[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004300538A - Plating method and device - Google Patents

Plating method and device Download PDF

Info

Publication number
JP2004300538A
JP2004300538A JP2003095945A JP2003095945A JP2004300538A JP 2004300538 A JP2004300538 A JP 2004300538A JP 2003095945 A JP2003095945 A JP 2003095945A JP 2003095945 A JP2003095945 A JP 2003095945A JP 2004300538 A JP2004300538 A JP 2004300538A
Authority
JP
Japan
Prior art keywords
plating
conductive sheet
copper
film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095945A
Other languages
Japanese (ja)
Inventor
Kazuhiro Noda
和裕 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2003095945A priority Critical patent/JP2004300538A/en
Publication of JP2004300538A publication Critical patent/JP2004300538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating device capable of facilitating a thickness control, uniformizing a thickness distribution and reducing the amount of a plating liquid. <P>SOLUTION: In the plating device, the plating is performed while retaining a plating liquid between an electrically conductive sheet and rotating rollers set with intervals from the surface of the electrically conductive sheet. Each rotating roller has ruggedness on the surface, and a mechanism of controlling the intervals between the electrically conductive sheet and the rollers is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はシート上へめっき膜を被覆形成する方法ならびに装置に関する。
【0002】
【従来の技術】
TAB(Tape Automated Bonding)、FPC(Flexible Printed Circuit)、プリント配線板などの各種配線用基板、電磁波シールド部材、超音波発振用基材、複写機の転写ベルトなどの製造には、各種の電解めっきや無電解めっき法が用いられている。具体的には、ポリイミド、ポリエチレンテレフタレート(PET)、ガラスエポキシなどのプラスチック基板に予めスパッタリング法や真空蒸着法などで銅などの金属下地膜形成をおこない、この基板上に次工程で電解めっきにより厚膜化するというものである。下地膜の形成には無電解めっき法を用いる場合もあるが、厚膜化は電解めっきでおこなうのが一般的である。厚膜化に際しては、めっき液が蓄えられた浴槽にアノードと導電性基板を対向設置し、両極に通電することでおこなわれる。
【0003】
また、材料としては導電性に優れた銅が多く用いられる。従って、以下では主として無電解および電解銅めっきについて記述するが、本発明には銅以外の金属めっき、例えばニッケルめっき、電解クロムめっき、無電解金めっき、あるいはめっき浴に微粒子を分散させてめっきをおこなう複合めっきなども用いることができる。
【0004】
無電解めっき
無電解銅めっきは、銅化合物と錯化剤が含まれるアルカリ溶液に還元剤を加えて金属銅を析出させる方法である。析出した金属銅はそのまま自己触媒となって、連続的に析出反応が進行する。析出反応が進行すると、めっき液中の銅イオン、ホルムアルデヒド、水酸イオンが不足するため、これらの反応種については常に濃度分析と消耗分の補給をおこなうことで、析出速度を一定に保っている。
【0005】
電解銅めっき
電解銅めっき法は、さらに硫酸銅めっきやシアン化銅めっきなどに分類されるが、ここでは主として硫酸銅めっきについて述べる。
硫酸銅めっきのめっき液は、主成分として硫酸と硫酸銅を混合溶解させ、この中に添加剤および塩素を添加させた溶液である。硫酸銅めっき浴中では、硫酸銅が電離して2価の銅イオンが生成されており、通電が開始されると銅イオンは電子を受け取り(還元されて)陰極に析出する。陽極(銅アノード)では銅が電子を失って(酸化されて)2価の銅イオンとなり浴中に溶解することで、銅イオンが補充される。添加剤は膜のレベリングのために導入されるもので、スルホプロピルジスルフィドなどの有機硫黄化合物、アゾ色素などの有機窒素化合物、ポリエチレングリコールなどの高分子界面活性剤などが組み合わせて用いられる。
【0006】
これら電解・無電解めっきにおいて、溶液を管理して一定状態に保つことは、めっき品質を維持する上で非常に重要であり、そのための管理方法について種々の提案がなされている。また、電解銅めっき時に発生するアノードスライムを除去するための常時濾過設備、分極による通電阻害を防止するための攪拌設備などが用意される。
基板の前処理、後処理は良質のめっき膜を得るために重要である。基板の前処理として、脱脂、水洗などがおこなわれるほか、無電解銅めっきの場合はブラスト処理やパラジウム活性化が必要である。後処理として、水洗、防錆処理、乾操などの一連の工程が用意される。
【0007】
本発明は電解めっきに関するものであるが、無電解めっきに対しても有効であるので敢えて上記に説明した。以下では、電解めっきにおける問題点について記述する。
なお、電子部品や電磁波シールド材料として供するために、パターニング(配線加工)が施される。パターニングの方法としてはアディティブ法ならびにサブトラクト法などが一般によく用いられている。
【0008】
導体フィルムの連続めっき法としては、メッキ液の入ったメッキ槽に導体フィルムを通す方法がある(例えば、特許文献1参照。)。その他、導体フィルムにめっき液を吹きつける方法がある(例えば、特許文献2参照。)。
【0009】
【特許文献1】特開2000−192289号公報(発明の実施の形態)
【特許文献2】特開平7−238394号公報(特許請求の範囲)
【0010】
【発明が解決しようとする課題】
従来の電解めっきにおける大きな課題として、めっき厚みの面内ばらつきがあった。ばらつきが生じる原因は、陽極−陰極間に通電した際に、めっき浴中に電流分布の不均一が生じるためである。そこで、めっき槽構造の最適化や、陽極−陰極間に電流遮蔽板を導入することで、電流分布を均一化させることがおこなわれている。
【0011】
電解めっきにおける厚み制御は、電流−時間積の管理によっておこなわれる。電解硫酸銅めっきの場合、原理上ではほぼ100%の電流効率が得られるが、製品以外の箇所にも析出するために実質上の電流効率は低下する。そこで、製品以外の箇所に付着するのを防止するための防着加工もおこなわれる。
【0012】
用いられるめっき槽の規模は様々であるが、通常は、製品サイズと比してかなり大きな浴槽が用意される。例えば、90cm幅の連続した導電性シートにめっき加工をおこなう場合、小さめに見積もって、幅100cm、シート長手方向に20cm、深さ100cmのめっき槽を用意したとすると、この場合でもめっき液量は200リットルにもなる。そのため、常時ろ過設備や攪拌設備も大規模にならざるを得なかった。
【0013】
【課題を解決するための手段】
上記課題を解決するため請求項1のめっき方法は、導電性シート上に金属めっき膜を形成する電解めっき方法において、前記導電性シートと前記導電性シート表面から間隔をおいて設置された回転ローラーとの間に、めっき液を保持しながらめっきをおこなうことを特徴とする。
【0014】
請求項2のめっき方法は、前記回転ローラーは表面凹凸を有することを特徴とする。
【0015】
請求項3のめっき方法は、前記導電性シートが連続した導電性シートであることを特徴とする。
【0016】
請求項4のめっき装置は、導電性シート上に金属めっき膜を形成する電解めっき装置において、前記導電性シート表面と前記導電性シート表面から間隔をおいて設置された回転ローラーとの間にめっき液を保持しながらめっきをおこなうことを特徴とする。
【0017】
請求項5のめっき装置は、前記導電性シートと前記ローラー間の間隔を調整する機構を有することを特徴とする。
【0018】
【実施の形態】
次に本発明を添付図面に基づいて説明する。
【0019】
図1は、本発明の一実施例で、連続した導電性シート4の導電性側は給電ローラー6により電源7の負極側に接続されている。一方、液パン8の中にはアノード5が設置されている。めっき液9は下側ローラー1の回転により汲み出され、下側ローラー1の頂上部と導電性シート4の間に液溜り3が形成される。電流が、液溜り3を介してアノード5から導電性シート4に向かって流れることにより、導電性シート4上にめっき膜が形成される。
【0020】
めっき厚みのコントローラーは、電流量と導電性シートの搬送速度により調整されるが、電流量には最適値が存在する。電流量が低い場合はめっき膜の光沢が得られず、高い場合は分極による通電阻害、電気分解による水素ガスの発生が生じる。さらに結晶粒の局部的な成長により、めっき膜もざらついたものとなってしまう。電解硫酸銅めっきの場合、電流量は添加剤により最適値が設けられるが、0.005〜0.04A/cm程度である。従って実際には、電流量を固定して、導電性シートの搬送速度によりめっき膜厚を調整することが好ましい。
【0021】
また導電性シートとして、ポリエチレンテレフタレートやポリイミドなどのプラスチックフィルム上に、銅などの金属をスパッタリングや真空蒸着により形成したものなどが例示できるが、導電性であれば特に制限はない。ここでプラスチックフィルムの材質としては上記した2つ以外にも特に制限はなく、さらに織物であっても構わない。
【0022】
下側ローラー1の表面
下側ローラー1の表面に設けられる凹凸形状や加工方法について特に制限は無い。下側ローラー1の表面への凹凸の付与は、機械的なパンチングや押し込み、レーザーなどを用いておこなわれる。形状として、斜線型、カップ型、亀甲型など各種形状が例示される。凹凸形状のサイズについても特に制限はない。しかし、めっきに必要な電流は、下側ローラー1表面のめっき液に沿って流れる。十分な電流量を確保するため、凹凸形状やサイズが適宜選択される。
【0023】
間隔調整
シート表面と回転ローラーの間隔は、非常に重要なパラメーターである。この間隔は少なくともめっき液が、シート表面とローラー間に保持されるためにある程度のサイズ以下に設定しなければならない。このサイズはめっき液の表面張力や粘度によって決められる。間隔を調整するためには、図1の上側ローラー2あるいは図2のガイドローラー10を上下方向に可動にしておけばよい。
【0024】
図2は、本発明の他の実施例で、連続した導電性シート4を2つのガイドローラー10で支えている。連続した導電性シート4へのめっき膜形成に関する装置構成例について2つを例示したが、導電性シートが板状の場合でも本発明は有効である。その場合、装置構成などが図1、図2と異なることになるが、板状導電性シートの表面から間隔をおいて設置された回転ローラーとの間に、めっき液を保持しながらめっきをおこなうめっき方法であれば全ての場合が含まれる。
【0025】
本発明におけるめっき方法においては、導電性シートの液溜りに接触する箇所のみがめっきされる。従って、めっき以外に消費される電流はほぼゼロと出来るので電流効率は100%に近づく。また、シート幅方向(図1の奥行き方向)に厚みばらつきを生じせしめるような電流分布が生じないため、厚みばらつきが抑えられる。さらに、装置構成上、使用するめっき液量は従来のめっき槽と比較して非常に少ない。このため、ろ過設備や廃液処理設備なども小規模となり、便宜性が高まる。また、めっき液は下側ローラーの回転により常に攪拌されているため、攪拌設備も小規模となる。
【0026】
なお図1の導電性シート4は、通常前処理ならびに後処理をおこなう。これらの設備については公知なものが適用できる。
【0027】
【実施例】
以下、実施例によって詳細を示す。
[実施例1]
【0028】
めっき液1リットル当り、硫酸銅80g、硫酸200g、塩素イオン60mg、添加剤(奥野製薬工業株式会社製トップルチナH−380)2.5mlを純水に加え、めっき液を作製した。
【0029】
下側ロールとして、表面形状が間隔0.5mmおきに斜線が刻まれたロールを用いた。斜線部の深さは0.5mmとした。めっき液を液パンに入れ、下側ロールを表面速度15m/minで回転始動した。なお該ローラーの直径は150mmである。
【0030】
連続した導電性シートして、厚さ125μmのポリエチレンテレフタレートフィルム表面にスパッタリング法により厚み0.3μmの銅を形成したシートを用いた。このシートの表面抵抗は約1Ω/□であった。
【0031】
この導電性シートを回転始動した下側ロールにタッチさせ、速度3cm/minにて送りを開始した。
【0032】
次に、電流密度0.04A/cmとなるように電流量をコントロールして通電を開始した。得られた銅膜の厚みは、スパッタ膜を含めて約1μmであった。
【0033】
【発明の効果】
本発明は、従来のめっき浴方式と異なり、厚み制御がしやすく、厚み分布が均一で、めっき液量が少量ですむ効果がある。
【図面の簡単な説明】
【図1】本発明に係るめっき装置の一実施例を示す概略図。
【図2】本発明に係るめっき装置の他の実施例を示す概略図。
【符号の説明】
1 下側ローラー
2 上側ローラー
3 液溜り
5 アノード
4 連続導電性シート
6 給電ローラー
7 電源
8 液パン
9 めっき液
10 ガイドローラー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for forming a plating film on a sheet.
[0002]
[Prior art]
Various types of electrolytic plating are used in the manufacture of TAB (Tape Automated Bonding), FPC (Flexible Printed Circuit), various wiring substrates such as printed wiring boards, electromagnetic wave shielding members, ultrasonic oscillation base materials, transfer belts for copying machines, and the like. And an electroless plating method is used. Specifically, a metal base film such as copper is formed in advance on a plastic substrate such as polyimide, polyethylene terephthalate (PET), or glass epoxy by a sputtering method, a vacuum evaporation method, or the like. It turns into a film. Although an electroless plating method may be used for the formation of the base film, the thickness is generally increased by electrolytic plating. In order to increase the film thickness, the anode and the conductive substrate are placed opposite to each other in a bath in which a plating solution is stored, and power is supplied to both electrodes.
[0003]
As a material, copper having excellent conductivity is often used. Therefore, the following mainly describes electroless and electrolytic copper plating. However, in the present invention, metal plating other than copper, for example, nickel plating, electrolytic chromium plating, electroless gold plating, or plating by dispersing fine particles in a plating bath is performed. Composite plating to be performed can also be used.
[0004]
Electroless plating Electroless copper plating is a method of depositing metallic copper by adding a reducing agent to an alkaline solution containing a copper compound and a complexing agent. The deposited metallic copper becomes an autocatalyst as it is, and the deposition reaction proceeds continuously. As the precipitation reaction proceeds, the copper solution, formaldehyde, and hydroxide ions in the plating solution become insufficient, so the concentration of these reactive species is constantly analyzed and replenishment of depletion is performed to maintain a constant deposition rate. .
[0005]
Electrolytic copper plating The electrolytic copper plating method is further classified into copper sulfate plating and copper cyanide plating. Here, copper sulfate plating will be mainly described.
The plating solution for copper sulfate plating is a solution in which sulfuric acid and copper sulfate are mixed and dissolved as main components, and an additive and chlorine are added thereto. In the copper sulfate plating bath, divalent copper ions are generated by ionization of copper sulfate, and when energization is started, the copper ions receive (reduce) electrons and deposit on the cathode. At the anode (copper anode), copper loses electrons (is oxidized) to become divalent copper ions and dissolves in the bath, whereby copper ions are replenished. The additive is introduced for leveling of the film, and is used in combination with an organic sulfur compound such as sulfopropyl disulfide, an organic nitrogen compound such as an azo dye, and a polymer surfactant such as polyethylene glycol.
[0006]
In these electrolytic and electroless platings, it is very important to maintain a constant solution by controlling the solution, and to maintain plating quality, and various proposals have been made for a management method therefor. In addition, a constant filtration facility for removing anode slime generated at the time of electrolytic copper plating, a stirring facility for preventing a current from being hindered by polarization, and the like are provided.
Pre-treatment and post-treatment of the substrate are important for obtaining a high-quality plating film. As pretreatment of the substrate, degreasing, washing with water, and the like are performed, and in the case of electroless copper plating, blast treatment or palladium activation is required. As the post-treatment, a series of steps such as water washing, rust prevention treatment, and drying operation are prepared.
[0007]
Although the present invention relates to electrolytic plating, it has been described above because it is also effective for electroless plating. Hereinafter, problems in the electrolytic plating will be described.
It should be noted that patterning (wiring processing) is performed in order to serve as an electronic component or an electromagnetic wave shielding material. As a patterning method, an additive method, a subtraction method, and the like are generally used.
[0008]
As a continuous plating method of a conductor film, there is a method of passing a conductor film through a plating tank containing a plating solution (for example, see Patent Document 1). In addition, there is a method of spraying a plating solution onto a conductive film (for example, see Patent Document 2).
[0009]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-192289 (Embodiment of the Invention)
[Patent Document 2] Japanese Patent Application Laid-Open No. 7-238394 (Claims)
[0010]
[Problems to be solved by the invention]
A major problem in conventional electrolytic plating is in-plane variation in plating thickness. The cause of the variation is that when current flows between the anode and the cathode, the current distribution becomes uneven in the plating bath. Therefore, the current distribution is made uniform by optimizing the plating tank structure and introducing a current shielding plate between the anode and the cathode.
[0011]
The thickness control in the electrolytic plating is performed by controlling the current-time product. In the case of electrolytic copper sulfate plating, a current efficiency of almost 100% can be obtained in principle, but the current efficiency is substantially reduced because it is also deposited at places other than the product. Therefore, an anti-adhesion process is also performed to prevent adhesion to places other than products.
[0012]
The scale of the plating bath used varies, but usually a bathtub which is considerably larger than the product size is prepared. For example, when plating a continuous conductive sheet having a width of 90 cm, if a plating tank having a width of 100 cm, a length of 20 cm in the sheet longitudinal direction, and a depth of 100 cm is prepared by estimating a small size, the amount of the plating solution is also in this case. It will be 200 liters. Therefore, the continuous filtration equipment and the stirring equipment had to be large-scale.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a plating method according to claim 1, wherein in the electrolytic plating method of forming a metal plating film on a conductive sheet, a rotating roller provided at a distance from the conductive sheet and the surface of the conductive sheet. And performing plating while holding a plating solution.
[0014]
A plating method according to a second aspect is characterized in that the rotating roller has surface irregularities.
[0015]
The plating method according to claim 3 is characterized in that the conductive sheet is a continuous conductive sheet.
[0016]
5. The electroplating apparatus according to claim 4, wherein the electroplating apparatus forms a metal plating film on a conductive sheet, wherein the plating is performed between a surface of the conductive sheet and a rotating roller provided at a distance from the surface of the conductive sheet. The plating is performed while holding the solution.
[0017]
A plating apparatus according to a fifth aspect is characterized in that the plating apparatus has a mechanism for adjusting a distance between the conductive sheet and the roller.
[0018]
Embodiment
Next, the present invention will be described with reference to the accompanying drawings.
[0019]
FIG. 1 shows an embodiment of the present invention, in which a conductive side of a continuous conductive sheet 4 is connected to a negative side of a power supply 7 by a power supply roller 6. On the other hand, the anode 5 is provided in the liquid pan 8. The plating solution 9 is pumped out by the rotation of the lower roller 1, and a liquid pool 3 is formed between the top of the lower roller 1 and the conductive sheet 4. When a current flows from the anode 5 to the conductive sheet 4 through the liquid reservoir 3, a plating film is formed on the conductive sheet 4.
[0020]
The plating thickness controller is adjusted according to the amount of current and the transport speed of the conductive sheet, and there is an optimum value for the amount of current. When the amount of current is low, the gloss of the plating film cannot be obtained, and when the amount of current is high, energization is inhibited by polarization, and hydrogen gas is generated by electrolysis. Furthermore, the plating film becomes rough due to the local growth of crystal grains. In the case of electrolytic copper sulfate plating, the current amount is optimally set depending on the additive, but is about 0.005 to 0.04 A / cm 2 . Therefore, in practice, it is preferable to fix the amount of current and adjust the plating film thickness by the transport speed of the conductive sheet.
[0021]
Examples of the conductive sheet include a sheet formed by forming a metal such as copper on a plastic film such as polyethylene terephthalate or polyimide by sputtering or vacuum deposition. However, there is no particular limitation as long as the sheet is conductive. Here, the material of the plastic film is not particularly limited other than the above two, and may be a woven fabric.
[0022]
Surface of lower roller 1 There is no particular limitation on the uneven shape and processing method provided on the surface of lower roller 1. The provision of the unevenness on the surface of the lower roller 1 is performed using mechanical punching, pushing, laser or the like. Examples of the shape include various shapes such as an oblique line type, a cup type, and a tortoiseshell type. There is no particular limitation on the size of the uneven shape. However, the current required for plating flows along the plating solution on the surface of the lower roller 1. In order to secure a sufficient amount of current, the uneven shape and size are appropriately selected.
[0023]
Spacing Adjustment The spacing between the sheet surface and the rotating roller is a very important parameter. This interval must be set to a certain size or less so that at least the plating solution is held between the sheet surface and the roller. This size is determined by the surface tension and viscosity of the plating solution. In order to adjust the interval, the upper roller 2 in FIG. 1 or the guide roller 10 in FIG. 2 may be vertically movable.
[0024]
FIG. 2 shows another embodiment of the present invention, in which a continuous conductive sheet 4 is supported by two guide rollers 10. Although two examples of the apparatus configuration relating to the formation of the plating film on the continuous conductive sheet 4 have been described, the present invention is effective even when the conductive sheet is plate-shaped. In this case, although the apparatus configuration and the like are different from those in FIGS. 1 and 2, plating is performed while holding a plating solution between a surface of the plate-shaped conductive sheet and a rotating roller provided at an interval. All cases are included if it is a plating method.
[0025]
In the plating method according to the present invention, only a portion of the conductive sheet that contacts the liquid pool is plated. Therefore, the current consumed other than plating can be made almost zero, and the current efficiency approaches 100%. Further, since there is no current distribution that causes thickness variations in the sheet width direction (the depth direction in FIG. 1), thickness variations are suppressed. Further, the amount of the plating solution used is very small in comparison with a conventional plating tank due to the configuration of the apparatus. For this reason, the filtration equipment and the waste liquid treatment equipment are also reduced in scale, and convenience is enhanced. Further, since the plating solution is constantly stirred by the rotation of the lower roller, the size of the stirring equipment is small.
[0026]
The conductive sheet 4 shown in FIG. 1 is usually subjected to pre-treatment and post-treatment. Known equipment can be applied to these facilities.
[0027]
【Example】
Hereinafter, details will be described with reference to examples.
[Example 1]
[0028]
80 g of copper sulfate, 200 g of sulfuric acid, 60 mg of chloride ions, and 2.5 ml of an additive (Top Lucina H-380 manufactured by Okuno Pharmaceutical Co., Ltd.) were added to pure water per liter of the plating solution to prepare a plating solution.
[0029]
As the lower roll, a roll whose surface shape was obliquely cut at intervals of 0.5 mm was used. The depth of the hatched portion was 0.5 mm. The plating solution was put into a solution pan, and the lower roll was started to rotate at a surface speed of 15 m / min. The diameter of the roller is 150 mm.
[0030]
As a continuous conductive sheet, a sheet in which 0.3 μm thick copper was formed on the surface of a 125 μm thick polyethylene terephthalate film by a sputtering method was used. The surface resistance of this sheet was about 1 Ω / □.
[0031]
This conductive sheet was touched to the lower roll that started rotating, and feeding was started at a speed of 3 cm / min.
[0032]
Next, energization was started by controlling the amount of current so that the current density became 0.04 A / cm 2 . The thickness of the obtained copper film was about 1 μm including the sputtered film.
[0033]
【The invention's effect】
The present invention is different from the conventional plating bath system in that the thickness is easily controlled, the thickness distribution is uniform, and the amount of the plating solution is small.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a plating apparatus according to the present invention.
FIG. 2 is a schematic view showing another embodiment of the plating apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lower roller 2 Upper roller 3 Liquid pool 5 Anode 4 Continuous conductive sheet 6 Power supply roller 7 Power supply 8 Liquid pan 9 Plating solution 10 Guide roller

Claims (5)

導電性シート上に金属めっき膜を形成する電解めっき方法において、前記導電性シートと前記導電性シート表面から間隔をおいて設置された回転ローラーとの間に、めっき液を保持しながらめっきをおこなうことを特徴とするめっき方法。In the electrolytic plating method for forming a metal plating film on a conductive sheet, plating is performed while holding a plating solution between the conductive sheet and a rotating roller provided at an interval from the conductive sheet surface. A plating method characterized in that: 前記回転ローラーは表面凹凸を有することを特徴とする請求項1に記載のめっき方法。The plating method according to claim 1, wherein the rotating roller has surface irregularities. 前記導電性シートが連続した導電性シートであることを特徴とする請求項1〜2のいずれかに記載のめっき方法。The plating method according to claim 1, wherein the conductive sheet is a continuous conductive sheet. 導電性シート上に金属めっき膜を形成する電解めっき装置において、前記導電性シート表面と前記導電性シート表面から間隔をおいて設置された回転ローラーとの間にめっき液を保持しながらめっきをおこなうことを特徴とするめっき装置。In an electroplating apparatus for forming a metal plating film on a conductive sheet, plating is performed while holding a plating solution between the conductive sheet surface and a rotating roller provided at an interval from the conductive sheet surface. A plating apparatus. 前記導電性シートと前記ローラー間の間隔を調整する機構を有することを特徴とする請求項4に記載のめっき装置。The plating apparatus according to claim 4, further comprising a mechanism for adjusting a distance between the conductive sheet and the roller.
JP2003095945A 2003-03-31 2003-03-31 Plating method and device Pending JP2004300538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095945A JP2004300538A (en) 2003-03-31 2003-03-31 Plating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095945A JP2004300538A (en) 2003-03-31 2003-03-31 Plating method and device

Publications (1)

Publication Number Publication Date
JP2004300538A true JP2004300538A (en) 2004-10-28

Family

ID=33408151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095945A Pending JP2004300538A (en) 2003-03-31 2003-03-31 Plating method and device

Country Status (1)

Country Link
JP (1) JP2004300538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009326A (en) * 2005-06-03 2007-01-18 Fujifilm Corp Plating method, electrically conductive film, and light-transmitting electromagnetic wave shield film
CN103628105A (en) * 2013-12-13 2014-03-12 昆山亿诚化工容器有限公司 Electroplating device
CN115323451A (en) * 2022-09-20 2022-11-11 西安泰金工业电化学技术有限公司 Method for electroplating copper on surface of plastic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009326A (en) * 2005-06-03 2007-01-18 Fujifilm Corp Plating method, electrically conductive film, and light-transmitting electromagnetic wave shield film
CN103628105A (en) * 2013-12-13 2014-03-12 昆山亿诚化工容器有限公司 Electroplating device
CN115323451A (en) * 2022-09-20 2022-11-11 西安泰金工业电化学技术有限公司 Method for electroplating copper on surface of plastic film

Similar Documents

Publication Publication Date Title
JP5417112B2 (en) Method for electrolytic deposition of metal layers
JP4740632B2 (en) Improved plating method
CN101827957A (en) Metal covered polyimide composite, process for producing the composite, and apparatus for producing the composite
KR100996599B1 (en) Method for manufacturing plated film, cathode roll for plating, and method for manufacturing circuit board
JP5652587B2 (en) Method for producing copper-coated polyimide substrate and electroplating apparatus
JP4521146B2 (en) Method and apparatus for the electrolysis of electrically conductive structures electrically isolated from each other on the surface of an electrically insulating foil material and the use of said method
US6939455B1 (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method
JPH06228791A (en) Electroplating device
CN102839398A (en) Method and apparatus for manufacturing metal foil
JP7070012B2 (en) Electroplating equipment and method for manufacturing metal-clad laminates
JP2004300538A (en) Plating method and device
JP2022547336A (en) Manufacturing equipment and manufacturing method for lead frame surface roughness
JP2010236037A (en) Plating method of copper foil and plating apparatus therefor
JP6221817B2 (en) Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same
JP2013513021A (en) Apparatus and method for making electrical contact with processing material in an electroplating apparatus
JP5751530B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP2020084279A (en) Copper-clad laminate and manufacturing method copper-clad laminate
JP2004018975A (en) Plating method
US7767074B2 (en) Method of etching copper on cards
TWI359215B (en) Device and method for electrolytically treating fl
JP2012241236A (en) Electroless plating apparatus, electroless plating method and method for manufacturing wiring circuit board
JP2002371399A (en) Plating method and plating apparatus therefor
JPH0635665B2 (en) Method for dissolving copper particles formed during electroless copper coating
CN219099370U (en) Cathode conductive mechanism and electroplating device
CN110777423B (en) Tin stripping liquid and method for recovering tin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619