[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004316608A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP2004316608A
JP2004316608A JP2003114537A JP2003114537A JP2004316608A JP 2004316608 A JP2004316608 A JP 2004316608A JP 2003114537 A JP2003114537 A JP 2003114537A JP 2003114537 A JP2003114537 A JP 2003114537A JP 2004316608 A JP2004316608 A JP 2004316608A
Authority
JP
Japan
Prior art keywords
fuel injection
pressure
cylinder pressure
cylinder
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003114537A
Other languages
Japanese (ja)
Inventor
Takashi Shibata
貴司 柴田
Shigeki Nakayama
茂樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003114537A priority Critical patent/JP2004316608A/en
Publication of JP2004316608A publication Critical patent/JP2004316608A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device of an internal combustion engine capable of solving inconveniences accompanied by an ignition delay period by changing the fuel injection pressure according to deviation of the in-cylinder pressure from a conformable value. <P>SOLUTION: In the fuel injection control device 13 applied to an internal combustion engine 1 in which the fuel injection timing into a cylinder from a fuel injection valve 9 is controlled based on a target value corresponding to the conformable value of the in-cylinder pressure determined according to the operational state, the present value of the in-cylinder pressure is acquired, and the fuel injection pressure of the fuel injection valve is controlled in the direction for canceling any change of the ignition delay period according to the deviation based on the deviation of the present value from the conformable value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、筒内圧力の適合値からのずれを考慮した燃料噴射制御を行う内燃機関の燃料噴射制御装置に関する。
【0002】
【従来の技術】
内燃機関の運転制御においては、予め用意されたマップを利用して機関の運転状態に応じた燃料噴射時期の目標値を取得し、その目標値に従って燃料噴射弁の燃料噴射動作を制御することが一般に行われている。燃料噴射時期の目標値は、負荷と回転数とを所定値に固定した定常状態で内燃機関を運転しつつ、燃料噴射時期を変化させてその定常状態における噴射時期の最適値を検出するというベンチ適合試験を複数の代表的な負荷及び回転数に関して実施することにより求められている。
【0003】
ところが、ターボチャージャが設けられた内燃機関の場合、過給圧の応答遅れにより、ベンチ適合試験にて燃料噴射時期の目標値を取得した際に与えられていた筒内圧力の値(これを適合値という。)に対して実際の筒内圧力がずれた過渡状態が生じることがある。さらに、自着火式のディーゼルエンジンにおいては、燃料の噴射開始から着火までの着火遅れ期間が筒内圧力によって変化し、筒内圧力が低いほど着火遅れ期間は長くなる。従来の燃料噴射時期の目標値はこのような過渡状態を考慮せずに決定されており、筒内圧力が適合値よりも低い過渡状態であっても燃料噴射時期を目標値通りに制御すれば着火時期が遅くなり、その結果としてエンジンの出力トルクの低下、燃費悪化、失火等の不都合が生じる。
【0004】
着火遅れ期間と燃料噴射圧力とを関連付けて制御する技術としては、エンジンの圧縮端温度や圧縮端圧力から着火遅れ期間を算出し、得られた着火遅れ期間内に燃料の噴射が完了するように燃料噴射圧力を制御するものがある(特許文献1参照)。
【0005】
【特許文献1】
特開平11−148412号公報
【発明が解決しようとする課題】
【0006】
上述した特許文献1の技術は着火遅れ期間に合わせて燃料の噴射期間を増減させるために燃料噴射圧力を調整しているに過ぎず、着火遅れ期間そのものが制御されているわけではない。例えば着火遅れ期間が長いときは燃料噴射圧力を下げて燃料噴射期間を延ばしている。しかしながら、筒内圧力が適合値よりも低い過渡状態では着火遅れ期間が長くなっており、その状態でさらに燃料噴射圧力を低下させると噴射された燃料粒の微細化が進まず、その結果、混合気の形成が遅れて着火遅れ期間がさらに長くなる。従って、燃料噴射時期が定常状態のそれと同じままでは着火時期がさらに遅くなり、上述したトルクの低下等の不都合は何等改善されず、却って悪化するおそれがある。
【0007】
なお、筒内圧力の適合値からのずれは、ターボチャージャー以外の過給器が設けられていても応答遅れがある限りは発生する。また、吸気弁等の動弁特性(開閉時期や作用角)の応答遅れによっても筒内圧力が適合値からずれることがあり、さらに内燃機関が置かれている高度、気圧によっても筒内圧力が適合値からずれることがある。このような場合のいずれにおいても、上述した着火遅れ期間の問題は生じる。
【0008】
そこで、本発明は、筒内圧力の適合値からのずれに応じて燃料の噴射圧力を適切に変化させて着火遅れ期間の変化に伴う不都合を解消できる内燃機関の燃料噴射制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、運転状態に応じて定められた筒内圧力の適合値に対応する目標値に基づいて燃料噴射弁から筒内への燃料噴射時期が制御される内燃機関に適用される燃料噴射制御装置において、筒内圧力の現在値を取得する筒内圧力取得手段と、前記筒内圧力取得手段による前記筒内圧力の現在値の前記適合値に対する偏差に基づいて、前記偏差に応じた着火遅れ期間の変化を打ち消す方向に前記燃料噴射弁の燃料噴射圧力を制御する噴射圧制御手段とを備えることにより、上述した課題を解決する(請求項1)。
【0010】
この発明によれば、筒内圧力の偏差に応じた着火遅れ期間の変化を打ち消すように燃料圧力を制御するので、筒内圧力の現在値が適合値よりも低下した過渡状態において、着火遅れ期間が延びることによるトルク低下等の不都合といった問題を解消することができる。また、筒内圧力の現在値が適合値よりも高い過渡状態においても着火遅れ期間が不適切に短くなるおそれを解消することができる。
【0011】
本発明の燃料噴射制御装置において、前記噴射圧制御手段は、前記現在値が前記適合値より低いときは前記燃料噴射圧が上昇するように前記噴射圧力を制御してもよい(請求項2)。筒内圧力が現在値よりも低い場合には筒内の空気量が減少して燃料と酸素とが十分に混ざり合うまで時間がかかり、着火遅れ期間が増大する。その一方で、燃料噴射圧が高くなれば燃料の微細化が促進され、燃料が酸素と混ざり易くなって着火遅れ期間が短縮されるようになる。従って、筒内圧力の現在値の低下に伴う着火遅れ期間の増加が燃料噴射圧の制御によって打ち消される。
【0012】
本発明の燃料噴射制御装置において、前記内燃機関には過給器が設けられ、前記噴射圧制御手段は前記過給器の応答遅れに伴って発生する前記筒内圧力の前記偏差に基づいて、前記噴射圧力を制御してもよい(請求項3)。過給器には応答遅れがあり、その応答遅れが生じている過渡期間は筒内圧力が定常運転時の筒内圧力(適合値)からずれる。このような傾向は排気エネルギを利用するターボチャージャーにおいて顕著である。本発明の燃料噴射圧の制御をこうした過給器の応答遅れに対応して実施すれば、過給圧が上昇又は低下する過渡期においても内燃機関の運転状態を良好に維持できる利点がある。
【0013】
本発明の燃料噴射制御装置において、前記筒内圧力取得手段は、前記筒内圧力として、圧縮端における筒内圧力を取得してもよい(請求項4)。圧縮端における筒内圧力が着火遅れ期間に対して最も相関性が高くなるからである。
【0014】
【発明の実施の形態】
図1は本発明の燃料噴射制御装置の一実施形態を示している。内燃機関は4つのシリンダ2が直線的に並べられた直列4気筒ディーゼルエンジン(以下、エンジンと略称することがある。)1として構成され、その吸気通路3と排気通路4との間にはターボチャージャー5が配置されている。ターボチャージャー5のコンプレッサ5aよりも下流の吸気通路3にはインタークーラー6、スロットルバルブ7が設けられ、ターボチャージャー5のタービン5bよりも下流の排気通路4には排気浄化装置8が設けられている。
【0015】
エンジン1にはシリンダ2に1:1に対応付けて燃料噴射弁9が設けられている。各燃料噴射弁9はコモンレール10に接続され、そのコモンレール10にはポンプ11から送出された燃料がプレッシャレギュレータ12の設定圧に調整されて導かれる。コモンレール10に蓄えられた燃料は、エンジンコントロールユニット(以下、ECUと呼ぶ。)13からの指示に従って燃料噴射弁9が開かれることによりシリンダ2内に噴射される。
【0016】
ECU13はマイクロプロセッサやその主記憶装置としてのRAM、ROM等を備えたコンピュータとして構成されており、ROMに記憶された各種のプログラムに基づいてエンジン1の運転状態の制御に必要な各種の処理を実行する。典型的な処理の一つとして、ECU13はエアフローメータ14が検出する吸入空気量とクランク角センサ15が検出するエンジン回転数(回転速度)とに基づいて、各燃料噴射弁9から噴射すべき燃料量の基本値(基本燃料噴射量)を演算し、その演算された基本燃料噴射量を各種の運転パラメータに基づいて補正して燃料噴射量を決定する。また、ECU13はROMに格納されたマップに基づいてエンジン1の運転状態に対応した燃料噴射時期を取得し、決定された燃料噴射量がその取得された燃料噴射時期に噴射されるように燃料噴射弁9の燃料噴射動作を制御する。これらの燃料噴射弁9の制御は従来の公知のディーゼルエンジンと同様でよく、これ以上の詳細な説明は省略する。
【0017】
さらに、ECU13は図2に示す燃料噴射圧設定ルーチンを所定の周期で繰り返し実行してプレッシャレギュレータ12の設定圧を制御することにより、本発明の燃料噴射制御装置として機能する。その燃料噴射圧設定ルーチンを実行するに際して、ECU13は筒内圧力取得手段として、吸気通路3に設けられた吸気圧センサ16の出力を参照する。吸気圧センサ16は吸気圧と筒内圧力との相関性がなるべく高くなる位置に設けることが望ましい。図1ではスロットルバルブ7の下流でサージタンク17の付近に設けられている。なお、筒内圧力取得手段として、吸気圧センサ16に代えて筒内圧力を直接検出する筒内圧センサを設けてもよい。
【0018】
図2の燃料噴射圧設定ルーチンにおいて、ECU13はまずステップS1で燃料の基本噴射圧を設定する。基本噴射圧は、ベンチ適合試験によりエンジン1の現在の運転状態に応じた最適値として求められた圧力であり、例えばECU13のROMに記憶したマップからこれを取得することができる。現在の運転状態は例えばエンジン回転数と負荷とによって特定することができる。
【0019】
続くステップS2において、ECU13はエンジン1の現在の運転状態に対応して目標吸気圧を設定する。ここで設定される目標吸気圧はエンジン1のベンチ適合試験にて現在の運転状態に対応して与えられる吸気圧の適合値であって、例えばECU13のROMに記憶されたマップから取得される。また、ここでは、吸気圧センサ16の位置にて検出される圧力が対象となる。吸気圧センサ16と筒内圧力との相関関係から、吸気圧センサ16の位置における吸気圧は筒内圧力を代表する値と見なすことができる。
【0020】
次に、ECU13はステップS3に進んで吸気圧センサ16が検出する現在の吸気圧を取得する。続くステップS4において、ECU13は現在の吸気圧(現在値)からステップS2で設定した目標吸気圧(適合値)を減算することにより、吸気圧の偏差を求める。その後、ステップS5において吸気圧の偏差に対応した燃料噴射圧の補正量を図3に示すマップから取得する。図3のマップにおいては、吸気圧偏差が0のときに補正量が0であり、吸気圧偏差が0から負方向に増加するほど、つまり目標吸気圧に対して吸気圧の現在値が低下するほど噴射圧補正量が正方向に増加する。また、吸気圧偏差が0から正方向に増加するほど、つまり目標吸気圧に対して吸気圧の現在値が上昇するほど噴射圧補正量が負方向に増加する。
【0021】
続くステップS6において、ECU13はステップS1で設定した基本燃料噴射圧にステップS5で求めた噴射圧補正量を加算して燃料噴射圧を求める。次のステップS7において、ECU13はプレッシャレギュレータ12の設定圧をステップS6で求めた燃料噴射圧に設定する。以上により一回のルーチンを終える。
【0022】
図2の燃料噴射圧設定ルーチンによれば、ターボチャージャー5の過給圧がベンチ試験において与えられる適合値に等しい定常運転状態の場合、吸気圧偏差が0となり、プレッシャレギュレータ12の設定圧は基本燃料噴射圧の通りに設定される。これに対して、ターボチャージャー5による過給が遅れて吸気圧が適合値よりも低くなる過渡運転状態では、燃料噴射圧の補正量として正の値が与えられ、プレッシャレギュレータ12の設定圧が基本燃料噴射圧よりも高くなる。従って、燃料噴射弁9からは基本燃料噴射圧よりも高い圧力で燃料が噴射される。吸気圧の現在値が適合値よりも低下すれば燃料の微粒化が遅れて着火遅れ期間が増加するが、その一方で、燃料噴射圧が上昇すればシリンダ2内に噴射された燃料の微粒化が促進され、燃料と酸素とが混ざり易くなって着火遅れ期間の増加が抑えられる。このため、過渡運転状態において燃料噴射時期が定常運転状態と同様に制御されたとしても着火時期の遅れは抑えられる。
【0023】
一方、吸気圧が適合値よりも高くなる過渡運転状態では、燃料噴射圧の補正量として負の値が与えられ、プレッシャレギュレータ12の設定圧が基本燃料噴射圧よりも低くなる。従って、燃料噴射弁9からは基本燃料噴射圧よりも低い圧力で燃料が噴射される。吸気圧の現在値が適合値よりも上昇すればシリンダ2内の酸素量が増加して酸素と燃料とがより早く混ざり合い、それにより着火遅れ期間が短くなるが、その一方で、燃料噴射圧が低下すれば燃料の微細化が相対的に遅れて着火遅れ期間の短縮が抑えられる。これにより、着火時期が不適切に短くなるおそれがなくなる。
【0024】
このように、本実施形態では、吸気圧の適合値に対する現在値の偏差に伴う着火遅れ期間の増加を打ち消す方向に燃料噴射圧を補正しているので、吸気圧が適合値からずれる過渡運転状態であっても燃料の着火時期を適正に維持してトルク低下等の不都合を排除することができる。
【0025】
以上の実施形態では、ステップS3の処理によってECU13が筒内圧力取得手段として機能し、ステップS4〜S6の処理によってECU13が噴射圧制御手段として機能する。なお、実施形態では筒内圧力を吸気圧で代表して取得しているが、筒内圧力センサを設けて筒内圧力を直接検出してもよい。筒内圧力を吸気圧以外の物理量に置き換えて検出してもよい。例えば吸入空気量及び吸気温度の検出値に基づいて筒内圧力を演算してもよい。ターボチャージャー5の回転数と吸入空気量とから過給圧を演算して筒内圧力を推定してもよい。いずれにせよ、本発明における筒内圧力取得手段は、筒内圧力を直接的に検出する手段に限らず、筒内圧力をこれに相関する他の物理量に置換して検出し、あるいは筒内圧力に相関する他の物理量から筒内圧力を演算する各種の手段を含めることができる。また、筒内圧力を検出し、あるいは演算する場合、その筒内圧力としては着火遅れ期間に最も相関性の高い圧縮端における筒内圧力を用いることが望ましい。
【0026】
以上の実施形態では、ターボチャージャー5の応答遅れによって吸気圧に偏差が生じる場合を例に挙げて説明したが、本発明はターボチャージャーの応答遅れに対応して燃料噴射圧を補正するものに限定されず、各種の要因に基づく筒内圧力の適合値からのずれに対応して燃料噴射圧を補正してよい。例えば、ターボチャージャー以外の過給器の応答遅れ、吸気弁又は排気弁の開閉タイミングや作用角といった動弁特性を変化させる可変動弁機構の応答遅れ、筒内圧力に影響する高度又は気圧のベンチ適合試験における環境との相違等が要因となる筒内圧力のずれに対応して、本発明の燃料噴射圧の制御を適用してよい。
【0027】
本発明において、燃料噴射制御装置はプレッシャレギュレータのような圧力調整手段を操作するものに限定されず、燃料噴射圧を制御できるものであれば適宜にこれを使用してよい。例えば、ポンプの操作やコモンレールに蓄えられた燃料の温度の操作によって燃料噴射圧を調整することも可能である。
【0028】
本発明はコモンレール式のディーゼルエンジンに限らず、他の形式のディーゼルエンジンにも適用できる。さらには、火花点火式の直噴式ガソリンエンジンにおいても、筒内圧力の偏差に応じた初期燃焼期間の変化を着火遅れ期間の変化の一態様と捉えることにより本発明の燃料噴射圧の制御を適用することができる。
【0029】
【発明の効果】
以上説明したように、本発明によれば、筒内圧力の偏差に応じた着火遅れ期間の変化を打ち消すように燃料圧力を制御しているので、筒内圧力の現在値が適合値よりも低下し、あるいは上昇する過渡状態において着火遅れ期間が長期化し、又は短くなることによる不都合を解消することができる。
【図面の簡単な説明】
【図1】本発明の燃料噴射制御装置が適用される内燃機関の概略構成を示す図。
【図2】図1のECUを燃料噴射制御装置として機能させるための燃料噴射圧設定ルーチンを示すフローチャート。
【図3】図2の燃料噴射圧設定ルーチンにて参照される吸気圧偏差と燃料噴射圧の補正量とを対応付けたマップを示す図。
【符号の説明】
1 ディーゼルエンジン(内燃機関)
2 シリンダ
3 吸気通路
4 排気通路
5 ターボチャージャー(過給器)
8 排気浄化装置
9 燃料噴射弁
10 コモンレール
11 ポンプ
12 プレッシャレギュレータ
13 エンジンコントロールユニット(燃料噴射制御装置)
14 エアフローメータ
15 クランク角センサ
16 吸気圧センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection control device for an internal combustion engine that performs fuel injection control in consideration of a deviation of an in-cylinder pressure from an appropriate value.
[0002]
[Prior art]
In the operation control of the internal combustion engine, it is possible to obtain a target value of the fuel injection timing according to the operation state of the engine using a prepared map and control the fuel injection operation of the fuel injection valve according to the target value. Generally done. The target value of the fuel injection timing is a benchmark that detects the optimal value of the injection timing in the steady state while operating the internal combustion engine in a steady state in which the load and the rotation speed are fixed to predetermined values, and changing the fuel injection timing. It is determined by performing a compliance test on several representative loads and speeds.
[0003]
However, in the case of an internal combustion engine equipped with a turbocharger, due to the response delay of the supercharging pressure, the value of the in-cylinder pressure given when the target value of the fuel injection timing was obtained in the bench conformity test (this In some cases, a transient state occurs in which the actual in-cylinder pressure deviates from the value. Furthermore, in a self-ignition type diesel engine, the ignition delay period from the start of fuel injection to ignition varies depending on the in-cylinder pressure, and the lower the in-cylinder pressure, the longer the ignition delay period. The conventional target value of the fuel injection timing is determined without considering such a transient state, and if the fuel injection timing is controlled according to the target value even in the transient state where the in-cylinder pressure is lower than the appropriate value. The ignition timing is delayed, and as a result, inconveniences such as a decrease in output torque of the engine, deterioration of fuel efficiency, and misfire occur.
[0004]
As a technique for controlling the ignition delay period and the fuel injection pressure in association with each other, the ignition delay period is calculated from the compression end temperature and the compression end pressure of the engine so that the fuel injection is completed within the obtained ignition delay period. There is one that controls the fuel injection pressure (see Patent Document 1).
[0005]
[Patent Document 1]
JP, 11-148412, A [Problems to be solved by the invention]
[0006]
The technique of Patent Document 1 described above merely adjusts the fuel injection pressure to increase or decrease the fuel injection period in accordance with the ignition delay period, and does not necessarily control the ignition delay period itself. For example, when the ignition delay period is long, the fuel injection pressure is lowered to extend the fuel injection period. However, in the transient state where the in-cylinder pressure is lower than the appropriate value, the ignition delay period is long, and if the fuel injection pressure is further reduced in this state, the refined fuel particles do not progress, and as a result, The formation of qi is delayed, and the ignition delay period is further lengthened. Therefore, if the fuel injection timing remains the same as that in the steady state, the ignition timing will be further delayed, and the above-mentioned inconveniences such as a decrease in torque will not be improved at all, but may worsen.
[0007]
The deviation of the in-cylinder pressure from the appropriate value occurs even if a supercharger other than the turbocharger is provided as long as there is a response delay. In addition, the cylinder pressure may deviate from the appropriate value due to the response delay of the valve operating characteristics (opening / closing timing and operating angle) of the intake valve, and the cylinder pressure may also vary depending on the altitude and pressure at which the internal combustion engine is placed. It may deviate from the fitted value. In any of such cases, the problem of the ignition delay period described above occurs.
[0008]
Therefore, the present invention provides a fuel injection control device for an internal combustion engine that can appropriately change the fuel injection pressure in accordance with the deviation of the in-cylinder pressure from the appropriate value to eliminate the inconvenience associated with the change in the ignition delay period. With the goal.
[0009]
[Means for Solving the Problems]
The present invention relates to a fuel injection control applied to an internal combustion engine in which the timing of fuel injection from a fuel injection valve into a cylinder is controlled based on a target value corresponding to an in-cylinder pressure adaptation value determined according to an operation state. In the device, an in-cylinder pressure acquisition unit that acquires a current value of the in-cylinder pressure, and an ignition delay corresponding to the deviation based on a deviation of the current value of the in-cylinder pressure from the in-cylinder pressure acquisition unit with respect to the appropriate value. The above-mentioned problem is solved by providing an injection pressure control means for controlling a fuel injection pressure of the fuel injection valve in a direction to cancel a change in a period (claim 1).
[0010]
According to the present invention, since the fuel pressure is controlled so as to cancel the change in the ignition delay period according to the deviation of the in-cylinder pressure, in the transient state in which the current value of the in-cylinder pressure is lower than the appropriate value, the ignition delay period Can be solved, such as a disadvantage such as a decrease in torque due to extension of the torque. Further, even in a transient state in which the current value of the in-cylinder pressure is higher than the appropriate value, the possibility that the ignition delay period is inappropriately shortened can be eliminated.
[0011]
In the fuel injection control device of the present invention, the injection pressure control means may control the injection pressure such that the fuel injection pressure increases when the current value is lower than the appropriate value (claim 2). . If the in-cylinder pressure is lower than the current value, it takes time until the amount of air in the cylinder decreases and fuel and oxygen are sufficiently mixed, and the ignition delay period increases. On the other hand, if the fuel injection pressure increases, the fuel becomes finer, and the fuel is easily mixed with oxygen, so that the ignition delay period is shortened. Therefore, the increase in the ignition delay period due to the decrease in the current value of the in-cylinder pressure is canceled by the control of the fuel injection pressure.
[0012]
In the fuel injection control device of the present invention, the internal combustion engine is provided with a supercharger, and the injection pressure control means is configured to perform the injection pressure control based on the deviation of the in-cylinder pressure generated with a response delay of the supercharger. The injection pressure may be controlled (claim 3). The supercharger has a response delay, and during a transient period in which the response delay occurs, the in-cylinder pressure deviates from the in-cylinder pressure (appropriate value) during steady operation. Such a tendency is remarkable in a turbocharger using exhaust energy. If the control of the fuel injection pressure according to the present invention is performed in response to such a response delay of the supercharger, there is an advantage that the operating state of the internal combustion engine can be favorably maintained even in a transition period in which the supercharging pressure increases or decreases.
[0013]
In the fuel injection control device according to the present invention, the in-cylinder pressure acquiring means may acquire the in-cylinder pressure at a compression end as the in-cylinder pressure. This is because the in-cylinder pressure at the compression end has the highest correlation with the ignition delay period.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the fuel injection control device of the present invention. The internal combustion engine is configured as an in-line four-cylinder diesel engine (hereinafter sometimes abbreviated as an engine) 1 in which four cylinders 2 are linearly arranged, and a turbocharger is provided between an intake passage 3 and an exhaust passage 4. A charger 5 is provided. An intercooler 6 and a throttle valve 7 are provided in the intake passage 3 downstream of the compressor 5a of the turbocharger 5, and an exhaust purification device 8 is provided in an exhaust passage 4 downstream of the turbine 5b of the turbocharger 5.
[0015]
The engine 1 is provided with a fuel injection valve 9 in a one-to-one correspondence with the cylinder 2. Each fuel injection valve 9 is connected to a common rail 10, and fuel sent from a pump 11 is adjusted to a pressure set by a pressure regulator 12 and guided to the common rail 10. The fuel stored in the common rail 10 is injected into the cylinder 2 by opening the fuel injection valve 9 in accordance with an instruction from an engine control unit (hereinafter referred to as an ECU) 13.
[0016]
The ECU 13 is configured as a computer having a microprocessor, a RAM as its main storage device, a ROM, and the like, and performs various processes required for controlling the operating state of the engine 1 based on various programs stored in the ROM. Execute. As one of typical processes, the ECU 13 determines the fuel to be injected from each fuel injection valve 9 based on the intake air amount detected by the air flow meter 14 and the engine speed (rotation speed) detected by the crank angle sensor 15. A basic value of the amount (basic fuel injection amount) is calculated, and the calculated basic fuel injection amount is corrected based on various operation parameters to determine the fuel injection amount. Further, the ECU 13 obtains the fuel injection timing corresponding to the operating state of the engine 1 based on the map stored in the ROM, and performs the fuel injection so that the determined fuel injection amount is injected at the obtained fuel injection timing. The fuel injection operation of the valve 9 is controlled. The control of these fuel injection valves 9 may be the same as that of a conventionally known diesel engine, and further detailed description will be omitted.
[0017]
Further, the ECU 13 functions as a fuel injection control device of the present invention by controlling the set pressure of the pressure regulator 12 by repeatedly executing the fuel injection pressure setting routine shown in FIG. When executing the fuel injection pressure setting routine, the ECU 13 refers to the output of the intake pressure sensor 16 provided in the intake passage 3 as the in-cylinder pressure acquiring means. The intake pressure sensor 16 is desirably provided at a position where the correlation between the intake pressure and the in-cylinder pressure is as high as possible. In FIG. 1, it is provided near the surge tank 17 downstream of the throttle valve 7. It should be noted that an in-cylinder pressure sensor for directly detecting the in-cylinder pressure may be provided as the in-cylinder pressure acquiring means, instead of the intake pressure sensor 16.
[0018]
In the fuel injection pressure setting routine of FIG. 2, the ECU 13 first sets a basic fuel injection pressure in step S1. The basic injection pressure is a pressure determined as an optimum value according to the current operation state of the engine 1 by a bench conformity test, and can be obtained from a map stored in the ROM of the ECU 13, for example. The current operating state can be specified by, for example, the engine speed and the load.
[0019]
In the following step S2, the ECU 13 sets a target intake pressure corresponding to the current operating state of the engine 1. The target intake pressure set here is an adaptation value of the intake pressure given according to the current operation state in the bench adaptation test of the engine 1, and is acquired from, for example, a map stored in the ROM of the ECU 13. Here, the pressure detected at the position of the intake pressure sensor 16 is the target. From the correlation between the intake pressure sensor 16 and the in-cylinder pressure, the intake pressure at the position of the intake pressure sensor 16 can be regarded as a value representing the in-cylinder pressure.
[0020]
Next, the ECU 13 proceeds to step S3 and acquires the current intake pressure detected by the intake pressure sensor 16. In subsequent step S4, the ECU 13 obtains a deviation of the intake pressure by subtracting the target intake pressure (adaptation value) set in step S2 from the current intake pressure (current value). Then, in step S5, a correction amount of the fuel injection pressure corresponding to the deviation of the intake pressure is obtained from the map shown in FIG. In the map of FIG. 3, the correction amount is 0 when the intake pressure deviation is 0, and as the intake pressure deviation increases from 0 in the negative direction, that is, the current value of the intake pressure decreases with respect to the target intake pressure. The more the injection pressure correction amount increases in the forward direction, the more the injection pressure correction amount increases. Further, as the intake pressure deviation increases from 0 in the positive direction, that is, as the current value of the intake pressure increases with respect to the target intake pressure, the injection pressure correction amount increases in the negative direction.
[0021]
In the following step S6, the ECU 13 calculates the fuel injection pressure by adding the injection pressure correction amount obtained in step S5 to the basic fuel injection pressure set in step S1. In the next step S7, the ECU 13 sets the set pressure of the pressure regulator 12 to the fuel injection pressure obtained in step S6. Thus, one routine is completed.
[0022]
According to the fuel injection pressure setting routine of FIG. 2, when the supercharging pressure of the turbocharger 5 is in a steady operation state equal to the appropriate value given in the bench test, the intake pressure deviation becomes 0, and the set pressure of the pressure regulator 12 is set to the basic pressure. It is set according to the fuel injection pressure. On the other hand, in a transient operation state in which the supercharging by the turbocharger 5 is delayed and the intake pressure becomes lower than the appropriate value, a positive value is given as the correction amount of the fuel injection pressure, and the set pressure of the pressure regulator 12 is It becomes higher than the fuel injection pressure. Therefore, fuel is injected from the fuel injection valve 9 at a pressure higher than the basic fuel injection pressure. If the current value of the intake pressure is lower than the appropriate value, the atomization of the fuel is delayed and the ignition delay period is increased. On the other hand, if the fuel injection pressure is increased, the atomization of the fuel injected into the cylinder 2 is performed. Is promoted, the fuel and oxygen are easily mixed, and an increase in the ignition delay period is suppressed. For this reason, even if the fuel injection timing is controlled in the transient operation state in the same manner as in the steady operation state, the delay of the ignition timing can be suppressed.
[0023]
On the other hand, in a transient operation state in which the intake pressure becomes higher than the appropriate value, a negative value is given as a correction amount of the fuel injection pressure, and the set pressure of the pressure regulator 12 becomes lower than the basic fuel injection pressure. Therefore, fuel is injected from the fuel injection valve 9 at a pressure lower than the basic fuel injection pressure. If the current value of the intake pressure rises above the compatible value, the amount of oxygen in the cylinder 2 increases and the oxygen and the fuel mix more quickly, thereby shortening the ignition delay period. Is reduced, the refinement of the fuel is relatively delayed, and the shortening of the ignition delay period is suppressed. This eliminates the possibility that the ignition timing is inappropriately shortened.
[0024]
As described above, in the present embodiment, since the fuel injection pressure is corrected in a direction to cancel the increase in the ignition delay period due to the deviation of the current value from the appropriate value of the intake pressure, the transient operation state in which the intake pressure deviates from the appropriate value. Even in such a case, it is possible to properly maintain the ignition timing of the fuel and eliminate inconveniences such as a decrease in torque.
[0025]
In the above embodiment, the ECU 13 functions as an in-cylinder pressure acquiring unit by the process of step S3, and the ECU 13 functions as an injection pressure control unit by the processes of steps S4 to S6. In the embodiment, the in-cylinder pressure is acquired as a representative of the intake pressure. However, an in-cylinder pressure sensor may be provided to directly detect the in-cylinder pressure. The cylinder pressure may be detected by replacing it with a physical quantity other than the intake pressure. For example, the in-cylinder pressure may be calculated based on the detected values of the intake air amount and the intake air temperature. The in-cylinder pressure may be estimated by calculating the supercharging pressure from the rotation speed of the turbocharger 5 and the intake air amount. In any case, the in-cylinder pressure obtaining means in the present invention is not limited to the means for directly detecting the in-cylinder pressure, but detects and replaces the in-cylinder pressure with another physical quantity correlated thereto, or detects the in-cylinder pressure. And various means for calculating the in-cylinder pressure from other physical quantities correlated with the pressure. When detecting or calculating the in-cylinder pressure, it is desirable to use, as the in-cylinder pressure, the in-cylinder pressure at the compression end having the highest correlation during the ignition delay period.
[0026]
In the above-described embodiment, the case has been described in which the intake pressure deviates due to the response delay of the turbocharger 5. However, the present invention is limited to the one that corrects the fuel injection pressure in response to the response delay of the turbocharger. Instead, the fuel injection pressure may be corrected according to the deviation of the in-cylinder pressure from the appropriate value based on various factors. For example, a response delay of a supercharger other than a turbocharger, a response delay of a variable valve mechanism that changes valve operating characteristics such as an opening / closing timing and an operating angle of an intake valve or an exhaust valve, and an altitude or air pressure bench that affects in-cylinder pressure. The control of the fuel injection pressure according to the present invention may be applied in response to the deviation of the in-cylinder pressure caused by the difference from the environment in the conformity test.
[0027]
In the present invention, the fuel injection control device is not limited to a device that operates a pressure adjusting unit such as a pressure regulator, and any device that can control the fuel injection pressure may be used as appropriate. For example, it is also possible to adjust the fuel injection pressure by operating the pump or operating the temperature of the fuel stored in the common rail.
[0028]
The present invention is applicable not only to a common rail type diesel engine but also to other types of diesel engines. Further, even in a spark ignition type direct injection gasoline engine, the control of the fuel injection pressure of the present invention is applied by regarding the change of the initial combustion period according to the deviation of the in-cylinder pressure as one mode of the change of the ignition delay period. can do.
[0029]
【The invention's effect】
As described above, according to the present invention, since the fuel pressure is controlled so as to cancel the change in the ignition delay period according to the in-cylinder pressure deviation, the current value of the in-cylinder pressure is lower than the appropriate value. In addition, it is possible to eliminate the inconvenience caused by the prolonged or shortened ignition delay period in the rising transient state.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which a fuel injection control device of the present invention is applied.
FIG. 2 is a flowchart showing a fuel injection pressure setting routine for causing the ECU of FIG. 1 to function as a fuel injection control device.
FIG. 3 is a diagram showing a map in which an intake pressure deviation referred to in a fuel injection pressure setting routine of FIG. 2 and a correction amount of the fuel injection pressure are associated;
[Explanation of symbols]
1 diesel engine (internal combustion engine)
2 Cylinder 3 Intake passage 4 Exhaust passage 5 Turbocharger (supercharger)
8 Exhaust gas purification device 9 Fuel injection valve 10 Common rail 11 Pump 12 Pressure regulator 13 Engine control unit (fuel injection control device)
14 Air flow meter 15 Crank angle sensor 16 Intake pressure sensor

Claims (4)

運転状態に応じて定められた筒内圧力の適合値に対応する目標値に基づいて燃料噴射弁から筒内への燃料噴射時期が制御される内燃機関に適用される燃料噴射制御装置において、
筒内圧力の現在値を取得する筒内圧力取得手段と、
前記筒内圧力取得手段による前記筒内圧力の現在値の前記適合値に対する偏差に基づいて、前記偏差に応じた着火遅れ期間の変化を打ち消す方向に前記燃料噴射弁の燃料噴射圧力を制御する噴射圧制御手段と、
を備えたことを特徴とする内燃機関の燃料噴射制御装置。
In a fuel injection control device applied to an internal combustion engine in which a fuel injection timing from a fuel injection valve into a cylinder is controlled based on a target value corresponding to an in-cylinder pressure adaptation value determined according to an operation state,
In-cylinder pressure acquisition means for acquiring the current value of the in-cylinder pressure,
Injection for controlling the fuel injection pressure of the fuel injection valve in a direction to cancel the change in the ignition delay period according to the deviation based on the deviation of the current value of the in-cylinder pressure from the appropriate value by the in-cylinder pressure acquisition means. Pressure control means;
A fuel injection control device for an internal combustion engine, comprising:
前記噴射圧制御手段は、前記現在値が前記適合値より低いときは前記燃料噴射圧が上昇するように前記噴射圧力を制御することを特徴とする請求項1に記載の燃料噴射制御装置。The fuel injection control device according to claim 1, wherein the injection pressure control means controls the injection pressure so that the fuel injection pressure increases when the current value is lower than the appropriate value. 前記内燃機関には過給器が設けられ、前記噴射圧制御手段は前記過給器の応答遅れに伴って発生する前記筒内圧力の前記偏差に基づいて、前記噴射圧力を制御することを特徴とする請求項1又は2に記載の燃料噴射制御装置。The internal combustion engine is provided with a supercharger, and the injection pressure control means controls the injection pressure based on the deviation of the in-cylinder pressure generated due to a response delay of the supercharger. The fuel injection control device according to claim 1 or 2, wherein 前記筒内圧力取得手段は、前記筒内圧力として、圧縮端における筒内圧力を取得することを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射制御装置。The fuel injection control device according to any one of claims 1 to 3, wherein the in-cylinder pressure acquiring unit acquires, as the in-cylinder pressure, an in-cylinder pressure at a compression end.
JP2003114537A 2003-04-18 2003-04-18 Fuel injection control device for internal combustion engine Pending JP2004316608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114537A JP2004316608A (en) 2003-04-18 2003-04-18 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114537A JP2004316608A (en) 2003-04-18 2003-04-18 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004316608A true JP2004316608A (en) 2004-11-11

Family

ID=33474093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114537A Pending JP2004316608A (en) 2003-04-18 2003-04-18 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004316608A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303297A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Control device for internal combustion engine
JP2012092784A (en) * 2010-10-28 2012-05-17 Isuzu Motors Ltd Cylinder internal pressure control system of diesel engine
JP2016108945A (en) * 2014-12-02 2016-06-20 三菱自動車工業株式会社 Engine control device
JP2016173072A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Control device for multi-cylinder internal combustion engine
CN114215654A (en) * 2022-02-23 2022-03-22 潍柴动力股份有限公司 Correction method and device of oil injection angle, electronic equipment and computer storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303297A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Control device for internal combustion engine
JP2012092784A (en) * 2010-10-28 2012-05-17 Isuzu Motors Ltd Cylinder internal pressure control system of diesel engine
JP2016108945A (en) * 2014-12-02 2016-06-20 三菱自動車工業株式会社 Engine control device
JP2016173072A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Control device for multi-cylinder internal combustion engine
CN105986913A (en) * 2015-03-17 2016-10-05 丰田自动车株式会社 Control device of multi-cylinder internal combustion engine
CN114215654A (en) * 2022-02-23 2022-03-22 潍柴动力股份有限公司 Correction method and device of oil injection angle, electronic equipment and computer storage medium
CN114215654B (en) * 2022-02-23 2022-04-22 潍柴动力股份有限公司 Correction method and device of oil injection angle, electronic equipment and computer storage medium

Similar Documents

Publication Publication Date Title
JP4882787B2 (en) Control device for internal combustion engine
EP2198139B1 (en) Control apparatus and control method for internal combustion engine
JP5939263B2 (en) Control device for internal combustion engine
KR100680683B1 (en) Controllers for internal combustion engines
WO2012108223A1 (en) Control device for internal combustion engine
CN103380281B (en) Controller and control method for internal combustion engine
CN109973279B (en) Control device for internal combustion engine
JPWO2010114127A1 (en) Internal combustion engine control system
JP2009062862A (en) Fuel injection control device for internal combustion engine
JP6565875B2 (en) Control device for internal combustion engine
JP5531987B2 (en) Control device for an internal combustion engine with a supercharger
JP2004316608A (en) Fuel injection control device for internal combustion engine
JP4483794B2 (en) Control device for compression ignition type internal combustion engine
JP5076879B2 (en) Fuel injection control system for internal combustion engine
JP2010168931A (en) Ignition timing control device for spark ignition type internal combustion engine
JP5692130B2 (en) Internal combustion engine control device
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
US10563595B2 (en) Control device of internal combustion engine
JP5695878B2 (en) Combustion control apparatus and method for internal combustion engine
JP2009002232A (en) Torque control system for internal combustion engine
JP6350974B2 (en) Engine control device
JP7483497B2 (en) Ignition timing control method for internal combustion engine and ignition timing control device for internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP6311363B2 (en) Control device for internal combustion engine
JP2006009704A (en) Fuel injection control device for cylinder injection internal combustion engine