[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004301794A - Liquid level sensor for multipoint detection - Google Patents

Liquid level sensor for multipoint detection Download PDF

Info

Publication number
JP2004301794A
JP2004301794A JP2003097763A JP2003097763A JP2004301794A JP 2004301794 A JP2004301794 A JP 2004301794A JP 2003097763 A JP2003097763 A JP 2003097763A JP 2003097763 A JP2003097763 A JP 2003097763A JP 2004301794 A JP2004301794 A JP 2004301794A
Authority
JP
Japan
Prior art keywords
liquid level
level sensor
conductive
detection according
multipoint detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003097763A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hosokawa
一彦 細川
Ayako Miyawaki
綾子 宮脇
Naoki Ota
直樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2003097763A priority Critical patent/JP2004301794A/en
Publication of JP2004301794A publication Critical patent/JP2004301794A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid level sensor of simple and compact structure capable of detecting continuously a liquid level position with high precision, and having excellent corrosion resistance. <P>SOLUTION: Complex conductive structure with an outer circumference of an outer conductor 4 constituted of a resistance wire coated with a conductive member 5, and extended along the longitudinal direction of a coaxial cable 1 with length of at least 30 mm is adopted as an external electrode, in this liquid level sensor S using the coaxial cable 1 including an inner conductor 2 and the outer conductor 4 via an internal insulation layer 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性を有する液体の液面位置(レベル)をその変位に追随して連続的に検出するための液面センサ、特に水や薬液等の液体の液面レベルを連続的に検出するのに適した多点検出用液面センサに関するものである。
【0002】
【従来の技術】
従来、導電性を有する液体の液面レベルを検出する電極式液面センサ(以下、“液面センサ”と称する)として、単芯または2芯以上の多芯ケーブルを利用したものが知られている(たとえば、特許文献1〜2参照。)。
ところが、これらの液面センサでは検出部が1点のため、検出する液面位置が異なる場合あるいは液面位置を変更する場合等の仕様変更が生じたとき、それぞれの液面位置に対応した位置に取付位置を変更する必要があり、検出時の自由度に欠けるという問題がある。
また、検出する液面位置が複数箇所の場合には、液面位置の数と同じ数の液面センサを取付けるという非連続的検出手法も知られているが、この場合はスペース上の問題がある。 付随して、液面センサを準備する時間と費用が掛かるため生産性が悪いという問題もある(例えば、特許文献3参照。)。
これに対して、液面位置を連続的に検出する方式として、抵抗線とフロートとを組み合わせたものが知られている(例えば、特許文献4参照。)。
しかし、この方式には、可動部が有ることと接触抵抗等の問題があることから、検出精度および耐久性等信頼性に欠けるきらいがある。さらに、この方式では、抵抗線が露出しているため、被検出液体が薬液等の場合には、抵抗線が腐食してしまうという耐食性の問題がある。また、この方式では、フロートを要するので小型化が難しいという問題もある。
【0003】
【特許文献1】特開平7−325056号公報
【特許文献2】特開平11−304565号公報
【特許文献3】特開2001−99693号公報
【特許文献4】特表平3−501522号公報
【0004】
【発明が解決しようとする課題】
したがって、本発明の課題は、従来の欠点を解消し、高精度で液面位置の変位を連続的に検出でき、しかも構造が簡単にしてコンパクトな、耐腐食性に優れた多点検出用液面センサを提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、同軸ケーブルの内部導体および外部導体に注目した結果、中心電極として該内部導体を、そして、外部電極として、外部導体と導電性部材とからなり且つ該ケーブルの長手方向に延在する複合導電構造を採用することにより、従来の問題を容易に解消するに至った。
【0006】
かくして、本発明によれば、内部絶縁層を介して内部導体と外部導体とを含む同軸ケーブルを利用した液面センサにおいて、抵抗線で構成された外部導体の外周を導電性部材で被覆してなり且つ該ケーブルの長手方向に沿って少なくとも30mmの長さで延在する複合導電構造からなる外部電極を具備することを特徴とする多点検出用液面センサが提供される。
【0007】
【発明の実施の形態】
以下、本発明を、同軸ケーブルの外部導体を抵抗線の横巻とした多点検出用液面センサ、特に検出部の例について、添付図面を参照しながら説明する。その際、特にことわらない限り、“液面センサ”の語句は“多点検出用液面センサ”を意味する。
図1は、本発明に係る液面センサの検出部の一例を示す縦断面図である。
図2は、図1のA−Aに沿った横断面図である。
図3は、本発明に係る液面センサの別の態様を示す縦断面図である。
図4は、本発明の液面センサの動作説明図である。
図5は、本発明の液面センサにおいて、抵抗線の入力端子P1、P2間(図4)で測定した抵抗値(R)が、液面位置(B)の変位に対応して連続的に変化することを示すグラフである。
図1〜図2において、(S)は液面センサ、(1)は同軸ケーブルであって、内部導体(2)、内部絶縁層(3)、抵抗線で構成される外部導体(4)、外部導体(4)の外周に被覆された導電性部材(5)、および、内部導体(2)および外部導体(4)のそれぞれの先端露出部を被覆している先端被覆部材(6)から成る。
そして、これらの内部導体(2)、内部絶縁層(3)、外部導体(4)、および導電性部材(5)は同一長さであり且つそれらの端面が互いに揃えられた状態で配設されている。
本発明で特徴的なことは、検出部電極として、同軸ケーブル(1)の内部導体(2)を中心電極とし他方、抵抗線で構成される外部導体(4)の外周にさらに導電性部材(5)を被覆してなる複合導電構造を該ケーブルの長手方向に沿って少なくとも30mmの長さで延在させて、外部電極を形成した点に在る。
上述の構成を採る本発明の液面センサでは、外部電極(4、5)の外周側壁面は液面が変位しても常に導電性液体と接触することになる。したがって、それ自体が当初の取付位置を保ったままで、液面変位を連続的に検出することができる。このような機能を有する液面センサを、本発明では“多点検出用液面センサ”と称する。
この連続検出について、図4および図5を参照しながら説明する。
図4において、水槽内に図1〜2に示した液面センサを設置した状態で、未だ導電性液体が投入されていないときは、中心電極(2)および外部電極(4,5)間がオープン(開放)になるため、同軸ケーブル(1)のそれぞれの入力端子P1、P2間の抵抗値(R)は無限大となる。これに対して、水槽内に導電性液体が投入された場合には、中心電極(2)、外部電極(4,5)の内、導電性液体に浸っている部分は導電性液体の導電率に応じて一定の抵抗値r1(Ω)を示すようになる。
以上のことから、該入力端子P1−P2間で測定される抵抗値(R)は、導電性液体の抵抗値(r1)と、外部電極(4,5)の開始部(A)から導電性液体の液面(B)までの長さ(L)の非浸漬部分の同軸ケーブル(1)の抵抗値(r2とする)との和、即ち、R=r1(Ω)+r2(Ω)となる。その際、該非浸漬部分の長さ(L)は液面の変位に応じて連続的に変化することになるので、これに伴い該抵抗値Rも、図5の抵抗値変化のグラフに示されるように、連続的に変化することになる。この図5は、後述する実施例の処方にしたがって、導電性溶液として水道水を用いた際の測定値をプロットしたものである。
そこで、これら入力端子P1、P2間の電気抵抗値(R)を周知の抵抗検出回路等の電子回路にて計測すれば、液面の変位が連続的に検出可能となる。この場合、導電性液体の種類により個々に導電率および抵抗値変化のパターンは異なるので、これに対応するには、抵抗検出回路の設定値を予め調整しておけばよい。
本発明において、内部導体(2)としては、その素線径が、好ましくは、0.05mm〜3mmの範囲にある錫メッキ軟銅線、さらにはニクロム線や銅合金線等が用いられる。さらに、内部絶縁層(3)は直接、液に接するわけではないので、通常の樹脂ないしゴムのいずれでも構成してもよい。樹脂としてはフッ素系樹脂、ポリエチレン、ポリアミドないしポリイミド、およびポリエステル、またゴムとしてはシリコーンゴム、フッ素ゴム、およびEPゴムが挙げられるが、中心電極となる内部導体(2)、および外部電極(4、5)の各先端出部を被覆している先端被覆部材(6)との接着性に優れた樹脂が好ましく用いられる。
次に、本発明の核心を占める外部電極について述べる。
先ず、外部導体(4)は、抵抗線を内部絶縁層(3)の外周に横巻または編組等の被覆手段で適用することにより得られる。横巻の場合には、横巻ピッチが0.2mm〜50mmにあるのが好ましく他方、編組の場合の編組密度としては10%から90%が好ましい。これらの被覆手段の内、生産性および抵抗値の調整の容易さを考慮すると横巻がより好ましい。
このとき用いられる抵抗線としては、その素線径が、好ましくは、0.05mm〜3mmの範囲にあるニクロム線や銅合金線等の抵抗素線が挙げられる。これらの素線は単線のみならず撚り線の形で供される。この抵抗線の抵抗値は検出回路の感度にもよるが、一般には5Ω/m〜100KΩ/mの範囲にあるのが好ましい。
このような外部導体(4)の外周には導電性部材(5)が被覆される。ここで、導電性部材(5)としては、樹脂ないしゴムに導電剤を混入したもの、特に、体積抵抗率で10−3Ω・cm〜10Ω・cmの範囲にあるものが好ましく供される。この場合、樹脂としてはフッ素系樹脂、ポリエチレン、ポリアミドないしポリイミド、およびポリエステル、またゴムとしてはシリコーンゴム、フッ素ゴム、およびEPゴムが挙げられるが、耐熱性と耐薬品性の点からフッ素系樹脂が好ましく用いられる。 該フッ素樹脂の具体例としては、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン/パーフルオロアルコキシエチレン共重合体(PFA)テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)等が挙げられる。一方、該導電剤としてはカーボンブラック系、銀、銅、およびニッケルなどが挙げられる。
上記の導電性部材(5)の被覆手段としては、押出し被覆、塗付、ディッピング、およびモールド等各種の手段があるが、生産性、品質の点から、押出し被覆が望ましい。その際の被覆厚みは、センサの耐食性・感度等の仕様・補強強度を考慮して、0.3mm〜1mmの範囲にあるのが好ましい。この被覆に関連して、中心電極(2)および外部電極(4、5)の各先端露出部を被覆している被覆部材(6)についても、上記の導電性部材(5)と同じ部材を熱融着モールドで被覆すればよい。
このような外部電極は、液面位置を連続的に検出するため、換言すれば複数箇所での液面レベルを検出するために、同軸ケーブルの長手方向に沿う延在長さとして少なくとも30mmが必要である。この長さが30mm未満では短か過ぎて抵抗値の変化が小さいので多点検出の機能が発揮されない。この延在長さは水槽のサイズや検出箇所の数および導電性部材の抵抗値等に依存するが、好ましくは50mm〜2000mmの範囲で適宜選択される。
次に、本発明の別の態様について、図3に基づいて説明する。
この態様は、中心電極(2)が外部電極を形成する外部導体(4)に対して突出している点で図1のそれと異なる。
こうすることにより、図1の態様に比べて、溶液に浸される中心電極、すなわち内部導体(2)の表面積が大きくなるので、十分な電流経路が確保でき、より検出の信頼性が向上する。また、この図では、先端被覆部材(6)と絶縁体(3)の先端部間にさらに絶縁部材(7)を被覆しているが、これは撥水性に優れた樹脂、例えば、前出のフッ素系樹脂を被覆することにより、先端被覆部材(6)間の液切れによる誤動作防止に有効である。この場合の突出長さは、1mm〜5mm程度であれば十分である。
さらに、本発明の液面センサの直径ないし外寸について触れる。これについては、液切れによる誤動作防止(最小値)と検出感度・スペース削減(最大値)を考慮して、電極間の間隔、すなわち内部導体(2)と外部導体(4)間の隣接間隔が1mm〜10mmの範囲に保持されることが望ましい。したがって、該センサの母体となる同軸ケーブル(1)の外径ないし外寸は、この導体間距離を満足するように設定される。
以上、本発明の液面センサの検出部について、外部導体(4)の外周全体に渡って導電性部材(5)を被覆した例で説明したが、部分的に液面を検出すればよい場合には、液面センサの長手方向の一部分だけを導電性部材(5)で被覆し、その他の部分を非導電部材で被覆する、いわゆる複合被覆構成としてもよい。さらに、外部導体(4)の外周の全てを導電性部材(5)で被覆する代わりに、外部導体(4)の外周の一部分を導電性部材(5)でストライプ状あるいはスパイラル状に、局所的に被覆してもよいことは言うまでもない。
さらに、本発明の液面センサにおいては、検出部に続いて非検出部が、図面に向かって右方に接続されていても構わない。この非検出部においては、外部導体は必ずしも導電性部材(5)で被覆する必要はない。つまり、非検出部に特に耐熱性、耐食性の要求が無ければ、通常の安価な非導電性の樹脂あるいはゴム部材を使用しても差し支えない。
【0008】
以下に、本発明の液面センサの具体例を図1の場合について示す。
長さ1m、線径が0.5mmの錫メッキ軟銅線を内部導体(中心電極)(2)とし、この周りにETFE樹脂を1mmの厚さに押出し機にて押出し被覆して内部絶縁層(3)を形成した。次に、線径が0.5mm、抵抗値4.2kΩ/mの単線のニクロム線からなる抵抗線を内部絶縁層(3)の周りにピッチ10mmで横巻し外部導体(4)とし、さらに、この周りに導電性部材(5)として導電ETFE樹脂を0.5mmの厚さに押出し機にて押出し被覆して複合導電構造(外部電極)を形成して、外径が4.3mmの同軸ケーブル(1)を作成した。この場合の複合導電構造(外部電極)の延在長さは1mである。
次に、上記で作成した同軸ケーブル(1)の電極側の内部導体(2)および外部導体(4)の先端露出部を先端被覆部材(6)として導電ETFE樹脂を熱融着モールドして液面セン検出部を作成した。
最後に、検出回路と接続するためのリード線を、同軸ケーブル(1)の電極側に対峙する端末、すなわち開始部(A)に接続して、本発明の液面センサ(S)を完成させた。
このようにして得られた液面センサを、水道水、および塩化水素水(HCL、5%希釈)が入った、図4に示すような水槽に取付けるとともに、検出回路に接続してセンサの作動状況をチェックした。結果を表1に示した。
【表1】

Figure 2004301794
この結果、水道水、および塩化水素水(HCL、5%希釈)のいずれにおいても、液面に応じて抵抗値が変化するので連続的に液面を検出することができ、本発明の液面センサの有効性が確認された。
【0009】
【発明の効果】
本発明では、液面センサにおける電極部を、同軸ケーブル(1)の内部導体(2)を中心電極とし他方、該ケーブルの長手方向に沿って延在する複合導電構造を外部電極(4、5)として採用するので、該センサの当初の取付状態は不変のままで、導電性液体の液面変位に追随して液面レベルを連続的に検出できる。しかも、このようなセンサは構造が簡単でコンパクト化につながると共に薬液に対する腐食の問題もなく、可動部分も無いので耐久性にも優れている。さらに、このような構造は長尺の電線として容易に製造できるので、センサの生産性が上がり、これによりセンサの大幅なコスト低減も実現される。さらには、本発明では同軸ケーブルの内部導体と外部導体を電極として利用している構成のため、センサが長尺の場合でも、そりや曲がりが発生し難く信頼性が向上する。
【図面の簡単な説明】
【図1】図1は、本発明に係る液面センサの検出部の一例を示す縦断面図である。
【図2】図2は、図1のA−A断面図である。
【図3】図3は、本発明に係る液面センサの別の態様を示す縦断面図である。
【図4】図4は、本発明の液面センサの動作説明図である。
【図5】図5は、本発明の液面センサにおいて、同軸ケーブルの入力端子P1、P2間で測定した抵抗値が、液面位置の変位に対応して連続的に変化することを示すグラフである。
【符号の説明】
S 液面センサ
1 同軸ケーブル
2 内部導体
3 内部絶縁層
4 外部導体
5 導電性部材
6 先端被覆部材
7 絶縁性部材
8 水槽
A 電極開始部
B 液面
L 電極開始部(A)から液面(B)までの長さ
P1、P2 同軸ケーブルの入力端子
R 同軸ケーブルの入力端子間での抵抗値
r1 導電性液体の固有抵抗値(導電率)
r2 長さ(L)の部分の外部導体(抵抗線)の抵抗値[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a liquid level sensor for continuously detecting the liquid level (level) of a conductive liquid following its displacement, and in particular, continuously detecting the liquid level of a liquid such as water or a chemical liquid. The present invention relates to a multi-point detection liquid level sensor suitable for performing the above operation.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an electrode type liquid level sensor (hereinafter, referred to as a “liquid level sensor”) for detecting a liquid level of a conductive liquid, one using a single-core or multi-core cable of two or more cores is known. (For example, see Patent Documents 1 and 2).
However, since these liquid level sensors have only one detecting unit, when the liquid level position to be detected is different or when the specification level is changed, such as when the liquid level position is changed, the position corresponding to each liquid level position is changed. However, there is a problem that the mounting position needs to be changed, and the degree of freedom at the time of detection is lacking.
In addition, when there are a plurality of liquid level positions to be detected, a non-continuous detection method of mounting the same number of liquid level sensors as the number of liquid level positions is also known. is there. Along with this, there is also a problem that productivity is poor because it takes time and expense to prepare a liquid level sensor (for example, see Patent Document 3).
On the other hand, as a method for continuously detecting the liquid level, a method in which a resistance wire and a float are combined is known (for example, see Patent Document 4).
However, this method lacks reliability such as detection accuracy and durability due to the presence of movable parts and problems such as contact resistance. Further, in this method, since the resistance wire is exposed, when the liquid to be detected is a chemical solution or the like, there is a problem of corrosion resistance that the resistance wire is corroded. Also, this method has a problem that it is difficult to reduce the size because a float is required.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 7-325556 [Patent Document 2] Japanese Patent Application Laid-Open No. 11-304565 [Patent Document 3] Japanese Patent Application Laid-Open No. 2001-99693 [Patent Document 4] Japanese Patent Application Laid-Open No. 3-501522 [ [0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve the conventional drawbacks, to continuously detect displacement of the liquid surface position with high accuracy, and to have a simple and compact multipoint detection liquid having excellent corrosion resistance. It is to provide a surface sensor.
[0005]
[Means for Solving the Problems]
The present inventors focused on the inner conductor and the outer conductor of the coaxial cable, and as a result, the inner conductor was used as a center electrode, and the outer electrode was formed of an outer conductor and a conductive member and extended in the longitudinal direction of the cable. By adopting the existing composite conductive structure, the conventional problem has been easily solved.
[0006]
Thus, according to the present invention, in a liquid level sensor using a coaxial cable including an inner conductor and an outer conductor via an inner insulating layer, the outer periphery of the outer conductor formed of a resistance wire is covered with a conductive member. And an external electrode comprising a composite conductive structure extending at least 30 mm along the longitudinal direction of the cable.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the accompanying drawings with respect to an example of a liquid sensor for multipoint detection in which an outer conductor of a coaxial cable is wound around a resistance wire, particularly an example of a detection unit. At that time, unless otherwise specified, the phrase “liquid level sensor” means “liquid level sensor for multipoint detection”.
FIG. 1 is a longitudinal sectional view showing an example of a detection unit of the liquid level sensor according to the present invention.
FIG. 2 is a cross-sectional view along AA of FIG.
FIG. 3 is a longitudinal sectional view showing another embodiment of the liquid level sensor according to the present invention.
FIG. 4 is an explanatory diagram of the operation of the liquid level sensor of the present invention.
FIG. 5 shows that in the liquid level sensor of the present invention, the resistance value (R) measured between the input terminals P1 and P2 of the resistance wire (FIG. 4) continuously changes in accordance with the displacement of the liquid level position (B). It is a graph which shows that it changes.
1 and 2, (S) is a liquid level sensor, (1) is a coaxial cable, and an inner conductor (2), an inner insulating layer (3), an outer conductor (4) composed of a resistance wire, It comprises a conductive member (5) coated on the outer periphery of the outer conductor (4), and a tip covering member (6) covering the respective exposed end portions of the inner conductor (2) and the outer conductor (4). .
The inner conductor (2), the inner insulating layer (3), the outer conductor (4), and the conductive member (5) have the same length and are arranged with their end faces aligned with each other. ing.
The present invention is characterized in that the inner conductor (2) of the coaxial cable (1) is used as the center electrode as the detection unit electrode, and the outer periphery of the outer conductor (4) composed of a resistance wire is further provided with a conductive member ( This is at the point where the composite conductive structure coated with 5) extends at least 30 mm along the longitudinal direction of the cable to form external electrodes.
In the liquid level sensor of the present invention having the above-described configuration, the outer peripheral side wall surfaces of the external electrodes (4, 5) are always in contact with the conductive liquid even if the liquid level is displaced. Therefore, it is possible to continuously detect the liquid level displacement while maintaining the original mounting position itself. The liquid level sensor having such a function is referred to as a “multipoint detection liquid level sensor” in the present invention.
This continuous detection will be described with reference to FIGS.
In FIG. 4, in a state where the liquid level sensor shown in FIGS. 1 and 2 is installed in the water tank, when the conductive liquid has not been introduced yet, the gap between the center electrode (2) and the external electrodes (4, 5) is established. Since it is open (open), the resistance value (R) between the respective input terminals P1 and P2 of the coaxial cable (1) becomes infinite. On the other hand, when the conductive liquid is poured into the water tank, the portion of the center electrode (2) and the external electrodes (4, 5) that are immersed in the conductive liquid is the conductivity of the conductive liquid. Shows a constant resistance value r1 (Ω) according to.
From the above, the resistance value (R) measured between the input terminals P1 and P2 is determined from the resistance value (r1) of the conductive liquid and the conductive portion (A) of the external electrode (4, 5). The sum of the resistance (referred to as r2) of the coaxial cable (1) of the non-immersion part of the length (L) to the liquid level (B) of the liquid, that is, R = r1 (Ω) + r2 (Ω). . At this time, since the length (L) of the non-immersed portion changes continuously according to the displacement of the liquid level, the resistance value R is also shown in the resistance value change graph of FIG. Thus, it will change continuously. FIG. 5 is a plot of measured values when tap water is used as the conductive solution according to the prescription of the example described later.
Therefore, if the electric resistance value (R) between the input terminals P1 and P2 is measured by an electronic circuit such as a well-known resistance detection circuit, the displacement of the liquid level can be continuously detected. In this case, since the pattern of the conductivity and the change of the resistance value vary depending on the type of the conductive liquid, the set value of the resistance detection circuit may be adjusted in advance in order to cope with this.
In the present invention, as the internal conductor (2), a tin-plated annealed copper wire whose element wire diameter is preferably in a range of 0.05 mm to 3 mm, a nichrome wire, a copper alloy wire, or the like is used. Further, since the inner insulating layer (3) does not come into direct contact with the liquid, it may be made of any of ordinary resins or rubbers. Examples of the resin include fluorine resin, polyethylene, polyamide or polyimide, and polyester, and examples of the rubber include silicone rubber, fluorine rubber, and EP rubber. The inner conductor (2) serving as the center electrode and the outer electrode (4, A resin excellent in adhesiveness to the tip covering member (6) covering each tip projecting portion of 5) is preferably used.
Next, an external electrode which is the core of the present invention will be described.
First, the outer conductor (4) is obtained by applying a resistance wire to the outer periphery of the inner insulating layer (3) by covering means such as a horizontal winding or a braid. In the case of a horizontal winding, the horizontal winding pitch is preferably in the range of 0.2 mm to 50 mm, while in the case of a braid, the braid density is preferably 10% to 90%. Of these coating means, horizontal winding is more preferable in consideration of productivity and ease of adjusting the resistance value.
As the resistance wire used at this time, a resistance wire such as a nichrome wire or a copper alloy wire having a wire diameter of preferably 0.05 mm to 3 mm is exemplified. These strands are provided in the form of a stranded wire as well as a single wire. Although the resistance value of the resistance wire depends on the sensitivity of the detection circuit, it is generally preferable that the resistance value be in the range of 5 Ω / m to 100 KΩ / m.
The outer periphery of such an outer conductor (4) is covered with a conductive member (5). Here, as the conductive member (5), a material obtained by mixing a conductive agent into a resin or rubber, particularly a material having a volume resistivity in the range of 10 −3 Ω · cm to 10 9 Ω · cm is preferably provided. You. In this case, as the resin, fluorine resin, polyethylene, polyamide or polyimide, and polyester, and as the rubber, silicone rubber, fluorine rubber, and EP rubber may be mentioned, but from the viewpoint of heat resistance and chemical resistance, fluorine resin is used. It is preferably used. Specific examples of the fluororesin include tetrafluoroethylene-ethylene copolymer (ETFE), polytetrafluoroethylene resin (PTFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA) tetrafluoroethylene / hexafluoro Propylene copolymer (FEP) and the like. On the other hand, examples of the conductive agent include carbon black, silver, copper, and nickel.
As means for coating the conductive member (5), there are various means such as extrusion coating, coating, dipping, and molding, but extrusion coating is desirable from the viewpoint of productivity and quality. The coating thickness at that time is preferably in the range of 0.3 mm to 1 mm in consideration of specifications such as corrosion resistance and sensitivity of the sensor and reinforcement strength. In connection with this coating, the same member as the above-mentioned conductive member (5) is also used for the coating member (6) that covers the exposed end portions of the center electrode (2) and the external electrodes (4, 5). What is necessary is just to cover with a heat fusion mold.
Such an external electrode needs at least 30 mm as the extension length along the longitudinal direction of the coaxial cable in order to continuously detect the liquid level, in other words, to detect the liquid level at a plurality of locations. It is. If the length is less than 30 mm, the function of multi-point detection is not exhibited because the change in resistance value is too short and the change in resistance value is small. The extension length depends on the size of the water tank, the number of detection points, the resistance value of the conductive member, and the like, but is preferably selected appropriately in the range of 50 mm to 2000 mm.
Next, another embodiment of the present invention will be described with reference to FIG.
This embodiment differs from that of FIG. 1 in that the center electrode (2) protrudes with respect to the outer conductor (4) forming the outer electrode.
By doing so, the surface area of the center electrode immersed in the solution, that is, the inner conductor (2) becomes larger than in the embodiment of FIG. 1, so that a sufficient current path can be secured and the detection reliability is further improved. . Further, in this figure, an insulating member (7) is further coated between the distal end covering member (6) and the distal end portion of the insulator (3). This is a resin having excellent water repellency, for example, the above-mentioned resin. Coating with a fluorine-based resin is effective in preventing malfunction due to liquid shortage between the tip coating members (6). In this case, it is sufficient that the protrusion length is about 1 mm to 5 mm.
Further, the diameter or outer dimension of the liquid level sensor of the present invention will be described. Regarding this, the interval between the electrodes, that is, the adjacent interval between the inner conductor (2) and the outer conductor (4) is set in consideration of the prevention of malfunction due to liquid shortage (minimum value) and the reduction of detection sensitivity and space (maximum value). It is desirable to keep it in the range of 1 mm to 10 mm. Therefore, the outer diameter or outer dimension of the coaxial cable (1) serving as the base of the sensor is set so as to satisfy the distance between the conductors.
As described above, the detection unit of the liquid level sensor according to the present invention has been described with the example in which the conductive member (5) is covered over the entire outer periphery of the outer conductor (4). In this case, a so-called composite coating configuration may be adopted in which only a part of the liquid level sensor in the longitudinal direction is covered with the conductive member (5) and the other part is covered with the non-conductive member. Further, instead of covering the entire outer periphery of the outer conductor (4) with the conductive member (5), a part of the outer periphery of the outer conductor (4) is striped or spirally formed by the conductive member (5) to be locally formed. Needless to say, it may be coated.
Furthermore, in the liquid level sensor of the present invention, the non-detection unit may be connected to the right side of the drawing following the detection unit. In this non-detection section, the outer conductor does not necessarily need to be covered with the conductive member (5). That is, if the non-detection section does not particularly require heat resistance and corrosion resistance, an ordinary inexpensive non-conductive resin or rubber member may be used.
[0008]
Hereinafter, a specific example of the liquid level sensor of the present invention will be described for the case of FIG.
A tin-plated soft copper wire having a length of 1 m and a wire diameter of 0.5 mm is used as an inner conductor (center electrode) (2), and an ETFE resin is extruded therearound to a thickness of 1 mm with an extruder to cover the inner insulating layer ( 3) was formed. Next, a resistance wire made of a single nichrome wire having a wire diameter of 0.5 mm and a resistance value of 4.2 kΩ / m is horizontally wound around the inner insulating layer (3) at a pitch of 10 mm to form an outer conductor (4). Then, a conductive ETFE resin as a conductive member (5) is extruded and coated with an extruder to a thickness of 0.5 mm by an extruder to form a composite conductive structure (external electrode), and the outer diameter is 4.3 mm. A cable (1) was made. In this case, the extension length of the composite conductive structure (external electrode) is 1 m.
Next, a conductive ETFE resin is heat-sealed and molded using the exposed end portions of the inner conductor (2) and the outer conductor (4) on the electrode side of the coaxial cable (1) prepared above as a tip covering member (6). A surface sensor was created.
Finally, a lead wire for connecting to the detection circuit is connected to a terminal facing the electrode side of the coaxial cable (1), that is, to a start portion (A) to complete the liquid level sensor (S) of the present invention. Was.
The liquid level sensor thus obtained is mounted on a water tank containing tap water and hydrogen chloride water (HCL, 5% dilution) as shown in FIG. 4 and connected to a detection circuit to operate the sensor. I checked the situation. The results are shown in Table 1.
[Table 1]
Figure 2004301794
As a result, in both tap water and hydrogen chloride water (HCL, 5% dilution), the resistance value changes according to the liquid level, so that the liquid level can be detected continuously, and the liquid level of the present invention can be detected. The effectiveness of the sensor was confirmed.
[0009]
【The invention's effect】
According to the present invention, the electrode portion of the liquid level sensor is formed by using the inner conductor (2) of the coaxial cable (1) as the center electrode and the composite conductive structure extending along the longitudinal direction of the cable as the outer electrode (4, 5). ), It is possible to continuously detect the liquid level following the liquid level displacement of the conductive liquid while the initial mounting state of the sensor remains unchanged. In addition, such a sensor has a simple structure, leads to compactness, has no problem of corrosion to a chemical solution, and has excellent durability because it has no movable parts. Further, such a structure can be easily manufactured as a long electric wire, so that the productivity of the sensor is increased, and the cost of the sensor is greatly reduced. Further, in the present invention, since the inner conductor and the outer conductor of the coaxial cable are used as electrodes, even if the sensor is long, warpage or bending hardly occurs and reliability is improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a detection unit of a liquid level sensor according to the present invention.
FIG. 2 is a sectional view taken along line AA of FIG. 1;
FIG. 3 is a longitudinal sectional view showing another embodiment of the liquid level sensor according to the present invention.
FIG. 4 is an explanatory diagram of the operation of the liquid level sensor of the present invention.
FIG. 5 is a graph showing that the resistance value measured between the input terminals P1 and P2 of the coaxial cable continuously changes according to the displacement of the liquid level position in the liquid level sensor of the present invention. It is.
[Explanation of symbols]
S Liquid level sensor 1 Coaxial cable 2 Inner conductor 3 Inner insulating layer 4 Outer conductor 5 Conductive member 6 Tip covering member 7 Insulating member 8 Water tank A Electrode start B Liquid level L From electrode start (A) to liquid level (B) ) Length P1, P2 Input terminal R of coaxial cable Resistance value r1 between input terminals of coaxial cable Specific resistance value (conductivity) of conductive liquid
r2 Resistance value of external conductor (resistance wire) of length (L)

Claims (13)

内部絶縁層を介して内部導体と外部導体とを含む同軸ケーブルを利用した液面センサにおいて、抵抗線で構成された外部導体の外周を導電性部材で被覆してなり且つ該ケーブルの長手方向に沿って少なくとも30mmの長さで延在する複合導電構造からなる外部電極を具備することを特徴とする多点検出用液面センサ。In a liquid level sensor using a coaxial cable including an inner conductor and an outer conductor via an inner insulating layer, the outer periphery of the outer conductor formed of a resistance wire is covered with a conductive member, and in a longitudinal direction of the cable. A liquid level sensor for multi-point detection, comprising an external electrode made of a composite conductive structure extending at least 30 mm along the length. 該外部導体が、内部絶縁層の周りに抵抗線が編組または横巻されて形成されたものである請求項1に記載の多点検出用液面センサ。2. The liquid level sensor for multipoint detection according to claim 1, wherein the outer conductor is formed by braiding or horizontally winding a resistance wire around an inner insulating layer. 該抵抗線の編組密度が10%から90%である請求項2に記載の多点検出用液面センサ。3. The liquid level sensor according to claim 2, wherein a braid density of the resistance wire is 10% to 90%. 該抵抗線の横巻ピッチが0.2mm〜50mmである請求項2に記載の多点検出用液面センサ。3. The liquid level sensor for multipoint detection according to claim 2, wherein a horizontal winding pitch of the resistance wire is 0.2 mm to 50 mm. 該抵抗線の素線径が0.05mm〜3mmである請求項1〜4のいずれかに記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to any one of claims 1 to 4, wherein the element wire diameter of the resistance wire is 0.05 mm to 3 mm. 該抵抗線の抵抗値が5Ω/m〜100KΩ/mである 請求項1〜5のいずれかに記載の多点検出用液面センサ。The liquid level sensor according to claim 1, wherein the resistance value of the resistance wire is 5Ω / m to 100 KΩ / m. 該導電性部材が導電性樹脂ないしゴムである請求項1〜6のいずれかに記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to any one of claims 1 to 6, wherein the conductive member is a conductive resin or rubber. 該導電性樹脂ないしゴムが導電性フッ素樹脂ないし導電性シリコーンゴムである請求項1〜7のいずれかに記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to any one of claims 1 to 7, wherein the conductive resin or rubber is a conductive fluororesin or conductive silicone rubber. 該導電性部材が外部導体の外周に押出し被覆されてなる請求項1〜8のいずれかに記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to any one of claims 1 to 8, wherein the conductive member is formed by extruding and covering the outer periphery of the outer conductor. 該導電性部材の被覆厚さが0.3mm〜1mmの範囲にある請求項9に記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to claim 9, wherein the coating thickness of the conductive member is in a range of 0.3 mm to 1 mm. 該導電性部材の体積抵抗率が10−3Ω・cm〜10Ω・cmの範囲にある請求項1〜10のいずれかに記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to claim 1, wherein a volume resistivity of the conductive member is in a range of 10 −3 Ω · cm to 10 9 Ω · cm. 該外部電極部の長さが50mm〜2000mmである請求項1〜11のいずれかに記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to any one of claims 1 to 11, wherein the length of the external electrode portion is 50 mm to 2000 mm. 該内部導体と外部導体との間隔が1mm〜10mmである請求項1〜12のいずれかに記載の多点検出用液面センサ。The liquid level sensor for multipoint detection according to any one of claims 1 to 12, wherein a distance between the inner conductor and the outer conductor is 1 mm to 10 mm.
JP2003097763A 2003-04-01 2003-04-01 Liquid level sensor for multipoint detection Abandoned JP2004301794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097763A JP2004301794A (en) 2003-04-01 2003-04-01 Liquid level sensor for multipoint detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097763A JP2004301794A (en) 2003-04-01 2003-04-01 Liquid level sensor for multipoint detection

Publications (1)

Publication Number Publication Date
JP2004301794A true JP2004301794A (en) 2004-10-28

Family

ID=33409466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097763A Abandoned JP2004301794A (en) 2003-04-01 2003-04-01 Liquid level sensor for multipoint detection

Country Status (1)

Country Link
JP (1) JP2004301794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000142A (en) * 2005-05-26 2007-01-11 Surge Miyawaki Co Ltd Cable and electric shock apparatus using cable
JP2011237240A (en) * 2010-05-10 2011-11-24 Nihon Itomic Co Ltd Scale detection sensor and scale detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000142A (en) * 2005-05-26 2007-01-11 Surge Miyawaki Co Ltd Cable and electric shock apparatus using cable
JP2011237240A (en) * 2010-05-10 2011-11-24 Nihon Itomic Co Ltd Scale detection sensor and scale detection method

Similar Documents

Publication Publication Date Title
KR101171554B1 (en) Differential transmission cable and composite cable having the same
US5208426A (en) Shielded electric signal cable having a two-layer semiconductor jacket
TW202003216A (en) Electrical cable with electrically conductive coating
TW201108258A (en) Electrical wire and method for manufacturing the same
JP7148011B2 (en) Coaxial cable and cable assembly
JP2015185323A (en) probe cable and harness using the same
JP2007018782A (en) Flat cable
US20060011376A1 (en) Multi-axial electrically conductive cable with multi-layered core and method of manufacture and use
JP2004301794A (en) Liquid level sensor for multipoint detection
JP2008060062A (en) Coaxial cable
JP4116409B2 (en) Capacitive sensor
JP2004233224A (en) Liquid level sensor
JP2007200685A (en) Flooding detection cable
JP5568358B2 (en) Coaxial cable processed product
JP3402758B2 (en) sensor
JPH11304565A (en) Sensor
EP3731242B1 (en) Cable
JP4729751B2 (en) coaxial cable
JP2005241475A (en) Liquid level sensor
JPH044516A (en) Shielded cable with drain wire
JP2011181352A (en) Super-extra-fine coaxial cable, and manufacturing method thereof
JP2010073463A (en) High-speed differential cable
JP2000138014A (en) Coaxial cable
JP2006004847A (en) Grounding conductor
KR101875493B1 (en) Coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070718