formed and filled on the base | substrate which the surface has a recessed part and a convex part can be subjected to chemical mechanical polishing (CMP). The metal film in the convex portion of the base is selectively CMPed, leaving the metal film in the concave portion to obtain a desired pattern. In the formation of a wiring layer of a semiconductor device, a chemical layer of a conductive film for metal wiring, a barrier layer for preventing the conductive material from diffusing into an interlayer insulating film, and an interlayer insulating film. It can be applied to mechanical polishing. For example, a laminated film in which the previously polished layer is a conductive material layer such as copper and a copper compound and the next layer is a barrier layer such as tantalum and a tantalum compound is exemplified.
[0028]
That is, the second polishing method of the present invention comprises the steps of: providing an interlayer insulating film having a surface with a concave portion and a convex portion; a barrier layer covering the interlayer insulating film along the surface; and covering the barrier conductor layer by filling the concave portion. A first polishing step of polishing at least the conductive material layer of the substrate having the conductive material layer to be exposed to expose the barrier layer of the projection, and after the first polishing step, at least the conductivity of the barrier layer and the recess. A second polishing step of polishing the conductive material layer to expose the interlayer insulating film of the convex portion, wherein the first polishing step is performed by using the polishing liquid of the present invention.
[0029]
Examples of the conductive substance include a substance mainly composed of a metal such as copper and a copper compound, tungsten and a tungsten compound, silver and gold, and copper and a copper compound are preferable. As the conductive material layer, a film in which the material is formed by a known sputtering method or plating method can be used.
[0030]
The barrier layer is formed to prevent diffusion of the conductive substance into the insulating film and to improve adhesion between the insulating film and the conductive substance. The composition of the barrier layer includes tantalum and a tantalum compound, titanium and a titanium compound, tungsten and a tungsten compound, and the like. It is preferable to be selected from
[0031]
Examples of the interlayer insulating film include a silicon-based film and an organic polymer film. As the silicon-based coating, silicon dioxide, fluorosilicate glass, organosilicate glass obtained from trimethylsilane or dimethoxydimethylsilane as a starting material, silicon oxynitride, silica-based coating such as hydrogenated silsesquioxane, silicon carbide and Silicon nitride. The organic polymer film includes a wholly aromatic low dielectric constant interlayer insulating film. In particular, organosilicate glass is preferable. These films are formed by a CVD method, a spin coating method, a dip coating method, or a spray method.
[0032]
In the present invention, the polishing rate of the barrier layer such as tantalum and a tantalum compound is preferably 5 nm / min. If the polishing rate exceeds 5 nm / min, copper and copper alloy in the wiring portion are shaved off together, dishing increases, and flatness tends to be impaired.
[0033]
In the polishing method of the present invention, as a polishing apparatus, for example, when polishing with a polishing cloth (polishing pad), a holder for holding a substrate having a surface to be polished and a polishing cloth are attached, and the number of rotations is A general polishing apparatus having a polishing platen to which a changeable motor or the like is attached can be used. As the polishing cloth on the polishing platen, general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used, and there is no particular limitation. Further, it is preferable to subject the polishing cloth to groove processing in which the polishing liquid is accumulated. The polishing conditions are not limited, but the rotation speed of the platen is preferably low at 200 rpm or less so that the substrate does not pop out, and the pressure applied to the substrate is 1 kg / cm 2 (98 kPa) or less so that scratches do not occur after polishing. Is preferred. In order to satisfy the uniformity of the polishing rate within the surface to be polished and the flatness of the pattern, the pressure is more preferably 5 kPa to 50 kPa.
[0034]
During polishing, the polishing liquid of the present invention is continuously supplied between the polishing cloth and the metal film by a pump or the like. The supply amount is not limited, but it is preferable that the surface of the polishing pad is always covered with the polishing liquid.
[0035]
After the polishing is completed, the substrate is preferably washed well in running water, and then dried using a spin drier or the like to remove water droplets adhered to the substrate.
[0036]
In order to relatively move the polishing cloth and the base while pressing the metal film which is the surface to be polished formed on the base against the polishing cloth, besides rotating the polishing platen, the holder is rotated and rocked. It may be polished. In addition, a polishing method in which a polishing platen is rotated in a planetary manner, a polishing method in which a belt-shaped polishing cloth is linearly moved in one direction in a longitudinal direction, and the like are exemplified. Note that the holder may be in any of a fixed state, a rotating state, and a swinging state. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus.
[0037]
Hereinafter, embodiments of the polishing method of the present invention will be described along the formation of a wiring layer in the manufacture of a semiconductor device.
First, an interlayer insulating film such as silicon dioxide is laminated on a silicon substrate. Next, a concave portion (substrate exposed portion) of a predetermined pattern is formed on the surface of the interlayer insulating film by a known means such as formation of a resist layer and etching to form an interlayer insulating film having a convex portion and a concave portion. On this interlayer insulating film, a barrier layer such as tantalum for covering the interlayer insulating film is formed along the surface irregularities by vapor deposition or CVD. Further, a conductive material layer such as copper for covering the barrier layer is formed by vapor deposition, plating, CVD or the like so as to fill the concave portion.
[0038]
Next, the conductive material layer on the surface of the semiconductor substrate is polished by CMP using the polishing liquid of the present invention (first polishing step). As a result, a desired wiring pattern in which the barrier layer of the convex portion on the substrate is exposed on the surface and the conductive material film remains in the concave portion is obtained. When the polishing proceeds, a part of the barrier layer of the projection may be polished simultaneously with the conductive material layer.
[0039]
In the second polishing step, at least the exposed conductive material of the barrier layer and the concave portion is polished by chemical mechanical polishing using a polishing liquid capable of polishing the conductive material, the barrier layer and the interlayer insulating film. . A desired pattern in which the interlayer insulating film under the barrier layer of the projection is entirely exposed, the conductive material layer serving as a wiring layer is left in the recess, and the cross section of the barrier layer is exposed at the boundary between the projection and the recess. The polishing is completed at the obtained time.
In order to ensure better flatness at the end of polishing, over polishing (for example, when the time required to obtain a desired pattern in the second polishing step is 100 seconds, the polishing is performed in addition to the polishing of 100 seconds. Polishing for an additional 50 seconds is referred to as overpolishing 50%.), And polishing may be performed to a depth including a part of the interlayer insulating film in the convex portion.
[0040]
An interlayer insulating film and a second-layer metal wiring are further formed on the metal wiring of copper or the like thus formed, and an interlayer insulating film is formed again between the wirings and on the wirings, and then polished. To form a smooth surface over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor device having a desired number of wiring layers can be manufactured.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1 to 7
(Preparation of polishing liquid for metal 1)
30% by weight based on the total amount of hydrogen peroxide as a metal oxidizing agent, 0.15% by weight based on the total amount of malic acid as a metal oxide dissolving agent, 0.2% by weight of benzotriazole as a metal anticorrosive, and abrasive grains 0.3% by weight of colloidal silica particles (primary particle diameter: 20 nm), hydroxylpropylcellulose (Example 1), hydroxylpropylmethylcellulose (Example 2), polyvinyl alcohol (Example 3), polyethylene as abrasive adsorbent Glycol (Example 4), polyacrylamide (Example 5), polyisopropylacrylamide (Example 6), and polyvinylpyrrolidone (Example 7) were each 1% by weight based on the abrasive particles, and formed an insolubilized complex with copper. As a water-soluble polymer, 0.15% by weight of polyacrylic acid was added, and the remainder was water to obtain a polishing slurry for metal.
[0042]
Example 8
(Preparation of polishing liquid for metal 2)
30% by weight of hydrogen peroxide as a metal oxidizing agent based on the total amount, 0.15% by weight of malic acid as a metal oxide dissolving agent based on the total amount, 0.2% by weight of benzotriazole as a metal anticorrosive and 0.1% of imidazole. 0.4% by weight, 0.3% by weight of colloidal silica particles (primary particle diameter: 20 nm) as abrasive grains, 1% by weight of hydroxyl propyl methylcellulose as abrasive adsorbent based on abrasive grains, forming an insolubilized complex with copper As a water-soluble polymer, 0.15% by weight of polyacrylic acid was added, and the remainder was water to obtain a polishing slurry for metal.
[0043]
Example 9
(Preparation of polishing liquid for metal 3)
30% by weight of hydrogen peroxide as a metal oxidizing agent, 0.075% by weight of malic acid and 0.075% by weight of succinic acid as a metal oxide dissolving agent, and benzotriazole as a metal anticorrosive 0.2% by weight, imidazole 0.04% by weight, colloidal silica particles (primary particle diameter: 20 nm) as abrasives 0.3% by weight, and hydroxylpropyl methylcellulose as abrasive adsorbent 1 to abrasive particles By weight, 0.15% by weight of polyacrylic acid was added as a water-soluble polymer which forms an insolubilizing complex with copper, and the remainder was water to obtain a polishing slurry for metal.
[0044]
Example 10
(Preparation of polishing liquid for metal 4)
30% by weight of hydrogen peroxide as a metal oxidizing agent, 0.15% by weight of malic acid as a metal oxide dissolving agent based on the total amount, 0.1% by weight of benzotriazole and 1,2, 0.1% by weight of 1,3-triazole and 0.04% by weight of imidazole, 0.3% by weight of colloidal silica particles (primary particle diameter: 20 nm) as abrasive grains, and abrasive particles of hydroxylpropyl methylcellulose as abrasive adsorbent 1% by weight, 0.15% by weight of polyacrylic acid was added as a water-soluble polymer which forms an insolubilized complex with copper, and the remainder was water to obtain a polishing slurry for metal.
[0045]
(Evaluation method 1)
A silicon wafer substrate on which a 1500-nm-thick copper metal was deposited and a silicon wafer substrate on which a 100-nm-thick tantalum nitride was deposited were prepared.
The two wafer substrates were polished under the following conditions using the metal polishing liquids prepared in Preparations 1 to 4 of the metal polishing liquids, and the respective polishing rates were measured. Table 1 shows the measurement results and the pH of the polishing liquid.
That is, the above two types of blanket wafers are set on a holder to which a suction pad for attaching a substrate to be held is attached on a polishing apparatus, and on a φ600 mm platen to which a polishing pad made of porous urethane resin is attached. The holder was placed with the metal film face down, and the processing load was set to 300 gf / cm 2 (29.4 kPa). The platen and the wafer were rotated at 75 rpm while the metal polishing solution was dropped at a rate of 200 cc / min onto the platen to polish each metal film for 2 minutes. The polished wafer was thoroughly washed with pure water and then dried. Each polishing rate was determined by converting the difference in film thickness before and after polishing each film from the electrical resistance value.
As shown in Table 1, the polishing rates of the copper films of Examples 1 to 10 were all 500 nm / min or more. In addition, the polishing rates of all tantalum nitrides were sufficiently low polishing rates of 5 nm / min or less.
[0046]
(Evaluation method 2)
A 0.5 μm deep groove having a surface shape of a stripe pattern portion in which a wiring metal portion width of 100 μm and a tantalum nitride portion width of 100 μm are alternately formed in silicon dioxide, and a barrier layer is formed thereon by a known method. A wafer substrate was prepared in which a 30 nm thick tantalum nitride layer was formed, and a copper film was formed thereon at 1.1 μm.
The blanket wafer was set on a holder to which a suction pad for attaching a substrate for holding a substrate was attached, and the metal film surface was placed on a φ600 mm platen to which a polishing pad made of porous urethane resin was attached. And the processing load was set to 300 gf / cm 2 (29.4 kPa). While the metal polishing slurry was dropped on the surface plate at a rate of 200 cc / min, the surface plate and the wafer were rotated at 75 rpm to perform polishing until tantalum nitride was exposed on the entire surface of the substrate. The polished wafer was thoroughly washed with pure water and then dried.
Using a stylus-type profilometer, the measurement result obtained by determining the film reduction (dising) of the wiring metal part with respect to the tantalum nitride part from the surface shape of the stripe pattern part in which the wiring metal part width 100 μm and the tantalum nitride part width 100 μm are alternately arranged. Also shown in Table 1. As shown in Table 1, each of Examples 1 to 10 was a sufficiently practical value of 75 nm or less.
[0047]
Comparative Example (Preparation of polishing liquid for metal)
30% by weight based on the total amount of hydrogen peroxide as a metal oxidizing agent, 0.15% by weight based on the total amount of malic acid as a metal oxide dissolving agent, 0.2% by weight of benzotriazole as a metal anticorrosive, and abrasive grains Of 0.3% by weight of colloidal silica particles (secondary particle diameter: 34 nm) and 0.15% by weight of polyacrylic acid as a water-soluble polymer which forms an insolubilized complex with copper, to obtain a polishing slurry for metal. The pH of this polishing liquid was 3.5.
[0048]
(Evaluation methods 1 and 2)
Polishing was performed by the same evaluation method as in the example except that the metal polishing liquid prepared in the comparative example was used, and the polishing rate and dishing were measured. The results are also shown in Table 1. As shown in Table 1, although a practical polishing rate of 500 nm / min or more was obtained for the copper film, the polishing rate for tantalum nitride was 7.1 nm / min. The dishing was 100 nm.
[0049]
[Table 1]
[0050]
【The invention's effect】
According to the present invention, the polishing rate of the barrier layer is suppressed while maintaining the metal film polishing rate of the metal wiring portion in the semiconductor element, and the dishing of the wide wiring portion and the metal wiring portion and the interlayer insulating film of the high-density wiring portion are reduced. By preventing the deterioration of the flatness due to the erosion, a highly reliable buried pattern of the metal film can be formed.