[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004316978A - Heating cooker - Google Patents

Heating cooker Download PDF

Info

Publication number
JP2004316978A
JP2004316978A JP2003109030A JP2003109030A JP2004316978A JP 2004316978 A JP2004316978 A JP 2004316978A JP 2003109030 A JP2003109030 A JP 2003109030A JP 2003109030 A JP2003109030 A JP 2003109030A JP 2004316978 A JP2004316978 A JP 2004316978A
Authority
JP
Japan
Prior art keywords
signal
failure
temperature
amplified signal
cooking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003109030A
Other languages
Japanese (ja)
Inventor
Nobuaki Ota
宣章 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003109030A priority Critical patent/JP2004316978A/en
Publication of JP2004316978A publication Critical patent/JP2004316978A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Ovens (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating cooker having uniformly good resolution of a temperature range to be measured without requiring an amplification rate to be switched and complicating circuit construction. <P>SOLUTION: An infrared detecting element 6 detects an infrared ray emitted from a heated object to detect the temperature of the heated object. It outputs an element signal V6 to a control circuit 7 and an amplification circuit 8. The amplification circuit 8 amplifies the output of the infrared detecting element 6 and gives an amplification signal V8 to the control circuit 7. The control circuit 7 uses one or both of the element signal V6 output by the infrared detecting element 6 and the amplification signal V8 output by the amplification circuit 8 for heating control. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線検出素子を備えて被加熱物の温度検出する加熱調理器に関する。
【0002】
【従来の技術】
従来より、加熱調理器例えば電子レンジにおいては、加熱室内に収容された食品(被加熱物)から放射される赤外線を検出する赤外線検出素子を備え、この赤外線検出素子の出力を増幅回路により増幅し、その増幅回路の出力に基づいて食品の温度(表面温度)を検出するものがある(例えば特許文献1)。また、分解能を上げるために増幅回路の増幅率を切り替えるようにしたものがある(例えば特許文献2)。
【0003】
【特許文献1】
特開2002−181336号公報
【0004】
【特許文献2】
特開2002−333141号公報
【0005】
【発明が解決しようとする課題】
しかし、増幅回路の出力信号(増幅信号)により全温度範囲を検出しようとすると、信号が飽和しない程度の増幅率にしなければならず、しかも出力特性は直線的ではないため、分解能の良い温度領域と悪い領域とができてしまう問題があった。
また、増幅回路の増幅率を切り替える構成では、回路が複雑となる欠点があった。
【0006】
本発明は上記事情に鑑みてなされたものであり、その目的は、測定しようとする温度範囲の分解能が一様に良く、しかも増幅率切替を要せずに回路構成が複雑となることがない加熱調理器を提供するにある。
【0007】
【課題を解決するための手段】
本発明は次の点に着目してなされている。すなわち、制御手段において温度検出のために受付ける入力信号を電圧信号で受け付けることが通常である。そして、その電圧レベルの範囲内で温度を検出することになる。この場合、増幅手段からの増幅信号は低温度域から中温度域は温度に応じて良好に変化するが、高温度域になると出力信号レベルが飽和(一定)して温度検出が困難となる。一方、赤外線検出素子からの素子信号は中温度域から高温度域において温度に応じて良好に変化する。
【0008】
従って、請求項1の発明は、被加熱物を加熱する加熱手段と、
被加熱物から放射される赤外線を検出して被加熱物の温度を検出する赤外線検出素子と、
この赤外線検出素子の出力を増幅する増幅手段と、
前記赤外線検出素子が出力する素子信号と前記増幅手段が出力する増幅信号とのうちのいずれか一方または両方の信号を用いて加熱制御を行う制御手段とを備えてなるところに特徴を有する。
【0009】
これによれば、低温度域から中温度域までの温度検出に好適する増幅手段からの増幅信号と、中温度域から高温度域までの温度検出に好適する赤外線検出素子からの素子信号とのうちのいずれか一方または両方の信号を用いて加熱制御を行うから、測定しようとする温度範囲の分解能が一様に良く、しかも増幅率切替を要せずに回路構成が複雑となることがない。
【0010】
調理メニューによっては温度測定範囲が異なるものである。この場合、調理メニューに応じて素子信号と増幅信号とを選択することが好ましい。
この点、請求項2の発明は、調理メニュー選択手段を備え、制御手段が、この調理メニュー選択手段により選択された調理メニューにより素子信号と増幅信号とを選択して使用するところに特徴を有し、これによれば、調理メニューに応じて素子信号と増幅信号とを選択して使用するから、調理メニューに合った温度検出の分解能で温度検出ができる。
【0011】
増幅信号が高温度域を示す信号レベルであると飽和電圧に近く温度検出が難しいものである。この場合には増幅信号は用いずに素子信号を用いた方が良いものである。また、素子信号が低温度域を示す信号レベルである場合も温度検出が難しいものである。この場合には素子信号は用いずに増幅信号を用いた方が良いものである。
この点、請求項3の発明は、制御手段が、素子信号及び増幅信号の少なくともいずれか一方のレベルに基づいて素子信号と増幅信号とのいずれかを選択して使用するようになっているから、全温度領域において、高分解能で温度を検出できる。
【0012】
増幅手段としては増幅回路を用いるのが一般的であり、この場合、増幅回路の特性のばらつき(例えば抵抗値のばらつき等)により増幅信号にずれが生じることがある。また、中温度域では素子信号及び増幅信号の両方により温度検出可能であるから、素子信号の信号レベルが示す温度と増幅信号の信号レベルが示す温度とが若干異なる場合には、増幅回路(増幅手段)の増幅信号にずれがあることが判る。
この点、請求項4の発明においては、素子信号による検出温度と増幅信号による検出温度に応じて増幅信号による検出温度を補正する補正手段を備えているから、増幅手段の増幅信号のずれを補正することができて、正確な温度検出ができる。
【0013】
また、素子信号及び増幅信号の両方により温度検出可能な温度域において、素子信号の信号レベルが示す温度と増幅信号の信号レベルが示す温度とを比較して大幅に異なる場合には、赤外線検出素子或いは増幅手段の故障であると判断可能である。この場合、素子信号の信号レベルが示す温度と増幅信号の信号レベルが示す温度とを比較するということは、素子信号の信号レベルと増幅信号の信号レベルとを比較していることと同等である。
【0014】
この点、請求項5においては、素子信号による検出温度と増幅信号による検出温度とを比較して赤外線検出素子あるいは増幅手段の故障の有無を判定する故障判定手段を備えたから、赤外線検出素子あるいは増幅手段の故障の有無を判定することができる。
【0015】
請求項6の発明は、素子信号に対応する素子信号用故障判定値を有すると共に、増幅信号に対応する増幅信号用故障判定値を有し、素子信号と素子信号用故障判定値とを比較して赤外線検出素子の故障を判定し、増幅信号と増幅信号用故障判定値とを比較して増幅手段の故障を判定する個別故障判定手段を備えたところに特徴を有し、これによれば、赤外線検出素子の故障と増幅手段の故障とを個別に判定することができる。
【0016】
請求項7の発明は、故障報知手段を備えると共に、赤外線検出素子の故障と増幅手段の故障と両方の故障とで報知形態を変えて前記故障報知手段に報知させる報知制御手段とを備えたところに特徴を有し、これによれば、赤外線検出素子の故障と増幅手段の故障と両方の故障とを区別して報知でき、便利である。
【0017】
請求項8の発明は、増幅手段のみの故障が判定されたときには素子信号に基づいて加熱調理を行い、調理終了後に故障報知を行い、赤外線検出素子の故障が判定されたときにはその判定時に故障報知を行い調理を終了するところに特徴を有する。
【0018】
増幅手段のみが故障した場合には、赤外線検出素子の素子信号のみでも、分解能は低くなるが、温度検出ができないわけではないので、非常時ということで、この素子信号を使用して温度検出を行い調理を実行することができる。そして、調理終了後に故障報知を行うから、増幅手段の故障を報知できて便利である。さらに、赤外線検出素子が故障したときには、温度検出ができないので、赤外線検出素子の故障を報知して調理を終了する。
【0019】
【発明の実施の形態】
以下、本発明の一実施例について説明する。まず、図2には、加熱調理器として電子レンジが示されている。この図2において、キャビネット1は前面が開口した矩形箱状をなしており、その内部に前面が開口した調理室2が設けられていると共に、前面部に調理室2の開口部を開閉するための扉3が回動可能に設けられている。また、キャビネット1内には、調理室2の右側方に位置させて機械室(図示せず)が形成されていて、この機械室内に、調理室2内にマイクロ波を供給するマグネトロン4(図4参照)等が配設されている。調理室2の天井部には、オーブン調理やグリル調理に使用されるヒータ5が配設されている。マグネトロン4及びヒータ5は、被調理物を加熱するための加熱手段を構成している。
【0020】
さらに、キャビネット1内には、食品から放射される赤外線を検出する赤外線検出素子6が設けられている。この赤外線検出素子6は、調理室2上部隅部から斜め下方向に指向する検出視野6aを有し、その検出視野6aが図3の矢印で示すように旋回するように設けられている。
【0021】
この赤外線検出素子6の出力信号である素子信号V6は電圧信号として制御回路7(図1参照)のA/D変換入力ポートAD1に与えられると共に、増幅回路8のオペアンプ9の非反転入力端子に与えられる。増幅回路8は、上記オペアンプ9と抵抗R1〜R4とを図のように接続してなり、増幅信号V8は制御回路7のA/D変換入力ポートAD2に与えられる。この場合、抵抗R1とR2とにより増幅率が決定され、抵抗R2とR3とでオフセット電圧が決定される。
【0022】
上記制御回路7はマイクロコンピュータや駆動回路やA/D変換器を有して構成されており、赤外線検出素子6の素子信号V6(電圧レベル)と温度との関係、増幅信号V8(電圧レベル)と温度との関係を温度判定データとしてメモリ例えば不揮発性メモリに予め記憶している。図5には、赤外線検出素子6の素子信号V6(電圧レベル)と温度との関係を特性線SV6で示し、増幅信号V8(電圧レベル)と温度との関係特性線SV8にて示している。ここで、素子信号V6は低温側の傾きが高温側の傾きと比較して小さくなっており、低温側での温度測定の分解能が落ちる。増幅信号V8は素子信号V6と比較して傾きが大きくなっているので、温度測定の分解能が高い。しかし高温側では信号(電圧)が飽和していて正しく温度を求めることができない。
【0023】
制御回路7は、上記不揮発性メモリに素子信号用故障判定値として素子信号用下限判定値V6Lと素子信号用上限判定値V6Hを記憶していると共に、増幅信号用故障判定値として増幅信号用下限判定値V8Lと増幅信号用上限判定値V8Hとを記憶している。
【0024】
キャビネット1における機械室の前面側には操作パネル10が設けられており、この操作パネル10には、液晶表示器からなり故障報知手段を兼用する表示部11と、多数の入力キー12が設けられている。入力キー12の中には、スタートキー12aや、調理メニュー選択手段たるメニュー選択キー12b、時間や温度設定のための回転ツマミ12cなどがある。
【0025】
図4には、電子レンジの電気的構成の概略が示されている。この図4において、制御回路7は、電子レンジの運転全般を制御する機能を有しており、そのための制御プログラムを有している。この制御回路7には、上記操作パネル10の入力キー12の操作信号が入力されると共に、赤外線検出素子6の素子信号V6、増幅回路8の増幅信号V8が入力される。
【0026】
制御回路7は、上記マグネトロン4、表示器11、ヒータ5、ブザー13を駆動制御する機能を有している。制御回路7は制御手段、補正手段、故障判定手段、報知制御手段、個別故障判定手段としても機能するものであり、以下、この制御回路7の制御内容について図6を参照して説明する。
【0027】
レンジ調理が選択され、且つ調理時間が設定された上で、スタートキー12aが操作されると、赤外線検出素子6から素子信号V6を読み込むと共に、増幅回路8から増幅信号V8を読み込む(ステップS1、ステップS2)。そして、赤外線検出素子6の素子信号V6が正常範囲から外れているか否かを判定する(ステップS3)。すなわち、素子信号V6のレベルが素子信号用下限判定値V6Lを下回っているか、あるいは素子信号用上限判定値V6Hを超えているかを判断する。素子信号V6のレベルが素子信号用下限判定値V6Lを下回っておらず、且つ素子信号用上限判定値V6Hを超えていなければ、素子信号V6レベルは正常範囲である。従って、赤外線検出素子6に故障がないと判定できる。故障があると判定されたときにはステップS15に移行して、増幅回路8の増幅信号V8が正常範囲(増幅信号用下限判定値V8L以上で増幅信号用上限判定値V8H以下)から外れているか否かを判断する(ステップS4)。増幅信号V8が正常範囲にあれば、増幅回路8に故障がないと判定できる。そして、ステップS16に移行して、赤外線検出素子6のみが故障であることを示す表示形態(報知形態)である「H1」を表示器11に表示し、そして調理を中止する。
【0028】
増幅回路8が故障していると判定されたときには、ステップS17に移行して赤外線検出素子6及び増幅回路8の両方が故障であることを示す表示形態(報知形態)である「H3」を表示器11に表示し、調理を中止する。
【0029】
ステップS3にて、赤外線検出素子6に故障がないと判定されたときにはステップS4に移行して、増幅回路8の増幅信号V8が正常範囲(増幅信号用下限判定値V8L以上で増幅信号用上限判定値V8H以下)から外れているか否かを判断する(ステップS4)。増幅信号V8が正常範囲にあれば、増幅回路8に故障がないと判定できる。故障があると判定されたときには、ステップS18に移行して増幅回路8のみが故障であることを示す表示形態(報知形態)である「H2」を表示器11に表示し、調理を中止する。
【0030】
増幅回路8に故障がないと判定されたときには、ステップS5に移行して、素子信号V6から図5に示したデータを参酌して温度T1を検出すると共に、増幅信号V8から温度T2を検出する。次のステップS6では、赤外線検出素子6と増幅回路8とのいずれかが故障であるかないかを判定する。つまり、上記温度T1とT2とは同じ温度を示すのが理想であるが、実際には少し相違がある。その温度差が5℃以上であれば赤外線検出素子6あるいは増幅回路8が故障(故障の程度は小)であると判定できる。故障があると判定されたときには、ステップS19に移行して赤外線検出素子6あるいは増幅回路8に故障があることを示す表示形態(報知形態)である「H0」を表示器11に表示し、調理を中止する。
【0031】
上記ステップS6において、温度差が5℃以上でなくて赤外線検出素子6と増幅回路8とのいずれも正常であると判定されたときには、ステップS7に移行する。このステップS7において、ステップS5における各温度T1、T2は調理開始後最初の温度検出であると判断されれば、ステップS8にて補正値THを算出(TH=T1−T2)し、ステップS9にて増幅信号V8による検出温度T2を補正(補正後の温度をT2´とするとT2´=T2+TH)する。各温度T1、T2の検出が2回目以降のときには上記ステップS8の補正はしない(最初の補正値T2´が維持される)。
【0032】
ステップS10では、この調理で使用する検出温度は赤外線検出素子6による検出温度T1がいいか、あるいは増幅回路8による検出温度T2がいいかを判断する。つまり、素子信号V6が3Vを上回っていれば、ステップS11に移行して検出温度T1を用い(温度検出に素子信号V6を用い)、そうでなければステップS14に移行して検出温度T2を用いる(温度検出に増幅信号V8を用いる)。つまり、増幅信号V8が飽和する高温領域では素子信号V6を用い、それ以外では増幅信号V8を用いる。
【0033】
この後、上述の検出温度T1あるいはT2´を用いて加熱調理を制御し(ステップS12)、そして加熱調理の設定時間が満了して終了条件が満足されれば(ステップS13)、加熱調理を終了する。
【0034】
このような本実施例によれば、低温度域から中温度域までの温度検出に好適する増幅手段からの増幅信号と、中温度域から高温度域までの温度検出に好適する赤外線検出素子からの素子信号とのうちのいずれか一方または両方の信号を用いて加熱制御を行うから、測定しようとする温度範囲の分解能が一様に良く、しかも増幅率切替を要せずに回路構成が複雑となることがない。
【0035】
また、本実施例によれば、素子信号V6のレベルに基づいて素子信号V6と増幅信号V8とのいずれかを選択して使用するようになっているから(ステップS10)、増幅信号V8が高温度域を示す信号レベルである場合には素子信号V6を用いることも可能となり、素子信号V6では温度検出の分解能が低い中温及び低温度域では増幅信号V8を選択して用いることが可能であり、もって、全温度領域において、高分解能で温度を検出できる。この場合増幅信号V8のレベルに基づいて素子信号V6と増幅信号V8との選択を行うようにしても良い。
【0036】
さらに、本実施例によれば、素子信号V6による検出温度と増幅信号V8による検出温度との値に応じて増幅信号による検出温度を補正するから(ステップS8、ステップS9)、増幅手段の増幅信号による検出温度のずれを補正することができて、正確な温度検出ができる。
【0037】
また、本実施例によれば、素子信号V6による検出温度T1と増幅信号V8による検出温度T2とを比較して赤外線検出素子6あるいは増幅手段8の故障の有無を判定するから(ステップS6)、赤外線検出素子6あるいは増幅回路8の故障の有無を判定することができる。
【0038】
さらにまた、本実施例によれば、素子信号V6に対応する素子信号用故障判定値(V6L、V6H)を有すると共に、増幅信号V8に対応する増幅信号用故障判定値(V8L、V8H)を有し、素子信号V6と素子信号用故障判定値(V6L、V6H)とを比較して赤外線検出素子6の故障を判定し、増幅信号V8と増幅信号用故障判定値(V8L、V8H)とを比較して増幅回路8の故障を判定する(個別故障判定手段)ようにしたから(ステップS3、ステップS15)、これによれば、赤外線検出素子6の故障と増幅回路8の故障とを個別に判定することができる。
【0039】
また、本実施例によれば、故障報知手段たる表示器11を備えると共に、赤外線検出素子6の故障と増幅回路8の故障と両方の故障とで表示形態を変えて前記表示器11に表示させるようにしたから、赤外線検出素子6の故障と増幅回路8の故障と両方の故障とを区別して表示(報知)でき、便利である。
【0040】
本発明は上記実施例に限られず、次のような実施形態としても良い。増幅回路8のみが故障と判定された場合(ステップS3、ステップS4)、ステップS18にて増幅回路8のみが故障であることを報知して、調理を中止するようにしたが、これは、増幅回路のみの故障が判定されたときには素子信号に基づいて加熱調理を行い、調理終了後に故障報知を行うようにしても良い。
【0041】
また、上記実施例では、ステップS10のように素子信号V6の信号レベルを判断して検出温度T1(素子信号V6)と検出温度T2(増幅信号V8)のいずれかを選択するようにしたが、これは、調理メニュー選択手段により選択された調理メニューにより素子信号と増幅信号とを選択して使用するようにしても良い。この場合、例えば、生解凍の場合には検出温度T2(増幅信号V8)を用い、仕上がり温度が70〜80℃のごはんのあたため等には、検出温度T1(素子信号V6)を用いるようにすると良い。このようにすると、調理メニューに合った温度検出の分解能で温度検出ができる。
【0042】
【発明の効果】
本発明は以上の説明から明らかなように、測定しようとする温度範囲の分解能が一様に良く、しかも増幅率切替を要せずに回路構成が複雑となることがない加熱調理器を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す要部の電気回路図
【図2】電子レンジの斜視図
【図3】赤外線検出素子の検出視野の移動領域を示す図
【図4】電気的構成のブロック図
【図5】素子信号V6及び増幅信号V8の変化と温度との関係を示す図
【図6】制御内容を示す図
【符号の説明】
4はマグネトロン(加熱手段)、6は赤外線検出素子、7は制御回路(制御手段、補正手段、故障判定手段、報知制御手段、個別故障判定手段)、8は増幅回路(増幅手段)、11は表示器(報知手段)、12bはメニュー選択キー(メニュー選択手段)を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heating cooker that includes an infrared detection element and detects the temperature of an object to be heated.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a heating cooker, for example, a microwave oven has an infrared detecting element for detecting infrared radiation emitted from a food (an object to be heated) accommodated in a heating chamber, and amplifies an output of the infrared detecting element by an amplifier circuit. There is one that detects the temperature (surface temperature) of food based on the output of the amplifier circuit (for example, Patent Document 1). In addition, there is one in which the amplification factor of an amplifier circuit is switched to increase the resolution (for example, Patent Document 2).
[0003]
[Patent Document 1]
JP-A-2002-181336
[Patent Document 2]
JP-A-2002-333141
[Problems to be solved by the invention]
However, in order to detect the entire temperature range using the output signal (amplified signal) of the amplifier circuit, the amplification factor must be set so that the signal does not saturate, and the output characteristics are not linear. There is a problem that a bad area is created.
Further, the configuration in which the amplification factor of the amplifier circuit is switched has a disadvantage that the circuit becomes complicated.
[0006]
The present invention has been made in view of the above circumstances, and has as its object the uniformity of the resolution of the temperature range to be measured is good, and the circuit configuration is not complicated without switching the amplification factor. To provide a heating cooker.
[0007]
[Means for Solving the Problems]
The present invention has been made by focusing on the following points. That is, it is normal for the control means to receive an input signal received for temperature detection as a voltage signal. Then, the temperature is detected within the range of the voltage level. In this case, the amplified signal from the amplifying means changes satisfactorily according to the temperature from the low temperature range to the middle temperature range. However, in the high temperature range, the output signal level is saturated (constant) and the temperature detection becomes difficult. On the other hand, the element signal from the infrared detecting element changes satisfactorily according to the temperature in the medium temperature range to the high temperature range.
[0008]
Therefore, the invention according to claim 1 includes heating means for heating an object to be heated,
An infrared detection element that detects infrared radiation emitted from the object to be heated to detect the temperature of the object to be heated,
Amplification means for amplifying the output of the infrared detection element;
It is characterized in that it comprises control means for performing heating control using one or both of the element signal output from the infrared detection element and the amplified signal output from the amplification means.
[0009]
According to this, the amplified signal from the amplifying means suitable for detecting the temperature from the low temperature range to the middle temperature range, and the element signal from the infrared detecting element suitable for detecting the temperature from the middle temperature range to the high temperature range Since heating control is performed using one or both of these signals, the resolution of the temperature range to be measured is uniformly good, and the circuit configuration does not become complicated without switching the amplification factor. .
[0010]
The temperature measurement range differs depending on the cooking menu. In this case, it is preferable to select the element signal and the amplified signal according to the cooking menu.
In this respect, the invention of claim 2 is characterized in that the cooking menu selection means is provided, and the control means selects and uses the element signal and the amplified signal according to the cooking menu selected by the cooking menu selection means. According to this, since the element signal and the amplified signal are selected and used according to the cooking menu, the temperature can be detected with the temperature detection resolution suitable for the cooking menu.
[0011]
If the amplified signal has a signal level indicating a high temperature range, the temperature is close to the saturation voltage and it is difficult to detect the temperature. In this case, it is better to use the element signal without using the amplified signal. Also, when the element signal is at a signal level indicating a low temperature range, it is difficult to detect the temperature. In this case, it is better to use the amplified signal without using the element signal.
In this regard, the invention according to claim 3 is such that the control means selects and uses one of the element signal and the amplified signal based on the level of at least one of the element signal and the amplified signal. The temperature can be detected with high resolution over the entire temperature range.
[0012]
Generally, an amplification circuit is used as the amplification means. In this case, a deviation may occur in the amplified signal due to a variation in characteristics of the amplification circuit (for example, a variation in resistance value). In the middle temperature range, the temperature can be detected by both the element signal and the amplified signal. Therefore, if the temperature indicated by the signal level of the element signal is slightly different from the temperature indicated by the signal level of the amplified signal, the amplification circuit (amplification circuit) It can be seen that there is a deviation in the amplified signal of the means.
In this regard, the invention according to claim 4 is provided with the correcting means for correcting the detected temperature based on the amplified signal in accordance with the detected temperature based on the element signal and the detected temperature based on the amplified signal. And accurate temperature detection is possible.
[0013]
In a temperature range where the temperature can be detected by both the element signal and the amplified signal, if the temperature indicated by the signal level of the element signal is significantly different from the temperature indicated by the signal level of the amplified signal, the infrared detecting element Alternatively, it can be determined that the failure has occurred in the amplification means. In this case, comparing the temperature indicated by the signal level of the element signal with the temperature indicated by the signal level of the amplified signal is equivalent to comparing the signal level of the element signal with the signal level of the amplified signal. .
[0014]
In this respect, in the fifth aspect, the failure detection means for comparing the temperature detected by the element signal with the temperature detected by the amplification signal to determine whether or not the infrared detection element or the amplification means has a failure is provided. It is possible to determine whether or not the means has failed.
[0015]
The invention according to claim 6 has an element signal failure determination value corresponding to the element signal, has an amplified signal failure determination value corresponding to the amplified signal, and compares the element signal with the element signal failure determination value. It is characterized by having individual failure determination means for determining the failure of the infrared detection element and comparing the amplified signal with the failure determination value for the amplified signal to determine the failure of the amplification means. The failure of the infrared detecting element and the failure of the amplification unit can be individually determined.
[0016]
The invention according to claim 7 is provided with a failure notifying unit, and a notification control unit that changes the notification mode according to the failure of the infrared detecting element and the failure of the amplifying unit and notifies the failure notifying unit of the failure. According to this, the malfunction of the infrared detecting element and the malfunction of the amplifying means can be distinguished from each other for the notification, which is convenient.
[0017]
According to the invention of claim 8, when it is determined that only the amplifying means has failed, heating cooking is performed based on the element signal, a failure notification is performed after cooking is completed, and when a failure of the infrared detection element is determined, a failure notification is made at the time of the determination. And finishes the cooking.
[0018]
If only the amplifying means fails, the resolution will be low even with the element signal of the infrared detection element alone, but it is not impossible to detect the temperature.Therefore, in the event of an emergency, temperature detection is performed using this element signal. Perform cooking can be performed. Since the failure notification is performed after the cooking is completed, the failure of the amplification unit can be reported, which is convenient. Further, when the infrared detecting element fails, the temperature cannot be detected, so that the failure of the infrared detecting element is notified and the cooking is terminated.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described. First, FIG. 2 shows a microwave oven as a heating cooker. In FIG. 2, a cabinet 1 has a rectangular box shape with an open front surface, and a cooking chamber 2 with an open front surface is provided inside the cabinet 1, and a cabinet 1 for opening and closing the opening of the cooking chamber 2 on the front surface. Door 3 is provided rotatably. Further, a machine room (not shown) is formed in the cabinet 1 on the right side of the cooking chamber 2, and a magnetron 4 (FIG. 4) are arranged. A heater 5 used for oven cooking and grill cooking is arranged on the ceiling of the cooking chamber 2. The magnetron 4 and the heater 5 constitute a heating unit for heating the object to be cooked.
[0020]
Further, the cabinet 1 is provided with an infrared detecting element 6 for detecting infrared rays emitted from food. The infrared detection element 6 has a detection visual field 6a that is directed obliquely downward from the upper corner of the cooking chamber 2, and is provided so that the detection visual field 6a turns as shown by the arrow in FIG.
[0021]
The element signal V6, which is the output signal of the infrared detecting element 6, is supplied as a voltage signal to the A / D conversion input port AD1 of the control circuit 7 (see FIG. 1), and to the non-inverting input terminal of the operational amplifier 9 of the amplifier circuit 8. Given. The amplifying circuit 8 connects the operational amplifier 9 and the resistors R1 to R4 as shown in the figure, and the amplified signal V8 is supplied to the A / D conversion input port AD2 of the control circuit 7. In this case, the amplification factor is determined by the resistors R1 and R2, and the offset voltage is determined by the resistors R2 and R3.
[0022]
The control circuit 7 includes a microcomputer, a drive circuit, and an A / D converter. The control circuit 7 has a relationship between an element signal V6 (voltage level) of the infrared detection element 6 and temperature, and an amplified signal V8 (voltage level). Is stored in a memory such as a nonvolatile memory in advance as temperature determination data. In FIG. 5, the relationship between the element signal V6 (voltage level) of the infrared detecting element 6 and the temperature is shown by a characteristic line SV6, and the relationship between the amplified signal V8 (voltage level) and the temperature is shown by a characteristic line SV8. Here, the gradient of the element signal V6 on the low temperature side is smaller than the gradient on the high temperature side, and the resolution of the temperature measurement on the low temperature side decreases. Since the amplitude of the amplified signal V8 is larger than that of the element signal V6, the resolution of the temperature measurement is high. However, on the high temperature side, the signal (voltage) is saturated, and the temperature cannot be obtained correctly.
[0023]
The control circuit 7 stores the element signal lower limit determination value V6L and the element signal upper limit determination value V6H as the element signal failure determination values in the nonvolatile memory, and stores the amplified signal lower limit value as the amplified signal failure determination value. The determination value V8L and the amplified signal upper limit determination value V8H are stored.
[0024]
An operation panel 10 is provided on the front side of the machine room in the cabinet 1. The operation panel 10 is provided with a display section 11 composed of a liquid crystal display and also serving as a failure notification means, and a number of input keys 12. ing. The input keys 12 include a start key 12a, a menu selection key 12b serving as a cooking menu selection unit, and a rotary knob 12c for setting time and temperature.
[0025]
FIG. 4 shows an outline of an electric configuration of the microwave oven. In FIG. 4, the control circuit 7 has a function of controlling the overall operation of the microwave oven, and has a control program therefor. The control circuit 7 receives an operation signal of the input key 12 of the operation panel 10, an element signal V 6 of the infrared detection element 6, and an amplification signal V 8 of the amplification circuit 8.
[0026]
The control circuit 7 has a function of controlling the driving of the magnetron 4, the display 11, the heater 5, and the buzzer 13. The control circuit 7 also functions as a control unit, a correction unit, a failure determination unit, a notification control unit, and an individual failure determination unit. Hereinafter, control contents of the control circuit 7 will be described with reference to FIG.
[0027]
When the start key 12a is operated after the range cooking has been selected and the cooking time has been set, the element signal V6 is read from the infrared detecting element 6 and the amplified signal V8 is read from the amplifier circuit 8 (step S1, Step S2). Then, it is determined whether or not the element signal V6 of the infrared detecting element 6 is out of the normal range (Step S3). That is, it is determined whether the level of the element signal V6 is lower than the element signal lower limit determination value V6L or exceeds the element signal upper limit determination value V6H. If the level of the element signal V6 does not fall below the element signal lower limit determination value V6L and does not exceed the element signal upper limit determination value V6H, the element signal V6 level is within the normal range. Therefore, it can be determined that there is no failure in the infrared detecting element 6. If it is determined that there is a failure, the process proceeds to step S15 to determine whether the amplified signal V8 of the amplifier circuit 8 is out of a normal range (not less than the amplified signal lower limit determination value V8L and not more than the amplified signal upper limit determination value V8H). Is determined (step S4). If the amplified signal V8 is within the normal range, it can be determined that the amplifier circuit 8 has no failure. Then, the process proceeds to step S16, where “H1”, which is a display mode (notification mode) indicating that only the infrared detection element 6 is faulty, is displayed on the display 11, and cooking is stopped.
[0028]
If it is determined that the amplifier circuit 8 is out of order, the process proceeds to step S17 to display “H3” which is a display mode (notification mode) indicating that both the infrared detection element 6 and the amplifier circuit 8 are out of order. Is displayed on the display 11 and the cooking is stopped.
[0029]
If it is determined in step S3 that there is no failure in the infrared detection element 6, the process proceeds to step S4, where the amplified signal V8 of the amplifier circuit 8 is in the normal range (the amplified signal upper limit determination is performed when the amplified signal lower limit determination value V8L or more is reached). It is determined whether it is out of the range (value V8H or less) (step S4). If the amplified signal V8 is within the normal range, it can be determined that the amplifier circuit 8 has no failure. If it is determined that there is a failure, the process proceeds to step S18, where “H2”, which is a display mode (notification mode) indicating that only the amplifier circuit 8 is faulty, is displayed on the display 11, and cooking is stopped.
[0030]
If it is determined that there is no failure in the amplifier circuit 8, the process proceeds to step S5 to detect the temperature T1 from the element signal V6 by referring to the data shown in FIG. 5, and detect the temperature T2 from the amplified signal V8. . In the next step S6, it is determined whether any one of the infrared detection element 6 and the amplifier circuit 8 is faulty. That is, it is ideal that the temperatures T1 and T2 indicate the same temperature, but there is actually a slight difference. If the temperature difference is 5 ° C. or more, it can be determined that the infrared detecting element 6 or the amplifier circuit 8 has a failure (the degree of the failure is small). When it is determined that there is a failure, the process proceeds to step S19, and “H0”, which is a display mode (notification mode) indicating that the infrared detection element 6 or the amplification circuit 8 has a failure, is displayed on the display 11, and cooking is performed. To stop.
[0031]
If it is determined in step S6 that the temperature difference is not equal to or higher than 5 ° C. and that both the infrared detection element 6 and the amplifier circuit 8 are normal, the process proceeds to step S7. In step S7, if it is determined that the temperatures T1 and T2 in step S5 are the first temperature detections after the start of cooking, a correction value TH is calculated (TH = T1-T2) in step S8, and the process proceeds to step S9. Then, the detected temperature T2 based on the amplified signal V8 is corrected (T2 '= T2 + TH, where T2' is the corrected temperature). When the temperatures T1 and T2 are detected for the second and subsequent times, the correction in step S8 is not performed (the initial correction value T2 'is maintained).
[0032]
In step S10, it is determined whether the detected temperature used in the cooking is the detected temperature T1 by the infrared detecting element 6 or the detected temperature T2 by the amplifier circuit 8. That is, if the element signal V6 is higher than 3 V, the process proceeds to step S11 to use the detected temperature T1 (use the element signal V6 for temperature detection), otherwise to step S14 and use the detected temperature T2. (Use amplified signal V8 for temperature detection). That is, the element signal V6 is used in a high temperature region where the amplified signal V8 is saturated, and the amplified signal V8 is used in other cases.
[0033]
Thereafter, the heating cooking is controlled using the above-mentioned detected temperature T1 or T2 '(step S12), and when the set time of the heating cooking has expired and the termination condition is satisfied (step S13), the heating cooking is terminated. I do.
[0034]
According to this embodiment, the amplified signal from the amplifying unit suitable for detecting the temperature from the low temperature range to the middle temperature range, and the infrared detection element suitable for detecting the temperature from the middle temperature range to the high temperature range Since heating control is performed using one or both of the element signals, the resolution of the temperature range to be measured is uniformly good, and the circuit configuration is complicated without switching the amplification factor. And never.
[0035]
Further, according to the present embodiment, either the element signal V6 or the amplified signal V8 is selected and used based on the level of the element signal V6 (step S10), so that the amplified signal V8 is high. When the signal level indicates the temperature range, the element signal V6 can be used. In the case of the element signal V6, the amplified signal V8 can be selected and used in the medium temperature and low temperature ranges where the temperature detection resolution is low. Thus, the temperature can be detected with high resolution in the entire temperature range. In this case, the element signal V6 and the amplified signal V8 may be selected based on the level of the amplified signal V8.
[0036]
Further, according to the present embodiment, the detected temperature based on the amplified signal is corrected according to the value of the detected temperature based on the element signal V6 and the detected temperature based on the amplified signal V8 (steps S8 and S9). Deviation of the detected temperature due to the above can be corrected, and accurate temperature detection can be performed.
[0037]
Further, according to the present embodiment, the detection temperature T1 based on the element signal V6 and the detection temperature T2 based on the amplified signal V8 are compared to determine whether the infrared detection element 6 or the amplifying unit 8 has a failure (step S6). It is possible to determine whether the infrared detection element 6 or the amplifier circuit 8 has a failure.
[0038]
Furthermore, according to the present embodiment, it has the element signal failure determination values (V6L, V6H) corresponding to the element signal V6 and the amplified signal failure determination values (V8L, V8H) corresponding to the amplified signal V8. Then, the device signal V6 is compared with the device signal failure determination values (V6L, V6H) to determine the failure of the infrared detection element 6, and the amplified signal V8 is compared with the amplified signal failure determination values (V8L, V8H). Then, the failure of the amplifier circuit 8 is determined (individual failure determination means) (step S3, step S15). According to this, the failure of the infrared detecting element 6 and the failure of the amplifier circuit 8 are individually determined. can do.
[0039]
Further, according to the present embodiment, the display 11 is provided as the failure notifying means, and the display mode is changed and displayed on the display 11 according to the failure of the infrared detecting element 6 and the failure of the amplifier circuit 8. With this configuration, the failure of the infrared detection element 6 and the failure of the amplifier circuit 8 and both failures can be distinguished and displayed (notified), which is convenient.
[0040]
The present invention is not limited to the above embodiment, but may be the following embodiments. When it is determined that only the amplifier circuit 8 is out of order (steps S3 and S4), it is notified in step S18 that only the amplifier circuit 8 is out of order, and the cooking is stopped. When it is determined that only the circuit has a failure, heating cooking may be performed based on the element signal, and a failure notification may be performed after the cooking is completed.
[0041]
Further, in the above embodiment, as in step S10, the signal level of the element signal V6 is determined and either the detected temperature T1 (element signal V6) or the detected temperature T2 (amplified signal V8) is selected. In this case, the element signal and the amplified signal may be selected and used according to the cooking menu selected by the cooking menu selection means. In this case, for example, in the case of raw thawing, the detected temperature T2 (amplified signal V8) is used, and for the warming of rice having a finished temperature of 70 to 80 ° C., the detected temperature T1 (element signal V6) is used. good. In this case, the temperature can be detected with the resolution of the temperature detection suitable for the cooking menu.
[0042]
【The invention's effect】
As is clear from the above description, the present invention can provide a cooking device in which the resolution of the temperature range to be measured is uniformly good, and the circuit configuration is not complicated without switching the amplification factor. .
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram of a main part showing an embodiment of the present invention. FIG. 2 is a perspective view of a microwave oven. FIG. 3 is a diagram showing a moving area of a detection visual field of an infrared detecting element. FIG. FIG. 5 is a diagram showing a relationship between a change in an element signal V6 and an amplified signal V8 and a temperature. FIG. 6 is a diagram showing control contents.
4 is a magnetron (heating means), 6 is an infrared detecting element, 7 is a control circuit (control means, correction means, failure determination means, notification control means, individual failure determination means), 8 is an amplification circuit (amplification means), 11 is A display (notifying means) and 12b indicate a menu selection key (menu selecting means).

Claims (8)

被加熱物を加熱する加熱手段と、
被加熱物から放射される赤外線を検出して被加熱物の温度を検出する赤外線検出素子と、
この赤外線検出素子の出力を増幅する増幅手段と、
前記赤外線検出素子が出力する素子信号と前記増幅手段が出力する増幅信号とのうちのいずれか一方または両方の信号を用いて加熱制御を行う制御手段とを備えてなる加熱調理器。
Heating means for heating the object to be heated;
An infrared detection element that detects infrared radiation emitted from the object to be heated to detect the temperature of the object to be heated,
Amplification means for amplifying the output of the infrared detection element;
A heating cooker comprising: control means for performing heating control using one or both of an element signal output by the infrared detection element and an amplified signal output by the amplification means.
調理メニュー選択手段を備え、制御手段は、この調理メニュー選択手段により選択された調理メニューにより素子信号と増幅信号とを選択して使用することを特徴とする請求項1記載の加熱調理器。2. The cooking device according to claim 1, further comprising cooking menu selection means, wherein the control means selects and uses an element signal and an amplification signal according to the cooking menu selected by the cooking menu selection means. 制御手段は、素子信号及び増幅信号の少なくともいずれか一方のレベルに基づいて素子信号と増幅信号とのいずれかを選択して使用することを特徴とする請求項1記載の加熱調理器。2. The cooking device according to claim 1, wherein the control means selects and uses one of the element signal and the amplified signal based on at least one of the level of the element signal and the amplified signal. 素子信号による検出温度と増幅信号による検出温度に応じて増幅信号による検出温度を補正する補正手段を備えたことを特徴とする請求項1記載の加熱調理器。2. The cooking device according to claim 1, further comprising a correction unit configured to correct the temperature detected by the amplified signal in accordance with the temperature detected by the element signal and the temperature detected by the amplified signal. 素子信号による検出温度と増幅信号による検出温度とを比較して赤外線検出素子あるいは増幅手段の故障の有無を判定する故障判定手段を備えたことを特徴とする請求項1記載の加熱調理器。2. The cooking device according to claim 1, further comprising a failure judging means for comparing the temperature detected by the element signal with the temperature detected by the amplification signal to judge whether the infrared detecting element or the amplifying means has a failure. 素子信号に対応する素子信号用故障判定値を有すると共に、増幅信号に対応する増幅信号用故障判定値を有し、素子信号と素子信号用故障判定値とを比較して赤外線検出素子の故障を判定し、増幅信号と増幅信号用故障判定値とを比較して増幅手段の故障を判定する個別故障判定手段を備えたことを特徴とする請求項1記載の加熱調理器。It has an element signal failure determination value corresponding to the element signal, and has an amplified signal failure determination value corresponding to the amplified signal, and compares the element signal with the element signal failure determination value to determine whether the infrared detection element has failed. 2. The cooking device according to claim 1, further comprising individual failure determination means for determining the failure of the amplification means by comparing the amplified signal with the failure determination value for the amplified signal. 故障報知手段を備えると共に、赤外線検出素子の故障と増幅手段の故障と両方の故障とで報知形態を変えて前記故障報知手段に報知させる報知制御手段とを備えたことを特徴とする請求項5又は6記載の加熱調理器。6. The system according to claim 5, further comprising: a failure notification unit, and a notification control unit that changes the notification mode according to the failure of the infrared detection element and the failure of the amplification unit and notifies the failure notification unit of the failure. Or the heating cooker according to 6. 増幅手段のみの故障が判定されたときには素子信号に基づいて加熱調理を行い、調理終了後に故障報知を行い、赤外線検出素子の故障が判定されたときにはその判定時に故障報知を行い調理を終了すること特徴とする請求項5ないし7のいずれかに記載の加熱調理器。When a failure of only the amplifying means is determined, heating cooking is performed based on the element signal, a failure notification is performed after completion of cooking, and when a failure of the infrared detection element is determined, a failure notification is performed at the time of the determination and cooking is terminated. The cooking device according to any one of claims 5 to 7, wherein
JP2003109030A 2003-04-14 2003-04-14 Heating cooker Pending JP2004316978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109030A JP2004316978A (en) 2003-04-14 2003-04-14 Heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109030A JP2004316978A (en) 2003-04-14 2003-04-14 Heating cooker

Publications (1)

Publication Number Publication Date
JP2004316978A true JP2004316978A (en) 2004-11-11

Family

ID=33470323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109030A Pending JP2004316978A (en) 2003-04-14 2003-04-14 Heating cooker

Country Status (1)

Country Link
JP (1) JP2004316978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091455A1 (en) * 2006-02-08 2007-08-16 Matsushita Electric Industrial Co., Ltd. Induction heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091455A1 (en) * 2006-02-08 2007-08-16 Matsushita Electric Industrial Co., Ltd. Induction heating device
CN101379877B (en) * 2006-02-08 2011-08-17 松下电器产业株式会社 Induction heating device

Similar Documents

Publication Publication Date Title
JP3069390B2 (en) Cooking device
CA2181842C (en) Oven preheat countdown timer
JPH0219377B2 (en)
JPS62165892A (en) Temperature detector
JP6176919B2 (en) Cooker
JP5824630B2 (en) Induction heating cooker
JPH0587344A (en) Controlling device of heating for cooking appliance
JP2004316978A (en) Heating cooker
JPH0691863B2 (en) rice cooker
JP2911245B2 (en) microwave
KR20160146270A (en) Soaking time control method of electric cooker
KR100507039B1 (en) Simmering Control method in microwave oven
JP2004065643A (en) Pressure rice cooker
KR100868999B1 (en) Controlling apparatus and method of oven
JPH05154038A (en) Rice cooker
JP2564678B2 (en) Equipment control device
KR0128557B1 (en) Weight sensing &amp; automatic cooking control method of microwave-oven
JPH11287455A (en) Heating cooker
JP2930798B2 (en) Cooker
JP2008175497A (en) Heating cooker
JP2525798Y2 (en) Cooker
JPS59167991A (en) Automatic cooking device
JP2002340342A (en) Cooking supporting apparatus, and cooking supporting system using the same
JPH0313489B2 (en)
KR100395948B1 (en) Dual sensor system