[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004313554A - Non-invasive measurement device for blood sugar level - Google Patents

Non-invasive measurement device for blood sugar level Download PDF

Info

Publication number
JP2004313554A
JP2004313554A JP2003113497A JP2003113497A JP2004313554A JP 2004313554 A JP2004313554 A JP 2004313554A JP 2003113497 A JP2003113497 A JP 2003113497A JP 2003113497 A JP2003113497 A JP 2003113497A JP 2004313554 A JP2004313554 A JP 2004313554A
Authority
JP
Japan
Prior art keywords
light
blood sugar
sugar level
blood glucose
different wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003113497A
Other languages
Japanese (ja)
Other versions
JP4052461B2 (en
Inventor
Yoshiaki Shimomura
義昭 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2003113497A priority Critical patent/JP4052461B2/en
Publication of JP2004313554A publication Critical patent/JP2004313554A/en
Application granted granted Critical
Publication of JP4052461B2 publication Critical patent/JP4052461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized and easily portable non-invasive measurement device for a blood sugar level which can non-invasively measure a blood sugar level of a human body without errors. <P>SOLUTION: The device is provided with a light source control part 220, which is for irradiating a measuring site of a finger 1 with two irradiating lights 11 and 12 with different near-infrared wavelength regions, and light detectors 51 and 61 for detecting a transmitting light amount by receiving transmitting lights 12, 22 and 13, 23 which are the irradiation lights 11 and 12 transmitting through the measuring site of the finger 1 at two places apart at different distances. The relative transmittance, which is a ratio of the detected transmitting light amounts with the same wavelength at the two places, is calculated for each wavelength. The blood sugar level is calculated by using the relative transmittance of each wavelength. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、人体の血糖値を非侵襲的に測定する装置に関し、詳しくは特定波長の単色光を人体に照射して得られる人体からの透過光から人体の血糖値を非侵襲的に誤差なく測定する技術に関する。
【0002】
【従来の技術】
糖尿病では、肝臓から分泌されるインスリンの不足、あるいは体の細胞がインスリンに反応しなくなることで筋肉や肝臓への糖の蓄積が行われなくなり、血糖中のグルコース濃度、つまり血糖値が高くなり、これにより網膜症・神経障害・腎症等様々な合併症が引き起こされる。糖尿病患者は国内に690万人、その予備軍を含め1300万人以上にもなるといわれ、深刻な国民病となっている。現状、糖尿病治療では完全な治療方法がなく、血糖値測定を行いながらインスリンの投与、あるいは食事療法によって血糖値を適正なレベルに維持させている。
【0003】
現状の血糖値測定は、採血した血液を用いて血糖に対するグルコース酸化酵素の反応を電気化学的に定量し、血糖値に換算するグルコースセンサー法を用いた測定器により行われており、糖尿病患者の日常での血糖値管理に用いる携帯型血糖値測定器などはすでに市販化されている。こうした血糖値検査では、1日数回の採血に伴う苦痛や採血針による感染等の問題があり、採血が不要で且つ血糖値の日内変動をリアルタイムで測定できる非侵襲の血糖値測定装置が望まれている。
【0004】
そこで、近赤外領域の波長の光を人体に照射し、その人体からの拡散反射光又は透過光を分光器を用いて測定し、その拡散反射光又は透過光のスペクトルから人体の血糖値を算出しようとする技術が開示されている(例えば非特許文献1,特許文献1参照)。非特許文献1では近赤外領域の波長の光を下唇に照射し、その拡散反射光から分光器等を用いて拡散反射光のスペクトルを測定し、そのスペクトル値から血糖値を測定する方法を提案している。特許文献1では近赤外領域の波長の光を指等に照射し、その透過光を検出して特定波長944nmと964nmでの吸光度を求め、その値から血糖値を測定する方法を提案している。
【0005】
ところで、非特許文献1の方法によれば、近赤外領域の波長の光を下唇に照射し、その拡散反射光のスペクトルを測定する為に回折格子等から構成される複雑な分光器を必要としている。これは、血糖値を算出する為には10〜20種類の波長の光の反射率データを必要とし、このためにはこうした領域の波長の光を有する白色光源からの光を人体に照射し、その反射スペクトルを得る為には前記した分光器が必要となる。こうした白色光源や分光器をベースとした血糖値の測定方法では、糖尿病患者が日常の血糖値管理を行う為に持ち運びが容易な血糖値測定装置の小型・携帯化が難しいものであった。
【0006】
一方、特許文献1では特定の2波長の光を用い、その透過光により血糖値を測定する装置を提案している。この技術を図8に基づいて説明する。図8に示す測定装置は、近赤外光を発する光源100とその光から所定の単色光のみを指1に照射する為の回折格子340,反射ミラー360を備え、また分光された単色光101の一部を検出する為のサンプリング用プリズム370,NDフィルター390,光検出器380を備えている。さらに人の指1からの透過光102を検出するためのレンズ50,光検出器51を、また光検出器51,380からの検出信号を増幅してデジタル化する信号処理部230、及び中央制御部200を備えている。中央制御部200は信号処理部230で増幅・デジタル化された光検出器51,380からの検出信号をもとに指1の透過率Tを下記式で算出する。
T=I/I・・・(1.1)
【0007】
ここで、Iは照射光101の照射光量で、光検出器380で検出された検出信号に一定数を乗じて算出される。またIは透過光102の光量で検出器51で検出された検出信号に一定数を乗じて算出される。ここでは照射光101の波長として2つの944nm,964nmを選択し、その各波長に対する前記透過率をそれぞれT,Tとして下記式により血糖値Cを算出する。
C=k+k*ABS/ABS・・・(1.2)
【0008】
ここで、ABS=−ln(T),ABS=−ln(T)をそれぞれ表す。またk,kは実測した血糖値を用いて最小2乗法で決定された係数を示す。なお、ここでは光源に白色光源を用いたが、前記波長の異なる2つの波長に944nm,964nmの半導体レーザー等を用いることができれば、回折格子等から構成される複雑な分光器を必要としない血糖値の非侵襲測定装置が実現できる。
【0009】
しかしながら、この先願発明では、照射光101の照射位置Pと透過光102の検出位置Pとの直線距離rが指1の大きさに依存してわずかに変化する。そのわずかな変化量に対して、前記式による血糖値Cの算出において無視できない測定誤差が生じる問題があった。
【0010】
【非特許文献1】
H.M.Heise,et al.,Artificial Organs,18(6)pp.439−447,1994
【特許文献1】
特開平5−176917号公報
【0011】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来のこれらの問題点を解消し、人体の血糖値を非侵襲的に誤差なく測定できる小型で携帯容易な血糖値の非侵襲測定装置を提供することにある。
【0012】
【課題を解決するための手段】
かかる課題を解決した本発明の構成は、
1) 人体の測定部位に複数の異なる波長からなる光を照射する照射手段を設け、同照射手段の光が人体の測定部位を透過した透過光を異なる距離をおいた2箇所で受光してその透過光量を検出する透過光量検出手段を設け、同透過光量検出手段で検出した2箇所での同波長の透過光量の比である相対透過度を各波長毎に算出し、同各波長の相対透過度を用いて人体の血糖値を算定する演算手段を設けた血糖値の非侵襲測定装置
2) 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ とし、2つの異なる波長の相対透過度Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、予め実測した血糖値と相対透過度Rλ ,Rλ を用いて次式の係数k,kを求め、血糖値Cを式C=k+k*ln(Rλ )/ln(Rλ )に従って算定するようにしたものである前記1)記載の血糖値の非侵襲測定装置
3) 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ とし、2つの異なる波長の相対透過度Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、同各相対透過度Rλ ,Rλ に基づいて2つの異なる波長の吸光度A,Aを式A=−1n(Rλ ),A=−1n(Rλ2)とし、予め実測した血糖値と吸光度A,Aを用いて次式の係数k,kを求め、血糖値Cを式C=k+k*A/Aに従って算定するようにしたものである前記1)記載の血糖値の非侵襲測定装置
4) 照射手段が照射する2つの異なる波長の光が、940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたものである前記2)又は3)記載の血糖値の非侵襲測定装置
5) 照射手段が、3つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ ,I2. λ とし、3つの波長の相対透過度Rλ ,Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、予め実測した血糖値と相対透過度Rλ ,Rλ ,Rλ を用いて次式の係数k,kを求め、血糖値Cを式C=k+k*ln(Rλ /Rλ )/ln(Rλ /Rλ )に従って算定するようにしたものである前記1)記載の血糖値の非侵襲測定装置
6) 照射手段が、3つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ ,I2. λ とし、3つの波長の相対透過度Rλ ,Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、同各相対透過度Rλ ,Rλ ,Rλ3に基づいて3つの異なる波長の吸光度A,A,Aを式A=−1n(Rλ ),A=−1n(Rλ2),A=−1n(Rλ3)とし、予め実測した血糖値と吸光度A,A,Aを用いて次式の係数k,kを求め、血糖値Cを式C=k+k*(A−A)/(A−A)に従って算定するようにしたものである前記1)記載の血糖値の非侵襲測定装置
7) 照射手段が照射する3つの異なる波長の光が、その内2つが940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたもので、残りの1つが910〜930nm又は1010〜1030nmの範囲の近赤外領域の中から選ばれたものである前記5)又は6)記載の血糖値の非侵襲測定装置
にある。
【0013】
【発明の実施の形態】
本発明において、光源から波長の異なる複数の単色光を発生し、照射手段により人体の測定部位(例えば指等)にその単色光を照射する。照射された単色光は人体内部で散乱して吸収し、人体外に放射されて透過光となる。この透過光を透過光量検出手段で単色光の照射位置からそれぞれ異なる一定の直線距離で検出する。検出した2つの透過光からその比である相対透過度を波長毎に算出し、同相対透過度から人体の血糖値を算定する。検出された透過光には人体内部の血糖値情報が含まれており、非侵襲による人体の血糖値測定が可能となる。
【0014】
また、光源に2つ又は3つの単色光源を用いることで、白色光源を用いた従来の血糖値測定装置のように透過又は反射光スペクトルを検出するための複雑な分光器を必要としない装置が実現できる。さらに、測定部位である指の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、血糖値の測定誤差への影響を少なくした血糖値の非侵襲測定装置が実現できる。
【0015】
なお、本発明で用いている透過光量I1. λ ,I2. λ 、及び相対透過度Rλ の各記号において、I,Iの数字は検出位置を示し、λ,λ,λは波長の種類を示しているものである。以下、本発明の各実施例を図面に基づいて具体的に説明する。
【0016】
【実施例】
実施例1(図1,2参照):図1に示す実施例1の血糖値測定装置は、照射光11,21を指1に照射するための光源10,20と、反射プリズム40,レンズ41を備える。また指1からの透過光12,22を検出するためのレンズ50と光検出器51から構成される透過光量検出手段Iと、透過光13,23を検出するためのレンズ60と光検出器61から構成される透過光量検出手段IIを備え、さらに信号処理部230,中央制御部200,表示部210,光源制御部220を備えている。
【0017】
中央制御部200は、信号処理部230でデジタル化された光検出器51,61からの検出信号をもとに、後述する算定式で人体の血糖値を算出して表示部210で表示する。光源制御部220は、光源10,20に電流を供給するための図示しない電源,スイッチ部を有している。中央制御部200からトリガ信号T10(T20)がスイッチ部に入力されると、トリガ信号T10(T20)の立ち上がりに同期してスイッチ部がONとなり、光源10(光源20)に電流が供給される。
【0018】
以上の構成を有する血糖値の非侵襲測定装置の動作を説明する。まず、中央制御部200から送信されるトリガ信号T10がHighとなると、光源制御部220の図示しないスイッチ部がトリガ信号T10の立ち上がりに同期してONとなり、光源10に電流が供給されて照射光11が発生する。一方、トリガ信号T20はLowのままとなっており、光源20には電流が供給されず単色光21は発生していない。
【0019】
次に、光源10から発した照射光11はプリズム40を透過してレンズ41により指1上に照射され、照射光11は指1内部で散乱・吸収を受けて指1外のあらゆる方向に放射されて透過光となる。その後、照射光11の照射位置Pから直線距離r離れた指1上の位置Pからの透過光12はレンズ50で光検出器51の受光面に集められ、また照射光11の照射位置Pから直線距離r離れた指1上の位置Pからの透過光13はレンズ60で光検出器61の受光面に集められる。なお、図1ではr<rとし、また光検出器51,61にはフォトダイオードを用いている。
【0020】
光検出器51,61からはそれぞれ透過光12,13の光強度に比例した検出信号が出力されて、信号処理部230でデジタル化処理され、その検出信号を基に中央制御部200で後述する算定式で相対透過度Rλ が算出される。相対透過度Rλ の算出演算が終わると、トリガ信号T10がLowに、またトリガ信号T20がHighになる。このトリガ信号T10(T20)に基づいて光源制御部220内の図示しないスイッチ部の開閉で、光源10がOFF(消灯)し、光源20がON(点灯)する。
【0021】
続いて、前述した照射光11による相対透過度Rλ の算出手順と同様に、照射光21による相対透過度Rλ の算出が実行される。照射光21による相対透過度Rλ の算出演算が終了するとトリガ信号T10,T20はともにLowとなり、光源10,20は共にOFF(消灯)して指1の血糖値計測作業が終了する。中央制御部200では、算出した相対透過度Rλ ,Rλ から指1の血糖値を後述する算定式で算出し、その結果を表示部210に表示する。
【0022】
次に、中央制御部200で行われる相対透過度Rλ ,Rλ の算出方法について説明する。波長毎の照射光11,透過光12,13の光量をそれぞれI0. λ ,I1. λ ,I2. λ とする。照射光11に対する指1の相対透過度Rλ は下記式で表される。
λ =I2. λ /I1. λ ・・・(1.3)
【0023】
光検出器51,61における光量−電圧変換係数をそれぞれβ51,β61とすると、光検出器51,61で検出される検出信号(電圧)V51,V61は下記式で表される。
51=β51*I1. λ ・・・(1.4)
61=β61*I2. λ ・・・(1.5)
【0024】
前記各式より、指1の相対透過度Rλ は下記式で算出され、照射光11の光量I0. λ に依存しない形で表される。
λ =(β51/β61)*V61/V51・・・(1.6)
【0025】
ここで、( )内の値は血糖値測定装置固有の定数で、光量が分かった光源を用いて簡単に校正することができる。照射光21に対する指1の相対透過度Rλ の算出も前記照射光11に対する指1の相対透過度Rλ と同様にして求めることができる。指1の血糖値Cは、算出した相対透過度Rλ ,Rλ を用いて下記式で算出する。
C=k+k*ln(Rλ )/ln(Rλ )・・・(1.7)
【0026】
ここでk,kは実測血糖値を用いて最小2乗法で決定された係数を示す。また、血糖値推定を行うための異なる2つの波長として、実施例1では940〜1000nmの範囲と1040〜1090nmの範囲の中からそれぞれ選ばれた波長としている。
【0027】
なお、前記した波長範囲にある照射光11,21を発する光源10,20としてレーザーを用いることができる。このレーザーに半導体レーザーを用いれば、小型の血糖値測定装置が実現できる。また、発光ダイオード等の発光素子を光源10,20に用いることも可能である。また、近赤外領域の波長の光を連続的に発する白色光源を光源10,20に用いる場合、光源10,20からの光を前述した波長のみを透過させる光学フィルターを用いることで実現しても良い。さらに、図2に示すように光源10,20からの照射光11,21を光ファイバー700を用いて指1に照射し、さらに指1上の検出点P,Pからの透過光12,13(22,23)を光ファイバー701,702を用いて前記透過光量検出手段I,IIに導光してもよい。
【0028】
実施例2(図3参照):図3に示す実施例2は3つの波長を用いた血糖値の非侵襲測定装置の例である。図3に示す実施例2の血糖値測定装置は、照射光11,21,31を指1に照射するための光源10,20,30と、レンズ410,420,430と、光ファイバー710,720,730及び同各光ファイバー710,720,730を束ねて指1に照射光11,21,31を照射する光ファイバー700を備える。また、指1からの透過光12,22,32を検出するための光ファイバー701,レンズ50,光検出器51から構成される透過光量検出手段Iと、透過光13,23,33を検出するための光ファイバー702,レンズ60,光検出器61から構成される透過光量検出手段IIを備え、さらに信号処理部230,中央制御部200,表示部210,光源制御部220を備えている。
【0029】
中央制御部200は、信号処理部230でデジタル化された光検出器51,61からの検出信号をもとに後述する算定式で人体の血糖値を算出し、表示部210で表示する。光源制御部220は、光源10,20,30に電流を供給するための図示しない電源,スイッチ部を有している。中央制御部200からトリガ信号T10(T20,T30)がスイッチ部に入力されると、トリガ信号T10(T20,T30)の立ち上がりに同期してスイッチ部がONとなり、光源10(光源20,光源30)に電流が供給される。各照射光11,21,31に対応した指1の相対透過度Rλ ,Rλ ,Rλ は実施例1と同様の手順で算出することができる。指1の血糖値Cは、算出した相対透過度Rλ ,Rλ ,Rλ を用いて下記式で算出する。
C=k+k*ln(Rλ /Rλ )/ln(Rλ /Rλ )・・・(1.8)
【0030】
ここで、k,kは実測血糖値を用いて最小2乗法で決定された係数を示す。前記式(1.8)を用いて血糖値測定を行うための異なる3つの波長として、実施例2では照射光11,21が940〜1000nmの範囲と1040〜1090nmの範囲の中からそれぞれ選ばれたものであり、また残りの照射光31が910〜930nm又は1010〜1030nmの範囲の中から選ばれた波長としている。
【0031】
実施例3(図4参照):実施例1,2では人体に照射する光を波長の異なる2つ又は3つの単色光に限定して説明した。これにより、白色光源を用いた従来の血糖値測定装置のように透過又は反射光スペクトルを検出するための複雑な分光器を必要としない装置が実現できる。また、指等の測定部位の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、血糖値の測定誤差への影響を少なくした血糖値の非侵襲測定装置が実現できる。
【0032】
一方、従来の白色光源と分光器を用いた血糖値の非侵襲測定装置においても、指等の測定部位の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、血糖値の測定誤差への影響を少なくすることができる。従来の白色光源と分光器を用いた血糖値の非侵襲測定装置に適用した例を図4に基づいて説明する。
【0033】
図4に示す血糖値の非侵襲測定装置では、近赤外領域の波長の光を含むハロゲンランプ等の白色光源100とその電源110を備え、光源100からの光101をレンズ120と光ファイバー700を介して指1に照射する。指1に照射された光101は指1内部で散乱・吸収を受けて指1外のあらゆる方向に放射されて透過光となる。光ファイバー700による光101の指1上の照射位置Pから直線距離r,rにある指1上の位置P,Pからの透過光102,103を光ファイバー701,702により分光器300まで導光する。
【0034】
分光器300は、レンズ310,320と、シャッター311,321と、プリズム330,回折格子340,多チャンネル検出器350から構成される。多チャンネル検出器350にはCCD等のリニアアレイセンサーが用いられる。位置Pから放射された透過光102の透過スペクトルを計測する場合、シャッター311が開き、多チャンネル検出器350上に透過光102の透過スペクトルSが得られる。この場合、シャッター321は閉まっている。同様にして位置Pから放射された透過光103の透過スペクトルSを測定する場合、シャッター321が開き、多チャンネル検出器350上に透過光103の透過スペクトルSが得られる。この場合、シャッター311は閉まっている。以上のようにして測定した前記透過スペクトルS,Sから透過率スペクトルT=S/Sを算出する。得られた透過率スペクトルから前記各式に従い血糖値Cを算出することができる。
【0035】
各実施例の非侵襲血糖値測定方法について検討した結果を図5〜7に示す。図5は透明な石英セル容器入れたグルコース水溶液に種々の波長の単色光を照射し、その透過率スペクトルTを算出して下記式により算出される吸光度比γと糖濃度の相関について相関係数の自乗値R>0.995となる波長の組み合わせ領域を斜線で示している。
γ=ln(T(λ))/ln(T(λ))・・・(1.9)
【0036】
図5より940〜1000nmの範囲と1040〜1090nmの範囲を四角で囲んだ領域は、前記吸光度比γで糖濃度を推定する為の最適な波長の組み合わせであることがわかる。
【0037】
一方、人体などの散乱体に対しても、グルコース水溶液で得られた最適な波長の組み合わせがそのまま成り立つ。図6は人体を模した散乱体に対して、吸光度比γと糖濃度の相関について図1で示した非侵襲測定装置で測定した場合について理論解析し、その相関係数の自乗値R>0.995となる波長の組み合わせ領域を斜線で示している。理論解析は文献「A.Ishimaru:Wave Propagation and Scattering in RandomMedia,Academic Press,NewYork(1978)」を参考に行った。ここでの理論計算では図1中、直線距離r,rをそれぞれ15mm,25mmに設定した。また等価散乱係数はグルコース濃度・波長によらず一定とし、ここでは人体の一般値1.0mm−1(参考:機論、59,561B(1993)、PP.338−340)を用いた。また波長・グルコース濃度に依存した吸収係数はグルコース水溶液を用いて実測した結果を用いた。図6より水溶液と同じ波長の組み合わせにおいて吸光度比γと糖濃度の相関が高いことがわかる。
【0038】
次に、実施例1,2記載の血糖値測定装置において、図2中、指1の厚みを変化させた場合の血糖値の測定誤差について解析した結果を図7に示す。ここでは透過光検出位置P,P間の距離を20mmで一定とした。また、縦軸の血糖値の測定誤差は、従来技術における指1の厚みの変化量0.1mmに対する血糖値の測定誤差に対する相対値で表示した。実施例1では、従来技術に比べ血糖値の測定誤差が約1/10に、また実施例2では従来技術に比べ血糖値の測定誤差が約1/100にそれぞれ低減していることがわかる。
【0039】
【発明の効果】
以上説明したように、本発明によれば複数の異なる特定波長の単色光を人体に照射し、その透過光を前記単色光の照射位置からの直線距離が異なる位置でそれぞれ検出する。検出された透過光には人体内部の血糖値情報が含まれており、人体の血糖値測定が可能となる。また、白色光源を用いた従来の血糖値測定装置のように透過又は反射光スペクトルを検出するための複雑な分光器を必要としない装置が実現でき、また光源に小型の半導体レーザー等を用いることができるため、小型・軽量の血糖値測定装置が実現できる。さらに、指等の測定部位の大きさに依存して単色光の照射位置と透過光の検出位置との直線距離が変化しても、血糖値の測定誤差への影響を少なくした血糖値の非侵襲測定装置が実現できる。
【図面の簡単な説明】
【図1】実施例1の血糖値の非侵襲測定装置の説明図である。
【図2】実施例1の他の例の光ファイバーを用いた血糖値の非侵襲測定装置の説明図である。
【図3】実施例2の血糖値の非侵襲測定装置の説明図である。
【図4】実施例3の血糖値の非侵襲測定装置の説明図である。
【図5】グルコース水溶液での最適波長の組み合わせ領域を示す図である。
【図6】人体を模した散乱体での最適波長の組み合わせ領域を示す図である。
【図7】指の厚みの変化量と血糖値測定誤差との関係を示す図である。
【図8】従来の血糖値の非侵襲測定装置の説明図である。
【符号の説明】
1 指
10,20,30 光源
11,21,31 照射光
12,13 透過光
22,23 透過光
32,33 透過光
41 レンズ
50,60 レンズ
40 プリズム
51,61 光検出器
100 白色光源
101 照射光
102,103 透過光
110 白色光源用電源
120 レンズ
200 中央制御部
210 表示部
220 光源制御部
230 信号処理部
300,301 分光器
310,320 レンズ
311,321 シャッター
330 プリズム
340 回転格子
350 多チャンネル検出器
360 ミラー
370 サンプル用プリズム
380 光検出器
390 NDフィルター
410,420,430 レンズ
700,701,702 光ファイバー
710,720,730 光ファイバー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for non-invasively measuring the blood sugar level of a human body, and more particularly, non-invasively measuring the blood sugar level of a human body from transmitted light from a human body obtained by irradiating a monochromatic light of a specific wavelength to the human body without error. Related to measuring technology.
[0002]
[Prior art]
In diabetes, the lack of insulin secreted from the liver or the inability of cells in the body to respond to insulin prevents sugar from accumulating in muscles and liver, increasing the glucose concentration in blood sugar, that is, increasing blood sugar levels, This causes various complications such as retinopathy, neuropathy and nephropathy. The number of diabetics is said to be 6.9 million in Japan and more than 13 million including the reserve army, which is a serious national illness. At present, there is no complete treatment method in the treatment of diabetes, and the blood sugar level is maintained at an appropriate level by administering insulin or diet while measuring the blood sugar level.
[0003]
The current blood sugar level measurement is performed using a glucose sensor method that electrochemically quantifies the reaction of glucose oxidase to blood sugar using blood collected and converts it into a blood sugar level. Portable blood glucose meters used for daily blood glucose management are already commercially available. In such a blood glucose test, there are problems such as pain associated with blood collection several times a day and infection with a blood collection needle, and a noninvasive blood glucose measurement device that does not require blood collection and can measure the daily fluctuation of blood glucose level in real time is desired. ing.
[0004]
Therefore, the human body is irradiated with light having a wavelength in the near-infrared region, and diffuse reflected light or transmitted light from the human body is measured using a spectroscope, and the blood glucose level of the human body is determined from the spectrum of the diffuse reflected light or transmitted light. A technique to be calculated is disclosed (for example, see Non-Patent Document 1 and Patent Document 1). Non-Patent Document 1 discloses a method of irradiating light having a wavelength in the near-infrared region to the lower lip, measuring the spectrum of the diffuse reflection light from the diffuse reflection light using a spectroscope or the like, and measuring the blood glucose level from the spectrum value. Has been proposed. Patent Document 1 proposes a method of irradiating a finger or the like with light having a wavelength in the near-infrared region, detecting the transmitted light, obtaining absorbance at specific wavelengths of 944 nm and 964 nm, and measuring a blood glucose level from the values. I have.
[0005]
By the way, according to the method of Non-Patent Document 1, a complex spectroscope including a diffraction grating or the like is used to irradiate light having a wavelength in the near-infrared region to the lower lip and measure the spectrum of the diffusely reflected light. In need of. This requires reflectance data of 10 to 20 wavelengths of light to calculate the blood sugar level, and for this purpose, irradiates the human body with light from a white light source having light in wavelengths in these regions, To obtain the reflection spectrum, the above-mentioned spectroscope is required. With such a method of measuring blood glucose level based on a white light source or a spectroscope, it is difficult to make a small and portable blood glucose level measuring apparatus that is easy to carry in order for a diabetic patient to perform daily blood glucose level management.
[0006]
On the other hand, Patent Literature 1 proposes an apparatus that uses two specific wavelengths of light and measures a blood glucose level using the transmitted light. This technique will be described with reference to FIG. The measuring device shown in FIG. 8 includes a light source 100 that emits near-infrared light, a diffraction grating 340 for irradiating the finger 1 with only a predetermined monochromatic light from the light, and a monochromatic light 101 that has been dispersed. ND filter 390 and photodetector 380 for detecting a part of. Further, a lens 50 and a photodetector 51 for detecting the transmitted light 102 from the human finger 1, a signal processing unit 230 for amplifying and digitizing detection signals from the photodetectors 51 and 380, and central control A section 200 is provided. The central control unit 200 calculates the transmittance T of the finger 1 based on the detection signals from the photodetectors 51 and 380 that have been amplified and digitized by the signal processing unit 230 using the following equation.
T = I 1 / I 0 (1.1)
[0007]
Here, I 0 is the irradiation light amount of the illumination light 101, is calculated by multiplying a predetermined number of detection signals detected by the optical detector 380. The I 1 is calculated by multiplying a predetermined number of detection signals detected by the detector 51 in the amount of transmitted light 102. Here, two wavelengths of 944 nm and 964 nm are selected as the wavelength of the irradiation light 101, and the blood glucose level C is calculated by the following equation, with the transmittances for the respective wavelengths being T 1 and T 2 , respectively.
C = k 0 + k 0 * ABS 1 / ABS 2 (1.2)
[0008]
Here, ABS 1 = −In (T 1 ) and ABS 2 = −In (T 2 ) are represented. K 0 and k 1 indicate coefficients determined by the least-squares method using actually measured blood sugar levels. Here, a white light source is used as the light source. However, if a semiconductor laser of 944 nm and 964 nm can be used for the two different wavelengths, blood glucose that does not require a complicated spectroscope including a diffraction grating or the like is used. A non-invasive measurement device of the value can be realized.
[0009]
However, in the invention of the prior application, the linear distance r 1 between the irradiation position P 0 of the irradiation light 101 and the detection position P 1 of the transmitted light 102 slightly changes depending on the size of the finger 1. There is a problem that a measurement error that cannot be ignored in the calculation of the blood sugar level C by the above equation occurs for the slight change amount.
[0010]
[Non-patent document 1]
H. M. Heise, et al. , Artifical Organs, 18 (6) pp. 439-47, 1994
[Patent Document 1]
JP-A-5-176917
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve the conventional problems and to provide a small and portable non-invasive blood glucose level measuring device capable of non-invasively measuring the blood glucose level of a human body without error. is there.
[0012]
[Means for Solving the Problems]
The configuration of the present invention that has solved such a problem includes:
1) Irradiation means for irradiating light having a plurality of different wavelengths to a measurement site of the human body is provided, and the light of the irradiation means receives transmitted light transmitted through the measurement site of the human body at two places at different distances. A transmitted light amount detecting means for detecting the transmitted light amount is provided, and a relative transmittance, which is a ratio of a transmitted light amount of the same wavelength at two places detected by the transmitted light amount detecting means, is calculated for each wavelength, and a relative transmittance of each wavelength is calculated. Non-invasive measuring device for blood glucose level provided with calculating means for calculating blood sugar level of human body using degree 2) Irradiating means irradiates light of two different wavelengths, and calculating means detects at two places The shorter of the transmission distance among the respective transmitted light amounts is I1 . λ 1 , I 1. λ 2, and the longer transmission distance I 2. λ 1 , I 2. λ 2, and the relative transmittances R λ 1 and R λ 2 of two different wavelengths are represented by the formula R λ 1 = I2 . λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2 , the coefficients k 0 and k 1 of the following equation are obtained using the blood glucose level measured in advance and the relative transmittances R λ 1 and R λ 2 , and the blood glucose level C is calculated by the equation C = k 0 + k 1 * ln (R λ 1 ) / ln (R λ 2 ) The non-invasive blood sugar level measuring apparatus according to the above 1), wherein the irradiating means irradiates light of two different wavelengths. The means determines which one of the transmitted light amounts detected at two locations has a shorter transmission distance as I1 . λ 1 , I 1. λ 2, and the longer transmission distance I 2. λ 1 , I 2. λ 2, and the relative transmittances R λ 1 and R λ 2 of two different wavelengths are represented by the formula R λ 1 = I2 . λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2, and based on the respective relative transmittances R λ 1 , R λ 2 , the absorbances A 1 , A 2 of two different wavelengths are expressed by the following formula: A 1 = −1 n (R λ 1 ), A 2 = −1 n (R λ2 ), the coefficients k 0 and k 1 of the following equation are obtained using the blood sugar level and the absorbances A 1 and A 2 measured in advance, and the blood sugar level C is calculated according to the equation C = k 0 + k 1 * A 1 / A 2. The non-invasive blood glucose level measuring apparatus according to the above 1), wherein the two different wavelengths of light emitted by the irradiating means are in a near infrared region in a range of 940 to 1000 nm and a range of 1040 to 1090 nm. 5) The blood glucose level non-invasive measuring apparatus according to 2) or 3) above, which is selected from among 5) The irradiating means irradiates light of three different wavelengths, and the calculating means detects at two places. The shorter of the transmission distances of the respective transmitted light amounts I1 . λ 1 , I 1. λ 2 , I 1. λ 3, and the longer transmission distance is I2 . λ 1 , I 2. λ 2 , I 2. Assuming that λ 3 , the relative transmittances R λ 1 , R λ 2 , and R λ 3 of the three wavelengths are represented by the formula R λ 1 = I 2. λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2 , R λ 3 = I2 . λ 3 / I 1. λ 3 , the coefficients k 0 , k 1 of the following equation are obtained using the blood glucose level measured in advance and the relative transmittances R λ 1 , R λ 2 , R λ 3 , and the blood glucose level C is calculated by the equation C = k 0 + k 1 * ln (R λ 1 / R λ 3) / ln (R λ 2 / R λ 3) is obtained so as to calculate in accordance with said 1) non-invasive measuring device 6) means for irradiating blood sugar described, 3 The operation means irradiates light of two different wavelengths, and the arithmetic means determines which one of the transmitted light amounts detected at two locations has a shorter transmission distance as I1 . λ 1 , I 1. λ 2 , I 1. λ 3, and the longer transmission distance is I2 . λ 1 , I 2. λ 2 , I 2. Assuming that λ 3 , the relative transmittances R λ 1 , R λ 2 , and R λ 3 of the three wavelengths are represented by the formula R λ 1 = I 2. λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2 , R λ 3 = I2 . λ 3 / I 1. and lambda 3, the respective relative transmittance R λ 1, R λ 2, R λ3 absorbance A 1 for three different wavelengths on the basis of, A 2, A 3 Equation A 1 = -1n (R λ 1 ), A 2 = -1n (R λ2), and a 3 = -1n (R λ3) , determine the coefficients k 0, k 1 of the following equation using the previously measured blood glucose level and the absorbance a 1, a 2, a 3 , The blood glucose level non-invasive measuring device 7) according to 1), wherein the blood glucose level C is calculated according to the formula: C = k 0 + k 1 * (A 1 −A 3 ) / (A 2 −A 3 ). The light of three different wavelengths irradiated by the irradiation means, two of which are selected from the near infrared region in the range of 940 to 1000 nm and 1040 to 1090 nm, and the other one is 910 to 930 nm or The above 5 which is selected from the near infrared region in the range of 1010 to 1030 nm ) Or 6).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a plurality of monochromatic lights having different wavelengths are generated from a light source, and the measurement unit (for example, a finger) of a human body is irradiated with the monochromatic lights by an irradiation unit. The irradiated monochromatic light is scattered and absorbed inside the human body, and radiated outside the human body to become transmitted light. The transmitted light is detected by the transmitted light amount detecting means at different linear distances from the irradiation position of the monochromatic light. A relative transmittance, which is a ratio between the two detected transmitted lights, is calculated for each wavelength, and a blood sugar level of a human body is calculated from the relative transmittance. The detected transmitted light contains blood sugar level information inside the human body, which enables non-invasive measurement of the blood sugar level of the human body.
[0014]
In addition, by using two or three monochromatic light sources as light sources, there is a device that does not require a complicated spectroscope for detecting a transmitted or reflected light spectrum like a conventional blood glucose measurement device using a white light source. realizable. Furthermore, even if the linear distance between the irradiation position of the monochromatic light and the detection position of the transmitted light changes depending on the size of the finger that is the measurement site, the influence of the blood sugar level on the measurement error of the blood sugar level is reduced. An invasive measurement device can be realized.
[0015]
Note that the amount of transmitted light I1 . λ 1 , I 2. lambda 1, and in each symbol relative transmittance R lambda 1, numerals I 1, I 2 represents the detected position, λ 1, λ 2, λ 3 are those showing the kinds of wavelengths. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
[0016]
【Example】
Example 1 (see FIGS. 1 and 2): The blood glucose level measuring device of Example 1 shown in FIG. 1 includes light sources 10 and 20 for irradiating irradiation light 11 and 21 to a finger 1, a reflecting prism 40, and a lens 41. Is provided. Further, a transmitted light amount detecting means I comprising a lens 50 for detecting the transmitted lights 12 and 22 from the finger 1 and a photodetector 51, a lens 60 for detecting the transmitted lights 13 and 23, and a photodetector 61. And a signal processing unit 230, a central control unit 200, a display unit 210, and a light source control unit 220.
[0017]
The central control unit 200 calculates the blood sugar level of a human body by a calculation formula described later based on the detection signals from the photodetectors 51 and 61 digitized by the signal processing unit 230, and displays the blood sugar level on the display unit 210. The light source control unit 220 has a power supply and a switch unit (not shown) for supplying current to the light sources 10 and 20. When the trigger signal T 10 (T 20 ) is input from the central control unit 200 to the switch unit, the switch unit is turned on in synchronization with the rise of the trigger signal T 10 (T 20 ), and the current is supplied to the light source 10 (light source 20). Is supplied.
[0018]
The operation of the non-invasive blood sugar level measuring device having the above configuration will be described. First, a trigger signal T 10 transmitted from the central control unit 200 becomes High, ON next in synchronization with the rise of the switch unit is a trigger signal T 10 (not shown) of the light source control unit 220, a current is supplied to the light source 10 Irradiation light 11 is generated. On the other hand, the trigger signal T 20 is a left Low, monochromatic light 21 current is not supplied to the light source 20 is not generated.
[0019]
Next, the irradiation light 11 emitted from the light source 10 passes through the prism 40 and is irradiated on the finger 1 by the lens 41. The irradiation light 11 is scattered and absorbed inside the finger 1 and radiates in all directions outside the finger 1. It becomes transmitted light. Thereafter, the transmitted light 12 from the position P 1 on the finger 1, which is a linear distance r 1 away from the irradiation position P 0 of the irradiation light 11, is collected on the light receiving surface of the photodetector 51 by the lens 50, and the irradiation of the irradiation light 11 The transmitted light 13 from the position P 2 on the finger 1 that is a linear distance r 2 away from the position P 0 is collected by the lens 60 on the light receiving surface of the photodetector 61. In FIG. 1, r 1 <r 2 and photodiodes are used for the photodetectors 51 and 61.
[0020]
Detection signals proportional to the light intensities of the transmitted lights 12 and 13 are output from the photodetectors 51 and 61, respectively, are digitized by the signal processing unit 230, and based on the detection signals, the central control unit 200 described later. relative permeability R lambda 1 is calculated by the calculation formula. When calculating operation of a relative transmittance R lambda 1 is completed, the trigger signal T 10 Low, also the trigger signal T 20 becomes High. The light source 10 is turned off (turned off) and the light source 20 is turned on (turned on) by opening and closing a switch unit (not shown) in the light source control unit 220 based on the trigger signal T 10 (T 20 ).
[0021]
Then, in analogy to the procedure calculates the relative transmittance R lambda 1 by irradiation light 11 described above, the calculation of the relative transmittance R lambda 2 by the irradiation light 21 is performed. Trigger signal T 10 the calculating operation of the relative transmittance R lambda 2 by the irradiation light 21 is completed, T 20 are both Low, and the light source 10 and 20 OFF (dark) by blood glucose measurement tasks of the finger 1 is completed both . The central control unit 200 calculates the blood glucose level of the finger 1 from the calculated relative transmittances R λ 1 , R λ 2 using a calculation formula described later, and displays the result on the display unit 210.
[0022]
Next, a method of calculating the relative transmittances R λ 1 and R λ 2 performed by the central control unit 200 will be described. The light amounts of the irradiation light 11 and the transmission lights 12 and 13 for each wavelength are respectively set to I 0. λ 1 , I 1. λ 1 , I 2. and λ 1. Relative permeability R lambda 1 of the finger 1 with respect to the irradiation light 11 is represented by the following formula.
R λ 1 = I 2. λ 1 / I 1. λ 1 ... (1.3)
[0023]
Assuming that the light quantity-voltage conversion coefficients in the photodetectors 51 and 61 are β 51 and β 61 , detection signals (voltages) V 51 and V 61 detected by the photo detectors 51 and 61 are represented by the following equations.
V 51 = β 51 * I 1. λ 1 ... (1.4)
V 61 = β 61 * I 2. λ 1 ... (1.5)
[0024]
From the above equations, the relative transmittance R λ 1 of the finger 1 is calculated by the following equation, and the light amount I 0. It is expressed in a manner independent of λ 1 .
R λ 1 = (β 51 / β 61) * V 61 / V 51 ··· (1.6)
[0025]
Here, the values in parentheses are constants unique to the blood sugar level measuring device, and can be easily calibrated using a light source whose light amount is known. Can calculate the relative transmittance R lambda 2 of the finger 1 with respect to the irradiation light 21 obtained in the same manner as the relative transmittance R lambda 1 of the finger 1 with respect to the irradiation light 11. Blood sugar level C of the finger 1 is calculated by the following equation using the calculated relative transmittance R λ 1, R λ 2.
C = k 0 + k 1 * ln ( 1 ) / ln ( 2 ) (1.7)
[0026]
Here, k 0 and k 1 indicate coefficients determined by the least square method using the actually measured blood glucose level. In the first embodiment, the two different wavelengths for performing the blood sugar level estimation are wavelengths selected from a range of 940 to 1000 nm and a range of 1040 to 1090 nm, respectively.
[0027]
Note that lasers can be used as the light sources 10 and 20 that emit the irradiation lights 11 and 21 in the above-described wavelength range. If a semiconductor laser is used as this laser, a small-sized blood sugar level measuring device can be realized. Further, a light emitting element such as a light emitting diode can be used for the light sources 10 and 20. When a white light source that continuously emits light having a wavelength in the near-infrared region is used for the light sources 10 and 20, this is realized by using an optical filter that transmits light from the light sources 10 and 20 only at the wavelengths described above. Is also good. Further, as shown in FIG. 2, irradiation light 11 and 21 from light sources 10 and 20 are irradiated on finger 1 using optical fiber 700, and transmitted light 12 and 13 from detection points P 1 and P 2 on finger 1 are further transmitted. (22, 23) may be guided to the transmitted light amount detecting means I, II using optical fibers 701, 702.
[0028]
Embodiment 2 (see FIG. 3): Embodiment 2 shown in FIG. 3 is an example of a non-invasive blood glucose level measuring device using three wavelengths. The blood glucose level measuring device according to the second embodiment shown in FIG. 3 includes light sources 10, 20, 30 for irradiating irradiation light 11, 21, 31, 31 to the finger 1, lenses 410, 420, 430, optical fibers 710, 720, 730 and an optical fiber 700 for bundling the optical fibers 710, 720, 730 and irradiating the finger 1 with irradiation light 11, 21, 31. Also, a transmitted light amount detecting means I composed of an optical fiber 701, a lens 50, and a photodetector 51 for detecting the transmitted light 12, 22, 32 from the finger 1, and for detecting the transmitted light 13, 23, 33. , A transmitted light amount detecting means II including an optical fiber 702, a lens 60, and a photodetector 61, and a signal processing unit 230, a central control unit 200, a display unit 210, and a light source control unit 220.
[0029]
The central control unit 200 calculates the blood glucose level of the human body based on the detection signals from the photodetectors 51 and 61 digitized by the signal processing unit 230 using a calculation formula described later, and displays the blood sugar level on the display unit 210. The light source control unit 220 has a power supply and a switch unit (not shown) for supplying current to the light sources 10, 20, and 30. When the trigger signal T 10 from the central control unit 200 (T 20, T 30) is inputted to the switching unit, the switch unit is turned ON in synchronization with the rising edge of the trigger signal T 10 (T 20, T 30 ), the light source 10 (Light source 20, light source 30) is supplied with electric current. The relative transmittances R λ 1 , R λ 2 , R λ 3 of the finger 1 corresponding to the irradiation lights 11, 21, 31 can be calculated in the same procedure as in the first embodiment. The blood sugar level C of the finger 1 is calculated by the following equation using the calculated relative transmittances R λ 1 , R λ 2 , and R λ 3 .
C = k 0 + k 1 * ln (R λ 1 / R λ 3) / ln (R λ 2 / R λ 3) ··· (1.8)
[0030]
Here, k 0 and k 1 indicate coefficients determined by the least square method using the actually measured blood glucose level. In Example 2, the irradiation light 11 or 21 is selected from the range of 940 to 1000 nm and the range of 1040 to 1090 nm as three different wavelengths for performing the blood sugar level measurement using the formula (1.8). The remaining irradiation light 31 has a wavelength selected from the range of 910 to 930 nm or 1010 to 1030 nm.
[0031]
Third Embodiment (see FIG. 4): In the first and second embodiments, the light to be irradiated on the human body is limited to two or three monochromatic lights having different wavelengths. This makes it possible to realize a device that does not require a complicated spectroscope for detecting a transmitted or reflected light spectrum, unlike a conventional blood glucose level measuring device using a white light source. Further, even if the linear distance between the irradiation position of monochromatic light and the detection position of transmitted light changes depending on the size of the measurement site such as a finger, the influence of the blood glucose level on the measurement error of the blood glucose level is reduced. An invasive measurement device can be realized.
[0032]
On the other hand, even in a conventional non-invasive blood glucose measurement device using a white light source and a spectroscope, the linear distance between the irradiation position of monochromatic light and the detection position of transmitted light depends on the size of the measurement site such as a finger. Even if it changes, the influence on the measurement error of the blood sugar level can be reduced. An example in which the present invention is applied to a conventional non-invasive blood sugar level measuring apparatus using a white light source and a spectroscope will be described with reference to FIG.
[0033]
The non-invasive blood sugar level measuring apparatus shown in FIG. 4 includes a white light source 100 such as a halogen lamp including light having a wavelength in the near-infrared region and a power supply 110. The light 101 from the light source 100 is transmitted through a lens 120 and an optical fiber 700. Irradiate finger 1 through The light 101 applied to the finger 1 is scattered / absorbed inside the finger 1 and emitted in all directions outside the finger 1 to be transmitted light. The transmitted light 102, 103 from the positions P 1 , P 2 on the finger 1 at linear distances r 1 , r 2 from the irradiation position P 0 of the light 101 on the finger 1 by the optical fiber 700, and the spectroscope 300 by the optical fibers 701, 702. To light.
[0034]
The spectroscope 300 includes lenses 310 and 320, shutters 311 and 321, a prism 330, a diffraction grating 340, and a multi-channel detector 350. As the multi-channel detector 350, a linear array sensor such as a CCD is used. When measuring the transmission spectrum of the transmitted light 102 emitted from the position P 1 , the shutter 311 is opened, and the transmission spectrum S 1 of the transmitted light 102 is obtained on the multi-channel detector 350. In this case, the shutter 321 is closed. When measuring the transmission spectrum S 2 of transmitted light 103 emitted from the position P 2 in the same manner, the shutter 321 is opened, the transmission spectrum S 2 of transmitted light 103 onto the multi-channel detector 350 is obtained. In this case, the shutter 311 is closed. A transmittance spectrum T = S 2 / S 1 is calculated from the transmission spectra S 1 and S 2 measured as described above. From the obtained transmittance spectrum, the blood sugar level C can be calculated according to the above equations.
[0035]
The results of examining the non-invasive blood glucose level measurement method of each example are shown in FIGS. FIG. 5 shows that a glucose solution placed in a transparent quartz cell container is irradiated with monochromatic light of various wavelengths, its transmittance spectrum T is calculated, and the correlation coefficient between the absorbance ratio γ calculated by the following equation and the sugar concentration is shown. The combination region of the wavelengths satisfying the square value R 2 > 0.995 is indicated by oblique lines.
γ = ln (T (λ 1 )) / ln (T (λ 2 )) (1.9)
[0036]
From FIG. 5, it can be seen that the region in which the range of 940 to 1000 nm and the range of 1040 to 1090 nm are surrounded by a square is an optimal combination of wavelengths for estimating the sugar concentration by the absorbance ratio γ.
[0037]
On the other hand, for a scatterer such as a human body, the optimum combination of wavelengths obtained with an aqueous glucose solution holds as it is. FIG. 6 is a theoretical analysis of the correlation between the absorbance ratio γ and the sugar concentration of a scatterer simulating a human body, when the non-invasive measurement device shown in FIG. 1 is used to perform a theoretical analysis, and the square value R 2 of the correlation coefficient> The combination region of the wavelength of 0.995 is shown by oblique lines. The theoretical analysis was performed with reference to the document “A. Ishimaru: Wave Propagation and Scattering in Random Media, Academic Press, New York (1978)”. In the theoretical calculation here, the linear distances r 1 and r 2 in FIG. 1 were set to 15 mm and 25 mm, respectively. The equivalent scattering coefficient is constant regardless of the glucose concentration and the wavelength, and here, a general value of the human body of 1.0 mm -1 (reference: mechanical theory, 59, 561B (1993), PP. 338-340) was used. In addition, the absorption coefficient depending on the wavelength and the glucose concentration was obtained from the result of measurement using an aqueous glucose solution. FIG. 6 shows that the correlation between the absorbance ratio γ and the sugar concentration is high in the same combination of wavelengths as in the aqueous solution.
[0038]
Next, FIG. 7 shows the result of analyzing the measurement error of the blood sugar level when the thickness of the finger 1 is changed in FIG. 2 in the blood sugar level measuring devices described in the first and second embodiments. Here, the distance between the transmitted light detection positions P 1 and P 2 was fixed at 20 mm. The measurement error of the blood sugar level on the vertical axis is represented by a relative value with respect to the measurement error of the blood sugar level with respect to the change in the thickness of the finger 1 of 0.1 mm in the conventional technique. It can be seen that in Example 1, the measurement error of the blood glucose level was reduced to about 1/10 as compared with the prior art, and in Example 2, the measurement error of the blood glucose level was reduced to about 1/100 as compared to the conventional technique.
[0039]
【The invention's effect】
As described above, according to the present invention, a human body is irradiated with a plurality of monochromatic lights having different specific wavelengths, and the transmitted light is detected at positions having different linear distances from the irradiation position of the monochromatic light. The detected transmitted light contains blood sugar level information inside the human body, and the blood sugar level of the human body can be measured. In addition, a device that does not require a complicated spectroscope for detecting a transmitted or reflected light spectrum, such as a conventional blood glucose level measuring device using a white light source, can be realized, and a small semiconductor laser or the like is used as a light source. Therefore, a small and lightweight blood glucose measuring device can be realized. Furthermore, even if the linear distance between the irradiation position of monochromatic light and the detection position of transmitted light changes depending on the size of the measurement site such as a finger, the influence of the blood glucose level on the measurement error of the blood glucose level is reduced. An invasive measurement device can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a non-invasive blood sugar level measuring device according to a first embodiment.
FIG. 2 is an explanatory diagram of a noninvasive blood sugar level measuring device using an optical fiber according to another example of the first embodiment.
FIG. 3 is an explanatory diagram of a non-invasive blood sugar level measuring device according to a second embodiment.
FIG. 4 is an explanatory view of a non-invasive blood sugar level measuring apparatus according to a third embodiment.
FIG. 5 is a diagram showing an optimum wavelength combination region in an aqueous glucose solution.
FIG. 6 is a diagram showing an optimum wavelength combination region in a scatterer imitating a human body.
FIG. 7 is a diagram showing a relationship between a change amount of a finger thickness and a blood sugar level measurement error.
FIG. 8 is an explanatory diagram of a conventional non-invasive blood sugar level measuring device.
[Explanation of symbols]
1 finger 10, 20, 30 light source 11, 21, 31 irradiation light 12, 13 transmission light 22, 23 transmission light 32, 33 transmission light 41 lens 50, 60 lens 40 prism 51, 61 photodetector 100 white light source 101 irradiation light 102, 103 Transmitted light 110 White light source power supply 120 Lens 200 Central control unit 210 Display unit 220 Light source control unit 230 Signal processing unit 300, 301 Spectroscope 310, 320 Lens 311, 321 Shutter 330 Prism 340 Rotation grating 350 Multi-channel detector 360 Mirror 370 Sample prism 380 Photodetector 390 ND filter 410, 420, 430 Lens 700, 701, 702 Optical fiber 710, 720, 730 Optical fiber

Claims (7)

人体の測定部位に複数の異なる波長からなる光を照射する照射手段を設け、同照射手段の光が人体の測定部位を透過した透過光を異なる距離をおいた2箇所で受光してその透過光量を検出する透過光量検出手段を設け、同透過光量検出手段で検出した2箇所での同波長の透過光量の比である相対透過度を各波長毎に算出し、同各波長の相対透過度を用いて人体の血糖値を算定する演算手段を設けた血糖値の非侵襲測定装置。Irradiation means for irradiating light having a plurality of different wavelengths to the measurement site of the human body is provided, and the light of the irradiation means receives the transmitted light transmitted through the measurement site of the human body at two places at different distances, and the transmitted light amount Is provided, and the relative transmittance, which is the ratio of the amount of transmitted light of the same wavelength at two locations detected by the transmitted light amount detector, is calculated for each wavelength, and the relative transmittance of each wavelength is calculated. A non-invasive blood sugar level measuring device provided with an arithmetic means for calculating a blood sugar level of a human body using the same. 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ とし、2つの異なる波長の相対透過度Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、予め実測した血糖値と相対透過度Rλ ,Rλ を用いて次式の係数k,kを求め、血糖値Cを式C=k+k*ln(Rλ )/ln(Rλ )に従って算定するようにしたものである請求項1記載の血糖値の非侵襲測定装置。The irradiating means irradiates light of two different wavelengths, and the calculating means determines which one of the transmitted light amounts detected at two locations has a shorter transmission distance as I1 . λ 1 , I 1. λ 2, and the longer transmission distance I 2. λ 1 , I 2. λ 2, and the relative transmittances R λ 1 and R λ 2 of two different wavelengths are represented by the formula R λ 1 = I2 . λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2 , the coefficients k 0 and k 1 of the following equation are obtained using the blood glucose level measured in advance and the relative transmittances R λ 1 and R λ 2 , and the blood glucose level C is calculated by the equation C = k 0 + k 1 * ln (R 2. The non-invasive blood sugar level measuring apparatus according to claim 1, wherein the blood glucose level is calculated according to [ lambda] 1 ) / ln (R [ lambda] 2 ). 照射手段が、2つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ とし、2つの異なる波長の相対透過度Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、同各相対透過度Rλ ,Rλ に基づいて2つの異なる波長の吸光度A,Aを式A=−1n(Rλ ),A=−1n(Rλ2)とし、予め実測した血糖値と吸光度A,Aを用いて次式の係数k,kを求め、血糖値Cを式C=k+k*A/Aに従って算定するようにしたものである請求項1記載の血糖値の非侵襲測定装置。The irradiating means irradiates light of two different wavelengths, and the calculating means determines which one of the transmitted light amounts detected at two locations has a shorter transmission distance as I1 . λ 1 , I 1. λ 2, and the longer transmission distance I 2. λ 1 , I 2. λ 2, and the relative transmittances R λ 1 and R λ 2 of two different wavelengths are represented by the formula R λ 1 = I2 . λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2, and based on the respective relative transmittances R λ 1 , R λ 2 , the absorbances A 1 , A 2 of two different wavelengths are expressed by the following formula: A 1 = −1 n (R λ 1 ), A 2 = −1 n (R λ2 ), the coefficients k 0 and k 1 of the following equation are obtained using the blood sugar level and the absorbances A 1 and A 2 measured in advance, and the blood sugar level C is calculated according to the equation C = k 0 + k 1 * A 1 / A 2. The non-invasive blood sugar level measuring device according to claim 1, wherein 照射手段が照射する2つの異なる波長の光が、940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたものである請求項2又は3記載の血糖値の非侵襲測定装置。The non-invasive blood glucose level non-invasive according to claim 2 or 3, wherein the two different wavelengths of light emitted by the irradiating means are selected from a near infrared region in a range of 940 to 1000 nm and a range of 1040 to 1090 nm. measuring device. 照射手段が、3つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ ,I2. λ とし、3つの波長の相対透過度Rλ ,Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、予め実測した血糖値と相対透過度Rλ ,Rλ ,Rλ を用いて次式の係数k,kを求め、血糖値Cを式C=k+k*ln(Rλ /Rλ )/ln(Rλ /Rλ )に従って算定するようにしたものである請求項1記載の血糖値の非侵襲測定装置。The irradiating means irradiates light of three different wavelengths, and the calculating means determines the shorter one of the transmitted light amounts of the transmitted light amounts detected at two points in I1 . λ 1 , I 1. λ 2 , I 1. λ 3, and the longer transmission distance is I2 . λ 1 , I 2. λ 2 , I 2. Assuming that λ 3 , the relative transmittances R λ 1 , R λ 2 , and R λ 3 of the three wavelengths are represented by the formula R λ 1 = I 2. λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2 , R λ 3 = I2 . λ 3 / I 1. λ 3 , the coefficients k 0 , k 1 of the following equation are obtained using the blood glucose level measured in advance and the relative transmittances R λ 1 , R λ 2 , R λ 3 , and the blood glucose level C is calculated by the equation C = k 0 + k 1 * ln (R λ 1 / R λ 3) / ln (R λ 2 / R λ 3) non-invasive measuring device for blood glucose level according to claim 1, wherein is obtained so as to calculate in accordance with. 照射手段が、3つの異なる波長の光を照射するもので、演算手段が、2箇所で検出した各透過光量のうち透過距離が短い方をI1. λ ,I1. λ ,I1. λ とし、透過距離が長い方をI2. λ ,I2. λ ,I2. λ とし、3つの波長の相対透過度Rλ ,Rλ ,Rλ を式Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ ,Rλ =I2. λ /I1. λ とし、同各相対透過度Rλ ,Rλ ,Rλ3に基づいて3つの異なる波長の吸光度A,A,Aを式A=−1n(Rλ ),A=−1n(Rλ2),A=−1n(Rλ3)とし、予め実測した血糖値と吸光度A,A,Aを用いて次式の係数k,kを求め、血糖値Cを式C=k+k*(A−A)/(A−A)に従って算定するようにしたものである請求項1記載の血糖値の非侵襲測定装置。The irradiating means irradiates light of three different wavelengths, and the calculating means determines the shorter one of the transmitted light amounts of the transmitted light amounts detected at two points in I1 . λ 1 , I 1. λ 2 , I 1. λ 3, and the longer transmission distance is I2 . λ 1 , I 2. λ 2 , I 2. Assuming that λ 3 , the relative transmittances R λ 1 , R λ 2 , and R λ 3 of the three wavelengths are represented by the formula R λ 1 = I 2. λ 1 / I 1. λ 1 , R λ 2 = I 2. λ 2 / I 1. λ 2 , R λ 3 = I2 . λ 3 / I 1. and lambda 3, the respective relative transmittance R λ 1, R λ 2, R λ3 absorbance A 1 for three different wavelengths on the basis of, A 2, A 3 Equation A 1 = -1n (R λ 1 ), A 2 = -1n (R λ2), and a 3 = -1n (R λ3) , determine the coefficients k 0, k 1 of the following equation using the previously measured blood glucose level and the absorbance a 1, a 2, a 3 , blood sugar level C of the formula C = k 0 + k 1 * (a 1 -A 3) / non-invasive measuring device for blood glucose level according to claim 1, wherein is obtained so as to calculate in accordance with (a 2 -A 3). 照射手段が照射する3つの異なる波長の光が、その内2つが940〜1000nmの範囲と1040〜1090nmの範囲の近赤外領域の中から選ばれたもので、残りの1つが910〜930nm又は1010〜1030nmの範囲の近赤外領域の中から選ばれたものである請求項5又は6記載の血糖値の非侵襲測定装置。The light of three different wavelengths irradiated by the irradiation means, two of which are selected from the near infrared region in the range of 940 to 1000 nm and 1040 to 1090 nm, and the other one is 910 to 930 nm or 7. The non-invasive blood sugar level measuring device according to claim 5, wherein the device is selected from a near infrared region in a range of 1010 to 1030 nm.
JP2003113497A 2003-04-17 2003-04-17 Non-invasive measuring device for blood glucose level Expired - Fee Related JP4052461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113497A JP4052461B2 (en) 2003-04-17 2003-04-17 Non-invasive measuring device for blood glucose level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113497A JP4052461B2 (en) 2003-04-17 2003-04-17 Non-invasive measuring device for blood glucose level

Publications (2)

Publication Number Publication Date
JP2004313554A true JP2004313554A (en) 2004-11-11
JP4052461B2 JP4052461B2 (en) 2008-02-27

Family

ID=33473384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113497A Expired - Fee Related JP4052461B2 (en) 2003-04-17 2003-04-17 Non-invasive measuring device for blood glucose level

Country Status (1)

Country Link
JP (1) JP4052461B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181602A (en) * 2006-01-10 2007-07-19 Norikata Taguma Portable blood sugar level measuring instrument
JP2008541793A (en) * 2005-05-05 2008-11-27 ザ ホンコン ポリテクニック ユニバーシティー Method for predicting a person's blood sugar level
WO2010100766A1 (en) 2009-03-04 2010-09-10 有限会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
WO2011145652A1 (en) 2010-05-19 2011-11-24 塩野義製薬株式会社 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
WO2013179140A2 (en) 2012-05-29 2013-12-05 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108424B3 (en) 2014-06-16 2015-06-11 Johann Wolfgang Goethe-Universität Non-invasive substance analysis
EP3524962A1 (en) 2015-12-09 2019-08-14 Diamontech GmbH Device and method for analysing a material
KR102634764B1 (en) 2015-12-09 2024-02-06 디아몬테크 아게 Apparatus and method for materials analysis
US20230380727A1 (en) 2020-11-24 2023-11-30 Suntory Holdings Limited Health support device, health support method, and recording medium
KR102664036B1 (en) * 2022-02-23 2024-05-08 건국대학교 글로컬산학협력단 Spectroscopic principle-based non-invasive concentration measurement method and system for performing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541793A (en) * 2005-05-05 2008-11-27 ザ ホンコン ポリテクニック ユニバーシティー Method for predicting a person's blood sugar level
JP2007181602A (en) * 2006-01-10 2007-07-19 Norikata Taguma Portable blood sugar level measuring instrument
WO2010100766A1 (en) 2009-03-04 2010-09-10 有限会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
WO2011145652A1 (en) 2010-05-19 2011-11-24 塩野義製薬株式会社 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
US8922760B2 (en) 2010-05-19 2014-12-30 Global Fiberoptics, Ltd. Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
WO2013179140A2 (en) 2012-05-29 2013-12-05 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method

Also Published As

Publication number Publication date
JP4052461B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US7613487B2 (en) Instrument for noninvasively measuring blood sugar level
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
US5725480A (en) Non-invasive calibration and categorization of individuals for subsequent non-invasive detection of biological compounds
TWI324686B (en) Noninvasive measurement of glucose through the optical properties of tissue
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
EP2207474B1 (en) Optical sensor for determining the concentration of an analyte
AU749033B2 (en) Apparatus and method for noninvasive glucose measurement
JPS60236631A (en) Method and apparatus for light measuring detection of glucose
KR20150119855A (en) Non-invasive blood analysis
JP2005095317A (en) Optical measurement apparatus and blood sugar level measurement apparatus using it
WO2007072300A2 (en) System for non-invasive measurement of blood glucose concentration
MX2007015947A (en) Method and apparatus for the non-invasive sensing of glucose in a human subject.
JP2008203234A (en) Blood component concentration analysis method and device
JP2007083028A (en) Noninvasive inspecting apparatus
JP2004279427A (en) Method and apparatus for measuring concentration of component in object
CN101263388A (en) Method and apparatus for the non-invasive sensing of glucose in a human subject
WO2012136982A1 (en) Device and method for the detection of blood analytes
Bezuglyi et al. Raman Spectroscopy Principles for Diagnostic by Ellipsoidal Reflectors
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
US20090051898A1 (en) Non-invasive probe for measuring body components and a non-invasive body component measurement system including the non-invasive probe
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
KR100883153B1 (en) Instrument for noninvasively measuring blood sugar level
KR20050073854A (en) Apparatus and method for measuring constituents of body
JP4772408B2 (en) Optical biological information measurement system and coupling layer used for optical information measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4052461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees