[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004301338A - Dynamic pressure type sintering oil impregnation bearing unit - Google Patents

Dynamic pressure type sintering oil impregnation bearing unit Download PDF

Info

Publication number
JP2004301338A
JP2004301338A JP2004219132A JP2004219132A JP2004301338A JP 2004301338 A JP2004301338 A JP 2004301338A JP 2004219132 A JP2004219132 A JP 2004219132A JP 2004219132 A JP2004219132 A JP 2004219132A JP 2004301338 A JP2004301338 A JP 2004301338A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
oil
impregnated
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219132A
Other languages
Japanese (ja)
Inventor
Natsuhiko Mori
夏比古 森
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004219132A priority Critical patent/JP2004301338A/en
Publication of JP2004301338A publication Critical patent/JP2004301338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure type sintering oil impregnation bearing capable of maintaining predetermined bearing performance for a long time. <P>SOLUTION: A radial bearing face 11b opposing to an outer peripheral face of a rotary shaft 13 is formed on an inner peripheral face of the dynamic pressure type sintering oil impregnation bearing 11. A thrust bearing face opposing to a flange part 13a of the rotary shaft 13 is formed on an end face 11f1 which becomes an opening side of a housing 12. The rotary shaft 13 is supported in a non-contact manner by dynamic pressure action caused on the radial bearing face 11b and the thrust bearing face 11f1 when the rotary shaft 13 and the sintering oil impregnation bearing 11 rotate relatively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、動圧型焼結含油軸受ユニットに関する。この動圧型焼結含油軸受は、特に情報機器分野で用いられる、DVD−ROM、DVD−RAMなどの光ディスク装置、MOなどの光磁気ディスク装置、HiFD、Zipなどの高容量FDD(フロッピー(登録商標)ディスクドライブ)、HDDなどの磁気ディスク装置のディスクドライブ用軸受、あるいはLBPなどのポリゴンスキャナモータ用軸受に適しており、特に薄型モータ用の軸受として好適である。   The present invention relates to a hydrodynamic sintered oil-impregnated bearing unit. This hydrodynamic sintered oil-impregnated bearing is used particularly in the field of information equipment, such as optical disk devices such as DVD-ROM and DVD-RAM, magneto-optical disk devices such as MO, and high-capacity FDDs (Floppy (registered trademark) such as HiFD and Zip). It is suitable for a disk drive), a disk drive bearing of a magnetic disk device such as an HDD, or a bearing for a polygon scanner motor such as an LBP, and particularly suitable as a bearing for a thin motor.

上記情報機器類のスピンドルモータには、さらなる高回転精度化、高速化、低コスト化、低騒音化などが求められているが、これらの要求性能を決定づける構成要素の一つにモータのスピンドルを支持する軸受がある。近年では、この種の軸受として、焼結金属製の軸受本体に潤滑油または潤滑グリースを含浸させ、軸受面に設けた動圧溝の動圧効果で軸受隙間に潤滑油膜を形成してスピンドルを非接触支持する、いわゆる動圧型焼結含油軸受の使用が検討されている。この動圧型焼結含油軸受は、低コストでありながら高い回転精度、低騒音等の特徴を有し、上記要求性能にも十分に対応できると考えられる。   The spindle motors of the above information equipment are required to have higher rotational accuracy, higher speed, lower cost, lower noise, etc., and one of the components that determine these required performance is the motor spindle. There are bearings to support. In recent years, as a bearing of this kind, a sintered metal bearing body is impregnated with lubricating oil or lubricating grease, and a dynamic oil pressure effect provided by a dynamic pressure groove provided on the bearing surface forms a lubricating oil film in the bearing gap to form a spindle. The use of a so-called dynamic pressure type oil-impregnated bearing that supports in a non-contact manner is being studied. This hydrodynamic sintered oil-impregnated bearing has features such as high rotational accuracy and low noise while being low in cost, and is considered to be able to sufficiently meet the required performance described above.

図12は、動圧型焼結含油軸受1を用いた光ディスク装置のスピンドルモータの一例である。図示のように、このスピンドルモータは、動圧型焼結含油軸受1、軸受を収容するハウジング2、軸受1に支持された回転軸3、光ディスク4を支持固定するターンテーブル5およびクランパ6、ステータ7aおよびロータ7bからなるモータ部Mを具備しており、ステータ7aへの通電により、ロータ7bと一体になったロータケース8、ターンテーブル5、光ディスク4、クランパ6を一体回転させる構造である。   FIG. 12 shows an example of a spindle motor of an optical disc device using the hydrodynamic sintered oil-impregnated bearing 1. As shown in the figure, the spindle motor includes a dynamic pressure type sintered oil-impregnated bearing 1, a housing 2 for accommodating the bearing, a rotating shaft 3 supported by the bearing 1, a turntable 5 for supporting and fixing an optical disk 4, a clamper 6, and a stator 7a. And a motor section M including a rotor 7b, and the rotor case 8, the turntable 5, the optical disk 4, and the clamper 6 integrated with the rotor 7b are integrally rotated by energizing the stator 7a.

動圧型焼結含油軸受1は、図13に示すように、厚肉円筒状に形成された多孔質の軸受本体1aと、潤滑油または潤滑グリースの含浸によって軸受本体1aの細孔内に保有された油とで構成される。軸受本体1aの内周面には、回転軸3の外周面と軸受隙間を介して対向する一対の軸受面1bが軸方向に離隔形成され、両軸受面1bに軸方向に対して傾斜した動圧溝1cが形成されている。   As shown in FIG. 13, the dynamic pressure type sintered oil-impregnated bearing 1 is held in the pores of the bearing main body 1 a by impregnation of a porous bearing main body 1 a formed in a thick cylindrical shape and lubricating oil or lubricating grease. And oil. A pair of bearing surfaces 1b opposed to the outer peripheral surface of the rotating shaft 3 via a bearing gap are formed on the inner peripheral surface of the bearing main body 1a in the axial direction, and the two bearing surfaces 1b are inclined with respect to the axial direction. A pressure groove 1c is formed.

図12および図14に示すように、回転軸3のスラスト荷重は、ハウジング2の底部に設けられたスラスト軸受9で支持される。スラスト軸受9としては、球面状の軸端を、ハウジング2底部に設けた潤滑性に富む樹脂製ワッシャ9aに摺動させる構造(いわゆるピボット軸受)が一般的である(特許文献1参照)。
特開平9−329131号公報
As shown in FIGS. 12 and 14, the thrust load of the rotating shaft 3 is supported by a thrust bearing 9 provided at the bottom of the housing 2. As the thrust bearing 9, a structure (so-called pivot bearing) in which a spherical shaft end slides on a resin washer 9a having high lubricity provided on the bottom of the housing 2 is generally used (see Patent Document 1).
JP-A-9-329131

しかし、ピボット軸受では、ワッシャ9aの弾性変形や塑性変形、あるいは摩耗による変形等によってワッシャに窪みができ、軸の位置が時間経過と共に変化する場合がある。軸位置の変動は、HDD装置においてはディスク位置の変動を、LBPのポリゴンスキャナモータではミラー位置の変動を招来し、モータ性能に大きく影響する。この対策としてワッシャ9aを金属材料やセラミック材で形成することも考えられるが、これでは軸側が摩耗して軸端が球面から平面に変化し、軸位置の変化、トルク増加、トルク変動等の不具合を招くおそれがある。   However, in the pivot bearing, the washer 9a may be dented due to elastic deformation, plastic deformation, deformation due to wear, or the like, and the position of the shaft may change over time. A change in the axial position causes a change in the disk position in the HDD device and a change in the mirror position in the LBP polygon scanner motor, and greatly affects the motor performance. As a countermeasure, it is conceivable to form the washer 9a of a metal material or a ceramic material. However, in this case, the shaft side is worn and the shaft end is changed from a spherical surface to a flat surface, resulting in a problem such as a change in shaft position, an increase in torque, a fluctuation in torque and the like. May be caused.

また、近年では、ノート型パソコン等への光ディスク装置やHDD装置の搭載を考慮してスピンドルモータの薄型化が要求される場合が多いが、上記のように軸受面1bを軸方向の2箇所に配置した構造では、薄型化に限界がある。薄型化は、例えば図15に示すように、軸受面1bを1箇所のみに設けることによっても実現され得るが、これではモーメント荷重に対する剛性の低下が問題となる。すなわち、回転軸3の軸受1からの突出部分には、ロータマグネット7bを固定したロータケース8、ディスク4、ターンテーブル5、クランパ6等の偏心荷重が作用するため、モーメント荷重による軸振れ精度の低下が懸念される。   In recent years, in many cases, it is required to reduce the thickness of a spindle motor in consideration of mounting an optical disk device or an HDD device on a notebook-type personal computer or the like. However, as described above, the bearing surface 1b is provided at two locations in the axial direction. In the arrangement structure, there is a limit to thinning. Although the thickness can be reduced by providing the bearing surface 1b at only one position as shown in FIG. 15, for example, a reduction in rigidity against a moment load becomes a problem. That is, an eccentric load of the rotor case 8, the disk 4, the turntable 5, the clamper 6, and the like to which the rotor magnet 7b is fixed acts on the protruding portion of the rotating shaft 3 from the bearing 1, so that the shaft runout accuracy due to the moment load is reduced. There is concern about the decline.

そこで、本発明では、長期間所期の軸受性能を維持することができる動圧型焼結含油軸受の提供を目的とする。   Therefore, an object of the present invention is to provide a dynamic pressure-type sintered oil-impregnated bearing that can maintain expected bearing performance for a long time.

上記目的を達成するため、本発明にかかる動圧型焼結含油軸受ユニットは、フランジ部を有する軸と、一端を開口した円筒状のハウジングと、油を含浸させた焼結金属からなり、内周面に、軸の外周面と軸受隙間を介して対向するラジアル軸受面が形成されると共に、ハウジングの開口側となる端面に、動圧溝を有するスラスト軸受面がフランジ部と対向して形成され、ハウジングの内径部に固定された動圧型の焼結含油軸受とを備え、軸と焼結含油軸受との相対回転時にラジアル軸受面およびスラスト軸受面で生じる動圧作用により軸を非接触支持するものである。   In order to achieve the above object, a dynamic pressure type sintered oil-impregnated bearing unit according to the present invention comprises a shaft having a flange portion, a cylindrical housing having one open end, and a sintered metal impregnated with an oil. A radial bearing surface facing the outer peripheral surface of the shaft via a bearing gap is formed on the surface, and a thrust bearing surface having a dynamic pressure groove is formed on an end surface on the opening side of the housing so as to face the flange portion. A dynamic pressure type sintered oil-impregnated bearing fixed to the inner diameter of the housing, and supports the shaft in a non-contact manner by a dynamic pressure action generated on the radial bearing surface and the thrust bearing surface when the shaft and the sintered oil-impregnated bearing rotate relative to each other. Things.

ラジアル軸受面およびスラスト軸受面は同時に型成形することができる。   The radial bearing surface and the thrust bearing surface can be simultaneously molded.

本発明によれば、焼結含油軸受の端面(ハウジングの開口側となる端面)に、フランジ部と対向するスラスト軸受面を形成し、このスラスト軸受面で生じる動圧作用により軸を非接触支持するので、スラスト軸受部における摩耗がなく、従って、ピボット軸受で問題となる、スラストワッシャの変形や摩耗による窪みのために生じる軸位置の変化を防止することができる。   According to the present invention, a thrust bearing surface facing the flange portion is formed on the end surface of the sintered oil-impregnated bearing (the end surface on the opening side of the housing), and the shaft is supported in a non-contact manner by the dynamic pressure action generated on the thrust bearing surface. Therefore, there is no wear in the thrust bearing portion, and therefore, it is possible to prevent a change in the axial position caused by the depression of the thrust washer due to deformation or wear, which is a problem in the pivot bearing.

焼結含油軸受は、焼結合金などの多孔質体で構成されるので、低コストで高精度の加工が可能となる。また、多孔質体であるから油の保持量が多く、また、油が循環するので油の劣化が遅くなり、耐久性が向上する。   Since the sintered oil-impregnated bearing is made of a porous material such as a sintered alloy, high-precision processing can be performed at low cost. Further, since the porous body is used, a large amount of oil is retained, and since the oil circulates, the deterioration of the oil is delayed and the durability is improved.

以下、本発明の実施形態を図1乃至図11に基いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本発明は、軸13と、焼結金属で形成され、軸の外周面と軸受隙間を介して対向するラジアル軸受面11bを備えた軸受本体11aに油を含浸させてなり、軸13と軸受本体11aとの相対回転時にラジアル軸受面11bで生じる動圧作用により軸13を非接触支持する動圧型焼結含油軸受11とを具備するものにおいて、動圧型焼結含油軸受11の少なくとも一方の軸受端面と軸13に設けたフランジ部13aとでスラスト軸受部14を構成し、上記一方の軸受端面と軸受内周面との直角度、およびフランジ部13aと軸13の外周面との直角度を、軸13と軸受本体11aとの相対回転時に、上記一方の軸受端面とフランジ部13aとが片当りしない公差に管理したものである。   According to the present invention, oil is impregnated into a shaft 13 and a bearing body 11a formed of a sintered metal and provided with a radial bearing surface 11b opposed to an outer peripheral surface of the shaft via a bearing gap. And a dynamic pressure type sintered oil-impregnated bearing 11 for supporting the shaft 13 in a non-contact manner by a dynamic pressure action generated on a radial bearing surface 11b during relative rotation with respect to the shaft 11a. And a flange portion 13a provided on the shaft 13 to form a thrust bearing portion 14. The perpendicularity between the one bearing end surface and the bearing inner peripheral surface and the perpendicularity between the flange portion 13a and the outer peripheral surface of the shaft 13 are defined by: During relative rotation between the shaft 13 and the bearing body 11a, the tolerance is controlled so that the one end face of the bearing and the flange 13a do not hit each other.

上記構成のスラスト軸受部14では、回転側と固定側の面当りが確保されるので、接触面圧を下げて摩耗を防止することができ、ピボット軸受のように、スラストワッシャの変形や摩耗による窪みのため軸位置が変化することはなく、また軸受を薄型化した場合でもモーメント剛性を高く保持することができる。さらに、軸と軸受本体との相対回転時に、一方の軸受端面とフランジ部とが片当りしないので、トルクロスが小さく、かつトルク変動を抑制して情報機器に要求される高い回転精度を実現することができる。   In the thrust bearing portion 14 having the above-described structure, the contact between the rotating side and the fixed side is ensured, so that the contact surface pressure can be reduced to prevent wear, and as in the case of a pivot bearing, the thrust washer may be deformed or worn. The shaft position does not change due to the depression, and high moment rigidity can be maintained even when the bearing is made thin. Furthermore, when the shaft and the bearing body are rotated relative to each other, one of the bearing end faces and the flange portion do not hit each other, so that the torque cross is small and the torque fluctuation is suppressed to realize the high rotation accuracy required for information equipment. Can be.

スラスト軸受部14において、軸受端面11f1の精度、あるいはフランジ部13aの精度が十分でないと、図16に示すように、フランジ部13aが軸受端面11f1に面接触せずに片当りとなるおそれがある。片当りでは、トルクロスが大きく、かつトルク変動の要因となって情報機器に要求される高い回転精度が得られない。また、たとえ軸受端面11f1に動圧溝を設けてスラスト軸受部を非接触に保とうとしても、動圧効果が不十分であるために、軸受端面とフランジ部との接触・摩耗を生じ、回転精度や耐久性を改善することができない。   In the thrust bearing portion 14, if the accuracy of the bearing end face 11f1 or the accuracy of the flange portion 13a is not sufficient, as shown in FIG. 16, the flange portion 13a may not contact the bearing end face 11f1 and may be one-sided. . In the case of one-side contact, the torque loss is large, and the high rotational accuracy required for the information equipment cannot be obtained due to a factor of torque fluctuation. Also, even if a dynamic pressure groove is provided on the bearing end face 11f1 to keep the thrust bearing part out of contact, contact and wear between the bearing end face and the flange part occur due to insufficient dynamic pressure effect, resulting in rotation. Accuracy and durability cannot be improved.

そこで、本発明では、スラスト軸受部14を構成する少なくとも一方の軸受端面と軸受内周面との直角度、およびフランジ部13aと軸13の外周面(特にラジアル軸受面11bと対向する軸の外周面)との直角度を、軸13と軸受本体11aとの相対回転時に、上記一方の軸受端面とフランジ部13aとが片当りしない公差に管理することとした。   Therefore, in the present invention, the perpendicularity between at least one of the bearing end surfaces constituting the thrust bearing portion 14 and the bearing inner peripheral surface, and the outer peripheral surface of the flange portion 13a and the shaft 13 (particularly, the outer peripheral surface of the shaft facing the radial bearing surface 11b) Is controlled so that the one bearing end face and the flange portion 13a do not hit each other when the shaft 13 and the bearing body 11a rotate relative to each other.

この場合、例えば軸受端面11f1と軸受内周面との直角度が4μm以上で、フランジ部13aと軸の外周面との直角度が3μm以上であると、フランジ部13aが軸受端面11f1に面当りせずに片当りするおそれがある。従って、軸受端面11f1と軸受内周面との直角度は3μm以内に、フランジ部13aと軸の外周面との直角度は2μm以内にそれぞれ設定する。   In this case, for example, when the perpendicularity between the bearing end face 11f1 and the inner peripheral face of the bearing is 4 μm or more and the perpendicularity between the flange 13a and the outer peripheral face of the shaft is 3 μm or more, the flange 13a comes into contact with the bearing end face 11f1. There is a risk of hitting without doing. Therefore, the perpendicularity between the bearing end face 11f1 and the inner peripheral surface of the bearing is set within 3 μm, and the perpendicularity between the flange portion 13a and the outer peripheral surface of the shaft is set within 2 μm.

なお、ここでいう「直角度」とは、直角であるべき平面部分と基準となる面との組合わせにおいて、この基準面に対して直角な幾何学的平面からの直角であるべき平面部分の狂いの大きさをいう。   Here, the term “perpendicular” refers to a plane part that should be a right angle from a geometric plane perpendicular to the reference plane in a combination of a plane part that should be a right angle and a reference plane. The size of the disorder.

従来の動圧型焼結含油軸受では、軸受端面の精度が十分でなく(軸受内周面に対する軸受端面の直角度は10μm程度)、上記数値範囲内の精度を持つ軸受本体を量産することは難しい。対策としては、例えば軸受をハウジングに固定した後、軸受内径面を基準に、あるいは軸受内径面に対して同軸度が確保された外径面などを基準として軸受端面を機械加工で仕上げる方法があるが、その場合には、(1)加工によって生じた削り粉が軸受内周面に付着するため、加工後に洗浄が必要となり、(2)また、後加工、洗浄などの工程が別途必要となるため、コストが大幅にアップし、動圧型焼結含油軸受の最大の特徴である低コスト性が損なわれる等の問題が生じる。   With conventional hydrodynamic sintered oil-impregnated bearings, the accuracy of the bearing end face is not sufficient (the perpendicularity of the bearing end face to the inner circumferential surface of the bearing is about 10 μm), and it is difficult to mass-produce a bearing body having an accuracy within the above numerical range. . As a countermeasure, there is a method in which, for example, after fixing the bearing to the housing, the bearing end face is finished by machining based on the inner diameter surface of the bearing or on the outer diameter surface or the like which is coaxial with the inner diameter surface of the bearing. However, in this case, (1) since shavings generated by the processing adhere to the inner peripheral surface of the bearing, cleaning is required after the processing, and (2) steps such as post-processing and cleaning are separately required. As a result, the cost is greatly increased, and problems such as the low cost, which is the greatest characteristic of the hydrodynamic sintered oil-impregnated bearing, are impaired.

そこで、本発明では、ラジアル軸受面11bにおける動圧溝11cを成形する成形型21aを軸受本体素材11’の内周面に挿入すると共に、軸受本体素材11’の両端面を一対のパンチ面22a、23aで保持した状態で軸受本体素材11’に圧迫力を加えることにより、成形型21aで軸受本体素材11’の内周面に軸方向に対して傾斜した動圧溝11cを有するラジアル軸受面11bを成形すると共に、少なくとも一方のパンチ面で軸受本体素材11’の一方の端面に軸13との間でスラスト軸受部14を構成するスラスト軸受面を成形するに際し、上記少なくとも一方のパンチ面と、成形型21aの外周面との直角度を2μm以内(望ましくは1μm以内)に設定した。   Therefore, in the present invention, a molding die 21a for forming the dynamic pressure groove 11c in the radial bearing surface 11b is inserted into the inner peripheral surface of the bearing body material 11 ', and both end surfaces of the bearing body material 11' are connected to a pair of punch surfaces 22a. , 23a, while applying a compressive force to the bearing body material 11 ', a radial bearing surface having a dynamic pressure groove 11c that is inclined with respect to the axial direction on the inner peripheral surface of the bearing body material 11' in the molding die 21a. 11b, and at least one punch surface, when forming a thrust bearing surface which constitutes a thrust bearing portion 14 between the shaft 13 and one end surface of the bearing body material 11 ', at least one of the punch surfaces The perpendicularity to the outer peripheral surface of the mold 21a was set within 2 μm (preferably within 1 μm).

このようにパンチ面と成形型21aとを高精度に仕上げる方法としては、上記一方のパンチ面と成形型21aとを一体的に構成することが考えられる。例えば、パンチと成形型を同一部材から一体的に削り出すか、あるいはそれぞれ別体として製作し、圧入などの方法で一体的に固着した後、パンチ面と成形型21aの外周面との直角度を2μm以内に仕上げる等の手段が可能である。軸とフランジ部は同一部材で一体的に製作してもよいし、別体として製作してから何れかを相手側に圧入し、所定の直角度に仕上げてもよい。   As a method of finishing the punch surface and the molding die 21a with high precision in this way, it is conceivable to integrally form the one punch surface and the molding die 21a. For example, a punch and a forming die are integrally cut out from the same member, or are manufactured separately, and are integrally fixed by a method such as press-fitting. Then, a square angle between the punch surface and the outer peripheral surface of the forming die 21a is obtained. Is possible within 2 μm. The shaft and the flange portion may be manufactured integrally with the same member, or may be manufactured separately and then press-fitted into the other side to finish the shaft at a predetermined right angle.

軸受本体素材11’を所定寸法に成形した後は、圧迫力を解除して軸受本体素材11’をスプリングバックさせると共に、軸受本体素材11’と成形型21aとの間に軸受本体素材11’の内径と成形型21aの外径との寸法差が拡大するような熱膨張差を生じさせて、上記成形型21aを軸受本体素材11’の内周面から離型するのがよい。これにより、成形型21aと軸受本体素材11’との干渉が回避され、成形した動圧溝を崩すことなく、軸受本体素材の内周面から成形型を抜き取ることが可能となる。   After the bearing body material 11 'is formed to a predetermined size, the pressing force is released to spring back the bearing body material 11', and the bearing body material 11 'is placed between the bearing body material 11' and the molding die 21a. It is preferable to release the molding die 21a from the inner peripheral surface of the bearing body material 11 'by causing a thermal expansion difference such that the dimensional difference between the inner diameter and the outer diameter of the molding die 21a increases. Thus, interference between the molding die 21a and the bearing body material 11 'is avoided, and the molding die can be removed from the inner peripheral surface of the bearing body material without breaking the formed dynamic pressure groove.

上記熱膨張差を生じさせるには、軸受面を成形した後、例えば軸受本体素材側から加熱すればよい。成形型の材料としては、通常、超硬材が使用されるが、この材料の線膨張係数は5.1×10-6[1/℃]である。一方、軸受本体素材は銅粉、鉄粉が主成分であり、線膨張係数の一例としては12.9×10-6[1/℃]である。従って、軸受本体素材を加熱して高温にすると、両者の熱膨張差から軸受本体素材の内径と成形型の外径との間の寸法差が大きくなり、軸受本体素材から成形型を抜きやすくなる。 In order to generate the above-mentioned difference in thermal expansion, after forming the bearing surface, heating may be performed, for example, from the bearing body material side. As the material of the molding die, a super hard material is usually used, and the linear expansion coefficient of this material is 5.1 × 10 −6 [1 / ° C.]. On the other hand, the bearing body material is mainly composed of copper powder and iron powder, and an example of a linear expansion coefficient is 12.9 × 10 −6 [1 / ° C.]. Therefore, when the bearing body material is heated to a high temperature, the dimensional difference between the inner diameter of the bearing body material and the outer diameter of the molding die becomes large due to the difference in thermal expansion between the two, and the molding die is easily removed from the bearing body material. .

図1は、本発明にかかる動圧型焼結含油軸受ユニットの断面図である。軸受ユニットは、動圧型の焼結含油軸受11と、焼結含油軸受11を内径部に固定した円筒状のハウジング12と、焼結含油軸受11の内径部に挿入された回転軸13とを具備する。   FIG. 1 is a sectional view of a hydrodynamic sintered oil-impregnated bearing unit according to the present invention. The bearing unit includes a dynamic oil-impregnated sintered oil-impregnated bearing 11, a cylindrical housing 12 in which the sintered oil-impregnated bearing 11 is fixed to the inner diameter, and a rotating shaft 13 inserted into the inner diameter of the sintered oil-impregnated bearing 11. I do.

動圧型焼結含油軸受11は、回転軸13の外周面と軸受隙間を介して対向するラジアル軸受面11bを有する焼結金属からなる円筒状の軸受本体11aに、潤滑油あるいは潤滑グリースを含浸させて構成される。焼結金属からなる軸受本体11aは、銅系あるいは鉄系、またはその双方を主成分とする焼結金属で形成され、望ましくは銅を20〜95重量%使用して、密度6.4〜7.2g/cm3 に成形される。軸受本体11aの材質として、鋳鉄、合成樹脂、セラミックスなどを焼結または発泡成形し、多数の細孔を有する多孔質体としたものも用いることができる。動圧型焼結含油軸受の表面開孔率は、ラジアル軸受面11bで10%以下(望ましくは5%以下)、後述するスラスト軸受部14を構成するスラスト軸受面11f1、11f2で5%以下(望ましくは2%以下)に設定するのがよい。ラジアル軸受面11bの表面開孔率が10%以下であれば、圧力降下を防止しつつ油の循環を確保することができ、スラスト軸受面11f1、11f2の表面開孔率を5%以下とすれば、動圧溝を設けた場合でも圧力発生に伴う開孔部からの油の逃げを防止することができる。「開孔部」とは、多孔質体組織の細孔が外表面に開口した部分をいい、「表面開孔率」とは、外表面の単位面積内に占める表面開孔の面積割合をいう。 The dynamic pressure type sintered oil-impregnated bearing 11 is obtained by impregnating a cylindrical bearing body 11a made of sintered metal having a radial bearing surface 11b opposed to an outer peripheral surface of a rotating shaft 13 with a bearing gap therebetween with lubricating oil or lubricating grease. It is composed. The bearing body 11a made of a sintered metal is made of a copper-based or iron-based, or a sintered metal mainly containing both of them, and is preferably made of 20 to 95% by weight of copper and has a density of 6.4 to 7%. 0.2 g / cm 3 . As the material of the bearing main body 11a, a porous body having a large number of pores obtained by sintering or foaming cast iron, synthetic resin, ceramics, or the like can be used. The surface porosity of the hydrodynamic sintered oil-impregnated bearing is 10% or less (preferably 5% or less) on the radial bearing surface 11b, and 5% or less (desirably 5%) on the thrust bearing surfaces 11f1 and 11f2 constituting the thrust bearing portion 14 described later. Is preferably set to 2% or less. If the surface porosity of the radial bearing surface 11b is 10% or less, oil circulation can be ensured while preventing a pressure drop, and the surface porosity of the thrust bearing surfaces 11f1 and 11f2 can be reduced to 5% or less. Thus, even when the dynamic pressure groove is provided, it is possible to prevent oil from escaping from the opening due to pressure generation. The "opening portion" refers to a portion where pores of the porous body tissue are opened to the outer surface, and the "surface opening ratio" refers to an area ratio of the surface opening occupying a unit area of the outer surface. .

軸受本体11aの内周面11hに設けられたラジアル軸受面11bは1箇所のみに形成されており、軸受面11bには軸方向に対して傾斜した複数の動圧溝11c(へリングボーン型)が円周方向に配列形成される。動圧溝11cは、軸方向に対して傾斜して形成されていれば足り、この条件を満たす限りへリングボーン型以外の他の形状、例えばスパイラル型でもよい。焼結含油軸受11の外周には、軸受11の内径部に軸13を挿入する際の空気抜きとなる1または複数の溝11gが軸方向に沿って形成されている。なお、スピンドルモータの薄型化を図るべく、軸受内径dと軸受幅Lは、L≦1.2dを満たすように設定される。   The radial bearing surface 11b provided on the inner peripheral surface 11h of the bearing body 11a is formed at only one place, and the bearing surface 11b has a plurality of dynamic pressure grooves 11c (herring bone type) inclined with respect to the axial direction. Are arranged in the circumferential direction. It is sufficient that the dynamic pressure groove 11c is formed to be inclined with respect to the axial direction, and as long as this condition is satisfied, a shape other than the herringbone type, for example, a spiral type may be used. On the outer periphery of the sintered oil-impregnated bearing 11, one or a plurality of grooves 11g are formed along the axial direction for venting air when the shaft 13 is inserted into the inner diameter portion of the bearing 11. In order to reduce the thickness of the spindle motor, the bearing inner diameter d and the bearing width L are set so as to satisfy L ≦ 1.2d.

上記焼結含油軸受11では、回転軸13の回転に伴う圧力発生と昇温による油の熱膨張によって軸受本体11aの内部の潤滑剤(潤滑油または潤滑グリースの基油)が軸受本体11aの表面からにじみ出し、動圧溝11cの作用によって軸受隙間に引き込まれる。軸受隙間に引き込まれた油は潤滑油膜を形成して回転軸を非接触支持する。すなわち、軸受面11bに、上記傾斜した動圧溝11cを設けると、その動圧作用によってにじみ出した軸受本体11a内部の潤滑剤が軸受隙間に引き込まれると共に、軸受面11bに潤滑剤が押し込まれ続けるので、油膜力が高まり、軸受の剛性を向上させることができる。なお、軸受ユニットの組立時において、軸受11に回転軸13を挿入する際には、軸受隙間および軸受周辺が油で満たされるよう注油しておくのが望ましい。   In the sintered oil-impregnated bearing 11, the lubricant (lubricating oil or base oil of lubricating grease) inside the bearing body 11a is caused by the thermal expansion of the oil due to the pressure generation and the temperature rise accompanying the rotation of the rotating shaft 13, and the surface of the bearing body 11a And is drawn into the bearing gap by the action of the dynamic pressure groove 11c. The oil drawn into the bearing gap forms a lubricating oil film and supports the rotating shaft in a non-contact manner. That is, when the inclined dynamic pressure groove 11c is provided on the bearing surface 11b, the lubricant inside the bearing body 11a that has oozed out by the dynamic pressure action is drawn into the bearing gap, and the lubricant is continuously pushed into the bearing surface 11b. Therefore, the oil film force is increased, and the rigidity of the bearing can be improved. When the rotating shaft 13 is inserted into the bearing 11 at the time of assembling the bearing unit, it is desirable to lubricate the bearing gap and the periphery of the bearing with oil.

軸受隙間に正圧が発生すると、軸受面11bの表面に孔があるため、潤滑剤は軸受本体の内部に還流するが、次々と新たな潤滑剤が軸受隙間に押し込まれ続けるので油膜力および剛性は高い状態で維持される。この場合、連続しかつ安定した油膜が形成されるので、高回転精度が得られ、軸振れやNRRO、ジッタ等が低減される。また、回転軸13と軸受本体11aが非接触で回転するために低騒音であり、しかも低コストである。   When a positive pressure is generated in the bearing gap, the lubricant flows back to the inside of the bearing body because there is a hole in the surface of the bearing surface 11b. Is kept high. In this case, since a continuous and stable oil film is formed, high rotation accuracy is obtained, and shaft runout, NRRO, jitter, and the like are reduced. Further, since the rotating shaft 13 and the bearing main body 11a rotate in a non-contact manner, the noise is low and the cost is low.

ラジアル軸受面11bは、一方に傾斜する動圧溝11cが配列された第1の溝領域m1と、第1の溝領域m1から軸方向に離隔し、他方に傾斜する動圧溝11cが配列された第2の溝領域m2と、2つの溝領域m1、m2の間に位置する環状の平滑部nとを備えており、2つの溝領域m1、m2の動圧溝11cは平滑部nで区画されて非連続になっている。平滑部nと動圧溝11c間の背の部分11eとは同一レベルにある。この種の非連続型の動圧溝11cは、連続型、すなわち平滑部nを省略し、動圧溝11cを両溝領域m1、m2間で互いに連続するV字状に形成した場合に比べ、平滑部nを中心として油が集められるために油膜圧力が高く、また溝のない平滑部nを有するので軸受剛性が高いという利点を有する。   The radial bearing surface 11b has a first groove region m1 in which the inclined hydrodynamic grooves 11c are arranged on one side, and a hydrodynamic groove 11c which is axially separated from the first groove region m1 and is inclined on the other side. A second groove region m2 and an annular smooth portion n located between the two groove regions m1 and m2. The dynamic pressure groove 11c of the two groove regions m1 and m2 is partitioned by the smooth portion n. Being discontinuous. The back portion 11e between the smooth portion n and the dynamic pressure groove 11c is at the same level. This type of non-continuous type dynamic pressure groove 11c is a continuous type, that is, the smooth portion n is omitted, and the dynamic pressure groove 11c is formed in a V-shape continuous with each other between the two groove regions m1 and m2. There is an advantage that the oil film pressure is high because the oil is collected around the smooth portion n, and the bearing rigidity is high because the smooth portion n having no groove is provided.

焼結含油軸受11の軸方向一端側には、スラスト軸受部14が設けられる。図1は、焼結含油軸受11の上端側にスラスト軸受部14を設けた実施形態で、焼結含油軸受11の上軸受端面11f1(スラスト軸受面)と、回転軸13に固定した円盤状のフランジ部13aとを対向させて構成される。回転軸13とフランジ部13aは、同一部材で一体に製作したり、あるいは別体として製作してから相互に嵌合固定し、回転軸13の外周面、特に軸受11に組み込んだ際に軸受面11bと対向する外周面の直角度がフランジ部13aの軸受11側の端面13a1に対して2μm以内、望ましくは1μm以内となるように仕上げ加工される。   A thrust bearing portion 14 is provided at one axial end of the sintered oil-impregnated bearing 11. FIG. 1 shows an embodiment in which a thrust bearing portion 14 is provided on the upper end side of a sintered oil-impregnated bearing 11. An upper bearing end face 11 f 1 (thrust bearing surface) of the sintered oil-impregnated bearing 11 and a disk-shaped fixed to the rotating shaft 13. It is configured such that the flange portion 13a is opposed to the flange portion 13a. The rotating shaft 13 and the flange portion 13a may be manufactured integrally from the same member, or may be manufactured separately and then fitted and fixed to each other. Finishing is performed so that the perpendicularity of the outer peripheral surface facing the surface 11b is within 2 μm, preferably within 1 μm with respect to the end surface 13a1 of the flange portion 13a on the bearing 11 side.

このようなスラスト軸受部14であれば、摺動接触部分が面当りとなるため、ピボット軸受で問題となる軸位置の変動を防止しつつ、単列の軸受面11bであってもモーメント剛性を高め、軸を高精度に支持することが可能となる。   In such a thrust bearing portion 14, since the sliding contact portion comes into contact with the surface, fluctuation of the shaft position which is a problem in the pivot bearing is prevented, and moment rigidity is reduced even with the single-row bearing surface 11b. It is possible to support the shaft with high precision.

ところで、上記のように回転軸13にフランジ部13aを設けた場合、回転軸13の上端には、ロータケース8やターンテーブル(5:図13参照)などの部品が固定されるため、軸受11の上端を従来のようなシールワッシャ8(図15参照)でシールすることは難しくなる。そこで、軸受11上端からの油漏れは、フランジ部13a外周面とハウジング12内周面の微小隙間による毛細管シールで行う。シール隙間cは0.05mm以下、望ましくは0.02mm以下とするのがよく、シール幅aは0.5mm以上、望ましくは1mm以上とする。シールを構成するフランジ部13a外周面やハウジング12内周面に揆油剤を塗布しておけば油漏れ防止により有効となる。   By the way, when the rotating shaft 13 is provided with the flange portion 13a as described above, components such as the rotor case 8 and the turntable (5: see FIG. 13) are fixed to the upper end of the rotating shaft 13, so that the bearing 11 It is difficult to seal the upper end of the cover with a conventional seal washer 8 (see FIG. 15). Therefore, oil leakage from the upper end of the bearing 11 is performed by a capillary seal due to a minute gap between the outer peripheral surface of the flange 13a and the inner peripheral surface of the housing 12. The seal gap c is preferably 0.05 mm or less, preferably 0.02 mm or less, and the seal width a is 0.5 mm or more, preferably 1 mm or more. Applying a lubricant to the outer peripheral surface of the flange portion 13a and the inner peripheral surface of the housing 12 constituting the seal is effective for preventing oil leakage.

一方、軸受11下端側からの油漏れは、例えば底板15をハウジング12の底部開口部に圧入してからかしめることによって防止することができる。底板15とハウジング12との間の隙間を接着剤でシールしておけば、油漏れ防止にさらに有効である。   On the other hand, oil leakage from the lower end side of the bearing 11 can be prevented by, for example, press-fitting the bottom plate 15 into the bottom opening of the housing 12 and then caulking. If the gap between the bottom plate 15 and the housing 12 is sealed with an adhesive, it is more effective to prevent oil leakage.

図2(A)は、底板15側からの油漏れを防止するため、樹脂、ゴムなどの弾性材料15aを底板15の上に重ねてパッキンとして使用した実施形態である。この場合も底板15は、ハウジング12に圧入した後、必要であればかしめた方が望ましい。   FIG. 2A shows an embodiment in which an elastic material 15a such as resin or rubber is stacked on the bottom plate 15 and used as a packing in order to prevent oil leakage from the bottom plate 15 side. Also in this case, it is desirable that the bottom plate 15 be press-fitted into the housing 12 and then swaged if necessary.

図2(B)は、フランジ部13aの外周面と対向するハウジング12の内周面に環状の凹部12aを設けた実施形態である。フランジ部13aが回転することにより、油が遠心力で凹部12aに溜まるため、ハウジング12上端からの油漏れを確実に防止することができる(遠心シール)。遠心シールのみだと、軸姿勢が横向きの場合に油漏れを生じるおそれがあるので、毛細管シールとの併用が望ましい。   FIG. 2B shows an embodiment in which an annular concave portion 12a is provided on the inner peripheral surface of the housing 12 facing the outer peripheral surface of the flange portion 13a. The rotation of the flange 13a causes oil to collect in the recess 12a due to centrifugal force, so that oil leakage from the upper end of the housing 12 can be reliably prevented (centrifugal seal). If only the centrifugal seal is used, oil leakage may occur when the shaft posture is horizontal. Therefore, it is desirable to use the centrifugal seal together with a capillary seal.

図3(A)は、フランジ部13aの外周面に、回転時に軸受11側への気流が発生するような傾斜溝13a2を設けた例である。発生した気流により、油が軸受11側に押し戻されるため、軸受上端からの油漏れを防止することができる(停止中は毛細管シールで油漏れを防止する)。上記傾斜溝13a2は油漏れを防止できさえすればよいので、ラジアル軸受面11bの動圧溝11cのように高精度に加工する必要はない。溝深さは5〜30μm程度が適当で、転造などの手法で加工することができる。   FIG. 3A shows an example in which an inclined groove 13a2 is provided on the outer peripheral surface of the flange portion 13a so that an airflow is generated toward the bearing 11 during rotation. The generated airflow pushes the oil back to the bearing 11 side, so that oil leakage from the upper end of the bearing can be prevented (during stop, oil leakage is prevented by a capillary seal). Since the inclined groove 13a2 only needs to prevent oil leakage, it is not necessary to machine the inclined groove 13a2 with high precision unlike the dynamic pressure groove 11c of the radial bearing surface 11b. The groove depth is suitably about 5 to 30 μm, and can be processed by a method such as rolling.

この傾斜溝13a2は、図3(A)に示すようにフランジ部13aの幅(軸方向寸法)の全長にわたって形成すると、軸受11側に過剰の空気を送り込む場合があるので、図3(B)に示すように部分的に設けてもよい。この場合、ハウジング12内周面のうち、傾斜溝13a2の非形成領域との対向部に環状の凹部12aを設けておくのが望ましい。   If the inclined groove 13a2 is formed over the entire width (axial dimension) of the flange portion 13a as shown in FIG. 3A, excessive air may be sent to the bearing 11 side, and therefore, FIG. As shown in FIG. In this case, it is desirable to provide an annular concave portion 12a on the inner peripheral surface of the housing 12 at a portion facing the region where the inclined groove 13a2 is not formed.

図4は、軸受11の下軸受端面11f2と、軸端に設けたフランジ部13aとでスラスト軸受部14を構成した実施形態である。回転中は、回転軸13がロータ7bとステータ7a(図13参照)間の励磁力により浮上力を受けて底板15から浮いた状態となり、下軸受端面11f2(スラスト軸受面)とフランジ部13bの上面13b2とでスラスト力が支持される。底板15の上面でかつ回転軸13の直下には、潤滑性に富む樹脂材料等からなるスラストワッシャ15aが配置され、モータの起動直後や停止直前の軸端との間の摩擦低減が図られている。ハウジング12の上端開口は、油漏れ防止用のスラストワッシャ16によって閉塞され、軸との間隙を0.2mm以下とすることで外部への油の漏れ出しを防止している(毛細管作用)。シールワッシャ16の内周面や内周部の上下面、あるいはシールワッシャ16の内周面と対向する軸13の外周面に揆油剤を塗布することにより、さらに有効な油漏れ防止が図られる。   FIG. 4 shows an embodiment in which a lower bearing end face 11f2 of the bearing 11 and a flange portion 13a provided at the shaft end constitute a thrust bearing portion. During rotation, the rotating shaft 13 is lifted from the bottom plate 15 by a levitation force due to an exciting force between the rotor 7b and the stator 7a (see FIG. 13), and becomes lower than the lower bearing end surface 11f2 (thrust bearing surface) and the flange portion 13b. The thrust force is supported by the upper surface 13b2. A thrust washer 15a made of a highly lubricating resin material or the like is disposed on the upper surface of the bottom plate 15 and immediately below the rotary shaft 13, so that friction between the thrust washer 15 and the shaft end immediately after the start or immediately before the stop of the motor is reduced. I have. The upper end opening of the housing 12 is closed by a thrust washer 16 for preventing oil leakage, and the gap with the shaft is set to 0.2 mm or less to prevent oil from leaking to the outside (capillary action). By applying the oil repellent to the inner peripheral surface of the seal washer 16, the upper and lower surfaces of the inner peripheral portion, or the outer peripheral surface of the shaft 13 facing the inner peripheral surface of the seal washer 16, more effective oil leakage can be prevented.

図5は、動圧型焼結含油軸受11の軸受内周面11hに軸方向に対して傾斜した油供給用の動圧溝11jを設け、この動圧溝11jで生じる動圧作用でスラスト軸受部14に油を供給するようにしたものである。動圧溝11jは、ラジアル軸受面11bの溝形成領域(スラスト軸受部14側)の動圧溝11cと連続したV字状に形成される。油供給用の動圧溝11jを設けることにより、スラスト軸受部14に油膜が形成されやすくなって潤滑性が向上し、また、スラスト軸受部14での摩耗も著しく低減されるので耐久性も飛躍的に向上する。なお、スラスト軸受部14に供給された油は、軸受端面やチャンファ部から吸収されて軸受内部に回収され、再び軸受内周面から軸受隙間に供給される。   FIG. 5 shows a dynamic pressure type sintered oil-impregnated bearing 11 having a bearing inner peripheral surface 11h provided with an oil supply dynamic pressure groove 11j inclined with respect to the axial direction, and a thrust bearing portion formed by the dynamic pressure action generated in the dynamic pressure groove 11j. 14 is supplied with oil. The dynamic pressure groove 11j is formed in a V-shape that is continuous with the dynamic pressure groove 11c in the groove forming region (on the thrust bearing portion 14 side) of the radial bearing surface 11b. By providing the dynamic pressure groove 11j for oil supply, an oil film is easily formed on the thrust bearing portion 14 to improve lubricity, and wear on the thrust bearing portion 14 is also significantly reduced, so that durability is increased. To improve. The oil supplied to the thrust bearing portion 14 is absorbed from the bearing end surface and the chamfer portion, is recovered inside the bearing, and is supplied again to the bearing gap from the bearing inner peripheral surface.

図6および図7は、スラスト軸受部14を、回転軸13の回転時に生じる動圧作用により回転軸13を非接触支持するようにしたものである。非接触支持であれば、スラスト軸受部14における摩擦がなくなり、耐久性が飛躍的に向上する。動圧作用は、スラスト軸受部14を構成する軸受端面11f1とこれに対向するフランジ部13aの何れか一方に、円周方向に配設された複数(3箇所以上に設けるのが望ましい)の凹部11kを有する動圧発生部17を設けることによって得ることができる。この場合、凹部11kが油溜りとなり、回転に伴って凹部内の油が隣接する凸部に引き出される際に圧力が発生し、油膜圧力が高まるのでスラスト軸受部14を安定して非接触状態に保持できる。凹部11kとしては、例えば動圧溝が考えられる。   6 and 7 show a configuration in which the thrust bearing portion 14 supports the rotating shaft 13 in a non-contact manner by a dynamic pressure effect generated when the rotating shaft 13 rotates. With non-contact support, friction in the thrust bearing portion 14 is eliminated, and durability is dramatically improved. A plurality of (preferably, three or more) recesses arranged in the circumferential direction are provided on one of the bearing end face 11f1 constituting the thrust bearing section 14 and the flange section 13a opposed thereto. It can be obtained by providing a dynamic pressure generating section 17 having 11k. In this case, the concave portion 11k becomes an oil reservoir, and pressure is generated when the oil in the concave portion is drawn out to the adjacent convex portion with the rotation, and the oil film pressure increases, so that the thrust bearing portion 14 is stably brought into a non-contact state. Can hold. As the recess 11k, for example, a dynamic pressure groove can be considered.

図6は、動圧発生部17を有するスラスト軸受部14の一例で、スラスト軸受面11f1に、軸受端面に描いた放射状の仮想線に対して傾斜した部分を持つ動圧溝11kを設けたものである。動圧溝11kは、へリングボーン型、すなわち半径方向のほぼ中心部に屈曲部分を有するV字状をなし、この動圧溝は、円周方向に等間隔で配列して形成される。この場合、回転に伴ってスラスト軸受部14およびその周辺の油が動圧溝11kの屈曲部分に集められて油膜圧力が高まるため、スラスト軸受部14を安定して非接触状態に保持できる。動圧溝形状としては、へリングボーン型の他にスパイラル型も適用することができる。また、動圧溝11kをフランジ部端面13a1に設け、スラスト軸受面11f1を動圧溝のない平滑面としてもよい。   FIG. 6 shows an example of a thrust bearing portion 14 having a dynamic pressure generating portion 17 in which a thrust bearing surface 11f1 is provided with a dynamic pressure groove 11k having a portion inclined with respect to a radial virtual line drawn on the bearing end surface. It is. The dynamic pressure grooves 11k have a herringbone type, that is, have a V-shape having a bent portion substantially at the center in the radial direction, and are formed at regular intervals in the circumferential direction. In this case, the oil in the thrust bearing portion 14 and its surroundings is collected in the bent portion of the dynamic pressure groove 11k with the rotation and the oil film pressure increases, so that the thrust bearing portion 14 can be stably held in a non-contact state. As the dynamic pressure groove shape, a spiral type besides a herringbone type can be applied. Alternatively, the dynamic pressure groove 11k may be provided on the flange end face 13a1, and the thrust bearing surface 11f1 may be a smooth surface without the dynamic pressure groove.

図7は、図6と同様にスラスト軸受面11f1に動圧溝11kを設けると共に、図5と同様に軸受内周面に油供給用の動圧溝11jを設けたものである。   FIG. 7 shows a thrust bearing surface 11f1 provided with a dynamic pressure groove 11k in the same manner as in FIG. 6, and a dynamic pressure groove 11j for oil supply provided in the bearing inner peripheral surface as in FIG.

図8および図9は、スラスト軸受部14a、14bを軸方向に離隔した2箇所に設けて、両方向のスラスト荷重を支持できるようにしたものである。図8は軸受の両端側にフランジ部13a、13bを配し、各フランジ部13a、13bと両軸受端面11f1、11f2との間に形成された2つのスラスト軸受部14a、14bで両方向のスラスト荷重を支持できるようにしたものである。スラスト軸受部14を構成するスラスト軸受面11f1、11f2と、これに対向するフランジ部13a、13b端面との何れか一方(図面ではスラスト軸受面11f1、11f2)には、同図(b)(c)に示すように、図6と同様の動圧溝11kが形成されている。この構造であれば、両方向のスラスト支持だけでなく、回転軸13の軸受11からの抜けを防止できるので、回転軸13に衝撃荷重が加わった場合でもモータの損傷を回避することができる。特にHDD装置のように読み取り用ヘッドがディスクと僅かな隙間を介して配置されているような場合、衝撃荷重が加わってもヘッドがディスクと衝突する事態を回避することができる。   FIG. 8 and FIG. 9 show that thrust bearing portions 14a and 14b are provided at two places separated in the axial direction so that thrust loads in both directions can be supported. FIG. 8 shows that flange portions 13a and 13b are arranged on both ends of the bearing, and that two thrust bearing portions 14a and 14b formed between each flange portion 13a and 13b and both bearing end surfaces 11f1 and 11f2 apply thrust loads in both directions. It is made to be able to support. One of the thrust bearing surfaces 11f1 and 11f2 constituting the thrust bearing portion 14 and the end surfaces of the flange portions 13a and 13b opposed thereto (the thrust bearing surfaces 11f1 and 11f2 in the drawing) are shown in FIGS. As shown in (), a dynamic pressure groove 11k similar to that of FIG. 6 is formed. With this structure, not only the thrust support in both directions but also the detachment of the rotating shaft 13 from the bearing 11 can be prevented, so that even if an impact load is applied to the rotating shaft 13, damage to the motor can be avoided. In particular, in the case where the reading head is arranged with a slight gap from the disk as in the HDD device, it is possible to avoid a situation where the head collides with the disk even when an impact load is applied.

図9は、軸受11と底板15との間にフランジ部13bを設け、フランジ部13bの両側にスラスト軸受部14a、14bを構成したものである。すなわち、フランジ部13bの上端面13a1と下側の軸受端面11f2の何れか一方、および、フランジ部13bの下端面13b2と底板15の上面の何れか一方(図面では下軸受端面11f2およびフランジ部の下端面13b2)にそれぞれ図6と同様の動圧溝11kを設けたもので、図8の構造と同様の効果が奏される。   FIG. 9 shows a configuration in which a flange portion 13b is provided between the bearing 11 and the bottom plate 15, and thrust bearing portions 14a and 14b are formed on both sides of the flange portion 13b. That is, one of the upper end surface 13a1 of the flange portion 13b and the lower bearing end surface 11f2, and one of the lower end surface 13b2 of the flange portion 13b and the upper surface of the bottom plate 15 (in the drawing, the lower bearing end surface 11f2 and the flange portion Since the lower end face 13b2) is provided with a dynamic pressure groove 11k similar to that shown in FIG. 6, the same effect as the structure shown in FIG. 8 can be obtained.

上記動圧型焼結含油軸受11の軸受本体11aは、上記金属粉末を圧縮成形し、さらに焼成して得られた円筒状の焼結金属素材(軸受本体素材)に対して、例えば、サイジング→回転サイジング→軸受面成形加工を施して製造することができる。   The bearing main body 11a of the hydrodynamic sintered oil-impregnated bearing 11 is formed, for example, by sizing and rotating with respect to a cylindrical sintered metal material (bearing body material) obtained by compression-molding the metal powder and further firing. It can be manufactured by sizing → bearing surface forming.

サイジング工程は、焼結金属素材の外周面と内周面のサイジングを行って焼結工程での曲がりなどを矯正する工程で、焼結金属素材の外周面を円筒状のダイに圧入すると共に、内周面にサイジングピンを圧入して行われる。回転サイジング工程は、断面略多角形状の回転サイジングピン(断面円形のピンの外周面を部分的に平坦加工して、円周等配位置に円弧部分を残したもの)を焼結金属素材の内周面に押付けながら、サイジングピンを回転させて内周面のサイジングを行う工程である。この回転サイジングにより焼結金属素材の内周面の真円度、円筒度が矯正され、かつ表面開孔率が例えば3〜15%に仕上げられる。軸受面成形工程は、上記のようなサイジング加工を施した焼結金属素材の内周面に、完成品の軸受面に対応した形状の成形型を加圧することによって、軸受面の動圧溝の形成領域とそれ以外の領域(背11eおよび環状の平滑領域n)とを同時成形する工程である。   The sizing process is a process of sizing the outer peripheral surface and the inner peripheral surface of the sintered metal material to correct bending and the like in the sintering process, while pressing the outer peripheral surface of the sintered metal material into a cylindrical die, This is performed by pressing a sizing pin into the inner peripheral surface. The rotation sizing process is a method in which a rotation sizing pin having a substantially polygonal cross section (which is obtained by partially flattening the outer peripheral surface of a pin having a circular cross section and leaving an arc portion at a circumferentially equidistant position) is formed in a sintered metal material. This is a step of sizing the inner peripheral surface by rotating the sizing pin while pressing against the peripheral surface. By this rotation sizing, the roundness and cylindricity of the inner peripheral surface of the sintered metal material are corrected, and the surface porosity is finished to, for example, 3 to 15%. In the bearing surface forming step, a pressing die having a shape corresponding to the bearing surface of the finished product is pressed onto the inner peripheral surface of the sintered metal material subjected to the sizing processing as described above, thereby forming the dynamic pressure groove on the bearing surface. This is a step of simultaneously forming the formation region and the other region (the back 11e and the annular smooth region n).

図11は、軸受面成形工程で使用する成形装置の概略構造を例示している。この装置は焼結金属素材11’の外周面を圧入する円筒状のダイ20、焼結金属素材11’の内周面を成形する超硬合金製のコアロッド21、焼結金属素材11’の両端面を上下方向から押さえる上下のパンチ22、23を主要な要素として構成される。コアロッド21と上パンチ22は一体となっており、コアロッド21の外周面と上パンチ22のパンチ面22aの直角度は2μm以内に仕上げられている。   FIG. 11 illustrates a schematic structure of a forming apparatus used in the bearing surface forming step. This apparatus includes a cylindrical die 20 for press-fitting an outer peripheral surface of a sintered metal material 11 ', a core rod 21 made of cemented carbide for forming an inner peripheral surface of the sintered metal material 11', and both ends of the sintered metal material 11 '. Upper and lower punches 22 and 23 for pressing the surface from above and below are configured as main elements. The core rod 21 and the upper punch 22 are integrated, and the perpendicularity between the outer peripheral surface of the core rod 21 and the punch surface 22a of the upper punch 22 is finished within 2 μm.

図10に示すように、コアロッド21の外周面には、完成品の軸受面11bの形状に対応した凹凸状の成形型21aが設けられている。成形型21aの凸部分21a1は軸受面11bにおける動圧溝11cの領域を成形し、凹部分21a2は動圧溝11c以外の領域(背11eおよび環状の平滑領域n)を成形するものである。成形型21aにおける凸部分21a1と凹部分21a2との段差は、軸受面11bにおける動圧溝11cの深さと同程度(例えば2〜5μm程度)で微小なものであるが、図面ではかなり誇張して図示されている。なお、上下軸受端面11f1、11f2に動圧溝11kを設ける場合(図6〜9参照)は、上下のパンチ22、23のパンチ面22a、23aにも当該動圧溝11kに対応した形状の転写用成形型が設けられる。   As shown in FIG. 10, an outer peripheral surface of the core rod 21 is provided with a concave and convex forming die 21a corresponding to the shape of the bearing surface 11b of the finished product. The convex portion 21a1 of the molding die 21a forms a region of the dynamic pressure groove 11c on the bearing surface 11b, and the concave portion 21a2 forms a region other than the dynamic pressure groove 11c (the back 11e and the annular smooth region n). The step between the convex portion 21a1 and the concave portion 21a2 in the molding die 21a is as small as the depth of the dynamic pressure groove 11c in the bearing surface 11b (for example, about 2 to 5 μm), but is considerably exaggerated in the drawing. Is illustrated. When the dynamic pressure grooves 11k are provided on the upper and lower bearing end surfaces 11f1 and 11f2 (see FIGS. 6 to 9), the transfer of the shape corresponding to the dynamic pressure grooves 11k is also performed on the punch surfaces 22a and 23a of the upper and lower punches 22 and 23. A molding die is provided.

この成形装置による成形は、図11に示すA〜Dの手順で行われる。   The molding by this molding apparatus is performed according to the procedures A to D shown in FIG.

先ず、焼結金属素材11’をダイ20の上面に位置合わせして配置した後、上パンチ22およびコアロッド21を降下させ、焼結金属素材11’をダイ20に圧入し、さらに下パンチ23に押付けて上下方向から加圧する(A)。   First, after positioning the sintered metal material 11 ′ on the upper surface of the die 20, the upper punch 22 and the core rod 21 are lowered, the sintered metal material 11 ′ is pressed into the die 20, and Pressing and pressing from above and below (A).

焼結金属素材11’は、ダイ20と上下パンチ22・23から圧迫力を受けて変形を起こし、内周面がコアロッド21の成形型21aに加圧される。これにより、成形型21aの形状が焼結金属素材11’の内周面に転写され、軸受面11bが所定の形状および寸法に成形される(同時に焼結金属素材11’の外周面および両端面もサイジングされる)。   The sintered metal material 11 ′ is deformed by receiving a pressing force from the die 20 and the upper and lower punches 22 and 23, and the inner peripheral surface is pressed against the forming die 21 a of the core rod 21. Thereby, the shape of the molding die 21a is transferred to the inner peripheral surface of the sintered metal material 11 ', and the bearing surface 11b is molded into a predetermined shape and dimensions (simultaneously, the outer peripheral surface and both end surfaces of the sintered metal material 11'). Will also be sized).

軸受面11bの成形が完了した後、焼結金属素材11’とコアロッドの位置関係を保持したまま上下のパンチ22、23およびコアロッド21を一体的に上昇させ(B)、焼結金属素材11’をダイ20から抜く。次に、クランパ24で掴んだ焼結金属素材11’の外周面に熱風発生器等の加熱機25で熱風を吹き付けて焼結金属素材11’を加熱し(C)、その後、焼結金属素材11’をコアロッド21から抜く(D)。この時、焼結金属素材11’をダイ20から抜くと同時に焼結金属素材11’にスプリングバックが生じてその内径寸法が拡大する。また、加熱によって焼結金属素材の温度がコアロッド21によりも高くなり、かつコアロッド21(超硬合金製)よりも焼結金属素材11’(銅を主成分とする)の熱膨張係数が大きいため、焼結金属素材11’の内径寸法がさらに拡大する。そのため、コアロッド21と焼結金属素材11’との干渉が回避され、動圧溝11cを崩すことなく、焼結金属素材11’の内周面からコアロッド21を抜き取ることが可能となる。スプリングバックのみでスムーズに焼結金属素材11’を抜ける場合は、加熱機25による加熱工程を省略しても構わない。   After the molding of the bearing surface 11b is completed, the upper and lower punches 22, 23 and the core rod 21 are integrally raised while maintaining the positional relationship between the sintered metal material 11 'and the core rod (B), and the sintered metal material 11' From the die 20. Next, the sintered metal material 11 'gripped by the clamper 24 is blown with hot air by a heater 25 such as a hot air generator to heat the sintered metal material 11' (C). Pull out 11 'from the core rod 21 (D). At this time, when the sintered metal material 11 'is removed from the die 20, springback occurs in the sintered metal material 11', and the inner diameter of the sintered metal material 11 'increases. In addition, the temperature of the sintered metal material becomes higher than that of the core rod 21 due to the heating, and the thermal expansion coefficient of the sintered metal material 11 ′ (containing copper as a main component) is larger than that of the core rod 21 (made of cemented carbide). As a result, the inner diameter of the sintered metal material 11 'is further increased. Therefore, interference between the core rod 21 and the sintered metal material 11 'is avoided, and the core rod 21 can be pulled out from the inner peripheral surface of the sintered metal material 11' without breaking the dynamic pressure groove 11c. In the case where the sintered metal material 11 'can be smoothly pulled out only by the spring back, the heating step by the heater 25 may be omitted.

以上の工程を経て製造した焼結金属素材11’を洗浄し、これに潤滑油又は潤滑グリースを含浸させて油を保有させると、図1に示す動圧型滑り軸受(動圧型多孔質含油軸受)が完成する。この軸受11は、ハウジング12の内周面に例えば接着によって固定される。なお、軸受11のハウジング12への組み込み後に、含浸油とは別に注油によって軸受隙間および軸受周辺の空間を油で満たしておくと、潤滑性が著しく向上する。   When the sintered metal material 11 'manufactured through the above steps is washed and impregnated with lubricating oil or lubricating grease to retain the oil, a dynamic pressure type sliding bearing (dynamic pressure type porous oil-impregnated bearing) shown in FIG. Is completed. The bearing 11 is fixed to the inner peripheral surface of the housing 12 by, for example, bonding. If the bearing gap and the space around the bearing are filled with oil separately from the impregnating oil after being assembled into the housing 12 by lubrication, the lubricity is significantly improved.

上記のようにコアロッド21の外周面と上パンチ22のパンチ面22aの直角度を2μm以内に設定しておけば、軸受内周面11hに対するスラスト軸受面11f1の直角度が3μm以内の焼結含油軸受11が提供可能となる。この軸受11と、フランジ部13aと外周面の直角度を所定範囲に設定した回転軸13とを組み合わせることにより、スラスト軸受部14での片当りを防止し、確実に面当りを実現することができる。   As described above, if the perpendicularity between the outer peripheral surface of the core rod 21 and the punch surface 22a of the upper punch 22 is set within 2 μm, the sintered oil-impregnated material whose perpendicularity of the thrust bearing surface 11f1 with respect to the bearing inner peripheral surface 11h is within 3 μm. The bearing 11 can be provided. By combining this bearing 11 with the rotating shaft 13 in which the perpendicularity between the flange portion 13a and the outer peripheral surface is set within a predetermined range, it is possible to prevent the thrust bearing portion 14 from hitting one side, and to reliably realize the surface contact. it can.

本発明にかかる動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of the dynamic pressure type sintered oil-impregnated bearing unit concerning this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す図で、A図は断面図、B図は平面図である。FIG. 6 is a view showing another embodiment of the present invention, in which FIG. A is a cross-sectional view and FIG. 本発明の他の実施形態を示す図で、A図は断面図、B図は平面図である。FIG. 6 is a view showing another embodiment of the present invention, in which FIG. A is a cross-sectional view and FIG. 本発明の他の実施形態を示す図で、A図は断面図、B図は平面図、C図は下面図である。FIG. 7 is a view showing another embodiment of the present invention, in which A is a cross-sectional view, B is a plan view, and C is a bottom view. 本発明の他の実施形態を示す図で、A図は断面図、B図およびC図は下面図である。FIG. 7 is a view showing another embodiment of the present invention, in which A is a cross-sectional view, and B and C are bottom views. コアロッドおよび上パンチの側面図である。It is a side view of a core rod and an upper punch. 本発明方法を示す断面図である。It is sectional drawing which shows the method of this invention. 動圧型焼結含油軸受ユニットを組み込んだ光ディスク装置の断面図である。FIG. 4 is a cross-sectional view of an optical disc device incorporating a dynamic pressure type oil-impregnated bearing unit. 従来の動圧型焼結含油軸受の断面図である。It is sectional drawing of the conventional dynamic pressure type sintered oil-impregnated bearing. 従来の動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of the conventional dynamic pressure type sintered oil-impregnated bearing unit. 動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of a dynamic pressure type sintered oil-impregnated bearing unit. 動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of a dynamic pressure type sintered oil-impregnated bearing unit.

符号の説明Explanation of reference numerals

11 動圧型焼結含油軸受
11a 軸受本体
11b ラジアル軸受面
11c ラジアル軸受面の動圧溝
11f1 軸受端面(スラスト軸受面)
11f2 軸受端面(スラスト軸受面)
11h 軸受内周面
11j 油供給用の動圧溝
11k スラスト軸受面の動圧溝(凹部)
12 ハウジング
13 回転軸(軸)
13a フランジ部
14 スラスト軸受部
17 動圧発生部
11 Sintered oil pressure bearing
11a Bearing body
11b Radial bearing surface
11c Dynamic pressure groove on radial bearing surface
11f1 Bearing end surface (thrust bearing surface)
11f2 Bearing end surface (thrust bearing surface)
11h Bearing inner peripheral surface
11j Dynamic pressure groove for oil supply
11k Dynamic pressure groove (recess) on thrust bearing surface
12 Housing 13 Rotation axis (axis)
13a Flange part 14 Thrust bearing part 17 Dynamic pressure generating part

Claims (2)

フランジ部を有する軸と、
一端を開口した円筒状のハウジングと、
油を含浸させた焼結金属からなり、内周面に、軸の外周面と軸受隙間を介して対向するラジアル軸受面が形成されると共に、ハウジングの開口側となる端面に、動圧溝を有するスラスト軸受面がフランジ部と対向して形成され、ハウジングの内径部に固定された動圧型の焼結含油軸受とを備え、
軸と焼結含油軸受との相対回転時にラジアル軸受面およびスラスト軸受面で生じる動圧作用により軸を非接触支持することを特徴とする動圧型焼結含油軸受ユニット。
A shaft having a flange portion,
A cylindrical housing with one end open,
The bearing is made of oil-impregnated sintered metal, has a radial bearing surface formed on the inner peripheral surface that faces the outer peripheral surface of the shaft via a bearing gap, and a dynamic pressure groove is formed on the end surface that is the opening side of the housing. A dynamic pressure type sintered oil-impregnated bearing having a thrust bearing surface formed opposite to the flange portion and fixed to the inner diameter portion of the housing,
A hydrodynamic sintered oil-impregnated bearing unit characterized in that the shaft is supported in a non-contact manner by a dynamic pressure action generated on a radial bearing surface and a thrust bearing surface when the shaft and the sintered oil-impregnated bearing rotate relative to each other.
ラジアル軸受面およびスラスト軸受面が同時に型成形されている請求項1記載の動圧型焼結含油軸受ユニット。   2. The hydrodynamic sintered oil-impregnated bearing unit according to claim 1, wherein the radial bearing surface and the thrust bearing surface are molded at the same time.
JP2004219132A 2004-07-27 2004-07-27 Dynamic pressure type sintering oil impregnation bearing unit Pending JP2004301338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219132A JP2004301338A (en) 2004-07-27 2004-07-27 Dynamic pressure type sintering oil impregnation bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219132A JP2004301338A (en) 2004-07-27 2004-07-27 Dynamic pressure type sintering oil impregnation bearing unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25711698A Division JP2000087953A (en) 1998-09-10 1998-09-10 Dynamic pressure type sintered oil-retaining bearing unit

Publications (1)

Publication Number Publication Date
JP2004301338A true JP2004301338A (en) 2004-10-28

Family

ID=33411488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219132A Pending JP2004301338A (en) 2004-07-27 2004-07-27 Dynamic pressure type sintering oil impregnation bearing unit

Country Status (1)

Country Link
JP (1) JP2004301338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102312A1 (en) * 2006-03-06 2007-09-13 Ntn Corporation Fluid bearing device
JP2007239794A (en) * 2006-03-06 2007-09-20 Ntn Corp Fluid bearing device
JP2007263169A (en) * 2006-03-27 2007-10-11 Ntn Corp Fluid bearing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102312A1 (en) * 2006-03-06 2007-09-13 Ntn Corporation Fluid bearing device
JP2007239794A (en) * 2006-03-06 2007-09-20 Ntn Corp Fluid bearing device
US8092090B2 (en) 2006-03-06 2012-01-10 Ntn Corporation Fluid dynamic bearing device
JP2007263169A (en) * 2006-03-27 2007-10-11 Ntn Corp Fluid bearing device

Similar Documents

Publication Publication Date Title
KR100619164B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
JP2007263228A (en) Dynamic pressure bearing device
JP2000291648A (en) Dynamic pressure-type bearing unit
JPH10306827A (en) Dynamic pressure type oil-impregnated sintered bearing and manufacture thereof
JP2000087953A (en) Dynamic pressure type sintered oil-retaining bearing unit
JP2007263311A (en) Dynamic pressure bearing device
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004360921A (en) Dynamic pressure type sintered oil retaining bearing unit
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP6877185B2 (en) Fluid dynamic bearing device and motor equipped with it
JP4451409B2 (en) Method for producing hydrodynamic sintered oil-impregnated bearing unit
JP2002206534A (en) Dynamic pressure type multiporous oil retaining bearing and manufacturing method therefor
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2008039104A (en) Fluid bearing device
JP2004340385A (en) Dynamic pressure type bearing unit
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP2001124059A (en) Dynamic pressure bearing unit
JP4327038B2 (en) Spindle motor
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
KR101336584B1 (en) Fluid Dynamic Bearing
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP3602330B2 (en) Dynamic pressure type sliding bearing and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040913

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A131 Notification of reasons for refusal

Effective date: 20080409

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080609

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A02 Decision of refusal

Effective date: 20080917

Free format text: JAPANESE INTERMEDIATE CODE: A02