JP2004364116A - Array antenna device - Google Patents
Array antenna device Download PDFInfo
- Publication number
- JP2004364116A JP2004364116A JP2003162248A JP2003162248A JP2004364116A JP 2004364116 A JP2004364116 A JP 2004364116A JP 2003162248 A JP2003162248 A JP 2003162248A JP 2003162248 A JP2003162248 A JP 2003162248A JP 2004364116 A JP2004364116 A JP 2004364116A
- Authority
- JP
- Japan
- Prior art keywords
- linear
- metal reflector
- array antenna
- antenna device
- antennas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、アレーアンテナ装置に関し、アンテナの素子間相互結合に起因する素子パターンの歪みを補償するとともに、無給電素子を用いて素子パターンを整形するアレーアンテナ装置に関する。
【0002】
【従来の技術】
従来は、図11に示すようなアレーアンテナ装置が用いられていた(非特許文献1)。
本装置は、2本の線状アンテナa1,a2、平面金属反射板、素子間結合補償装置から構成されており、線状アンテナa1,a2の給電点は素子間結合補償装置に接続され、また、素子間結合補償装置はDBF(digital beam forming)に接続される。素子間結合補償装置を通してアンテナa1,a2を給電するアレーアンテナ装置において、該線状アンテナa1,a2は互いに平行であり、且つ両アンテナとも平面金属反射板に平行に配置され、線状アンテナa1,a2間の相互インピーダンス行列Z、所望入力信号行列をSとして、相互インピーダンス行列Zの逆行列Z−1を計算し、所望入力信号行列SにZ−1をかけた信号行列S’(=Z−1・S)を素子間結合補償装置における各アンテナの入力信号とすることを特徴とするアレーアンテナ装置である。
【0003】
本装置を用いた場合の素子パターン解析結果を図12に示す。
素子間結合の補償により、素子間結合の影響は除去され素子単独時のパターン(図12(c)参照)に復元されているが、パターンの歪みは補償されておらず、60度から120度の範囲において約2dBの歪みが生じている(図12(b))。つまり、相互インピーダンスに基づく素子間相互結合の補償のみでは、パターンの非対称性などのアンテナ構造に起因する素子パターンの歪みを補償することができない。このため、アダプティブ制御を正確に行うにはアレーアンテナの構成を予め決めて行う必要があり、個々のアレーアンテナに適合した制御プログラムが必要となる。したがって、アダプティブアンテナの制御プログラム作成が煩雑となり、また労力がかかるという欠点がある。一方、アダプティブアンテナの制御プログラムを統一すると、上記のようなアレー化による放射パターンの変形による影響を受けるため特性が劣化するという欠点がある。
【0004】
【非特許文献1】
岡野由樹、常川光一、「ディジタル処理によるパターン歪の可能性に関する検討」、2003年電子情報通信学会総合大会、B−1−109、2003
【0005】
【発明が解決しようとする課題】
従来のアレーアンテナ装置は、アレー化による各アンテナの放射パターンの変形があり(図4(a)参照)、この現象を含めた制御を行うとアダプティブ制御ソフトが煩雑になる、または、この現象を無視して制御を行うと性能が落ちるという欠点があった。
【0006】
【課題を解決するための手段】
本発明は、2本の線状アンテナa1,a2、2本の線状無給電素子p1,p2、平面金属反射板、素子間結合補償装置から構成され、2本の線状アンテナa1,a2の給電点は素子間結合補償装置に接続されており、素子間結合補償装置を通してアンテナa1,a2を給電するアレーアンテナ装置において、
該線状アンテナa1,a2は互いに平行であり、且つ両アンテナとも平面金属反射板に平行に配置され、また同様に線状無給電素子p1,p2が平面金属反射板に平行に配置され、線状無給電素子p1は線状アンテナa1を含み平面金属反射板と直交する平面で2分割された平面金属反射板のアンテナ側の空間のうち、アンテナa2が存在しない空間に配置され、また線状無給電素子p2は、線状アンテナa2を含み平面金属反射板と直交する平面で2分割された平面金属反射板のアンテナ側空間のうち、アンテナa1が存在しない空間に配置されることを特徴とする。
本発明は、複数のアンテナが動作して所望のアンテナ特性を得るアレーアンテナ装置において、図4(b)に示すように歪みのない素子パターンP1,P2,・・・,PNを有するアレーアンテナ装置を容易に実現できる。
【0007】
【発明の実施の形態】
(実施例1)
本発明の実施例1のアレーアンテナ装置の構成を図1に示す。
本装置は、2本の線状アンテナa1,a2、2本の線状無給電素子p1,p2、平面金属反射板、素子間結合補償装置から構成されている。図2は、アンテナ部の構成例である。アンテナの近傍に平面金属反射板を配置し、さらにパターン整形用の無給電素子を配置している。図3は、素子間結合補償装置の演算処理である。図3(a)の状態において相互インピーダンスを推定し、アンテナ素子間相互結合行列Zを導出する。この素子間相互結合行列Zの逆行列Z−1を用いて補償ウェイトwを算出し補償演算処理を行うことで、図3(c)に示す素子間結合の影響のない素子単独の状態の素子パターンを実現できる。
図5は、本装置の素子パターン解析結果である。図5(a)の相互結合がある場合、パターンは左右非対称となり60度から120度の範囲において約4dBの歪みが生じている。一方、図5(b)の補償を行った場合には、図5(c)の素子単独の場合と同様左右対称の素子パターンとなり、歪みのないパターンが実現されている。
すなわち、無給電素子を適切な位置に配置するとともに適宜絶縁体を用いて固定し、更に素子間結合補償を行うことで、各素子に歪みのない放射パターンが得られる。これは、各々単独の効果ではなく、無給電素子の配置と素子間結合補償を同時に行うことではじめて得られるものであり、アダプティブアレーアンテナにおいては容易に実現が可能である。
【0008】
(実施例2)
本発明の実施例2のアレーアンテナ装置の構成及び無給電素子の長さに対する歪み量の解析結果を図6に示す。
本装置は、2本の線状アンテナa1,a2、2本の線状無給電素子p1,p2、平面金属反射板、素子間結合補償装置から構成されている。平面金属反射板の近傍に配置した線状アンテナa1、a2の素子長を約0.5λとして、線状無給電素子p1,p2の素子長Lをパラメータとすると、パターンの歪み量は図6下図のように変化し、L=0.45λ付近において歪み量は最小となる。つまり、線状無給電素子p1,p2が線状アンテナa1,a2より各々わずかに短くなるように設定することで、歪みのない素子パターンを有するアレーアンテナ装置を実現できる。
【0009】
(実施例3)
本発明の実施例3のアレーアンテナ装置の構成及び無給電素子と平面金属反射板との距離に対する歪み量の解析結果を図7に示す。
本装置は、2本の線状アンテナa1,a2、2本の線状無給電素子p1,p2、平面金属反射板、素子間結合補償装置から構成されている。線状無給電素子p1,p2を線状アンテナa1,a2より各々わずかに短く設定し、線状無給電素子p1,p2と平面金属反射板との距離Dをパラメータとすると、パターンの歪み量は図7下図のように変化し、D=0.05λ付近において歪み量は最小となる。つまり、線状無給電素子p1,p2を平面金属反射板の両端に近接して配置した場合に、歪みのない素子パターンを有するアレーアンテナ装置を実現できる。
【0010】
(実施例4)
本発明の実施例4のアレーアンテナ装置の構成及び無給電素子のオフセット量に対する歪み量の解析結果を図8に示す。
本装置は、2本の線状アンテナa1,a2、2本の線状無給電素子p1,p2、平面金属反射板、素子間結合補償装置から構成されている。平面金属反射板の両端からの線状無給電素子p1,p2の位置Oをパラメータとすると、パターンの歪み量は図8下図のように変化し、O=0付近において歪み量は最小となり、O<0の範囲では歪み量は非常に小さい。つまり、線状無給電素子p1,p2を平面金属反射板の両端または両端よりも内側に配置した場合に、歪みのない素子パターンを有するアレーアンテナ装置を実現できる。
【0011】
(実施例5)
本発明の実施例5のアレーアンテナ装置の構成を図9に示す。
本装置は、2本の線状アンテナa1,a2、2本の線状無給電素子p1,p2、平面金属反射板、素子間結合補償装置から構成されている。平面金属反射板を一辺1.0λの正方形とし、平面金属反射板から約0.25λの距離に素子長約0.5λのアンテナを約0.5λ間隔で配置し、反射板の両端に素子長約0.45λの無給電素子を反射板から約0.05λと近接して配置している。
図10は、本装置を用いた場合の素子パターン解析結果である。図10(a)の相互結合がある場合には、60度から120度の範囲においてパターンに約4dBの歪みを生じているが、図10(b)の補償をした場合には、図10(c)の素子単独の場合と左右対称の素子パターンとなり、歪みのないパターンが実現されている。
【0012】
【発明の効果】
以上説明したように複数のアンテナが動作して所望のアンテナ特性を得るアレーアンテナ装置において、素子間結合補償装置を用いてアンテナの素子間相互結合に起因する素子パターンの歪みを補償するとともに、無給電素子を用いて素子パターンを整形して、歪みのない素子パターンを有するアレーアンテナ装置を提供することができる。
【図面の簡単な説明】
【図1】本発明のアレーアンテナ装置の構成を示す図。
【図2】本発明のアンテナ部の構成を示す図。
【図3】素子間結合補償装置における演算処理を説明する図。
【図4】本発明の解決すべき課題の概念図。
【図5】実施例1のアレーアンテナ装置の素子パターン解析結果を示す図。
【図6】実施例2のアレーアンテナ装置の構成及び無給電素子の長さに対する歪み量の解析結果を示す図。
【図7】実施例3のアレーアンテナ装置の構成及び無給電素子と平面金属反射板との距離に対する歪み量の解析結果を示す図。
【図8】実施例4のアレーアンテナ装置のアンテナ構成及び無給電素子のオフセット量に対する歪み量の解析結果を示す図。
【図9】実施例5のアレーアンテナ装置の構成を示す図。
【図10】実施例5のアレーアンテナ装置の素子パターン解析結果を示す図。
【図11】従来のアレーアンテナ装置の構成を示す図。
【図12】従来のアレーアンテナ装置の素子パターン解析結果を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an array antenna device, and more particularly to an array antenna device that compensates for distortion of an element pattern due to mutual coupling between elements of an antenna and shapes an element pattern using a parasitic element.
[0002]
[Prior art]
Conventionally, an array antenna device as shown in FIG. 11 has been used (Non-Patent Document 1).
This device is composed of two linear antennas a 1 and a 2 , a plane metal reflector, and an inter-element coupling compensator. The feed points of the linear antennas a 1 and a 2 are connected to the inter-element coupling compensator. Also, the inter-element coupling compensation device is connected to a DBF (digital beam forming). In an array antenna device that feeds antennas a 1 and a 2 through an inter-element coupling compensator, the linear antennas a 1 and a 2 are parallel to each other, and both antennas are disposed parallel to a plane metal reflector, and With the mutual impedance matrix Z between the antennas a 1 and a 2 and the desired input signal matrix as S, an inverse matrix Z −1 of the mutual impedance matrix Z is calculated, and the desired input signal matrix S is multiplied by Z −1. An array antenna device characterized in that S ′ (= Z −1 · S) is used as an input signal of each antenna in the inter-element coupling compensation device.
[0003]
FIG. 12 shows an element pattern analysis result when this apparatus is used.
By compensating the coupling between the elements, the influence of the coupling between the elements is removed and the pattern of the element alone is restored (see FIG. 12C). However, the distortion of the pattern is not compensated, and the pattern distortion is not changed from 60 degrees to 120 degrees. (FIG. 12 (b)). That is, only the compensation of the mutual coupling between the elements based on the mutual impedance cannot compensate for the distortion of the element pattern due to the antenna structure such as the asymmetry of the pattern. For this reason, in order to accurately perform adaptive control, it is necessary to determine the configuration of the array antenna in advance, and a control program suitable for each array antenna is required. Therefore, there is a drawback in that the control program creation of the adaptive antenna becomes complicated and labor is required. On the other hand, if the control program of the adaptive antenna is unified, there is a disadvantage that the characteristics are deteriorated because the control is influenced by the deformation of the radiation pattern due to the above-mentioned array.
[0004]
[Non-patent document 1]
Yuki Okano and Koichi Tsunekawa, "Study on Possibility of Pattern Distortion by Digital Processing," IEICE General Conference, 2003, B-1-109, 2003
[0005]
[Problems to be solved by the invention]
In the conventional array antenna device, the radiation pattern of each antenna is deformed due to the array (see FIG. 4A), and if control including this phenomenon is performed, adaptive control software becomes complicated or this phenomenon is reduced. There is a disadvantage that the performance is reduced if the control is ignored.
[0006]
[Means for Solving the Problems]
The present invention comprises two linear antennas a 1 and a 2 , two linear parasitic elements p 1 and p 2 , a planar metal reflector, and an inter-element coupling compensator, and two linear antennas a 1 and a 2 . The feed points of a 1 and a 2 are connected to an inter-element coupling compensator, and in an array antenna apparatus that feeds the antennas a 1 and a 2 through the inter-element coupling compensator,
The linear antennas a 1 and a 2 are parallel to each other, and both antennas are arranged parallel to the plane metal reflector. Similarly, the linear parasitic elements p 1 and p 2 are arranged parallel to the plane metal reflector. It is arranged, among the linear parasitic element p 1 is the antenna side of the space of the two divided planar metal reflector in a plane perpendicular to the planar metal reflector comprises a linear antenna a 1, a space antenna a 2 absence It arranged, also linear parasitic element p 2, of the antenna side space of 2 divided planar metal reflector in a plane perpendicular to the planar metal reflector comprises a linear antenna a 2, there is an antenna a 1 It is characterized by being arranged in a space that does not.
The present invention has the array antenna apparatus in which a plurality of antennas to obtain the desired antenna characteristics in operation, FIG. 4 element pattern P 1 without distortion as shown in (b), P 2, ··· , a P N An array antenna device can be easily realized.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
FIG. 1 shows the configuration of the array antenna device according to the first embodiment of the present invention.
This device is composed of two linear antennas a 1 and a 2 , two linear parasitic elements p 1 and p 2 , a plane metal reflector, and an inter-element coupling compensation device. FIG. 2 is a configuration example of the antenna unit. A flat metal reflector is arranged near the antenna, and a parasitic element for pattern shaping is arranged. FIG. 3 shows the arithmetic processing of the inter-element coupling compensation device. In the state of FIG. 3A, the mutual impedance is estimated, and a mutual coupling matrix Z between the antenna elements is derived. By calculating the compensation weight w using the inverse matrix Z -1 of the inter-element mutual coupling matrix Z and performing the compensation calculation processing, the element in the element alone state without the influence of the inter-element coupling shown in FIG. A pattern can be realized.
FIG. 5 shows an element pattern analysis result of the present apparatus. When the mutual coupling shown in FIG. 5A is present, the pattern becomes bilaterally asymmetric, and a distortion of about 4 dB occurs in the range of 60 degrees to 120 degrees. On the other hand, when the compensation shown in FIG. 5B is performed, the pattern becomes a symmetrical element pattern as in the case of the element alone shown in FIG. 5C, and a pattern without distortion is realized.
That is, by arranging the parasitic element at an appropriate position, fixing the parasitic element appropriately using an insulator, and performing compensation for coupling between elements, a radiation pattern without distortion in each element can be obtained. This is not an independent effect, but is obtained only by performing the arrangement of the parasitic element and the compensation of the coupling between the elements at the same time, and can be easily realized in the adaptive array antenna.
[0008]
(Example 2)
FIG. 6 shows the configuration of the array antenna apparatus according to the second embodiment of the present invention and the analysis result of the amount of distortion with respect to the length of the parasitic element.
This device is composed of two linear antennas a 1 and a 2 , two linear parasitic elements p 1 and p 2 , a plane metal reflector, and an inter-element coupling compensation device. Assuming that the element lengths of the linear antennas a 1 and a 2 arranged near the flat metal reflector are about 0.5λ and the element lengths L of the linear parasitic elements p 1 and p 2 are parameters, the pattern distortion amount Changes as shown in the lower diagram of FIG. 6, and the distortion amount becomes minimum around L = 0.45λ. That is, by setting the linear parasitic elements p 1 and p 2 to be slightly shorter than the linear antennas a 1 and a 2 , an array antenna device having an element pattern without distortion can be realized.
[0009]
(Example 3)
FIG. 7 shows the configuration of the array antenna apparatus according to the third embodiment of the present invention and the analysis result of the amount of distortion with respect to the distance between the parasitic element and the flat metal reflector.
This device is composed of two linear antennas a 1 and a 2 , two linear parasitic elements p 1 and p 2 , a plane metal reflector, and an inter-element coupling compensation device. When the linear parasitic elements p 1 and p 2 are set slightly shorter than the linear antennas a 1 and a 2 , respectively, and the distance D between the linear parasitic elements p 1 and p 2 and the flat metal reflector is used as a parameter. 7, the distortion amount of the pattern changes as shown in the lower diagram of FIG. 7, and the distortion amount becomes minimum around D = 0.05λ. That is, when the linear parasitic elements p 1 and p 2 are arranged near both ends of the flat metal reflector, an array antenna device having an element pattern without distortion can be realized.
[0010]
(Example 4)
FIG. 8 shows a configuration of the array antenna apparatus according to the fourth embodiment of the present invention and an analysis result of a distortion amount with respect to an offset amount of the parasitic element.
This device is composed of two linear antennas a 1 and a 2 , two linear parasitic elements p 1 and p 2 , a plane metal reflector, and an inter-element coupling compensation device. When the positions O of the linear parasitic elements p 1 and p 2 from both ends of the flat metal reflector are used as parameters, the distortion amount of the pattern changes as shown in the lower diagram of FIG. 8, and the distortion amount becomes minimum near O = 0. , O <0, the distortion amount is very small. That is, when the linear parasitic elements p 1 and p 2 are arranged at both ends of the planar metal reflector or inside the both ends, an array antenna device having an element pattern without distortion can be realized.
[0011]
(Example 5)
FIG. 9 shows the configuration of the array antenna device according to the fifth embodiment of the present invention.
This device is composed of two linear antennas a 1 and a 2 , two linear parasitic elements p 1 and p 2 , a plane metal reflector, and an inter-element coupling compensation device. The plane metal reflector is a square with a side of 1.0λ, and antennas with an element length of about 0.5λ are arranged at a distance of about 0.25λ from the plane metal reflector at an interval of about 0.5λ. A parasitic element of about 0.45λ is arranged close to about 0.05λ from the reflector.
FIG. 10 shows an element pattern analysis result when the present apparatus is used. When the mutual coupling shown in FIG. 10A is present, the pattern is distorted by about 4 dB in the range from 60 degrees to 120 degrees, but when the compensation shown in FIG. The element pattern is symmetrical to the element pattern of c) alone, and a pattern without distortion is realized.
[0012]
【The invention's effect】
As described above, in an array antenna device in which a plurality of antennas operate to obtain desired antenna characteristics, distortion of an element pattern caused by mutual coupling between elements of an antenna is compensated for by using an inter-element coupling compensator. By shaping the element pattern using the feed element, it is possible to provide an array antenna device having an element pattern without distortion.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an array antenna device of the present invention.
FIG. 2 is a diagram showing a configuration of an antenna unit of the present invention.
FIG. 3 is a view for explaining arithmetic processing in the inter-element coupling compensation device.
FIG. 4 is a conceptual diagram of a problem to be solved by the present invention.
FIG. 5 is a diagram showing an element pattern analysis result of the array antenna device of the first embodiment.
FIG. 6 is a diagram illustrating a configuration of the array antenna apparatus according to the second embodiment and an analysis result of a distortion amount with respect to a length of a parasitic element;
FIG. 7 is a diagram illustrating a configuration of an array antenna apparatus according to a third embodiment and an analysis result of a distortion amount with respect to a distance between a parasitic element and a flat metal reflecting plate.
FIG. 8 is a diagram illustrating an antenna configuration of the array antenna apparatus according to the fourth embodiment and an analysis result of a distortion amount with respect to an offset amount of a parasitic element.
FIG. 9 is a diagram illustrating a configuration of an array antenna device according to a fifth embodiment.
FIG. 10 is a diagram showing an element pattern analysis result of the array antenna device of the fifth embodiment.
FIG. 11 is a diagram showing a configuration of a conventional array antenna device.
FIG. 12 is a diagram showing an element pattern analysis result of a conventional array antenna device.
Claims (5)
該線状アンテナa1,a2は互いに平行であり、且つ両アンテナとも平面金属反射板に平行に配置され、また同様に線状無給電素子p1,p2が平面金属反射板に平行に配置され、線状無給電素子p1は線状アンテナa1を含み平面金属反射板と直交する平面で2分割された平面金属反射板のアンテナ側の空間のうち、アンテナa2が存在しない空間に配置され、また線状無給電素子p2は、線状アンテナa2を含み平面金属反射板と直交する平面で2分割された平面金属反射板のアンテナ側の空間のうち、アンテナa1が存在しない空間に配置されることを特徴とするアレーアンテナ装置。It is composed of two linear antennas a 1 and a 2 , two linear parasitic elements p 1 and p 2 , a plane metal reflector, and an inter-element coupling compensator, and two linear antennas a 1 and a 2 2 is connected to the inter-element coupling compensator and feeds the antennas a 1 and a 2 through the inter-element coupling compensator.
The linear antennas a 1 and a 2 are parallel to each other, and both antennas are arranged parallel to the plane metal reflector. Similarly, the linear parasitic elements p 1 and p 2 are arranged parallel to the plane metal reflector. It is arranged, among the linear parasitic element p 1 is the antenna side of the space of the two divided planar metal reflector in a plane perpendicular to the planar metal reflector comprises a linear antenna a 1, a space antenna a 2 absence arranged, also linear parasitic element p 2, of the antenna side of the space of the two divided planar metal reflector in a plane perpendicular to the planar metal reflector comprises a linear antenna a 2, antenna a 1 is An array antenna device arranged in a non-existent space.
線状アンテナa1,a2は平面金属反射板の金属表面近傍に配置され、且つ線状無給電素子p1,p2が線状アンテナa1,a2より各々わずかに短いことを特徴とするアレーアンテナ装置。The array antenna device according to claim 1,
The linear antennas a 1 and a 2 are arranged near the metal surface of the flat metal reflector, and the linear parasitic elements p 1 and p 2 are slightly shorter than the linear antennas a 1 and a 2 , respectively. Array antenna device.
線状無給電素子p1,p2は平面金属反射板の両端に近接して配置されることを特徴とするアレーアンテナ装置。The array antenna device according to claim 1 or 2,
An array antenna device, wherein the linear parasitic elements p 1 and p 2 are arranged close to both ends of a plane metal reflector.
線状無給電素子p1,p2は平面金属反射板の両端または両端よりも内側に配置されることを特徴とするアレーアンテナ装置。The array antenna device according to claim 3,
An array antenna device, wherein the linear parasitic elements p 1 and p 2 are arranged at both ends or inside of both ends of the planar metal reflector.
アレーアンテナ装置の動作周波数の波長をλとし、線状無給電素子p1,p2の長さが各々ほぼ0.45λ、平面金属反射板との距離が各々ほぼ0.05λであることを特徴とするアレーアンテナ装置。The array antenna device according to any one of claims 1 to 4,
The wavelength of the operating frequency of the array antenna device is λ, the lengths of the linear parasitic elements p 1 and p 2 are each approximately 0.45λ, and the distance from the plane metal reflector is approximately 0.05λ. Array antenna device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003162248A JP2004364116A (en) | 2003-06-06 | 2003-06-06 | Array antenna device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003162248A JP2004364116A (en) | 2003-06-06 | 2003-06-06 | Array antenna device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004364116A true JP2004364116A (en) | 2004-12-24 |
Family
ID=34054449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003162248A Pending JP2004364116A (en) | 2003-06-06 | 2003-06-06 | Array antenna device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004364116A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008124595A (en) * | 2006-11-09 | 2008-05-29 | Yokohama National Univ | Calculating method of correction matrix for receiving array antenna, self-correcting method of receiving array antenna, correction matrix calculating devoce for receiving array antenna, and self-correcting device |
JP2009535870A (en) * | 2006-04-28 | 2009-10-01 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for coupling elimination of closely spaced antennas |
JP2012142879A (en) * | 2011-01-06 | 2012-07-26 | Hitachi Cable Ltd | Sector antenna |
JP2014168313A (en) * | 2014-06-19 | 2014-09-11 | Hitachi Metals Ltd | Sector antenna |
-
2003
- 2003-06-06 JP JP2003162248A patent/JP2004364116A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009535870A (en) * | 2006-04-28 | 2009-10-01 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for coupling elimination of closely spaced antennas |
JP4695210B2 (en) * | 2006-04-28 | 2011-06-08 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for coupling elimination of closely spaced antennas |
JP2008124595A (en) * | 2006-11-09 | 2008-05-29 | Yokohama National Univ | Calculating method of correction matrix for receiving array antenna, self-correcting method of receiving array antenna, correction matrix calculating devoce for receiving array antenna, and self-correcting device |
JP4734574B2 (en) * | 2006-11-09 | 2011-07-27 | 国立大学法人横浜国立大学 | Receiving array antenna calibration matrix calculating method, receiving array antenna self-calibrating method, receiving array antenna calibration matrix calculating device, and self-calibrating device |
JP2012142879A (en) * | 2011-01-06 | 2012-07-26 | Hitachi Cable Ltd | Sector antenna |
JP2014168313A (en) * | 2014-06-19 | 2014-09-11 | Hitachi Metals Ltd | Sector antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6661376B2 (en) | Tiled antenna with overlapping subarrays | |
JP6647121B2 (en) | Antenna device, radar device and wireless communication device | |
JP2007288283A (en) | Slot antenna | |
JP5424954B2 (en) | Waveguide slot array antenna | |
US7026998B2 (en) | Stacked microstrip reflect array antenna | |
JP2006517073A (en) | Phase array antenna and inter-element mutual coupling control method | |
JP2010157865A (en) | Dielectric antenna | |
JP2004364116A (en) | Array antenna device | |
JP2018137743A (en) | Reflect array antenna | |
JP2002076743A (en) | Phased array antenna device | |
JP2010252172A (en) | Antenna device | |
KR101751123B1 (en) | Reflect Type Cell Array Antenna with Small Size | |
JP2004104751A (en) | Antenna apparatus, calibrate method which corrects pattern distortion in coupling of antennas, and supergain antenna apparatus | |
JP2006186578A (en) | Antenna using four metal conductors | |
JP4064889B2 (en) | Compound antenna device | |
JP2006108841A (en) | Antenna assembly | |
CN116644615A (en) | Design method and device of array antenna | |
CN106842951B (en) | Electrical performance and control-oriented state space modeling method for spatial mesh antenna | |
Haupt | Calibration of cylindrical reflector antennas with linear phased array feeds | |
JP4444845B2 (en) | Dipole antenna | |
JP2007059967A (en) | Array antenna | |
WO2024160168A1 (en) | Flat lens antenna, beam phase adjustment method, antenna device, and medium | |
Israel et al. | Optimization of Partially Reflected Surfaces with Nonuniformly Sized and Spaced Inclusions for Enhanced Antenna Beam Shaping | |
JPH11205030A (en) | Corner reflector antenna | |
JP2005217864A (en) | Dielectric waveguide slot array antenna |