[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004319669A - Power transformer - Google Patents

Power transformer Download PDF

Info

Publication number
JP2004319669A
JP2004319669A JP2003110031A JP2003110031A JP2004319669A JP 2004319669 A JP2004319669 A JP 2004319669A JP 2003110031 A JP2003110031 A JP 2003110031A JP 2003110031 A JP2003110031 A JP 2003110031A JP 2004319669 A JP2004319669 A JP 2004319669A
Authority
JP
Japan
Prior art keywords
annular core
power transformer
conductor
uncut
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110031A
Other languages
Japanese (ja)
Inventor
Atsushi Fujii
淳 藤井
Sadami Kubota
定見 窪田
Shigeru Hasumura
茂 蓮村
Kenji Koyanagi
研次 小柳
Shinichi Takase
真一 高瀬
Fumiaki Ikuta
文昭 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Proterial Ltd
Original Assignee
Neturen Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Hitachi Metals Ltd filed Critical Neturen Co Ltd
Priority to JP2003110031A priority Critical patent/JP2004319669A/en
Publication of JP2004319669A publication Critical patent/JP2004319669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transformer using a uncut annular core of small leakage flux in which formation of wire winding is easy in a power transformer for large current, the matter of magnetic property deterioration looked at a cut core is not generated, and simplification of wire winding structure is possible. <P>SOLUTION: A power transformer is provided with the uncut annular core, a primary winding wound around the annular core, and a secondary winding constituted in one turn. The secondary winding is provided with conductor penetrating interior of the annular core, and two cylindrical bottomed conductors. The cylindrical bottomed conductors accommodate the annular core so as to be pinched on both sides of the annular core from longitudinal, and are electrically connected with both ends of the conductors penetrating interior of the annular core. On the periphery of the annular core parallel with longitudinal, it is a power transformer insulated electrically mutually. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種インバータ、DC−DCコンバータ、スイッチング電源等に用いられるパワートランスに関するものである。
【0002】
【従来の技術】
パワートランスは環状コア、1次巻線、2次巻線から構成されるが、環状コア(ノーカット環状コア)に巻き回される1次巻線及び2次巻線は、漏れ磁束を極力小さくして結合を高めるために、図7に一例を示す2次巻線を1次巻線で挟みこんで巻き回す構造の、所謂サンドイッチ構造にするなど、巻線構造に特別の検討がなされている(例えば、特許文献1参照)。
サンドイッチ構造は巻線構造が複雑であり、巻線に用いる導線の径が小さいパワートランスには適用できるものの巻き回しに多くの工数を必要とする。また、導線の径が大きく、または多数本の導線を巻き回すことを要する大電流用のパワートランスには適用が困難である。
そこで、現在は上述の環状コア(ノーカット環状コア)を2以上の部材に分割したカットコアを用い、導線を予め巻線形状に加工した後、カットコアと組み合わせてパワートランスとすることが広く行われている。
【0003】
ところで、パワートランスに適用されるコアの代表例として、Mn−Znフェライトコアや、溶融合金を急冷凝固して製造されるアモルファス磁性材料、及びナノ結晶磁性材料からなる金属磁性薄帯を巻回したコアがある。ナノ結晶磁性材料とは組織の少なくとも50%以上が結晶粒径50μm以下のナノ結晶組織からなる軟磁性材料であり、ナノ結晶組織を発現可能な組成の非晶質磁性材料を、結晶化温度以上で熱処理することにより製造される材料である(例えば、特許文献2参照)。
【0004】
これらのうち特にアモルファス磁性材料等の金属磁性薄帯を巻回した環状コアは、大電流、大容量を扱うパワートランス用のコアとして広く使用されている。
大電流、大容量を扱うパワートランス用の環状コアは寸法の大きなものが必要となるが、Mn−Znフェライトにおいてはコアを整形するためのプレス機の制約等、技術面で問題を抱えており、環状コアの大型化の要求に対しては限界がある。これに対し、アモルファス磁性材料、及びナノ結晶磁性材料からなる環状コアは、金属磁性薄帯を巻き回してなるため、形状的自由度が高く、環状コアの大型化に容易に対応できるからである。さらに、アモルファス磁性材料、及びナノ結晶磁性材料は、小型化に必要な高飽和磁束密度(Mn−Znフェライトの2倍以上)と低ロスを兼ね備えており、特性面においてもパワートランス用コアとして好適な材料である。
【0005】
【特許文献1】
特開2001−118733号公報
【特許文献2】
特開平1−79342号公報
【0006】
【発明が解決しようとする課題】
上述したようにアモルファス磁性材料等の金属磁性薄帯は、パワートランス用の材料として適するものの、金属磁性薄帯の厚さは数十ミクロンであり、単にこれを巻き回すだけではMn−Znフェライトのようなバルク材と比べて強度が低く、また、切断して上述ノーカット環状コアに加工することは出来ない。
【0007】
そのため金属磁性薄帯を巻き回してなるカットコアは、環状コアを切断するために予め作製したノーカット環状コアを樹脂含浸後、乾燥、固化する必要があるが、このとき、金属磁性薄帯の各層間に入り込んだ樹脂の乾燥時の残留応力により、コア損失が増加するという別の問題を生じる。また、切断後、一対をなす磁心の接合部が精度良く合わさるように切断面を研磨する必要があり、その面で隣接する薄帯間に絶縁破壊が生じることにより渦電流が増大し、コア損失が増加する問題があった。さらに、コア接合部より発生した漏れ磁束により巻線の銅損が増加し、パワートランスの損失を増加させる問題もあった。
さらに、カットコアとすることによりコア損失増だけでなく、製作工数の増大に伴うコストの増大も招く問題があった。
【0008】
本発明は、大電流用のパワートランスにおいても巻線の形成が容易であり、またカットコアに見られる磁気特性低下の問題も生じない、巻線構造の簡素化が可能で、漏れ磁束の小さいノーカット環状コアを用いたパワートランスを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は、2次巻線に、トランス全体を包み込むべく2つの筒状導体、または1つの筒状導体と1つの蓋状導体からなる構造を適用することで、上述の問題を解消できることを見いだし本発明に到達した。
【0010】
すなわち本発明は、ノーカット環状コアと該ノーカット環状コアに巻回された1次巻線と、1ターンで構成される2次巻線とを具備するパワートランスであって、前記2次巻線は、ノーカット環状コアの内側を貫通する導体と、2つの有底の筒状導体を具備し、該筒状導体は前記ノーカット環状コアを軸方向から挟みこむ如く収納し、且つ前記ノーカット環状コアの内側を貫通する導体の両端で各々電気的に接続され、軸方向と平行なノーカット環状コアの外周面上では互いに電気的に絶縁されているパワートランスである。
【0011】
またもう1つの本発明は、ノーカット環状コアと該ノーカット環状コアに巻回された1次巻線と、1ターンで構成される2次巻線とを具備するパワートランスであって、前記2次巻線は、ノーカット環状コアの内側を貫通する導体と、1つの有底の筒状導体と1つの蓋を具備し、該筒状導体と蓋状導体は前記ノーカット環状コアを軸方向から挟みこむ如く収納し、且つ前記ノーカット環状コアの内側を貫通する導体の両端で各々電気的に接続され、それ以外では互いに電気的に絶縁されているパワートランスである。
【0012】
上記の本発明において、前記2つの筒状導体、または1つの筒状導体と1つの蓋状導体は互いに径が異なり、ノーカット環状コアの外周面上で重複することが好ましい。
また、前記ノーカット環状コアはアモルファス磁性材料、ナノ結晶磁性材料の何れかからなることが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図を用いて説明する。
図1は本発明のパワートランスの一例を示したものである。図1に示すように、本発明のパワートランスはノーカット環状コア1と、ノーカット環状コア1に巻回した1次巻線2と、貫通用導体3及び筒状導体4a,4bで構成される2次巻線からなる。
【0014】
図2に図1で使用した、1次巻線を巻回したノーカット環状コアの模式図を示す。また、図3に2次巻線の分解図を示す。
【0015】
本発明のパワートランスでは、図3に示すように、2次巻線はノーカット環状コアの内径部を貫通して1ターンを構成する貫通用導体3と、図2に示されるノーカット環状コア及び1次巻線を包み込むべく2つの有底の筒状導体4a及び4bで構成される。貫通用導体3と、筒状導体4a及び4bは貫通用導体の両端でビス等を用いて固定し、前記2つの筒状導体は環状コア外周側で互いに電気的に絶縁されることにより1ターンを構成している。
【0016】
このように、本発明では1次巻線のみが単独で巻回された環状コアを筒状導体により両面から挟みこむ形で構成されるため、特許文献1で提案されるような複雑な巻線構造と比べて極めて簡素である。同時に、本発明では貫通用導体と筒状導体により形成される2次巻線は1次巻線及びノーカット環状コアをほぼ完全に包み込んでいる為、シールド体としての作用が高く、2次巻線外部への磁束の漏れが少ない低漏洩磁束構造が可能となる。
【0017】
また、本発明では環状コアに巻き回して形成するのは1次巻線のみであるので、径の大きい導線を用いる場合でも環状コアに直接巻き回すことが可能である。従って、2次巻線側の定格電流が100A以上となる大電流用のパワートランスのように径の大きい導線を用いる場合でも、ノーカット環状コアの適用が可能となり、コアのカットコアへの加工は不要となり工数を低減することができる。
【0018】
本発明では既に述べたように2次巻線外部への磁束の漏れが少ない低漏洩磁束構造が可能であるが、同時に外部からの磁束に対しても影響を受け難いという利点も有する。
例えば、図4に示されるように2次巻線を構成する筒状導体に引き出し線5a、5bを取り付け、負荷接続用端子6に図6に示されるインダクタンス負荷を接続して大電流を流した場合には、引き出し線5a、5bから漏れ磁束が発生することになる。そして、この漏れ磁界が直接コアに作用した場合には、コアに面内渦電流損失を発生する。これに対して本発明は、コアが2次巻線によって外部からシールドされる構造であり、漏れ磁束はコアの外周面と直交しないように2次巻線を構成する筒状導体等により遮断されるため、コアに面内渦電流損失が発生する心配が少なく、発熱も最小限に抑えることが出来る。
【0019】
特に、2次巻線を構成する2つの筒状導体において、図1の様に2つの筒状導体の径が互いに異なり、軸方向と平行なノーカット環状コアの外周面上で重複するように構成した場合には、よりシールド体としての効果と、引き出し線から発生する漏れ磁束遮断効果がより高まり、好ましい。
【0020】
以上のように、本発明のトランスは、簡易な構造で低漏洩磁束構造が可能なため、コスト低減にも有効である。
【0021】
さらに、本発明のパワートランスは、以下の利点も有す。
(1)薄型構造が容易に実現でき、これにより放熱性の向上が可能である。
(2)1次巻線及びコアの熱を放熱シート等を1次巻線と筒状導体の間に挿入することにより容易に放熱することが可能である。
(3)コアを冷却する冷却機構を設ける場合には小型のコアの使用が可能となるが、2次巻線は水冷パイプ等の冷却パイプを取り付けるのみで冷却機構としても兼用できるので、パワートランスの小型化が可能である。
【0022】
以上に述べた効果は、2次巻線を図5に一例を示すように、貫通用導体3と1つの有底の筒状導体4aと、1つの蓋状導体7から構成した場合にも、1次巻線及びノーカット環状コアをほぼ完全に包み込める為、シールド体としての作用が高く、2次巻線の外部への磁束の漏れが少ない低漏洩磁束構造となり、且つ、2次巻線の引き出し線から発生する漏れ磁束が、コアの外周面および内周面と直交することを防いでくれるため、この漏れ磁束により前記コアに面内渦電流損失が発生する心配が少なく、同様に達成することができる。
【0023】
本発明のパワートランスは、アモルファス磁性材料、ナノ結晶磁性材料の金属磁性薄帯を巻回した環状コアを用いる場合には、特に有効である。
上記の金属磁性薄帯はMn−Znフェライト等と比べて電気抵抗が小さく、漏れ磁束による渦電流損失の増大を招きやすい。これに対して本発明のパワートランスの構造は、漏れ磁束に対するシールド性が高いので極めて有効となる。また、前記材料は飽和磁束密度がMn−Znフェライトの2倍以上と高く、コアロスが小さいためトランスの小型化に貢献できるものである。
加えて、アモルファス合金薄帯等の金属磁性薄帯からなる環状コアをカットコアとして用いる場合には、初めに述べたように多数の問題を生じていたが、ノーカット環状コアとして用いることができる本発明であれば、金属磁性薄帯の優れた磁気特性を損なうことなく大電流用のパワートランスに適用することができる。
【0024】
本発明のパワートランスを電源装置に使用した場合には、電源装置の小型化が可能であり、しかも漏れ磁束を抑制することができるため、輻射ノイズ対策にも有効で、効率の優れたものとなる。さらに、本発明のパワートランスを使用することで低コストの電源装置の製作が可能となる。
【0025】
【発明の効果】
以上説明したように、本発明によれば、軟磁性合金薄帯の優れた磁気特性を最大限に発揮させることのできるノーカット環状コアを用い、小型、低損失、低漏洩磁束構造、低輻射ノイズのパワートランスが得られ、これを用いた小型、高効率、低ノイズで信頼性の高い電源装置等を製作できる。さらに、比較的簡単な構造で高性能のパワートランスを構成できるため、工数が少なく、低コストで実用性のあるパワートランスを構成でき、その効果は極めて大きい。
【図面の簡単な説明】
【図1】本発明の一例を示すパワートランスの模式図。
【図2】本発明の一例を示すパワートランスに使用した、1次巻線巻き回し後の環状コアの模式図。
【図3】本発明の一例を示すパワートランスに使用した2次巻線の分解図。
【図4】本発明の一例を示すパワートランスに引き出し線を取り付けたパワートランスの模式図。
【図5】本発明の一例を示すパワートランスに使用した2次巻線の分解図。
【図6】本発明のパワートランスに接続するインダクタンス負荷の模式図。
【図7】従来のパワートランスの一例を示す模式図。
【符号の説明】
1.ノーカット環状コア、2.1次巻線、3.貫通用導体、4a,4b.筒状導体、5a,5b.引き出し線、6.負荷接続用端子、7.蓋状導体、8.2次巻線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power transformer used for various inverters, DC-DC converters, switching power supplies, and the like.
[0002]
[Prior art]
The power transformer is composed of an annular core, a primary winding, and a secondary winding. The primary winding and the secondary winding wound around the annular core (uncut annular core) minimize leakage magnetic flux. In order to enhance the coupling, a special study has been made on the winding structure, such as a so-called sandwich structure in which a secondary winding is sandwiched between primary windings as shown in FIG. For example, see Patent Document 1).
The sandwich structure has a complicated winding structure, and can be applied to a power transformer having a small diameter of a conductive wire used for winding, but requires many man-hours for winding. Further, it is difficult to apply the present invention to a power transformer for a large current which requires a large diameter conductor or a large number of conductors to be wound.
Therefore, at present, it is widely practiced to use a cut core obtained by dividing the above-mentioned annular core (uncut annular core) into two or more members, process the conductor in advance into a winding shape, and combine the cut wire with the cut core to form a power transformer. Has been done.
[0003]
By the way, as a typical example of a core applied to a power transformer, a Mn-Zn ferrite core, an amorphous magnetic material manufactured by rapidly solidifying a molten alloy, and a metal magnetic ribbon made of a nanocrystalline magnetic material are wound. There is a core. The nanocrystalline magnetic material is a soft magnetic material having a nanocrystalline structure in which at least 50% or more of the structure has a crystal grain size of 50 μm or less. (For example, see Patent Document 2).
[0004]
Among them, an annular core formed by winding a metal magnetic ribbon such as an amorphous magnetic material is widely used as a core for a power transformer which handles a large current and a large capacity.
Large cores for power transformers that handle large currents and large capacities require large dimensions.However, Mn-Zn ferrite has technical problems, such as restrictions on presses for shaping the core. However, there is a limit to the demand for increasing the size of the annular core. On the other hand, the annular core made of an amorphous magnetic material and a nanocrystalline magnetic material is formed by winding a metal magnetic ribbon, and thus has a high degree of freedom in shape and can easily cope with an increase in the size of the annular core. . Furthermore, amorphous magnetic materials and nanocrystalline magnetic materials have both high saturation magnetic flux density (more than twice as large as Mn-Zn ferrite) and low loss required for miniaturization, and are also suitable for power transformer cores in terms of characteristics. Material.
[0005]
[Patent Document 1]
JP 2001-118733 A [Patent Document 2]
JP-A-1-79342
[Problems to be solved by the invention]
As described above, a metal magnetic ribbon such as an amorphous magnetic material is suitable as a material for a power transformer, but the thickness of the metal magnetic ribbon is several tens of microns. The strength is lower than such a bulk material, and it cannot be cut and processed into the above-mentioned uncut annular core.
[0007]
Therefore, the cut core formed by winding the metal magnetic ribbon is required to be dried and solidified after impregnating the resin with the uncut annular core prepared in advance in order to cut the annular core. Another problem is that the core loss increases due to the residual stress of the resin that has penetrated between the layers during drying. Also, after cutting, it is necessary to polish the cut surface so that the joints of the pair of magnetic cores can be accurately fitted, and eddy current increases due to dielectric breakdown between adjacent ribbons on that surface, resulting in increased core loss. There was a problem of increasing. Furthermore, there is a problem that the copper loss of the winding increases due to the leakage magnetic flux generated from the core joint, and the loss of the power transformer increases.
Furthermore, the use of cut cores causes not only an increase in core loss but also an increase in cost due to an increase in the number of manufacturing steps.
[0008]
According to the present invention, it is easy to form a winding even in a power transformer for a large current, and there is no problem of a decrease in magnetic characteristics seen in a cut core. An object is to provide a power transformer using an uncut annular core.
[0009]
[Means for Solving the Problems]
The present inventors can solve the above-mentioned problem by applying a structure composed of two cylindrical conductors or one cylindrical conductor and one lid-shaped conductor to enclose the entire transformer in the secondary winding. And arrived at the present invention.
[0010]
That is, the present invention is a power transformer including an uncut annular core, a primary winding wound around the uncut annular core, and a secondary winding composed of one turn, wherein the secondary winding is A conductor penetrating the inside of the uncut annular core, and two bottomed tubular conductors, wherein the tubular conductor houses the uncut annular core so as to sandwich the same from the axial direction, and the inside of the uncut annular core. The power transformers are electrically connected at both ends of a conductor penetrating through them, and are electrically insulated from each other on the outer peripheral surface of the uncut annular core parallel to the axial direction.
[0011]
Still another aspect of the present invention is a power transformer including an uncut annular core, a primary winding wound around the uncut annular core, and a secondary winding composed of one turn. The winding includes a conductor penetrating the inside of the uncut annular core, one bottomed tubular conductor and one lid, and the tubular conductor and the lid conductor sandwich the uncut annular core from the axial direction. The power transformer is housed in such a manner, and is electrically connected at both ends of a conductor penetrating the inside of the uncut annular core, and is otherwise electrically insulated from each other.
[0012]
In the present invention described above, it is preferable that the two tubular conductors, or the one tubular conductor and the one lid conductor, have different diameters and overlap on the outer peripheral surface of the uncut annular core.
Preferably, the uncut annular core is made of either an amorphous magnetic material or a nanocrystalline magnetic material.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of the power transformer of the present invention. As shown in FIG. 1, the power transformer of the present invention includes an uncut annular core 1, a primary winding 2 wound around the uncut annular core 1, a through conductor 3, and tubular conductors 4a and 4b. It consists of a secondary winding.
[0014]
FIG. 2 is a schematic view of the uncut annular core wound with a primary winding used in FIG. FIG. 3 is an exploded view of the secondary winding.
[0015]
In the power transformer according to the present invention, as shown in FIG. 3, the secondary winding penetrates the inner diameter of the uncut annular core and forms one turn of the through conductor 3, and the uncut annular core and 1 shown in FIG. It is composed of two bottomed tubular conductors 4a and 4b to enclose the next winding. The penetrating conductor 3 and the cylindrical conductors 4a and 4b are fixed at both ends of the penetrating conductor using screws or the like, and the two cylindrical conductors are electrically insulated from each other on the outer peripheral side of the annular core to make one turn. Is composed.
[0016]
As described above, in the present invention, since the annular core in which only the primary winding is singly wound is sandwiched from both sides by the cylindrical conductor, a complicated winding as proposed in Patent Document 1 is provided. It is extremely simple compared to the structure. At the same time, in the present invention, the secondary winding formed by the penetrating conductor and the cylindrical conductor almost completely surrounds the primary winding and the uncut annular core, so that the secondary winding is highly effective as a shield body. A low-leakage magnetic flux structure with little leakage of magnetic flux to the outside is made possible.
[0017]
Further, in the present invention, since only the primary winding is formed by winding around the annular core, it is possible to directly wind around the annular core even when a large-diameter conductive wire is used. Therefore, even when a large-diameter conductor such as a power transformer for a large current whose rated current on the secondary winding side is 100 A or more is used, an uncut annular core can be applied. It becomes unnecessary and the number of steps can be reduced.
[0018]
According to the present invention, as described above, a low-leakage magnetic flux structure with little leakage of magnetic flux to the outside of the secondary winding is possible, but also has an advantage that it is hardly affected by external magnetic flux.
For example, as shown in FIG. 4, lead wires 5a and 5b were attached to the cylindrical conductor constituting the secondary winding, and the inductance load shown in FIG. In this case, leakage magnetic flux is generated from the lead lines 5a and 5b. When this leakage magnetic field acts directly on the core, an in-plane eddy current loss occurs in the core. On the other hand, the present invention has a structure in which the core is shielded from the outside by the secondary winding, and the leakage magnetic flux is blocked by a cylindrical conductor or the like constituting the secondary winding so as not to be orthogonal to the outer peripheral surface of the core. Therefore, there is little concern that in-plane eddy current loss occurs in the core, and heat generation can be minimized.
[0019]
In particular, in the two cylindrical conductors constituting the secondary winding, as shown in FIG. 1, the diameters of the two cylindrical conductors are different from each other, and are overlapped on the outer peripheral surface of the uncut annular core parallel to the axial direction. In this case, the effect as a shield body and the effect of blocking leakage magnetic flux generated from the lead wire are further enhanced, which is preferable.
[0020]
As described above, since the transformer of the present invention can have a low leakage magnetic flux structure with a simple structure, it is effective for cost reduction.
[0021]
Further, the power transformer of the present invention has the following advantages.
(1) A thin structure can be easily realized, thereby improving heat dissipation.
(2) The heat of the primary winding and the core can be easily dissipated by inserting a heat dissipation sheet or the like between the primary winding and the cylindrical conductor.
(3) When a cooling mechanism for cooling the core is provided, a small-sized core can be used. However, since the secondary winding can be used also as a cooling mechanism simply by attaching a cooling pipe such as a water-cooled pipe, a power transformer is used. Can be reduced in size.
[0022]
The effect described above can be obtained even when the secondary winding is constituted by the through conductor 3, one bottomed cylindrical conductor 4 a, and one lid-shaped conductor 7 as shown in an example in FIG. 5. Since the primary winding and the uncut annular core can be almost completely wrapped, the function as a shield body is high, and a low leakage magnetic flux structure with little leakage of magnetic flux to the outside of the secondary winding is obtained, and the secondary winding is drawn out. Since the leakage magnetic flux generated from the wire prevents the outer peripheral surface and the inner peripheral surface of the core from being orthogonal to each other, there is little concern that in-plane eddy current loss occurs in the core due to the leakage magnetic flux, and the same can be achieved. Can be.
[0023]
The power transformer of the present invention is particularly effective when an annular core formed by winding a metal magnetic ribbon of an amorphous magnetic material or a nanocrystalline magnetic material is used.
The above-described metal magnetic ribbon has a smaller electric resistance than Mn-Zn ferrite or the like, and tends to cause an increase in eddy current loss due to leakage magnetic flux. On the other hand, the structure of the power transformer of the present invention is very effective because it has a high shielding property against magnetic flux leakage. In addition, the material has a saturation magnetic flux density as high as twice or more that of Mn-Zn ferrite, and has a small core loss, which can contribute to downsizing of a transformer.
In addition, when an annular core made of a magnetic metal ribbon such as an amorphous alloy ribbon is used as a cut core, a number of problems have occurred as described above. According to the present invention, the present invention can be applied to a power transformer for a large current without impairing the excellent magnetic properties of the metal magnetic ribbon.
[0024]
When the power transformer of the present invention is used in a power supply device, the power supply device can be reduced in size and the leakage magnetic flux can be suppressed. Become. Further, by using the power transformer of the present invention, a low-cost power supply device can be manufactured.
[0025]
【The invention's effect】
As described above, according to the present invention, a small-sized, low-loss, low-leakage magnetic flux structure, and low radiation noise are obtained by using a non-cut annular core capable of maximizing the excellent magnetic properties of a soft magnetic alloy ribbon. A power transformer and the like can be manufactured using the power transformer, which is small, highly efficient, low noise and highly reliable. Further, since a high-performance power transformer can be configured with a relatively simple structure, a practical and low-cost power transformer can be configured with a small number of steps, and the effect is extremely large.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a power transformer showing an example of the present invention.
FIG. 2 is a schematic view of an annular core after winding a primary winding used in a power transformer according to an example of the present invention.
FIG. 3 is an exploded view of a secondary winding used in a power transformer showing an example of the present invention.
FIG. 4 is a schematic diagram of a power transformer in which a lead wire is attached to a power transformer according to an example of the present invention.
FIG. 5 is an exploded view of a secondary winding used in a power transformer showing an example of the present invention.
FIG. 6 is a schematic diagram of an inductance load connected to the power transformer of the present invention.
FIG. 7 is a schematic diagram showing an example of a conventional power transformer.
[Explanation of symbols]
1. 2. Uncut annular core, 2.1 primary winding, Penetrating conductor, 4a, 4b. Cylindrical conductors, 5a, 5b. 5. Leader lines, 6. Load connection terminal, Lid-shaped conductor, 8. Secondary winding

Claims (4)

ノーカット環状コアと該ノーカット環状コアに巻回された1次巻線と、1ターンで構成される2次巻線とを具備するパワートランスであって、前記2次巻線は、ノーカット環状コアの内側を貫通する導体と、2つの有底の筒状導体を具備し、該筒状導体は前記ノーカット環状コアを軸方向から挟みこむ如く収納し、且つ前記ノーカット環状コアの内側を貫通する導体の両端で各々電気的に接続され、軸方向と平行なノーカット環状コアの外周面上では互いに電気的に絶縁されていることを特徴とするパワートランス。A power transformer comprising an uncut annular core, a primary winding wound around the uncut annular core, and a secondary winding composed of one turn, wherein the secondary winding is formed of the uncut annular core. A conductor penetrating the inside, and two bottomed tubular conductors, wherein the tubular conductor is housed so as to sandwich the uncut annular core from the axial direction, and a conductor that penetrates the inside of the uncut annular core. A power transformer characterized in that both ends are electrically connected to each other, and are electrically insulated from each other on an outer peripheral surface of an uncut annular core parallel to an axial direction. ノーカット環状コアと該ノーカット環状コアに巻回された1次巻線と、1ターンで構成される2次巻線とを具備するパワートランスであって、前記2次巻線は、ノーカット環状コアの内側を貫通する導体と、1つの有底の筒状導体と1つの蓋状導体を具備し、該筒状導体と蓋状導体は前記ノーカット環状コアを軸方向から挟みこむ如く収納し、且つ前記ノーカット環状コアの内側を貫通する導体の両端で各々電気的に接続され、それ以外では互いに電気的に絶縁されていることを特徴とするパワートランス。A power transformer comprising an uncut annular core, a primary winding wound around the uncut annular core, and a secondary winding composed of one turn, wherein the secondary winding is formed of the uncut annular core. A conductor penetrating the inside, one bottomed cylindrical conductor and one lid-shaped conductor are provided, and the cylindrical conductor and the lid-shaped conductor are housed so as to sandwich the uncut annular core from the axial direction, and A power transformer characterized by being electrically connected at both ends of a conductor penetrating the inside of an uncut annular core, and being electrically insulated from each other at other ends. 前記2つの筒状導体、または1つの筒状導体と1つの蓋状導体は互いに径が異なり、ノーカット環状コアの外周面上で重複することを特徴とする請求項1又は2に記載のパワートランス。The power transformer according to claim 1, wherein the two tubular conductors, or one tubular conductor and one lid conductor, have different diameters and overlap on an outer peripheral surface of the uncut annular core. . 前記ノーカット環状コアはアモルファス磁性材料、ナノ結晶磁性材料の何れかからなることを特徴とする請求項1乃至3の何れかに記載のパワートランス。4. The power transformer according to claim 1, wherein the uncut annular core is made of one of an amorphous magnetic material and a nanocrystalline magnetic material.
JP2003110031A 2003-04-15 2003-04-15 Power transformer Pending JP2004319669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110031A JP2004319669A (en) 2003-04-15 2003-04-15 Power transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110031A JP2004319669A (en) 2003-04-15 2003-04-15 Power transformer

Publications (1)

Publication Number Publication Date
JP2004319669A true JP2004319669A (en) 2004-11-11

Family

ID=33470994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110031A Pending JP2004319669A (en) 2003-04-15 2003-04-15 Power transformer

Country Status (1)

Country Link
JP (1) JP2004319669A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270272A (en) * 2007-04-16 2008-11-06 Densei Lambda Kk Inductance element
JP2009231787A (en) * 2008-02-26 2009-10-08 Denso Corp Transformer
US9156096B2 (en) 2011-05-18 2015-10-13 Disco Corporation Tool cutting apparatus and tool cutting method for workpiece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270272A (en) * 2007-04-16 2008-11-06 Densei Lambda Kk Inductance element
JP2009231787A (en) * 2008-02-26 2009-10-08 Denso Corp Transformer
US9156096B2 (en) 2011-05-18 2015-10-13 Disco Corporation Tool cutting apparatus and tool cutting method for workpiece

Similar Documents

Publication Publication Date Title
JP4482477B2 (en) Combined reactor winding structure
JP2012089838A (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
CN1108790A (en) Inductive element
US7142085B2 (en) Insulation and integrated heat sink for high frequency, low output voltage toroidal inductors and transformers
JP2010147106A (en) Reactor
JP2007324380A (en) Common-mode choke coil for high-frequency waves
JP2016207507A (en) Noise reduction cable
JP2004319669A (en) Power transformer
EP3564975A1 (en) High-frequency transformer
JP2001093721A (en) High-temperature superconducting magnet
JP2007142339A (en) Thunder resistance reinforcing type insulation transformer for low voltage
JP5267802B2 (en) Reactor assembly
JP2019079838A (en) Transformer device
JP4722373B2 (en) Welding transformer
JP4767468B2 (en) Shielded superconducting magnet joint
JPH11144977A (en) Transformer
CN221175927U (en) Inductor(s)
JP2001257120A (en) Multiple tubular choke coil.
JPH09330824A (en) Inductor having fuse function
JPH03280409A (en) Flat transformer
US10124685B2 (en) Power reception device having a coil formed like a flat plate
EP0875908A1 (en) High frequency transformer
JPH10172841A (en) Choke coil and noise filter using the coil
JP2001244108A (en) Superconducting coils for induction equipment
JP2007173263A (en) Edgewise winding electromagnetic coil and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090612