JP2004315959A - Steel sheet superior in strain age hardening characteristics, and manufacturing method therefor - Google Patents
Steel sheet superior in strain age hardening characteristics, and manufacturing method therefor Download PDFInfo
- Publication number
- JP2004315959A JP2004315959A JP2004019737A JP2004019737A JP2004315959A JP 2004315959 A JP2004315959 A JP 2004315959A JP 2004019737 A JP2004019737 A JP 2004019737A JP 2004019737 A JP2004019737 A JP 2004019737A JP 2004315959 A JP2004315959 A JP 2004315959A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- rolled
- hot
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、主として自動車用鋼板に係り、とくに、曲げ加工性、伸びフランジ加工性、絞り加工性等のプレス成形性が良好で、しかもプレス成形後の熱処理により引張強さが顕著に増加する、極めて大きな歪時効硬化特性を有する鋼板およびその製造方法に関する。なお、本発明でいう鋼板には、冷間圧延後焼鈍を施して製造される、いわゆる冷延鋼板のほか、冷間圧延後に焼鈍しさらに溶融亜鉛めっきや電気めっきなどのめっきを施された冷延めっき鋼板をも含むものとする。 The present invention mainly relates to a steel sheet for automobiles, in particular, has good press formability such as bending workability, stretch flangeability, drawability, and the tensile strength is significantly increased by heat treatment after press forming. The present invention relates to a steel sheet having extremely large strain age hardening characteristics and a method for producing the same. The steel sheet according to the present invention may be a so-called cold-rolled steel sheet manufactured by performing cold rolling and annealing, or a cold-rolled steel sheet that has been annealed after cold rolling and further subjected to galvanizing or electroplating. It shall also include rolled steel sheets.
本発明でいう極めて大きな歪時効硬化特性、すなわち「歪時効硬化特性に優れる」とは、ΔTS:150MPa以上、好ましくはΔTS:170MPa以上、になる歪時効硬化特性を有することを意味する。なお、本発明において、ΔTSとは、塑性歪量5%以上の予変形処理後、150 〜 350℃の範囲の温度で保持時間:30s以上の熱処理を施したときの、熱処理前後の引張強さ増加量{=(熱処理後の引張強さ)−(予変形処理前の引張強さ)}を意味する。 The term "excellent strain aging hardening property" as used in the present invention, that is, "excellent in strain aging hardening property" means having a strain aging hardening property of ΔTS: 150 MPa or more, preferably ΔTS: 170 MPa or more. In the present invention, ΔTS is the tensile strength before and after heat treatment when a pre-deformation treatment with a plastic strain amount of 5% or more and a heat treatment at a temperature in the range of 150 to 350 ° C. and a holding time of 30 s or more are performed. The amount of increase {= (tensile strength after heat treatment) − (tensile strength before pre-deformation treatment)}.
近年、地球環境の保全問題からの排出ガス規制に関連して、自動車の車体重量の軽減が極めて重要な課題となっている。最近、車体重量の軽減のために、自動車用鋼板を高強度化して鋼板板厚を低減することが検討されている。 2. Description of the Related Art In recent years, reduction of the weight of a vehicle body has become a very important issue in connection with emission gas regulations due to global environmental conservation issues. Recently, in order to reduce the weight of a vehicle body, it has been studied to increase the strength of a steel plate for an automobile and reduce the thickness of the steel plate.
鋼板を素材とする自動車の車体用部品の多くがプレス加工により成形されるため、使用される鋼板には、優れたプレス成形性を有することが要求される。しかし、一般に、鋼板を高強度化すると、降伏応力が上昇し形状凍結性が劣化するとともに、延性が低下してプレス成形性が低下する傾向となる。 Since many automotive body parts made of steel plates are formed by press working, the steel plates used are required to have excellent press formability. However, in general, when the strength of a steel sheet is increased, the yield stress increases, the shape freezing property deteriorates, and the ductility tends to decrease, and the press formability tends to decrease.
また最近では、衝突時に乗員を保護するため、自動車車体の安全性が重視され、そのために衝突時における安全性の目安となる耐衝撃特性の向上が要求されている。耐衝撃特性の向上には、完成車での強度が高いほど有利になる。したがって、自動車部品の成形時には、強度が低く、高い延性を有してプレス成形性に優れ、完成品となった時点には、強度が高くて耐衝撃特性に優れる鋼板が最も強く望まれていた。 Recently, safety of an automobile body has been emphasized in order to protect an occupant at the time of a collision, and therefore, an improvement in impact resistance, which is a measure of safety at the time of a collision, has been required. The higher the strength of the completed vehicle, the better the impact resistance is. Therefore, when forming automotive parts, steel sheets having low strength, high ductility and excellent press formability, and when finished, high strength and excellent impact resistance were the most strongly desired. .
このような要望に対し、プレス成形性と高強度化とを両立させた鋼板が開発された。この鋼板は、プレス加工後に100 〜200 ℃の高温保持を含む塗装焼付処理を施すと降伏応力が上昇する塗装焼付硬化型鋼板である。この鋼板では、最終的に固溶状態で残存するC量(固溶C量)を適正範囲に制御し、プレス成形時には軟質で、形状凍結性、延性を確保し、プレス成形後に行われる塗装焼付処理時に、残存する固溶Cがプレス成形時に導入された転位に固着して、転位の移動を妨げ、降伏応力を上昇させる。しかしながら、この塗装焼付硬化型鋼板では、降伏応力は上昇させることができるものの、引張強さまでは上昇させることができなかった。 In response to such a demand, a steel sheet that achieves both press formability and high strength has been developed. This steel sheet is a paint bake hardening steel sheet whose yield stress increases when subjected to paint baking treatment including holding at a high temperature of 100 to 200 ° C. after press working. In this steel sheet, the amount of C finally dissolved in a solid solution state (the amount of solid solution C) is controlled to an appropriate range, and is soft at the time of press forming, secures shape freezing and ductility, and paint baking performed after press forming. During processing, the remaining solid solution C adheres to dislocations introduced during press forming, hinders the movement of the dislocations, and increases the yield stress. However, in this paint-bake hardening type steel sheet, although the yield stress can be increased, it cannot be increased by the tensile strength.
また、特許文献1には、C:0.08〜0.20%、Mn:1.5 〜3.5 %を含み残部Feおよび不可避的不純物からなる成分組成を有し、組織がフェライト量5%以下の均一なベイナイトもしくは一部マルテンサイトを含むベイナイトで構成された焼付硬化性高張力冷延薄鋼板が開示されている。特許文献1に記載された冷延薄鋼板は、連続焼鈍後の冷却過程で400 〜200 ℃の温度範囲を急冷し、その後を徐冷とすることにより、組織を従来のフェライト主体の組織からベイナイト主体の組織として、従来になかった高い焼付硬化量を得ようとするものである。 Further, Patent Document 1 discloses that a uniform bainite or iron alloy containing C: 0.08 to 0.20%, Mn: 1.5 to 3.5%, the balance being Fe and an unavoidable impurity, and having a ferrite content of 5% or less. A bake-hardenable high-tensile cold-rolled thin steel sheet composed of bainite containing part martensite is disclosed. The cold-rolled thin steel sheet described in Patent Literature 1 rapidly cools the temperature range of 400 to 200 ° C. in a cooling process after continuous annealing, and then gradually cools it, thereby changing the structure from the conventional ferrite-based structure to bainite. The main structure is to obtain a high bake hardening amount, which has never existed before.
しかしながら、特許文献1に記載された冷延薄鋼板では、塗装焼付け後に降伏強さが上昇し、従来になかった高い焼付け硬化量が得られるものの、依然として引張強さまでは上昇させることができず、耐衝撃特性の向上が期待できないという問題があった。 However, in the cold-rolled thin steel sheet described in Patent Document 1, although the yield strength increases after baking paint, a higher bake hardening amount than before can be obtained, but it is still not possible to increase the tensile strength. There is a problem that improvement in impact resistance cannot be expected.
また、プレス成形後に熱処理を施し、降伏応力のみならず引張強さをも上昇させようとする鋼板が、熱延鋼板ではあるが、いくつか提案されている。 Further, although a steel sheet which is subjected to heat treatment after press forming to increase not only the yield stress but also the tensile strength is a hot rolled steel sheet, some steel sheets have been proposed.
例えば、特許文献2には、C:0.02〜0.13%、Si:2.0 %以下、Mn:0.6 〜2.5 %、sol.Al:0.10%以下、N:0.0080〜0.0250%を含む鋼を、1100℃以上に再加熱し、850 〜950 ℃で仕上圧延を終了する熱間圧延を施し、ついで15℃/s以上の冷却速度で150 ℃未満の温度まで冷却し巻取り、フェライトとマルテンサイトを主体とする複合組織とする、熱延鋼板の製造方法が提案されている。しかしながら、特許文献2に記載された技術で製造された鋼板では、歪時効硬化により降伏応力とともに引張強さが増加するものの、150 ℃未満という極めて低い巻取温度で巻き取るため、機械的特性の変動が大きく、またプレス成形−熱処理による降伏応力等の増加量のバラツキが大きいという問題があった。 For example, Patent Document 2 discloses a steel containing C: 0.02 to 0.13%, Si: 2.0% or less, Mn: 0.6 to 2.5%, sol. Al: 0.10% or less, and N: 0.0080 to 0.0250%, at 1100 ° C or more. Re-heated, hot-rolled to finish the finish rolling at 850-950 ° C, then cooled at a cooling rate of 15 ° C / s or more to a temperature of less than 150 ° C and wound, mainly composed of ferrite and martensite. A method for producing a hot-rolled steel sheet having a composite structure has been proposed. However, in the steel sheet manufactured by the technique described in Patent Document 2, although the tensile strength increases with the yield stress due to strain age hardening, the steel sheet is wound at an extremely low winding temperature of less than 150 ° C. There is a problem that the fluctuation is large and the variation in the amount of increase in the yield stress and the like due to the press forming-heat treatment is large.
また、特許文献3には、熱延板をめっき原板とする溶融亜鉛めっき鋼板の製造方法が提案されている。この方法は、C:0.05%以下、Mn:0.05〜0.5 %、Al:0.1 %以下、Cu:0.8 〜2.0 %を含む鋼スラブを巻取温度:530 ℃以下の条件で熱間圧延を行い、続いて530 ℃以下の温度に加熱し鋼板表面を還元したのち、溶融亜鉛めっきを施すことにより、成形後の熱処理による著しい硬化が得られるとしている。しかしながら、この方法で製造された鋼板では、成形後熱処理により著しい硬化を得るためには、熱処理温度を500 ℃以上とする必要があり、熱処理温度が高く、実用上問題を残していた。 Patent Document 3 proposes a method for producing a hot-dip galvanized steel sheet using a hot-rolled sheet as a plating base sheet. In this method, a steel slab containing C: 0.05% or less, Mn: 0.05 to 0.5%, Al: 0.1% or less, and Cu: 0.8 to 2.0% is hot-rolled at a winding temperature of 530 ° C or less. Subsequently, the steel sheet is heated to a temperature of 530 ° C. or lower to reduce the surface of the steel sheet, and then hot-dip galvanized, whereby remarkable hardening by heat treatment after forming is obtained. However, in the steel sheet manufactured by this method, the heat treatment temperature must be 500 ° C. or higher in order to obtain a significant hardening by heat treatment after forming, and the heat treatment temperature is high, and there is a practical problem.
また、特許文献4には、熱延板あるいは冷延板をめっき原板とし、成形後の熱処理により強度上昇が期待できる合金化溶融亜鉛めっき鋼板の製造方法が提案されている。この方法は、C:0.01〜0.08%を含み、Si、Mn、P、S、Al、Nを適正量としたうえで、Cr、W、Moの1種または2種以上を合計で0.05〜3.0 %含有する鋼を熱間圧延したのち、あるいはさらに調質圧延または冷間圧延し焼鈍したのち、溶融亜鉛めっきを行い、その後加熱合金化処理を施すというものである。この鋼板は、成形後、200 〜450 ℃の温度域で加熱することにより引張強さ上昇が得られるとされる。しかしながら、引張強さ上昇量は最大で140 MPa 程度であり、最近のユーザーの要望に対しては不十分なものである。 Further, Patent Document 4 proposes a method for producing an alloyed hot-dip galvanized steel sheet in which a hot-rolled sheet or a cold-rolled sheet is used as an original plate for plating and a strength increase can be expected by heat treatment after forming. This method contains C: 0.01 to 0.08%, and after making appropriate amounts of Si, Mn, P, S, Al and N, one or two or more of Cr, W and Mo in a total amount of 0.05 to 3.0. % Hot-rolled steel, or further temper rolling or cold-rolled, annealed, hot-dip galvanized, and then heat-alloyed. It is said that this steel sheet can be increased in tensile strength by being heated in a temperature range of 200 to 450 ° C. after forming. However, the amount of increase in tensile strength is about 140 MPa at the maximum, which is insufficient for recent demands of users.
また、特許文献5には、プレス成形体の製造方法が提案され、Si、Al、Pを、{Si+1.4Al +6.3 P}:0.2 〜3%の範囲となるように調整した鋼板を用い、プレス成形後、低温で熱処理を施すことにより最大で400MPa程度の引張強さの上昇が得られるとしている。しかし、特許文献5に記載された技術では、Si、Al、Pを多量に含有させる必要があり、プレス成形性や化成処理性が低下するという問題がある。 Patent Document 5 proposes a method of manufacturing a press-formed body, and uses a steel sheet in which Si, Al, and P are adjusted to be in a range of {Si + 1.4Al + 6.3P}: 0.2 to 3%. It is stated that a heat treatment at a low temperature after press molding can increase the tensile strength up to about 400 MPa. However, the technique described in Patent Literature 5 requires a large amount of Si, Al, and P to be contained, and thus has a problem that press formability and chemical conversion properties are reduced.
また、特許文献6には、C:0.15%以下、Mn:3.0 %以下、Cu:0.5 〜3.0 %を含み、Si、P、S、Al、Nを適正量含む組成と、組織を主相としてのフェライト相と、面積率で2%以上のマルテンサイト相を含む第二相との複合組織としたプレス成形性と歪時効硬化特性に優れた冷延鋼板が開示されている。このCu含有鋼板では、成形後に150 〜350 ℃の温度域で加熱することにより、80MPa 以上、引張強さが上昇するとしている。しかしながら、特許文献6に記載された技術では、Cu含有を必須としており、Cu含有は鋼材のリサイクルという観点からは好ましくない。また特許文献6にはCuに代えて、Mo、Cr、Wのうちから選ばれた1種または2種以上を含有する鋼板も開示されているが、この場合では、鋼板の引張強さ上昇量は最大でも140MPa程度であり、最近のユーザーの要望に対しては不十分なものである。 Patent Document 6 discloses that a composition containing C: 0.15% or less, Mn: 3.0% or less, Cu: 0.5 to 3.0%, and containing appropriate amounts of Si, P, S, Al, and N, and a structure as a main phase. A cold-rolled steel sheet which is excellent in press formability and strain age hardening characteristics as a composite structure of a ferrite phase and a second phase containing a martensite phase having an area ratio of 2% or more is disclosed. It is stated that the tensile strength of this Cu-containing steel sheet increases by 80 MPa or more by heating in a temperature range of 150 to 350 ° C. after forming. However, in the technology described in Patent Document 6, Cu content is essential, and Cu content is not preferable from the viewpoint of steel material recycling. Patent Document 6 also discloses a steel sheet containing one or more selected from Mo, Cr, and W instead of Cu. In this case, the amount of increase in the tensile strength of the steel sheet is disclosed. Is about 140MPa at the maximum, which is insufficient for recent user demands.
また、特許文献7には、C:0.20%以下、Mn:3.0 %以下、Cu:0.5 〜3.0 %を含み、Si、P、S、Al、Nを適正量含む組成、あるいはCuに代えて、Mo、Cr、Wのうちから選ばれた1種または2種以上を含有する組成と、組織を主相としてのフェライト相と、体積率で1%以上の残留オーステナイト相を含む第二相との複合組織としたプレス成形性と歪時効硬化特性に優れた高延性冷延鋼板が開示されている。この鋼板では、成形後に150 〜350 ℃の温度域で加熱することにより、80MPa 以上、引張強さが上昇するとしている。 Further, Patent Document 7 discloses a composition containing C: 0.20% or less, Mn: 3.0% or less, Cu: 0.5 to 3.0%, and a composition containing appropriate amounts of Si, P, S, Al, and N, or instead of Cu. A composition containing one or more selected from Mo, Cr, and W; a ferrite phase having a structure as a main phase; and a second phase containing a residual austenite phase having a volume fraction of 1% or more. A high-ductility cold-rolled steel sheet having a composite structure and excellent in press formability and strain age hardening characteristics is disclosed. It is stated that the tensile strength of this steel sheet is increased by 80 MPa or more by heating in a temperature range of 150 to 350 ° C. after forming.
しかしながら、特許文献7に記載された技術では、Cuを含有する場合には、鋼材のリサイクルという観点からは好ましくない。さらに、特許文献7に記載された技術では、未変態オーステナイトを残留させるため、Siを多量に含有する必要があり、めっき性、化成処理性に問題がある場合があり、表面改質を行うための処理を必要とし製造コストが高くなるという問題があった。
本発明は、上記したように、極めて強い要求があるにもかかわらず、これらの特性を満足する鋼板を工業的に安定して製造する技術がこれまでになかったことに鑑み成されたものであり、上記した問題を有利に解決し、自動車用鋼板として好適な、優れたプレス成形性を有し、かつプレス成形後に、比較的低い温度での熱処理によって引張強さが極めて大きく上昇する歪時効硬化特性に優れた鋼板およびこの高延性鋼板を安定して生産できる製造方法を提案することを目的とする。 As described above, the present invention has been made in view of the fact that there has never been a technology for industrially stably producing a steel sheet satisfying these characteristics despite extremely strong demands. Strain aging, which advantageously solves the above-mentioned problems and has excellent press formability suitable for use as a steel sheet for automobiles, and has a very large increase in tensile strength by heat treatment at a relatively low temperature after press forming. An object of the present invention is to propose a steel sheet having excellent hardening characteristics and a manufacturing method capable of stably producing the high ductility steel sheet.
本発明者らは、上記した課題を達成するために、歪時効硬化特性におよぼす合金元素の影響について鋭意研究を重ねた。その結果、Cを低炭素域とし、適正範囲のNb、Moのうちの1種または2種を含有する組成とし、さらに析出物の大きさを平均粒径32nm以下、好ましくは30nm以下、に調整した熱延板を母板として、冷間圧延(冷延ともいう)と(Ac3変態点−110 ℃)以上、好ましくは(Ac3変態点−100 ℃)以上、の温度域で焼鈍を施して冷延鋼板(冷延焼鈍板ともいう)とすることにより、予歪:5%以上の予変形処理と150 〜350 ℃の比較的低温の熱処理を施したのちに、降伏応力の増加に加えて、引張強さも顕著に増加する、高い歪時効硬化特性を有する鋼板となることを知見した。 The present inventors have conducted intensive studies on the effects of alloying elements on the strain age hardening characteristics in order to achieve the above-mentioned object. As a result, C was set to a low carbon region, and a composition containing one or two of Nb and Mo in an appropriate range, and the size of the precipitate was adjusted to an average particle diameter of 32 nm or less, preferably 30 nm or less. Using the hot rolled sheet as a base plate, annealing is performed in a temperature range of cold rolling (also referred to as cold rolling) and a temperature range of (Ac 3 transformation point −110 ° C.) or more, preferably (Ac 3 transformation point −100 ° C.) or more. Pre-strain: 5% or more of pre-deformation treatment and heat treatment at a relatively low temperature of 150 to 350 ° C. are applied to a cold-rolled steel sheet (also referred to as a cold-rolled annealed sheet). As a result, it has been found that a steel sheet having a high strain age hardening characteristic in which the tensile strength is significantly increased is obtained.
まず、本発明者らが行った基礎的な実験結果について説明する。 First, the results of basic experiments performed by the present inventors will be described.
質量%で、C:0.08%、Si:0.25%、Mn:1.9 %、P:0.01%、S:0.001 %、Al:0.04%、N:0.002 %、Mo:0.19%、Nb:0.05%を含有する組成のシートバーについて、1250℃に加熱−均熱後、仕上圧延出側温度が900 ℃となるように3パス圧延を行い板厚4.0 mmの熱延板とし、仕上圧延終了後、種々の冷却速度で冷却し、コイル巻取相当処理として種々の温度で1h保持する保温処理を行った。得られた熱延板の組織を透過型電子顕微鏡で観察し、析出物の大きさ(平均粒径)を測定した。なお、析出物の平均粒径は、各熱延板について倍率10万倍で10視野以上観察し、画像解析装置を用いて各視野における各析出物の面積を求め、この面積から円相当直径を求め各析出物の粒径として、各視野における析出物の平均粒径を求め、測定した全視野の平均値を各熱延板の平均値とした。なお、析出物の平均粒径を求めるに際しては、各視野において円相当直径で80nmを超える粗大な析出物を除き、粒径80nm以下の析出物について、上記したように析出物の平均粒径を求めた。円相当直径で80nmを超える析出物を除外したのは、これら析出物は比較的安定な析出物であり、冷間圧延後の焼鈍時に溶解することが期待できないと考えたからである。また、粒径80nm以下の析出物について、EDX(Energy Dispersive X-ray Spectroscopy)を用いて分析した結果、炭素と、Nbおよび/またはMoが検出され、これら微細な析出物はNb、Moのうちの1種または2種を含む炭化物であると推定される。 In mass%, C: 0.08%, Si: 0.25%, Mn: 1.9%, P: 0.01%, S: 0.001%, Al: 0.04%, N: 0.002%, Mo: 0.19%, Nb: 0.05% After heating to 1250 ° C and soaking, the sheet bar was subjected to three-pass rolling so that the exit temperature on the finish rolling was 900 ° C to form a hot-rolled sheet having a thickness of 4.0 mm. Cooling was performed at a cooling rate, and a heat retention process of maintaining the coil at various temperatures for 1 hour was performed as a process corresponding to coil winding. The structure of the obtained hot-rolled sheet was observed with a transmission electron microscope, and the size (average particle size) of the precipitate was measured. The average particle size of the precipitates was determined for each hot-rolled sheet by observing 10 or more fields at a magnification of 100,000 and using an image analyzer to determine the area of each precipitate in each field of view. The average particle size of the precipitate in each visual field was determined as the obtained particle size of each precipitate, and the measured average value in all the visual fields was defined as the average value of each hot-rolled sheet. In determining the average particle size of the precipitates, except for coarse precipitates exceeding 80 nm in circle equivalent diameter in each field of view, for precipitates having a particle size of 80 nm or less, the average particle size of the precipitates as described above. I asked. The precipitates having a circle equivalent diameter exceeding 80 nm were excluded because these precipitates were relatively stable precipitates, and it was considered that they could not be expected to dissolve during annealing after cold rolling. The precipitates having a particle size of 80 nm or less were analyzed using EDX (Energy Dispersive X-ray Spectroscopy), and as a result, carbon, Nb and / or Mo were detected. Is presumed to be a carbide containing one or two of the following.
引き続き、熱延板に60%の冷間圧延を施して板厚1.2 mmの冷延板とした。ついで、これらの冷延板に種々の条件で焼鈍を施した。 Subsequently, the hot-rolled sheet was subjected to 60% cold rolling to obtain a 1.2-mm-thick cold-rolled sheet. Next, these cold rolled sheets were annealed under various conditions.
得られた冷延板について、引張試験を実施し引張特性を調査した。さらに、これら冷延板の歪時効硬化特性について調査した。 About the obtained cold rolled sheet, the tensile test was implemented and the tensile characteristic was investigated. Furthermore, the strain aging hardening characteristics of these cold rolled sheets were investigated.
まず、これら冷延板から試験片を採取し、これら試験片に引張予歪量5%の予変形処理を施し、ついで250 ℃×20min の熱処理を施したのち、引張試験を実施し引張特性を求めた。歪時効硬化特性は、熱処理前後の引張強さ増加量ΔTSで評価した。ΔTSは、熱処理を施した後の引張強さTSHTと、予変形処理および熱処理を施さない場合の引張強さTSとの差(=(熱処理後の引張強さTSHT)−(予変形処理前の引張強さTS))とした。なお、引張試験は、JIS 5号引張試験片を用いて実施した。 First, test specimens were taken from these cold-rolled sheets, subjected to a pre-deformation treatment with a tensile pre-strain of 5%, and then subjected to a heat treatment at 250 ° C. for 20 min. I asked. The strain age hardening property was evaluated by the increase in tensile strength ΔTS before and after the heat treatment. ΔTS, the difference between the tensile strength TS HT after heat treatment, the tensile strength TS when not subjected to pre-deformation and heat treatment (= (tensile strength TS HT after heat treatment) - (pre-deformation processing Previous tensile strength TS)). The tensile test was performed using a JIS No. 5 tensile test piece.
得られた結果を、ΔTSと熱延板の析出物平均粒径との関係で図1に示す。図1は、熱延後の冷却速度と巻取相当処理温度を変化した熱延板に冷間圧延を施した後、Ac3変態点( 810℃)直下の800 ℃で90s保持する焼鈍を行った場合の結果である。図1から、熱延板の析出物の大きさを平均粒径で32nm以下に調整することにより、ΔTSが150MPa以上という高い歪時効硬化特性を有する鋼板が得られ、さらに、熱延板の析出物の大きさを平均粒径で30nm以下に調整することにより、ΔTSが170MPa以上という高い歪時効硬化特性を有する鋼板が得られことがわかる。 The obtained results are shown in FIG. 1 in the relationship between ΔTS and the average particle size of precipitates of the hot-rolled sheet. FIG. 1 shows that after hot rolling was performed on a hot rolled sheet having a different cooling rate and a processing temperature equivalent to winding after hot rolling, the steel sheet was annealed at 800 ° C. immediately below the Ac 3 transformation point (810 ° C.) for 90 seconds. This is the result of the case. From FIG. 1, by adjusting the size of the precipitate of the hot-rolled sheet to 32 nm or less in average particle size, a steel sheet having a high strain age hardening property of ΔTS of 150 MPa or more was obtained. It can be seen that by adjusting the size of the product to an average particle size of 30 nm or less, a steel sheet having a high strain age hardening property of ΔTS of 170 MPa or more can be obtained.
ΔTSと焼鈍温度との関係を図2に示す。図2は、熱延後の冷却速度を50℃/s、巻取相当処理温度を400 ℃とし、析出物平均粒径を17nmとした熱延板に冷間圧延を施した後、種々の温度で90s間保持する焼鈍を行った場合の結果である。図2から、焼鈍温度を、(Ac3変態点−110 ℃)である700 ℃以上とすることにより、ΔTSが150MPa以上という高い歪時効硬化特性を有する鋼板が得られ、さらに焼鈍温度を(Ac3変態点−100 ℃)である710 ℃以上とすることにより、ΔTSが170 MPa 以上という高い歪時効硬化特性を有する鋼板が得られることがわかる。なお、Ac3変態点については、昇温速度5℃/sで昇温中の熱膨張−温度曲線の測定により求めた。 FIG. 2 shows the relationship between ΔTS and the annealing temperature. FIG. 2 shows that the hot rolled sheet having a cooling rate of 50 ° C./s, a processing temperature equivalent to winding at 400 ° C., and an average grain size of precipitates of 17 nm was subjected to cold rolling at various temperatures. Is a result when annealing is performed for 90 seconds. From FIG. 2, by setting the annealing temperature to 700 ° C. or higher which is (Ac 3 transformation point−110 ° C.), a steel sheet having a high strain aging hardening property with ΔTS of 150 MPa or higher can be obtained. It can be seen that a steel sheet having a high strain aging hardening property with a ΔTS of 170 MPa or more can be obtained by setting the temperature to 710 ° C. or more, which is 3 transformation point −100 ° C.). The Ac 3 transformation point was determined by measuring a thermal expansion-temperature curve during heating at a heating rate of 5 ° C./s.
上記の結果をもとに種々検討した結果、Cを低炭素域とし、適正範囲のNb、Moのうちの1種または2種を含有する組成とし、さらに析出物の大きさを平均粒径32nm以下に調整した熱延板を冷延板母板として、冷延と(Ac3変態点−110 ℃)以上の温度域での焼鈍を施し得られた鋼板に、予歪:5%以上の予変形と150 〜350 ℃の比較的低温の熱処理を施すと、極めて大きな引張強さの上昇が得られることを見出した。このように予変形と比較的低温の熱処理を施すことにより極めて大きな引張強さの上昇が得られるようになる理由については現在までのところ明確になっていないが、本発明者らは次のように考えている。 As a result of various examinations based on the above results, C was set to a low carbon region, and a composition containing one or two of Nb and Mo in an appropriate range, and the size of the precipitate was set to an average particle size of 32 nm Using the hot-rolled sheet adjusted as follows as a cold-rolled sheet, a steel sheet obtained by performing cold rolling and annealing in a temperature range of (Ac 3 transformation point -110 ° C.) or more is subjected to a pre-strain of 5% or more. It has been found that an extremely large increase in tensile strength can be obtained by deformation and heat treatment at a relatively low temperature of 150 to 350 ° C. The reason why an extremely large increase in tensile strength can be obtained by performing the predeformation and the heat treatment at a relatively low temperature as described above has not been clarified so far, but the present inventors have as follows. I think.
平均粒径32nm以下の微細な析出物が析出した熱延板を冷延板母板として冷間圧延を施すと、界面エネルギーや歪エネルギーが高く不安定な微細析出物と冷間圧延により導入された高密度の転位との相互作用により、析出物が一層不安定となり、次工程の焼鈍処理により固溶Cとしてフェライト相中に溶解しやすくなる。なお、上記析出物はNb、Moのうちの1種または2種を含む炭化物と考えられる。さらに、焼鈍処理を(Ac3変態点−110 ℃)以上の温度域での焼鈍とすることにより、焼鈍中に熱延板の段階で生成した微細析出物を十分に溶解することができる。したがって、上記した工程を経て得られた鋼板に、予歪:5%以上の予変形処理と比較的低温の熱処理を施すと、鋼板中にNb、Moのうちの1種または2種を含む極微細な炭化物が歪誘起析出するものと考えられる。この極微細な炭化物の歪誘起析出により、降伏応力とともに引張強さが顕著に増加する高い歪時効硬化特性が得られたものと考えられる。 When cold rolling is performed on a hot-rolled sheet with fine precipitates having an average particle size of 32 nm or less as a cold-rolled sheet base plate, the interface energy and strain energy are high and unstable fine precipitates are introduced by cold rolling. The interaction with the high-density dislocations makes the precipitates more unstable, and becomes easier to dissolve in the ferrite phase as solid solution C by annealing in the next step. The precipitate is considered to be a carbide containing one or two of Nb and Mo. Further, by performing the annealing treatment in a temperature range of (Ac 3 transformation point -110 ° C.) or more, fine precipitates generated at the stage of hot-rolled sheet during annealing can be sufficiently dissolved. Therefore, when the steel sheet obtained through the above-described steps is subjected to a pre-strain: a pre-strain of 5% or more and a heat treatment at a relatively low temperature, the steel sheet contains one or two of Nb and Mo. It is considered that fine carbides are precipitated by strain induction. It is considered that due to the strain-induced precipitation of the ultrafine carbides, high strain age hardening characteristics in which the tensile strength significantly increases with the yield stress are obtained.
なお、本発明者らは、炭化物形成元素として、Nb、Moのうちの1種または2種に加えて、さらにTi、Vのうちの1種または2種を複合含有することにより、引張強さがさらに増加することを知見した。 In addition, the present inventors, in addition to one or two of Nb and Mo as a carbide-forming element, further contain one or two of Ti and V, thereby increasing the tensile strength. Was found to further increase.
本発明は、上記した知見に基づき、さらに検討して完成されたものである。すなわち、本発明の要旨は下記のとおりである。
(1)質量%で、C:0.01〜0.15%、Si:2.0 %以下、Mn:3.0 %以下、P:0.1 %以下、S:0.02%以下、Al:0.1 %以下、N:0.02%以下を含み、さらにNb:0.01〜0.2 %、Mo:0.05〜2.0 %のうちから選ばれた1種または2種を含有し、残部がFeおよび不可避的不純物からなる組成を有し、ΔTS:150MPa以上の歪時効硬化特性を有することを特徴とする歪時効硬化特性に優れた鋼板。
(2)(1)において、前記組成を有し、粒径80nm以下の析出物について求めた析出物平均粒径が32nm以下である熱延板を、冷間圧延し、ついで(Ac3変態点−110 ℃)以上の温度域で焼鈍を施してなることを特徴とする鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ti、Vの1種または2種を合計で0.4 %以下含有することを特徴とする鋼板。
(4)鋼スラブを、熱間圧延したのち、冷却し巻き取り熱延板とする熱延工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に焼鈍を施し冷延焼鈍板とする焼鈍工程と、を順次施す鋼板の製造方法において、前記鋼スラブを、質量%で、C:0.01〜0.15%、Si:2.0 %以下、Mn:3.0 %以下、P:0.1 %以下、S:0.02%以下、Al:0.1 %以下、N:0.02%以下を含み、さらにNb:0.01〜0.2 %、Mo:0.05〜2.0 %のうちから選ばれた1種または2種を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼スラブとし、前記熱延工程における冷却および巻き取りを、20℃/s以上の冷却速度で600 ℃以下まで冷却して巻き取る冷却および巻き取りとし、前記焼鈍における焼鈍温度を(Ac3変態点−110 ℃)以上の温度とすることを特徴とする歪時効硬化特性に優れた鋼板の製造方法。
(5)(4)において、前記組成に加えてさらに、質量%で、Ti、Vの1種または2種を合計で0.4 %以下含有することを特徴とする鋼板の製造方法。
(6)(4)または(5)において、前記熱間圧延の、スラブ加熱温度が900 ℃以上、仕上圧延出側温度が700 ℃以上であることを特徴とする鋼板の製造方法。
(7)(4)ないし(6)のいずれかにおいて、前記焼鈍後の冷却速度を、1℃/s以上とすることを特徴とする鋼板の製造方法。
The present invention has been completed by further study based on the above findings. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.1% or less, S: 0.02% or less, Al: 0.1% or less, N: 0.02% or less Nb: 0.01 to 0.2%, Mo: 0.05 to 2.0%, one or two selected from the group consisting of Fe and unavoidable impurities, and ΔTS: 150 MPa or more. A steel sheet having excellent strain aging hardening characteristics characterized by having strain aging hardening characteristics.
(2) (1), having said composition, hot-rolled sheet and the precipitate average particle diameter determined is less than 32nm for particle size 80nm following precipitates, cold-rolled, and then (Ac 3 transformation point A steel sheet characterized by being annealed in a temperature range of −110 ° C. or higher.
(3) The steel sheet according to (1) or (2), further comprising, in addition to the above composition, 0.4% or less in total of one or two of Ti and V in mass%.
(4) hot rolling a steel slab and then cooling it to form a rolled hot rolled sheet; cold rolling the hot rolled sheet to form a cold rolled sheet; An annealing step of annealing a sheet to form a cold-rolled annealed sheet, wherein the steel slab is, by mass%, C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 3.0%. In the following, P: 0.1% or less, S: 0.02% or less, Al: 0.1% or less, N: 0.02% or less, Nb: 0.01 to 0.2%, Mo: 0.05 to 2.0% Or a steel slab containing two kinds, the balance being Fe and unavoidable impurities, and cooling and winding in the hot rolling step are cooled to 600 ° C. or less at a cooling rate of 20 ° C./s or more. Winding is performed by cooling and winding, and the annealing temperature in the annealing is set to a temperature of (Ac 3 transformation point−110 ° C.) or more. Method for producing steel sheets with excellent strain age hardening characteristics.
(5) The method for producing a steel sheet according to (4), further comprising, in addition to the above composition, one or two of Ti and V in total of 0.4% or less by mass%.
(6) The method for producing a steel sheet according to (4) or (5), wherein the slab heating temperature in the hot rolling is 900 ° C. or more and the finish-rolling exit temperature is 700 ° C. or more.
(7) The method for producing a steel sheet according to any one of (4) to (6), wherein the cooling rate after the annealing is 1 ° C./s or more.
本発明によれば、優れたプレス成形性を維持しつつ、プレス成形後の熱処理により引張強さが顕著に上昇する鋼板を、安定して製造することが可能となり、産業上格段の効果を奏する。本発明の鋼板を自動車部品用に適用した場合、プレス成形が容易で、かつ完成後の部品特性を安定して高くでき、自動車車体の軽量化に十分に寄与できるという効果もある。 Advantageous Effects of Invention According to the present invention, it is possible to stably produce a steel sheet whose tensile strength is remarkably increased by heat treatment after press forming, while maintaining excellent press formability, and has an industrially remarkable effect. . When the steel sheet of the present invention is applied to automobile parts, there is also an effect that press forming is easy, the component properties after completion can be stably increased, and it is possible to sufficiently contribute to weight reduction of an automobile body.
本発明の鋼板は、引張強さTS:440MPa以上の高張力鋼板であり、プレス成形性に優れ、かつプレス成形後の比較的低い温度での熱処理により引張強さが顕著に上昇し、ΔTS:150MPa以上、好ましくはΔTS:170MPa以上になる歪時効硬化特性に優れた鋼板である。 The steel sheet of the present invention is a high-tensile steel sheet having a tensile strength TS of 440 MPa or more, has excellent press-formability, and has a remarkably increased tensile strength due to heat treatment at a relatively low temperature after press-forming. It is a steel sheet having excellent strain aging hardening characteristics of 150 MPa or more, preferably ΔTS: 170 MPa or more.
本発明でいう、「歪時効硬化特性に優れた」とは、上記したように、引張塑性歪量5%以上の予変形処理後、150 〜 350℃の範囲の温度で保持時間:30s以上の熱処理を施したとき、この熱処理前後の引張強さ増加量ΔTS{=(熱処理後の引張強さ)−(予変形処理前の引張強さ)}が150MPa以上となることを意味する。なお、望ましくはΔTSは170MPa以上、さらに望ましくは200MPa以上である。 In the present invention, "excellent in strain age hardening characteristics" means, as described above, that after a pre-deformation treatment with a tensile plastic strain amount of 5% or more, a holding time of 30 seconds or more at a temperature of 150 to 350 ° C. When the heat treatment is performed, the increase in the tensile strength before and after the heat treatment ΔTS {= (tensile strength after heat treatment) − (tensile strength before pre-deformation treatment)} is 150 MPa or more. Preferably, ΔTS is 170 MPa or more, and more preferably, 200 MPa or more.
歪時効硬化特性を規定する場合、予歪(予変形)量は重要な因子である。本発明者らは、自動車用鋼板が適用される変形様式を想定して、予歪量がその後の歪時効硬化特性に及ぼす影響について調査した。その結果、極めて深い絞り加工以外はおおむね1軸相当歪(引張歪)量で整理できること、また、実部品においては、この1軸相当歪量がおおむね5%を上回っていること、また、部品強度が予歪5%の歪時効処理後に得られる強度と良く対応すること、が明らかになった。これらのことから、本発明では、熱処理前の予歪(変形)を5%以上の引張塑性歪とした。 When defining the strain age hardening characteristics, the amount of prestrain (prestrain) is an important factor. The present inventors have investigated the effect of the amount of prestrain on the subsequent strain age hardening characteristics, assuming a deformation mode in which a steel sheet for automobiles is applied. As a result, except for extremely deep drawing, it can be arranged by the amount of strain (tensile strain) equivalent to one axis, and in an actual part, the amount of strain equivalent to one axis is generally more than 5%. Clearly corresponded to the strength obtained after the pre-strain 5% strain aging treatment. For these reasons, in the present invention, the pre-strain (deformation) before the heat treatment was set to a tensile plastic strain of 5% or more.
従来の塗装焼付処理条件は、170 ℃×20min が標準として採用されているが、本発明におけるように、極微細な炭化物の析出強化を利用する場合には、熱処理温度は150 ℃以上が必要となる。一方、350 ℃を超える条件では、その効果が飽和し、逆にやや軟化する傾向を示す。また、350 ℃を超える温度に加熱すると、熱歪やテンパーカラーの発生などが顕著となる。このようなことから、本発明では、歪時効硬化のための熱処理温度は150 〜350 ℃とした。なお、熱処理温度における保持時間は30s以上とする。熱処理の保持時間については、150 〜350 ℃ではおおむね30s程度以上保持すれば、ほぼ十分な歪時効硬化が達成される。よりおおきな安定した歪時効硬化を得たい場合には保持時間は60s以上とするのが望ましく、より好ましくは300 s以上である。 The conventional paint baking treatment condition is 170 ° C x 20 min as standard, but when utilizing precipitation strengthening of ultra-fine carbides as in the present invention, a heat treatment temperature of 150 ° C or higher is required. Become. On the other hand, when the temperature exceeds 350 ° C., the effect saturates and, on the contrary, it tends to soften slightly. Further, when heated to a temperature exceeding 350 ° C., heat distortion and generation of a temper color become remarkable. For this reason, in the present invention, the heat treatment temperature for strain age hardening was set to 150 to 350 ° C. The holding time at the heat treatment temperature is 30 s or more. As for the holding time of the heat treatment, if the holding time is about 30 seconds or more at 150 to 350 ° C., almost sufficient strain age hardening can be achieved. In order to obtain a larger and more stable strain aging hardening, the holding time is desirably at least 60 s, more preferably at least 300 s.
予変形処理(予歪処理)後の熱処理における加熱方法は、とくに限定されないが、通常の塗装焼付処理におけるように、炉による雰囲気加熱以外に、たとえば誘導加熱、無酸化炎、レーザー、プラズマなどによる加熱などがいずれも好適である。また、鋼板の温度を高めてプレスする、いわゆる温間プレスも、本発明においては極めて有効な方法である。 The heating method in the heat treatment after the pre-deformation treatment (pre-strain treatment) is not particularly limited, but may be, for example, induction heating, non-oxidizing flame, laser, plasma, etc., in addition to the atmosphere heating by a furnace, as in the ordinary coating baking treatment. Heating and the like are all suitable. Also, a so-called warm press in which the temperature of the steel sheet is raised and pressed is also an extremely effective method in the present invention.
つぎに、本発明鋼板の組成限定理由について説明する。なお、質量%は単に%と記す。 Next, the reasons for limiting the composition of the steel sheet of the present invention will be described. In addition, mass% is simply described as%.
C:0.01〜0.15%
Cは、鋼板の強度を増加し、また、予変形−熱処理後の強度増加に影響する元素であり、本発明では0.01%以上含有することが必要である。なお、より好ましくは0.02%以上である。一方、0.15%を超える含有は、鋼中の炭化物の分率が増加し、延性、さらにはプレス成形性を低下させる。さらに、より重要な問題として、C含有量が0.15%を超えると、スポット溶接性、アーク溶接性等が顕著に低下する。このため、本発明では、C含有量は0.01〜0.15%に限定した。なお、成形性の観点からは0.10%以下とするのが好ましい。
C: 0.01 to 0.15%
C is an element that increases the strength of the steel sheet and affects the increase in strength after pre-deformation-heat treatment. In the present invention, C must be contained at 0.01% or more. In addition, more preferably, it is 0.02% or more. On the other hand, when the content exceeds 0.15%, the fraction of carbide in the steel increases, and the ductility and further the press formability decrease. Further, as a more important problem, when the C content exceeds 0.15%, spot weldability, arc weldability, and the like are significantly reduced. For this reason, in the present invention, the C content is limited to 0.01 to 0.15%. In addition, from the viewpoint of moldability, the content is preferably 0.10% or less.
Si:2.0 %以下
Siは、鋼板の延性を顕著に低下させることなく、鋼板を高強度化させることができる有用な強化元素であり、0.01%以上含有することが好ましい。しかし、その含有量が2.0 %を超えると、プレス成形性の劣化を招くとともに、表面性状が悪化する。このため、Siは2.0 %以下に限定した。なお、好ましくは1.0 %以下であり、より好ましくは0.02〜0.8 %である。
Si: 2.0% or less
Si is a useful strengthening element capable of increasing the strength of a steel sheet without significantly reducing the ductility of the steel sheet, and is preferably contained at 0.01% or more. However, when the content exceeds 2.0%, the press formability is deteriorated and the surface properties are deteriorated. For this reason, Si is limited to 2.0% or less. The content is preferably 1.0% or less, and more preferably 0.02 to 0.8%.
Mn:3.0 %以下
Mnは、鋼を強化する作用があり、また、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有するのが好ましい。このような効果は、0.5 %以上の含有で顕著となる。また、Mnは、Ar3変態点を低下させる作用があり、含有量の増加に伴いAr3変態点が低下し、焼鈍冷却時にフェライト変態が低温で起こるようになり焼鈍後のフェライト中の転位密度が高くなる。この焼鈍後の転位密度の増加は予歪量の増加と同様の効果を示し、微細炭化物の歪誘起析出を促進するため、予歪時効後により大きな強度上昇を得ることができるようになる。このような効果は1.0 %以上の含有で顕著となる。なお好ましくは1.5 %以上である。一方、3.0 %を超える含有は、プレス成形性および溶接性が劣化する。このため、本発明ではMnは3.0 %以下に限定した。
Mn: 3.0% or less
Mn has an effect of strengthening steel and is an effective element for preventing hot cracking due to S. It is preferable that Mn is contained according to the amount of S contained. Such effects become remarkable when the content is 0.5% or more. In addition, Mn has an effect of lowering the Ar 3 transformation point. As the content increases, the Ar 3 transformation point decreases, so that ferrite transformation occurs at a low temperature during annealing cooling, and the dislocation density in the ferrite after annealing. Will be higher. The increase in the dislocation density after annealing has the same effect as the increase in the amount of prestrain, and promotes the strain-induced precipitation of fine carbides, so that a greater increase in strength after prestrain aging can be obtained. Such effects become remarkable when the content is 1.0% or more. It is more preferably at least 1.5%. On the other hand, if the content exceeds 3.0%, press formability and weldability deteriorate. Therefore, in the present invention, Mn is limited to 3.0% or less.
P:0.1 %以下
Pは、鋼を強化する作用を有する元素であり、所望の強度に応じて、0.005 %以上含有することが好ましい。一方、過剰に含有するとプレス成形性が劣化する。このため、Pは0.1 %以下に限定した。なお、より優れたプレス成形性が要求される場合には、0.05%以下とするのが好ましい。
P: 0.1% or less P is an element having an effect of strengthening steel, and is preferably contained in an amount of 0.005% or more according to a desired strength. On the other hand, if it is contained excessively, press formability deteriorates. Therefore, P is limited to 0.1% or less. When more excellent press formability is required, the content is preferably 0.05% or less.
S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の劣化をもたらす元素であり、できるだけ低減するのが好ましいが、0.02%以下に低減するとさほど悪影響をおよぼさなくなるため、本発明ではSは0.02%を上限とした。なお、優れた伸びフランジ成形性を要求される場合には、Sは0.010 %以下とするのが好ましい。
S: 0.02% or less S is an element that exists as an inclusion in the steel sheet and causes deterioration of the ductility, formability, and particularly stretch flangeability of the steel sheet. It is preferable to reduce the content as much as possible, but it is reduced to 0.02% or less. In this case, the upper limit of S is set to 0.02% because the influence is not so great. When excellent stretch flange formability is required, S is preferably set to 0.010% or less.
Al:0.1 %以下
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であり、0.01%以上含有することが好ましい。しかし、0.1 %を超えて含有してもより一層の脱酸効果は得られず、逆にプレス成形性が劣化する。このため、Alは0.1 %以下に限定した。好ましくは0.08%以下である。なお、本発明では、Al脱酸以外の脱酸方法による溶製方法を排除するものではなく、たとえばTi脱酸やSi脱酸を行ってもよく、これらの脱酸法による鋼板も本発明の範囲に含まれる。その際、CaやREM 等を溶鋼に添加しても、本発明鋼板の特徴はなんら阻害されない。CaやREM 等を含む鋼板も本発明範囲に含まれるのは、勿論である。
Al: 0.1% or less
Al is an element added as a deoxidizing element of steel and is useful for improving the cleanliness of steel, and is preferably contained at 0.01% or more. However, if the content exceeds 0.1%, no further deoxidizing effect can be obtained, and conversely, the press formability deteriorates. For this reason, Al was limited to 0.1% or less. Preferably it is 0.08% or less. Note that, in the present invention, a melting method by a deoxidizing method other than Al deoxidizing is not excluded, and for example, Ti deoxidizing or Si deoxidizing may be performed, and a steel sheet by these deoxidizing methods is also included in the present invention. Included in the range. At this time, even if Ca or REM is added to the molten steel, the characteristics of the steel sheet of the present invention are not hindered at all. Of course, a steel sheet containing Ca, REM or the like is also included in the scope of the present invention.
N:0.02%以下
Nは、固溶強化や歪時効硬化で鋼板の強度を増加させる元素であり、0.001 %以上含有することが好ましいが、0.02%を超えて含有すると、鋼板中に窒化物が増加し、それにより鋼板の延性、さらにはプレス成形性が顕著に劣化する。このため、Nは0.02%以下に限定した。なお、よりプレス成形性の向上が要求される場合には0.01%以下とすることが好ましく、より好ましくは0.008 %以下である。
N: 0.02% or less N is an element that increases the strength of a steel sheet by solid solution strengthening and strain age hardening, and it is preferable to contain 0.001% or more, but if it exceeds 0.02%, nitrides are contained in the steel sheet. Increases, thereby significantly deteriorating the ductility and further the press formability of the steel sheet. For this reason, N was limited to 0.02% or less. When the press formability is required to be further improved, the content is preferably 0.01% or less, more preferably 0.008% or less.
Nb:0.01〜0.2 %、Mo:0.05〜2.0 %のうちから選ばれた1種または2種
Nb、Moは、いずれも鋼板の歪時効硬化(予変形−熱処理後の強度増加)を顕著に増加させる元素であり、本発明において最も重要な元素の一つである。本発明では、Nb、Moのうちから選ばれた1種または2種を含有させ、熱延板の組織を32nm以下、好ましくは30nm以下の極微細な析出物が析出した組織とし、冷間圧延、焼鈍を施すことにより、予変形−熱処理時にNb、Moのうちの1種または2種を含む極微細な炭化物が歪誘起析出し、ΔTS:150MPa以上、好ましくはΔTS:170MPa以上の引張強さの増加が得られる。Nb:0.01%未満、Mo:0.05%未満では、たとえ予変形−熱処理条件、熱延板析出物の大きさを変化させても、ΔTS:150MPa以上の引張強さの増加は得られない。一方、Nb:0.2 %、Mo:2.0 %を超える含有は、効果が飽和し、含有量に見合う効果が期待できず経済的に不利となるうえ、プレス成形性の劣化を招く。このため、Nbは0.01〜0.2 %、Moは0.05〜2.0 %に限定した。なお、好ましくはNbは0.015 〜0.1 %、Moは0.1 〜1.0 %である。
Nb: 0.01 to 0.2%, Mo: one or two selected from 0.05 to 2.0%
Both Nb and Mo are elements that significantly increase strain age hardening (pre-deformation-increase in strength after heat treatment) of a steel sheet, and are one of the most important elements in the present invention. In the present invention, one or two selected from Nb and Mo are contained, and the structure of the hot-rolled sheet is 32 nm or less, preferably a structure in which ultrafine precipitates of 30 nm or less are precipitated, and cold-rolled. By performing annealing, ultra-fine carbides containing one or two of Nb and Mo are strain-induced precipitate during pre-deformation-heat treatment, and the tensile strength is ΔTS: 150 MPa or more, preferably ΔTS: 170 MPa or more. Is obtained. When Nb is less than 0.01% and Mo is less than 0.05%, even if the pre-deformation-heat treatment conditions and the size of the hot-rolled sheet precipitate are changed, an increase in the tensile strength of ΔTS: 150 MPa or more cannot be obtained. On the other hand, a content exceeding 0.2% of Nb and 2.0% of Mo saturates the effect, cannot provide an effect corresponding to the content, is economically disadvantageous, and causes deterioration of press formability. Therefore, Nb is limited to 0.01-0.2% and Mo is limited to 0.05-2.0%. Preferably, Nb is 0.015 to 0.1% and Mo is 0.1 to 1.0%.
また、本発明では、上記した基本成分に加えてさらに、Ti、Vの1種または2種を合計で0.4 %以下含有することが好ましい。 In the present invention, it is preferable that one or two of Ti and V be further contained in a total of 0.4% or less in addition to the above basic components.
Ti、Vの1種または2種:合計で0.4 %以下
Ti、Vは、いずれも炭化物形成元素であり、歪時効硬化を利用した高強度化に有効に作用するため、必要に応じ選択して含有できる。なお、このような効果は単独であれば、Ti:0.01%以上、V:0.01%以上で、複合する場合には合計で0.01%以上の含有で顕著となる。しかし、Ti、Vのうちの1種または2種を合計で0.4 %超えて含有すると、プレス成形性が劣化する。このため、Ti、Vは合計で0.4 %以下に限定するのが好ましい。
One or two of Ti and V: 0.4% or less in total
Both Ti and V are carbide forming elements and effectively act to increase the strength by utilizing strain age hardening, so that they can be selectively contained as necessary. In addition, such an effect is remarkable when Ti alone is 0.01% or more and V: 0.01% or more when combined, and when combined, the total content is 0.01% or more. However, when one or two of Ti and V are contained in total exceeding 0.4%, press formability deteriorates. Therefore, it is preferable that the total content of Ti and V is limited to 0.4% or less.
なお、上記した成分以外に、とくに限定してはいないが、B:0.1 %以下、Zr:0.1 %以下、Ca:0.1 %以下、REM :0.1 %以下等を含有してもなんら問題はない。 In addition to the above-mentioned components, there is no particular limitation, but there is no problem even if B: 0.1% or less, Zr: 0.1% or less, Ca: 0.1% or less, REM: 0.1% or less.
上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、例えばSb:0.01%以下、Sn:0.1 %以下、Zn:0.01%以下、Co:0.1 %以下が許容できる。 The balance other than the above components is Fe and unavoidable impurities. As inevitable impurities, for example, Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, and Co: 0.1% or less can be tolerated.
つぎに、本発明の冷延鋼板の製造方法について説明する。 Next, a method for producing a cold-rolled steel sheet according to the present invention will be described.
本発明の冷延鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材を、熱間圧延したのち、冷却し巻き取り熱延板とする熱延工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に焼鈍を施し冷延焼鈍板とする焼鈍工程と、を順次施すことにより製造される。 The cold-rolled steel sheet of the present invention comprises a steel slab having a composition in the above-described range as a raw material, the raw material is hot-rolled, and then cooled and taken up as a hot-rolled steel sheet. The cold-rolled sheet is subjected to cold rolling to obtain a cold-rolled sheet, and an annealing step of annealing the cold-rolled sheet to form a cold-rolled annealed sheet is sequentially performed.
使用する鋼スラブは、転炉等の公知の溶製方法で溶製した溶鋼を、成分のマクロ偏析を防止するために連続鋳造法で鋼スラブとするのが好ましいが、造塊法、薄スラブ連鋳法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後再加熱する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。 The steel slab to be used is preferably a steel slab obtained by a continuous casting method in order to prevent macro segregation of components from molten steel smelted by a known smelting method such as a converter. It may be manufactured by a continuous casting method. In addition to the conventional method in which a steel slab is manufactured and then cooled to room temperature and then reheated, it is inserted directly into a heating furnace without cooling, or after being slightly heated, and then immediately rolled. Energy saving processes such as direct rolling and direct rolling can be applied without any problem.
熱延工程では、上記した鋼スラブを加熱し、熱間圧延を施したのち、冷却し巻き取り熱延板とする。熱延工程では、スラブ加熱温度を900 ℃以上、仕上圧延出側温度を700 ℃以上とすることが好ましい。そして、本発明では、熱延工程における冷却および巻き取りを、好ましくは20℃/s以上の冷却速度で600 ℃以下まで冷却する冷却とし、冷却後巻き取る工程とする。 In the hot rolling step, the above-described steel slab is heated and subjected to hot rolling, and then cooled to take up a hot rolled sheet. In the hot rolling step, the slab heating temperature is preferably 900 ° C. or more, and the finish-rolling exit temperature is preferably 700 ° C. or more. In the present invention, the cooling and winding in the hot rolling step are preferably cooling at a cooling rate of 20 ° C./s or more to 600 ° C. or less, and a cooling and winding step.
スラブ加熱温度:900 ℃以上
スラブ加熱温度が900 ℃未満では、圧延荷重が増大し、熱間圧延時のトラブル発生の危険が増大するため、スラブ加熱温度は900 ℃以上とすることが好ましい。なお、酸化重量の増加にともなうスケールロスの増大などから、スラブ加熱温度は1300℃以下とすることが望ましい。
Slab heating temperature: 900 ° C. or more If the slab heating temperature is less than 900 ° C., the rolling load increases, and the risk of occurrence of trouble during hot rolling increases. Therefore, the slab heating temperature is preferably 900 ° C. or more. Note that the slab heating temperature is desirably 1300 ° C. or lower because of an increase in scale loss accompanying an increase in oxidation weight.
なお、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用することは、有効な方法であることはいうまでもない。 From the viewpoint of lowering the slab heating temperature and preventing trouble during hot rolling, it is needless to say that utilizing a so-called sheet bar heater for heating the sheet bar is an effective method. .
仕上圧延出側温度:700 ℃以上
仕上圧延出側温度を700 ℃以上とすることにより、冷延および焼鈍後に優れた成形性が得られる均一な熱延母板組織とすることができる。一方、仕上圧延出側温度が700 ℃未満では、熱延母板組織が不均一となるとともに、熱間圧延時の圧延負荷が高くなり、熱間圧延時のトラブルが発生する危険性が増大する。このようなことから、熱延工程の仕上圧延出側温度は700 ℃以上とするのが好ましい。
Finishing roll exit side temperature: 700 ° C. or more By setting the finish rolling exit side temperature to 700 ° C. or more, a uniform hot rolled base plate structure that can obtain excellent formability after cold rolling and annealing can be obtained. On the other hand, if the finish-rolling exit temperature is less than 700 ° C., the structure of the hot-rolled base plate becomes uneven, and the rolling load during hot rolling increases, increasing the risk of trouble during hot rolling. . For this reason, the finish-rolling exit temperature in the hot rolling step is preferably set to 700 ° C. or higher.
冷却速度:20℃/s以上
熱間圧延後の冷却は、仕上圧延出側温度から巻取温度までの平均冷却速度で20℃/s以上とすることが好ましい。冷却速度が平均で20℃/s未満では、析出物が粗大化し、熱延板が平均粒径32nm以下、好ましくは30nm以下の析出物が析出した組織を有する熱延板とならず、予変形−熱処理時にNb、Moのうちの1種または2種を含む極微細な炭化物の析出による十分な強度上昇が得られない場合がある。このため、仕上圧延出側温度から巻取温度までの平均冷却速度で20℃/s以上とすることが好ましい。なお、より好ましくは30℃/s以上である。
Cooling rate: 20 ° C./s or more Cooling after hot rolling is preferably performed at an average cooling rate from the finish-rolling exit temperature to the winding temperature of 20 ° C./s or more. If the cooling rate is less than 20 ° C./s on average, the precipitates become coarse, and the hot-rolled sheet does not become a hot-rolled sheet having a structure in which precipitates having an average grain size of 32 nm or less, preferably 30 nm or less are precipitated, and the pre-deformation is not performed -During the heat treatment, a sufficient increase in strength may not be obtained due to precipitation of ultrafine carbides containing one or two of Nb and Mo. For this reason, it is preferable that the average cooling rate from the finish-rolling discharge side temperature to the winding temperature be 20 ° C./s or more. Note that the temperature is more preferably 30 ° C./s or more.
巻取温度:600 ℃以下
前記冷却速度で600 ℃以下まで冷却し巻き取る。この際、冷却の終点である巻取温度が600 ℃を超えると、析出物が粗大化し、熱延板が平均粒径32nm以下、好ましくは30nm以下の析出物が析出した組織を有する熱延板とならず、予変形−熱処理時にNb、Moのうちの1種または2種を含む極微細な炭化物の析出による十分な強度上昇が得られない場合がある。このため、巻取温度は600 ℃以下とすることが好ましい。なお、より好ましくは500 ℃以下である。巻取温度が、200 ℃未満では、鋼板形状が顕著に乱れ、実際の鋼板使用において不具合を生じる危険性が増大するため、200 ℃以上とすることが好ましい。
Winding temperature: 600 ° C or less Cool at the above cooling rate to 600 ° C or less and wind. At this time, when the winding temperature, which is the end point of cooling, exceeds 600 ° C., the precipitates are coarsened, and the hot-rolled sheet has a structure in which precipitates having an average particle size of 32 nm or less, preferably 30 nm or less are precipitated. In some cases, a sufficient increase in strength may not be obtained due to precipitation of ultrafine carbide containing one or two of Nb and Mo during the pre-deformation-heat treatment. For this reason, the winding temperature is preferably set to 600 ° C. or lower. The temperature is more preferably 500 ° C. or lower. If the winding temperature is less than 200 ° C., the shape of the steel sheet is remarkably disturbed, and the risk of causing trouble in actual use of the steel sheet increases.
なお、本発明における熱延工程では、熱間圧延時の圧延荷重を低減するために仕上圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩耗係数は0.25〜0.10の範囲とすることが好ましい。また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。 In the hot rolling step of the present invention, part or all of the finish rolling may be performed by lubrication rolling in order to reduce the rolling load during hot rolling. Performing the lubricating rolling is also effective from the viewpoint of uniformizing the shape of the steel sheet and uniforming the material. In addition, it is preferable that the wear coefficient at the time of lubrication rolling be in the range of 0.25 to 0.10. Further, it is preferable to adopt a continuous rolling process in which successive sheet bars are joined and finish rolling is continuously performed. Applying the continuous rolling process is also desirable from the viewpoint of operational stability of hot rolling.
上記した熱延工程により得られた熱延板は、平均粒径32nm以下、好ましくは30nm以下の析出物が析出した組織を有する熱延板となる。なお、該平均粒径は、前記したように粒径80nm以下の析出物について求めた析出物平均粒径である。熱延板の析出物を平均粒径32nm以下、好ましくは30nm以下の析出物とすることにより、該熱延板に冷延工程−焼鈍工程を施した冷延焼鈍板が、予変形−熱処理後にNb、Moのうちの1種または2種を含む極微細な炭化物の析出による顕著な強度上昇を示す。析出物の平均粒径が32nmを超えて粗大化すると、予変形−熱処理後にΔTS:150MPa以上という大きな強度上昇効果が得られない。なお、ΔTS:170MPa以上という顕著な強度上昇効果を得るためには、析出物の平均粒径が30nmを超えて粗大化しないことが好ましい。析出物が微細になると、界面エネルギーや歪エネルギーが高くなるため析出物が不安定となりさらに、その後の冷延工程により導入された高密度の転位との相互作用により一層不安定となって、焼鈍工程で析出物が溶解するものと考えられ、その結果、その後の予変形−熱処理により極微細炭化物として歪誘起析出し、強度が顕著に上昇するものと考えれられる。 The hot-rolled sheet obtained by the above-described hot-rolling step becomes a hot-rolled sheet having a structure in which precipitates having an average particle size of 32 nm or less, preferably 30 nm or less are deposited. The average particle size is the average particle size of the precipitate obtained as described above for the precipitate having a particle size of 80 nm or less. By making the precipitate of the hot-rolled sheet an average grain size of 32 nm or less, preferably 30 nm or less, the cold-rolled annealed sheet subjected to the cold-rolling step-annealing step is subjected to pre-deformation-after heat treatment. It shows a remarkable increase in strength due to precipitation of ultrafine carbide containing one or two of Nb and Mo. If the average grain size of the precipitates exceeds 32 nm, the effect of increasing the strength of ΔTS: 150 MPa or more after the pre-deformation-heat treatment cannot be obtained. In order to obtain a remarkable strength increase effect of ΔTS: 170 MPa or more, it is preferable that the average particle size of the precipitate does not exceed 30 nm and does not become coarse. When the precipitates become finer, the interfacial energy and the strain energy become higher, so that the precipitates become unstable.Moreover, the interaction with the high-density dislocations introduced in the subsequent cold rolling step makes the precipitates more unstable, resulting in annealing. It is considered that the precipitates are dissolved in the process, and as a result, the subsequent pre-deformation-heat treatment causes strain-induced precipitation as ultrafine carbides, and the strength is remarkably increased.
ついで、このような組織を有する熱延板に、冷延工程を施す。冷延工程では、熱延板に冷間圧延を施し冷延板とする。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、とくに限定されないが、冷間圧延時の圧下率は40%以上とすることが好ましい。圧下率が40%未満では、後工程である焼鈍時に、再結晶が均一に起こりにくくなる。 Next, the hot-rolled sheet having such a structure is subjected to a cold-rolling step. In the cold rolling step, the hot rolled sheet is subjected to cold rolling to obtain a cold rolled sheet. The cold rolling conditions are not particularly limited as long as a cold rolled sheet having a desired size and shape can be obtained, but the rolling reduction during cold rolling is preferably 40% or more. When the rolling reduction is less than 40%, recrystallization is unlikely to occur uniformly during the subsequent annealing.
ついで、冷延板に焼鈍を行い冷延焼鈍板とする焼鈍工程を施す。 Next, an annealing process is performed on the cold-rolled sheet to form a cold-rolled annealed sheet.
焼鈍は、連続焼鈍ラインまたは連続溶融亜鉛めっきラインのいずれかで行うのが好ましい。本発明では、焼鈍は、(Ac3変態点−110 ℃)以上の温度域で行うことが好ましい。焼鈍温度が(Ac3変態点−110 ℃)未満では、予変形−熱処理後にΔTS:150MPa以上という大きな強度上昇効果が得られない。なお、ΔTS:170MPa以上という顕著な強度上昇効果を得るためには、焼鈍温度が(Ac3変態点−100 ℃)以上とすることが好ましい。焼鈍温度は、熱延板の析出物を溶解するという観点から(Ac3変態点−110 ℃)以上でできるだけ高温であることが好ましいが、(Ac3変態点+100 ℃)を超えると、結晶粒が粗大化するとともに、プレス成形性が劣化しやすくなるため(Ac3変態点+100 ℃)以下とすることが好ましい。なお、Ac3変態点は昇温速度5℃/sで昇温中の熱膨張−温度曲線の測定により求めるものとする。 Annealing is preferably performed in either a continuous annealing line or a continuous hot-dip galvanizing line. In the present invention, the annealing is preferably performed in a temperature range of (Ac 3 transformation point−110 ° C.) or higher. If the annealing temperature is lower than (Ac 3 transformation point-110 ° C.), a large strength increase effect of ΔTS: 150 MPa or more cannot be obtained after pre-deformation-heat treatment. In order to obtain a remarkable strength increasing effect of ΔTS: 170 MPa or more, the annealing temperature is preferably (Ac 3 transformation point −100 ° C.) or more. Annealing temperature is preferably a as high as possible in terms of dissolving the precipitate of the hot-rolled sheet (Ac 3 transformation point -110 ° C.) or higher, exceeds (Ac 3 transformation point +100 ° C.), grain It is preferable that the temperature be not more than (Ac 3 transformation point + 100 ° C.), because it becomes coarse and the press formability tends to deteriorate. Note that the Ac 3 transformation point is determined by measuring a thermal expansion-temperature curve during heating at a heating rate of 5 ° C./s.
また、焼鈍後の冷却速度は、1℃/s以上とすることが好ましい。焼鈍後の冷却速度が1℃/s未満では、冷却中に炭化物が析出しやすくなり、予変形−熱処理時に極微細な炭化物の析出による十分な強度上昇が得られない場合がある。なお、焼鈍後の冷却停止温度は、400 ℃以下とすることが好ましい。 Further, the cooling rate after annealing is preferably 1 ° C./s or more. If the cooling rate after annealing is less than 1 ° C./s, carbides are likely to precipitate during cooling, and a sufficient increase in strength due to precipitation of ultrafine carbides during pre-deformation-heat treatment may not be obtained. Preferably, the cooling stop temperature after annealing is 400 ° C. or less.
また、焼鈍工程後の冷延焼鈍板に、形状、表面粗さ等の調整のために、伸び率:10%以下の調質圧延を施してもよい。 Further, the cold-rolled annealed sheet after the annealing step may be subjected to temper rolling at an elongation of 10% or less for the purpose of adjusting the shape, the surface roughness and the like.
なお、本発明の鋼板は、加工用鋼板としてのみならず、加工用表面処理鋼板の原板としても適用できる。表面処理としては、亜鉛めっき(合金系を含む)、すずめっき、ほうろう等がある。また、溶融亜鉛めっき鋼板とする場合には、連続溶融亜鉛めっきラインにて、上記した焼鈍を施した後、めっき浴温度まで冷却してめっき処理を行い、あるいはさらに合金化処理を行うことが好ましい。 The steel sheet of the present invention can be applied not only as a steel sheet for processing but also as an original sheet of a surface-treated steel sheet for processing. Examples of the surface treatment include zinc plating (including alloys), tin plating, and enamel. Further, in the case of a hot-dip galvanized steel sheet, after performing the above-described annealing in a continuous hot-dip galvanizing line, it is preferable to perform a plating process by cooling to a plating bath temperature, or to further perform an alloying process. .
また、本発明の冷延鋼板には、亜鉛めっき後、化成処理性、溶接性、プレス成形性および耐食性等の改善のために特殊な処理を施してもよい。 Further, after the galvanization, the cold-rolled steel sheet of the present invention may be subjected to a special treatment for improving the chemical conversion property, weldability, press formability, corrosion resistance and the like.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼スラブとした。これら鋼スラブに、表2に示す条件の熱延工程により板厚4.0mm の熱延鋼板(熱延板)とした。また、得られた熱延鋼板(熱延板)から試験片を採取し、熱延板組織を調査した。引き続き、これら熱延鋼板(熱延板)に酸洗を施し、ついで、表2に示す条件の冷延工程により板厚1.6mm の冷延板とした。ついで、これら冷延板に、連続焼鈍ラインで、表2に示す条件の焼鈍工程を施し、冷延鋼板(冷延焼鈍板)とした。得られた冷延鋼板(冷延焼鈍板)に、さらに伸び率:0.8 %の調質圧延を施した。 Molten steel having the composition shown in Table 1 was smelted in a converter and made into a steel slab by a continuous casting method. These steel slabs were hot-rolled steel sheet having a thickness of 4.0mm (the hot-rolled sheet) by hot rolling process conditions shown in Table 2. Further, test pieces were taken from the resulting hot-rolled steel plate (hot-rolled sheet) was investigated hot rolled sheet structure. Subsequently, these hot-rolled steel sheets (hot-rolled sheets) were pickled, and then cold-rolled sheets having a thickness of 1.6 mm were obtained by a cold-rolling process under the conditions shown in Table 2. Next, these cold-rolled sheets were subjected to an annealing step under the conditions shown in Table 2 in a continuous annealing line to obtain cold-rolled steel sheets (cold-rolled annealed sheets). The obtained cold-rolled steel sheet (cold-rolled annealed sheet) was further subjected to temper rolling at an elongation of 0.8%.
得られた冷延鋼板(冷延焼鈍板)から試験片を採取し、引張特性、歪時効硬化特性を調査した。なお、Ac3変態点は、加熱速度:5℃/sとして測定した熱膨張−温度曲線から求めた。 Test specimens were collected from the obtained cold-rolled steel sheet (cold-rolled annealed sheet), and tensile properties and strain age hardening properties were investigated. The Ac 3 transformation point was determined from a thermal expansion-temperature curve measured at a heating rate of 5 ° C./s.
(1)引張特性
得られた冷延鋼板(冷延焼鈍板)から、圧延方向にJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、降伏強さYS、引張強さTS、伸びEl、降伏比YRを求めた。
(1) Tensile properties From the obtained cold-rolled steel sheet (cold-rolled annealed sheet), a JIS No. 5 tensile test piece was sampled in the rolling direction, and a tensile test was performed in accordance with the provisions of JIS Z 2241, and the yield strength YS , Tensile strength TS, elongation El, and yield ratio YR.
(2)歪時効硬化特性
得られた鋼板(冷延焼鈍板)から、圧延方向にJIS 5号試験片を採取し、予変形(引張予歪)として5%の塑性変形を与えて、ついで250 ℃×20min の熱処理を施したのち、引張試験を実施し、熱処理後の引張強さTSHTを求め、ΔTS=TSHT−TSを算出した。なお、TSHTは予変形−熱処理後の引張強さであり、TSは鋼板(冷延焼鈍板)の引張強さである。
(2) Strain aging hardening characteristics A JIS No. 5 test piece was sampled in the rolling direction from the obtained steel sheet (cold rolled annealed sheet) and subjected to 5% plastic deformation as pre-deformation (tensile pre-strain). After a heat treatment of 20 ° C. × 20 min, a tensile test was carried out, a tensile strength TS HT after the heat treatment was determined, and ΔTS = TS HT −TS was calculated. Note that TS HT is the tensile strength after pre-deformation-heat treatment, and TS is the tensile strength of a steel sheet (a cold-rolled annealed sheet).
(3)熱延板組織
得られた熱延鋼板(熱延板)から試験片を採取し、圧延方向断面(L断面)について、透過型電子顕微鏡を用いて倍率:10万倍で10視野観察し撮像し、画像解析装置を用いて、各々の析出物の面積を求め、この面積から円相当直径を求めて各々の析出物の粒径とし、各視野ごとに粒径80nm以下の析出物について平均粒径を求め、10視野の値を平均して、その熱延板の析出物の平均粒径とした。
(3) hot rolled sheet structure resulting hot-rolled steel plate were taken test specimens from (hot-rolled sheet), the rolling direction cross-section (L cross section), magnification using a transmission electron microscope: 10 thousand times with 10 fields Observed and imaged, using an image analyzer, determine the area of each precipitate, determine the equivalent circle diameter from this area and determine the particle size of each precipitate, and for each field of view the precipitate with a particle size of 80 nm or less Of the hot rolled sheet was determined as the average particle diameter of the hot rolled sheet.
なお、鋼板No.24 は、焼鈍温度から460 ℃まで20℃/sで冷却し、溶融亜鉛めっきを施したのち、520 ℃で合金化処理を行い合金化溶融亜鉛めっき鋼板とし、上記した各種特性を評価した。 The steel sheet No. 24 was cooled from the annealing temperature to 460 ° C at a rate of 20 ° C / s, hot-dip galvanized, and then alloyed at 520 ° C to obtain an alloyed hot-dip galvanized steel sheet. Was evaluated.
これらの結果を表3に示す。 Table 3 shows the results.
本発明例は、いずれも、極めて大きなΔTSを示し、歪時効硬化特性に優れた鋼板となっている。これに対し、本発明の範囲を外れる比較例では、ΔTSが小さく、歪時効硬化特性が低下した鋼板となっている。 Each of the examples of the present invention shows an extremely large ΔTS and is a steel sheet excellent in strain age hardening characteristics. On the other hand, in Comparative Examples outside the scope of the present invention, the steel sheet has a small ΔTS and a reduced strain age hardening property.
Claims (7)
C:0.01〜0.15%、 Si:2.0 %以下、
Mn:3.0 %以下、 P:0.1 %以下、
S:0.02%以下、 Al:0.1 %以下、
N:0.02%以下
を含み、さらにNb:0.01〜0.2 %、Mo:0.05〜2.0 %のうちから選ばれた1種または2種を含有し、残部がFeおよび不可避的不純物からなる組成を有し、ΔTS:150MPa以上の歪時効硬化特性を有することを特徴とする歪時効硬化特性に優れた鋼板。 In mass%,
C: 0.01 to 0.15%, Si: 2.0% or less,
Mn: 3.0% or less, P: 0.1% or less,
S: 0.02% or less, Al: 0.1% or less,
N: not more than 0.02%, Nb: 0.01 to 0.2%, Mo: 0.05 to 2.0%, one or two selected from the group consisting of Fe and unavoidable impurities. , ΔTS: a steel sheet having excellent strain age hardening characteristics, having a strain age hardening characteristic of 150 MPa or more.
C:0.01〜0.15%、 Si:2.0 %以下、
Mn:3.0 %以下、 P:0.1 %以下、
S:0.02%以下、 Al:0.1 %以下、
N:0.02%以下
を含み、さらにNb:0.01〜0.2 %、Mo:0.05〜2.0 %のうちから選ばれた1種または2種を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼スラブとし、前記熱延工程における冷却および巻き取りを、20℃/s以上の冷却速度で600 ℃以下まで冷却して巻き取る冷却および巻き取りとし、前記焼鈍における焼鈍温度を(Ac3変態点−110 ℃)以上の温度とすることを特徴とする歪時効硬化特性に優れた鋼板の製造方法。 After hot rolling a steel slab, it is cooled and rolled into a hot rolled sheet, a hot rolling step is performed by cold rolling the hot rolled sheet to form a cold rolled sheet, and annealing is performed on the cold rolled sheet. Performing an annealing step of applying a cold-rolled annealed sheet to the steel slab.
C: 0.01 to 0.15%, Si: 2.0% or less,
Mn: 3.0% or less, P: 0.1% or less,
S: 0.02% or less, Al: 0.1% or less,
N: 0.02% or less, Nb: 0.01 to 0.2%, Mo: 0.05 to 2.0%, one or two selected from the group consisting of Fe and unavoidable impurities. The slab is cooled and taken up in the hot rolling step at a cooling rate of 20 ° C./s or more to 600 ° C. or less and taken up. The annealing temperature in the annealing is (Ac 3 transformation point− A method for producing a steel sheet having excellent strain aging hardening characteristics, wherein the temperature is set to 110 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004019737A JP4385777B2 (en) | 2003-03-28 | 2004-01-28 | Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003090489 | 2003-03-28 | ||
JP2004019737A JP4385777B2 (en) | 2003-03-28 | 2004-01-28 | Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004315959A true JP2004315959A (en) | 2004-11-11 |
JP4385777B2 JP4385777B2 (en) | 2009-12-16 |
Family
ID=33478487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004019737A Expired - Fee Related JP4385777B2 (en) | 2003-03-28 | 2004-01-28 | Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4385777B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2050835A1 (en) * | 2006-08-11 | 2009-04-22 | Nippon Steel Corporation | Steel for automobile undercarriage component excelling in fatigue performance and process for manufacturing automobile undercarriage component using the steel |
JP2012021225A (en) * | 2010-06-16 | 2012-02-02 | Nippon Steel Corp | High-strength cold-rolled steel sheet excellent in uniform elongation in direction of 45 degrees with respect to rolling direction, and method for manufacturing the same |
-
2004
- 2004-01-28 JP JP2004019737A patent/JP4385777B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2050835A1 (en) * | 2006-08-11 | 2009-04-22 | Nippon Steel Corporation | Steel for automobile undercarriage component excelling in fatigue performance and process for manufacturing automobile undercarriage component using the steel |
EP2050835A4 (en) * | 2006-08-11 | 2011-10-12 | Nippon Steel Corp | Steel for automobile undercarriage component excelling in fatigue performance and process for manufacturing automobile undercarriage component using the steel |
US8778261B2 (en) | 2006-08-11 | 2014-07-15 | Nippon Steel & Sumitomo Metal Corporation | Steel material for automobile chassis parts superior in fatigue characteristics and method of production of automobile chassis parts using the same |
US8828159B2 (en) | 2006-08-11 | 2014-09-09 | Nippon Steel & Sumitomo Metal Corporation | Steel material for automobile chassis parts superior in fatigue characteristics and method of production of automobile chassis parts using the same |
JP2012021225A (en) * | 2010-06-16 | 2012-02-02 | Nippon Steel Corp | High-strength cold-rolled steel sheet excellent in uniform elongation in direction of 45 degrees with respect to rolling direction, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4385777B2 (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100664433B1 (en) | Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production | |
JP5493986B2 (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them | |
JP4730056B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability | |
JP4608822B2 (en) | Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same | |
JP5305149B2 (en) | Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof | |
JP2008308732A (en) | Hardened steel plate member, steel plate for hardening, and their manufacturing methods | |
JP2009102715A (en) | High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor | |
CN113348259A (en) | High-strength hot-dip galvanized steel sheet and method for producing same | |
JP4803055B2 (en) | Manufacturing method of hot-rolled steel sheet for high-strength cold-rolled steel sheet | |
JP2006161139A (en) | Hot rolled steel sheet suitable to warm forming and its production method | |
CN113316656B (en) | High-strength hot-dip galvanized steel sheet and method for producing same | |
JP5256689B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
EP3464661A1 (en) | Method for the manufacture of twip steel sheet having an austenitic matrix | |
JP4367205B2 (en) | Strain aging treatment method for steel sheet and method for producing high-strength structural member | |
JP2004052071A (en) | High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same | |
JP2003268491A (en) | High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance | |
JP2005256141A (en) | Method for manufacturing high-strength steel sheet superior in hole expandability | |
JP4826694B2 (en) | Method for improving fatigue resistance of thin steel sheet | |
JP4506476B2 (en) | Cold-rolled steel sheet suitable for warm forming and manufacturing method thereof | |
JP2004270006A (en) | Method of producing component having excellent shape-fixability | |
JP6780804B1 (en) | High-strength steel sheet and its manufacturing method | |
JP4670135B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent strain age hardening characteristics | |
JP4385777B2 (en) | Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same | |
JP3925064B2 (en) | Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same | |
JP3587114B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090921 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |