[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004358288A - Method for washing/desalting incineration ash - Google Patents

Method for washing/desalting incineration ash Download PDF

Info

Publication number
JP2004358288A
JP2004358288A JP2003156186A JP2003156186A JP2004358288A JP 2004358288 A JP2004358288 A JP 2004358288A JP 2003156186 A JP2003156186 A JP 2003156186A JP 2003156186 A JP2003156186 A JP 2003156186A JP 2004358288 A JP2004358288 A JP 2004358288A
Authority
JP
Japan
Prior art keywords
dust
soot
washing
inorganic powder
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003156186A
Other languages
Japanese (ja)
Inventor
Yoshikazu Fukuhara
吉和 福原
Toshio Imai
敏夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003156186A priority Critical patent/JP2004358288A/en
Publication of JP2004358288A publication Critical patent/JP2004358288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a washing/desalting method which removes water-soluble salts efficiently by washing incineration ash (main ash and soot and dust) produced when combustible waste is incinerated. <P>SOLUTION: Soot and dust produced when the combustible waste is incinerated are incorporated with inorganic powder of 10-200 μm in average particle size (can be inorganic powder the average particle size of which is adjusted to be 10-200 μm by crushing), and the mixture is incorporated with water to make slurry. The slurry is separated into inorganic solids and an aqueous solution in which salts are dissolved by a solid-liquid separation process using a filter. Thereby the lowering of filtration efficiency by the clogging of the filter is prevented to accomplish efficient washing/desalting. A mixture of soot and dust with chlorine components reduced and the inorganic powder is recycled as a raw material for cement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、可燃性の廃棄物を焼却する際に発生する焼却灰(主灰およびばいじん)から水洗することにより水溶性の塩類を効率的に除去する水洗脱塩処理方法に関し、より詳しくは、ばいじんの水洗脱塩方法に関する。
【0002】
【従来の技術】
可燃性の廃棄物を焼却処理すると焼却灰が発生する。焼却灰には、焼却炉の炉底に残るいわゆる主灰と燃焼排ガスの処理の過程で集塵機で捕集されるばいじんとがある。
従来焼却灰は最終処分場で埋め立て処理されている。ところが、国土の狭い我が国では最終処分場の新規立地は困難であり、廃棄物の発生の抑制および最終処分場の延命に努力が払われているところである。さらにリサイクルのための様々な技術開発も併せて行われている。特に焼却灰については、セメント原料として再資源化することがなされつつある。
【0003】
焼却灰はセメント原料として必要なCaO、SiO、AlおよびFeなどを含んでいるため、セメント焼成用の原料として十分に再資源化することができる。加えて、セメント焼成工程のなかで原料は1400℃以上の高温にさらされるため、焼却灰中のダイオキシン類の完全な分解が可能であるほか、重金属類はセメントクリンカ鉱物中に取り込まれて固定化することができる。
【0004】
この理由により、近年焼却灰を原料の一部に用いたセメント製造技術が確立され、単一のセメント焼成キルンにおいて年間の4万t焼却主灰と1万tの焼却飛灰がセメントに再資源化されている。焼却主灰中および焼却飛灰中の塩素濃度は、それぞれ1%および15%である。この技術によれば、焼却主灰は磁力選別による鉄分およびふるいによる異物除去のみをしてセメント原料とされる。一方、焼却飛灰にはNaClが高濃度で含まれているが、セメント製造プロセスへの過度な塩素の持ち込みはキルンの安定操業およびセメントの品質に悪影響を及ぼすため、水洗処理による塩素成分の除去の後セメント原料化される。
焼却灰を水洗してセメント原料化する従来の技術としては、例えば特許文献1のようなものがある。
【0005】
【特許文献1】
特開平11−322381
【0006】
【発明が解決しようとする課題】
本発明者らは公知技術にならい、都市ごみの焼却処理施設から排出されたばいじんに水を加えてスラリーとし、ベルトフィルターを用いて可溶性塩類の分離除去試験をおこなった。しかしながら、試験開始当初のばいじんスラリーの脱水ケーキ中の水分残留率が45%であったものが、濾過時間の経過にともない脱水率が低下し、目的とする脱塩素率を達成することが困難となった。また、ベルトフィルターからの脱水ケーキの剥離性も著しく悪いという問題が生じた。さらに、濾液が通過する配管の各所でスケールの成長が顕著で、濾過設備全体の連続運転を阻害した。
【0007】
これらは主として都市ごみの焼却によるばいじんが平均粒子径10μm未満の微細な粒子であるがゆえに、ベルトフィルターの濾布の目にかみこみやすく且つ剥離し難く、その結果濾布全体が目詰まりを起こすことが主たる原因であると考えられた。
【0008】
【課題を解決するための手段】
この発明は、上記の実情に鑑み、可燃性の廃棄物を焼却する際に発生するばいじんを水洗するにあたり、水洗後のばいじんの固液分離を効果的に行う方法を提供するものである。
【0009】
すなわち、請求項1に記載の発明は、可燃性廃棄物の焼却で発生したばいじんに平均粒径10〜200μm、好ましくは平均粒径15〜150μm、より好ましくは平均粒径20μm〜100μmの無機粉体を混合し、これに水を添加してスラリーとなした後固液分離することを特徴とする、ばいじんの水洗脱塩方法である。
【0010】
また、請求項2に記載の発明は、可燃性廃棄物の焼却で発生したばいじんに混合される無機粉体が、可燃性廃棄物の焼却で発生した主灰および/またはセメント構成材料粉末であることを特徴とする請求項1記載の水洗脱塩方法である。
【0011】
【発明の実施の形態】
以下、この発明の実施の形態を説明する。可燃性廃棄物の焼却炉の集塵機で捕集されたばいじんは、通常、ばいじんの貯蔵タンクから定量供給機により引き出されてスラリー槽に送られる。一方、ばいじんに添加される無機粉体は、貯蔵タンクから定量供給機により引き出されて粉砕装置に供給され、平均粒径10〜200μmに粒度調製がなされた後にばいじんと同一のスラリー槽に送られ、ここで水(例えば工場水)が加えられてばいじんとともにスラリー化される。
【0012】
なお、ばいじんに添加される無機粉体としては、ベルトフィルターの濾布の目にかみこみにくいもの、且つ剥離し易いものが好ましく、さらには、スケール発生の主原因となるばいじん中の硫酸塩の溶解度を抑えるような物質を含むものが好ましい。また、さらに、このような物質としては、セメント原料としてもリサイクル利用可能な廃棄物である可燃性廃棄物の焼却灰、特にばいじんに比して粒度の大きい主灰あるいはセメント構成材料粉末から選ぶことができる。ここで、セメント構成材料粉末とは、SiO、Al、FeおよびCaOのうち少なくとも一つを含んでなる粉末であり、例えば石灰石粉末、生石灰粉末、石炭灰、キルン排ガス中からの集塵灰、ケイ石粉末、粘土、鋳物砂、銅ガラミ、スラグなどをいう。
【0013】
ばいじんに添加される無機粉体の平均粒径は10〜200μm、好ましくは15〜150μm、より好ましくは20〜100μmであることが好ましい。粒度範囲を上記のように調整することにより、固液分離の際の濾布の目詰まり防止の効果がより向上する。無機粉体の平均粒径を10μm未満とすると、濾布の目詰まり防止効果が十分発揮されなくなる。無機粉体の平均粒径が200μmを越えると、粒子の重力沈降のため均一なスラリーが得られにくくなる。該無機粉体は、ばいじんに添加するに先立って粉砕等の方法により粒度調整を行ってもよいが、粒度範囲が上記の範囲にある場合は、粒度調整を省略して、そのままスラリー化槽へ供給することができる。
【0014】
スラリー化槽では、ばいじんおよび無機粉体の混合物に水が加えられてスラリー化が図られるが、このとき水が少なすぎると、スラリーの濃度が濃くなってポンプでの移送が困難になり、逆に加える水が多すぎると、スラリーの量が多くなるためスラリー槽、ポンプ、配管等を大型化する必要が生じてしまう。そこで、ばいじんおよび無機粉体の混合物と加えるべき水との重量比は、ばいじんおよび無機粉体の混合物に対して水2〜10倍、より好ましくは2.5〜5倍であることが好ましい。
ばいじんおよび無機粉体の混合物に加えられる水は、常温の水に代えて30℃ないしは60℃程度の温水であることは好ましい。
【0015】
上記では、ばいじんおよびばいじんに添加される無機粉体を同一のスラリー化槽内で水を添加してスラリー化する工程を説明したが、ばいじんおよびばいじんに添加される無機粉体を各々別のスラリー化槽でスラリーとなし、その後同一のスラリー化槽内へ収納して撹拌しながら混合することも可能である。
ばいじんおよび無機粉体の混合物のスラリー化槽での撹拌時間は、ばいじんおよび/または無機粉体中の水溶性の塩類の溶解が十分になされることを勘案して、30分ないしは60分程度であることが好ましい。
【0016】
次に、スラリー化されたばいじんと無機粉体との混合物は、濾布を採用する固液分離装置に供給され、固液分離がなされる。濾布を採用する固液分離装置としては、ベルトフィルターまたはフィルタープレス装置が一般的である。
固液分離の過程において、ばいじんに添加された無機粉体は、ばいじんの微細な粒子を捕捉する凝集核の役割を果たすようになり、ばいじんの粒子が直接濾布の目にかみこむ頻度を低減させることができる。この作用により、ばいじんおよび無機粉体の混合物の脱水ケーキは脱水後固液分離装置の濾布から容易に剥離することができる。したがって、長時間にわたる連続運転が確保しやすくなる。
【0017】
ばいじん中には硫酸カルシウムや石灰分等と反応して難溶性の塩を形成するような硫酸塩も多量に含まれている場合も多く、濾布や配管等にスケールが析出して目詰まりや閉塞を起こし、長時間の連続運転を妨げる原因ともなる。そのため、ばいじんに添加される無機粉体としては、特に、ばいじん中の硫酸分が多いような場合には、ばいじん中に含有される硫酸塩の溶解度を低減させるような物質あるいは該物質を含有する物質のうち1種以上を混合したものが好ましい場合もある。このような硫酸塩の溶解度を低減させるような物質としては、CaOやCaCl等があり、必要に応じてそれら単独粉末あるいは混合物粉末、さらには、それらを含有する材料を適宜選択してばいじんに混合使用することができる。そのような物質を含む材料としては、例えば、都市ごみ焼却主灰やセメント製造工程の集塵灰がある。
【0018】
これら無機粉体をばいじんに混合する割合は、水溶性の塩類をより高濃度で含有するばいじんの水洗脱塩処理という本来の目的や処理効率の面からは、少ないほど好ましく、一般的には、ばいじんに対して50重量%以下、10重量%以上が好ましい。無機粉体の混合の割合が10重量%未満では、濾布の目詰まり防止の効果が十分発揮されなくなる。
【0019】
実施例1
実施例1では、ばいじんとして都市ごみの焼却処理により発生するばいじんを、このばいじんに添加する無機粉体として同じく都市ごみ焼却主灰(以下、実施例および比較例において単に「主灰」という。)を例示する。
ばいじんには、都市ごみ焼却処理施設の燃焼排ガス処理工程に設備された集塵機において捕集されたものを用いたが、そのばいじん中の塩素分は約15%、平均粒径は約8μmであった。通常都市ごみの焼却処理施設においては、火炉より排出される主灰は、消火および冷却を目的として水没されることが多い。本実施例においても、主灰として水没処理後の含水率30重量%程度のものを用いた。
【0020】
主灰には粗大な未燃焼物、金属類のほか、無機物が一部溶融して塊状物となっているものが含まれている。よって、そのままの状態ではばいじんに添加してスラリー化することができないため、以下の前処理を行った。
まず、主灰をクラッシャーに通し粗粉砕し、磁力選別により鉄分を除去するとともに、目開き50mmのふるいを用いることで、粗大物を除去した。続いて、タワーミルを用いて、主灰の平均粒径が30μm程度となるまで湿式粉砕を行った。なお、湿式粉砕を行った後の主灰の平均粒径は、レーザー回折式の粒度測定装置により測定した。
【0021】
実施例1では、ばいじんと前記の前処理を行った主灰のスラリー化は、各々別のスラリー化槽内で行った。ばいじんのスラリー化は、その重量の5倍量の工業水(温度60℃)を添加し、約60分間撹拌することで、ばいじん中の水溶性の塩類を水に溶解させた。
一方、主灰についてはタワーミルでの湿式粉砕時にすでに水を加えているので、スラリー化槽においては、スラリーとなしたときの水分量が主灰の乾燥重量に対して5倍量となるように、不足する分のみを追加し、スラリー化槽内で約20分間撹拌することでスラリーとした。
【0022】
その後、各々のスラリーをスラリーポンプを用いて同一の撹拌槽へ供給し、同槽内で約20分間撹拌することで、均一なスラリーとなるように混合した。このとき、ばいじんと主灰の混合割合は、乾燥状態の重量比で4:1となるようにした。
【0023】
固液分離装置には、幅が約1.3m、濾過面積が約5.6mのポリプロピレン製の濾布を備えたベルトフィルターを使用した。約1m/minで移動するベルト上よりばいじんと主灰の混合物からなるスラリーを約3.6m/hrで供給した。スラリー中の塩類が溶解した水分は、真空ポンプなどの減圧手段により濾布の下面側に吸引した。これにより固液分離がなされる。より高い脱塩素率を得るために、液が吸引濾過され表面より液がほぼ認められなくなる位置にて、さらなる散水をおこない水洗脱塩処理を行った。
【0024】
ばいじん単独によるスラリーの水洗濾過の場合、早い時期に濾布の目詰まりが生じたため連続濾過時間は1日にも満たなかったが、本実施例では連続14日間たっても何ら問題なく濾過を継続することが可能であった。ばいじん単独の場合よりも濾布や配管系におけるスケールの発生が少なくなり、ばいじん単独よりも長期間にわたって濾過を継続することの可能性を確認できた。スケールの発生がより少なくなったのは、主灰中に含有されるCaOやCaClにより、ばいじん中に含有される硫酸カルシウムの溶解度を低減する効果が発現されたためと推察される。
【0025】
比較例1
タワーミルでの主灰の粉砕粒度を平均粒径5μmに調整すること以外は実施例1と同一の手順にしたがい、ベルトフィルターによる濾過効率を実施例1と比較した。
【0026】
比較例1では、主灰を過度に粉砕して5μm以下としたため、ばいじん単独によるスラリーの水洗濾過の場合と同様、連続濾過時間は1日にも満たなかった。
【0027】
比較例2
タワーミルでの主灰の粉砕粒度を平均粒径250μmに調整すること以外は実施例1と同一の手順にしたがった。
【0028】
比較例2では、主灰の粉砕粒度を粗くすると、水を添加してスラリー化する際に、撹拌中に主灰中の粗大粒子がスラリー化槽内の底部に重力沈降してしまい、均一なスラリーの得られないことが分かった。
【0029】
実施例2 石灰石
ばいじんに添加する無機粉体を平均粒径約30μmの石灰石粉末としたこと以外は実施例1と同様の手順にしたがった。石灰石の粉末は、あらかじめ天然の石灰石をボールミルで平均粒径が30μm程度まで粉砕してあるものを使用した。石灰石の平均粒径も実施例1と同様の方法により測定した。
【0030】
実施例2でも連続14日間にわたっても何ら問題なく長期間にわたって濾過を継続することが可能であった。また、洗浄後のペーストの塩素分の含有率も0.5%以下のペーストが得られ、ばいじんと石灰石粉末とから成る混合物の脱塩率は97%以上であった。
【0031】
実施例3 ケイ石
ばいじんに添加する無機粉体を平均粒径約30μmのケイ石粉末としたこと以外は実施例1と同様の手順にしたがった。ケイ石の粉末は、あらかじめ天然のケイ石をボールミルで平均粒径が30μm程度まで粉砕してあるものを使用した。ケイ石の平均粒径も実施例1と同様の方法により測定した。
【0032】
実施例3でも連続14日間にわたっても何ら問題なく長期間にわたって濾過を継続することが可能であった。
【0033】
実施例4 石炭灰
ばいじんに添加する無機粉体を平均粒径約15μmの石炭灰としたこと以外は実施例1と同様の手順にしたがった。石炭灰の粉末は、微粉炭の高温燃焼方式を採用する火力発電所において発生したものを使用した。
【0034】
実施例4でも連続14日間にわたっても何ら問題なく長期間にわたって濾過を継続することが可能であった。
【0035】
【発明の効果】
以上説明したように、この発明によれば、以下のような効果が得られる。従来単独で高効率の水洗脱塩および固液分離装置の連続運転が困難であったばいじんの水洗脱塩の効率および作業性が大幅に改善された。
なお、実施例および比較例では都市ごみ焼却によるばいじんの例を示したが、ばいじんは都市ごみに限らず可燃性の廃棄物の焼却によって発生するものであれば、本実施例に限定されるものではない。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water washing and desalination method for efficiently removing water-soluble salts by washing with water from incinerated ash (main ash and dust) generated when incinerating combustible waste. , And a method of washing and desalting soot and dust.
[0002]
[Prior art]
Incineration ash is generated when combustible waste is incinerated. The incinerated ash includes so-called main ash remaining at the bottom of the incinerator and soot and dust collected by a dust collector in the process of treating the combustion exhaust gas.
Conventionally, incinerated ash has been landfilled at a final disposal site. However, in Japan, where the land is small, it is difficult to newly establish a final disposal site, and efforts are being made to reduce the generation of waste and extend the life of the final disposal site. Furthermore, various technological developments for recycling are also being carried out. In particular, incineration ash is being recycled as a raw material for cement.
[0003]
Since the incinerated ash contains CaO, SiO 2 , Al 2 O 3, Fe 2 O 3 , and the like necessary for a cement raw material, it can be sufficiently recycled as a raw material for cement firing. In addition, since the raw materials are exposed to a high temperature of 1400 ° C or more during the cement firing process, dioxins in the incineration ash can be completely decomposed, and heavy metals are incorporated into cement clinker minerals and fixed. can do.
[0004]
For this reason, in recent years, cement manufacturing technology using incinerated ash as a part of raw materials has been established, and in a single cement burning kiln, 40,000 tons of incinerated main ash and 10,000 tons of incinerated fly ash are recycled as cement. Has been The chlorine concentrations in the incineration main ash and the incineration fly ash are 1% and 15%, respectively. According to this technique, the incinerated main ash is used as a cement raw material by only removing iron components by magnetic force separation and foreign substances by a sieve. On the other hand, incineration fly ash contains a high concentration of NaCl, but excessive introduction of chlorine into the cement production process has an adverse effect on the stable operation of the kiln and the quality of the cement. After that, it is converted into a cement raw material.
As a conventional technique of washing incinerated ash with water and converting it into a cement raw material, for example, there is one disclosed in Patent Document 1.
[0005]
[Patent Document 1]
JP-A-11-322381
[0006]
[Problems to be solved by the invention]
The present inventors conducted a separation and removal test of soluble salts using a belt filter by adding water to soot and dust discharged from an incineration plant for municipal solid waste in accordance with a known technique. However, although the moisture content in the dewatered cake of the soot and dust slurry at the beginning of the test was 45%, the dewatering rate decreased with the elapse of the filtration time, and it was difficult to achieve the target dechlorination rate. became. In addition, there has been a problem that the removability of the dewatered cake from the belt filter is extremely poor. Furthermore, scale growth was remarkable at various points in the piping through which the filtrate passed, which hindered continuous operation of the entire filtration equipment.
[0007]
Since these are mainly fine particles having an average particle diameter of less than 10 μm, the dust from the incineration of municipal waste is easily entrapped in the filter cloth of the belt filter and hard to peel off, and as a result, the entire filter cloth is clogged. Was thought to be the main cause.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above circumstances and provides a method for effectively performing solid-liquid separation of soot and dust after rinsing when soot and dust generated when combustible waste is incinerated is washed with water.
[0009]
That is, the invention according to claim 1 provides an inorganic powder having an average particle diameter of 10 to 200 μm, preferably an average particle diameter of 15 to 150 μm, more preferably an average particle diameter of 20 μm to 100 μm, to dust generated by incineration of combustible waste. This is a method of washing and desalting soot and dust, which comprises mixing bodies, adding water thereto to form a slurry, and then performing solid-liquid separation.
[0010]
In the invention according to claim 2, the inorganic powder mixed with the soot and dust generated by incineration of combustible waste is main ash and / or cement constituent powder generated by incineration of combustible waste. The water washing and desalting method according to claim 1, wherein:
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. Dust collected by a dust collector of a combustible incinerator for combustible waste is usually withdrawn from a storage tank of the dust by a quantitative feeder and sent to a slurry tank. On the other hand, the inorganic powder to be added to the dust is drawn out of the storage tank by a quantitative feeder and supplied to a pulverizer, and then sent to the same slurry tank as the dust after the particle size is adjusted to an average particle size of 10 to 200 μm. Here, water (for example, factory water) is added and slurried together with the dust.
[0012]
In addition, as the inorganic powder to be added to the dust, it is preferable that the inorganic powder does not easily seep into the filter cloth of the belt filter, and that it easily peels off.Moreover, the sulfate in the dust that becomes the main cause of scale generation is preferably used. Those containing a substance that suppresses solubility are preferred. In addition, as such a substance, select from incinerated ash of combustible waste, which is a waste that can be recycled as a cement raw material, in particular, main ash having a large particle size as compared with soot or powder of a cement constituent material. Can be. Here, the cement constituent material powder is a powder containing at least one of SiO 2 , Al 2 O 3 , Fe 2 O 3 and CaO, for example, limestone powder, quicklime powder, coal ash, and kiln exhaust gas. Ash, silica powder, clay, foundry sand, copper glazing, slag, etc.
[0013]
The average particle size of the inorganic powder added to the dust is preferably 10 to 200 μm, preferably 15 to 150 μm, and more preferably 20 to 100 μm. By adjusting the particle size range as described above, the effect of preventing clogging of the filter cloth at the time of solid-liquid separation is further improved. If the average particle size of the inorganic powder is less than 10 μm, the effect of preventing clogging of the filter cloth cannot be sufficiently exhibited. If the average particle size of the inorganic powder exceeds 200 μm, it is difficult to obtain a uniform slurry due to gravity settling of the particles. The inorganic powder may be subjected to particle size adjustment by a method such as pulverization prior to addition to the dust, but when the particle size range is within the above range, the particle size adjustment is omitted and the mixture is directly transferred to a slurrying tank. Can be supplied.
[0014]
In the slurrying tank, water is added to the mixture of the dust and the inorganic powder to form a slurry.However, if the amount of water is too small, the concentration of the slurry becomes too high to make it difficult to transfer by a pump. If too much water is added to the slurry, the amount of the slurry increases, so that it is necessary to increase the size of the slurry tank, pump, piping, and the like. Therefore, the weight ratio of the mixture of the dust and the inorganic powder to the water to be added is preferably 2 to 10 times, more preferably 2.5 to 5 times the water of the mixture of the dust and the inorganic powder.
It is preferable that the water added to the mixture of the dust and the inorganic powder is warm water of about 30 ° C. to 60 ° C. instead of the normal temperature water.
[0015]
In the above description, the step of adding water to the dust and the inorganic powder added to the dust in the same slurrying tank to form a slurry has been described. It is also possible to form a slurry in the sintering tank, and then to store the slurries in the same slurrying tank and mix with stirring.
The stirring time of the mixture of the dust and the inorganic powder in the slurry-forming tank is about 30 to 60 minutes in consideration of the fact that the water-soluble salts in the dust and / or the inorganic powder are sufficiently dissolved. Preferably, there is.
[0016]
Next, the mixture of the slurried soot and the inorganic powder is supplied to a solid-liquid separation device employing a filter cloth, where solid-liquid separation is performed. As a solid-liquid separation device employing a filter cloth, a belt filter or a filter press device is generally used.
In the process of solid-liquid separation, the inorganic powder added to the dust plays the role of a coagulation nucleus that captures the fine particles of the dust, reducing the frequency of dust particles directly entering the filter cloth. Can be done. By this action, the dewatered cake of the mixture of the dust and the inorganic powder can be easily peeled off from the filter cloth of the solid-liquid separator after dewatering. Therefore, continuous operation for a long time is easily ensured.
[0017]
Dust often contains a large amount of sulfate that reacts with calcium sulfate or lime to form a sparingly soluble salt. It may cause blockage and hinder long-term continuous operation. Therefore, as the inorganic powder added to the dust, particularly when the sulfuric acid content in the dust is large, it contains a substance or a substance that reduces the solubility of the sulfate contained in the dust. In some cases, a mixture of one or more substances is preferable. Substances that reduce the solubility of such sulfates include CaO and CaCl 2. If necessary, a single powder or a mixed powder thereof, and further, a material containing them may be appropriately selected and appropriately selected. Can be used mixed. Examples of materials containing such substances include municipal solid waste incineration ash and dust ash from a cement manufacturing process.
[0018]
The ratio of mixing these inorganic powders with the dust is preferably as small as possible from the viewpoint of the original purpose and treatment efficiency of the washing and desalination treatment of the dust containing the water-soluble salts at a higher concentration, and in general, generally, The content is preferably 50% by weight or less and 10% by weight or more based on the amount of dust. If the mixing ratio of the inorganic powder is less than 10% by weight, the effect of preventing clogging of the filter cloth cannot be sufficiently exhibited.
[0019]
Example 1
In Example 1, soot and dust generated by incineration treatment of municipal waste is also used as inorganic powder to be added to the soot as municipal waste incineration main ash (hereinafter, simply referred to as “main ash” in Examples and Comparative Examples). Is exemplified.
Soot and dust collected by a dust collector installed in the flue gas treatment process of a municipal solid waste incineration facility was used. The chlorine content in the soot was about 15%, and the average particle size was about 8 μm. . In an ordinary municipal solid waste incineration facility, the main ash discharged from a furnace is often submerged for the purpose of extinguishing and cooling. Also in this example, a main ash having a water content of about 30% by weight after the water immersion treatment was used.
[0020]
The main ash includes not only coarse unburned substances and metals, but also those in which inorganic substances are partially melted to form lumps. Therefore, in the state as it is, it cannot be added to the dust to form a slurry, so the following pretreatment was performed.
First, the main ash was coarsely pulverized by passing it through a crusher, iron was removed by magnetic force sorting, and coarse substances were removed by using a sieve having openings of 50 mm. Subsequently, wet pulverization was performed using a tower mill until the average particle size of the main ash became about 30 μm. The average particle size of the main ash after the wet pulverization was measured by a laser diffraction type particle size measuring device.
[0021]
In Example 1, the dust and the main ash subjected to the pre-treatment were slurried in separate slurry tanks. To make the dust into a slurry, 5 times its weight of industrial water (temperature: 60 ° C.) was added, and the mixture was stirred for about 60 minutes to dissolve the water-soluble salts in the dust into the water.
On the other hand, since water has already been added to the main ash at the time of wet pulverization in the tower mill, the water content of the slurry in the slurry tank is 5 times the dry weight of the main ash. And only the insufficient amount was added, and the mixture was stirred in a slurry-forming tank for about 20 minutes to form a slurry.
[0022]
Thereafter, the respective slurries were supplied to the same stirring tank using a slurry pump, and were stirred in the same tank for about 20 minutes to mix them into a uniform slurry. At this time, the mixing ratio of soot and main ash was set to be 4: 1 by weight in a dry state.
[0023]
As the solid-liquid separator, a belt filter provided with a filter cloth made of polypropylene having a width of about 1.3 m and a filtration area of about 5.6 m 2 was used. A slurry composed of a mixture of dust and main ash was supplied at about 3.6 m 3 / hr from a belt moving at about 1 m / min. The water in which the salts in the slurry were dissolved was sucked into the lower surface of the filter cloth by a decompression means such as a vacuum pump. Thus, solid-liquid separation is performed. In order to obtain a higher dechlorination rate, at a position where the liquid was suction-filtered and the liquid was hardly recognized from the surface, further water spraying was performed to perform a water-washing desalination treatment.
[0024]
In the case of washing and filtering the slurry using only dust, the continuous filtration time was less than one day because clogging of the filter cloth occurred at an early stage, but in this example, filtration is continued without any problem even after 14 consecutive days. It was possible. The generation of scale in the filter cloth and the piping system was smaller than in the case of soot alone, and the possibility of continuing filtration for a longer period than in soot alone was confirmed. It is inferred that the generation of scale was further reduced because CaO and CaCl 2 contained in the main ash exhibited an effect of reducing the solubility of calcium sulfate contained in the soot and dust.
[0025]
Comparative Example 1
The filtration efficiency by a belt filter was compared with Example 1 according to the same procedure as Example 1 except that the crushed particle size of the main ash in the tower mill was adjusted to an average particle size of 5 μm.
[0026]
In Comparative Example 1, since the main ash was excessively pulverized to 5 μm or less, the continuous filtration time was less than one day as in the case of washing and filtering the slurry using only dust.
[0027]
Comparative Example 2
The same procedure as in Example 1 was followed except that the crushed particle size of the main ash in the tower mill was adjusted to an average particle size of 250 μm.
[0028]
In Comparative Example 2, when the crushed particle size of the main ash was coarsened, when water was added to form a slurry, coarse particles in the main ash sedimented by gravity at the bottom in the slurrying tank during stirring, resulting in a uniform It was found that no slurry could be obtained.
[0029]
Example 2 The same procedure as in Example 1 was followed except that the inorganic powder added to the limestone dust was limestone powder having an average particle size of about 30 μm. As the limestone powder, natural limestone previously ground with a ball mill to an average particle size of about 30 μm was used. The average particle size of the limestone was also measured by the same method as in Example 1.
[0030]
Also in Example 2, it was possible to continue the filtration for a long period without any problem even for 14 consecutive days. Further, a paste having a chlorine content of 0.5% or less in the paste after washing was obtained, and the desalting rate of the mixture of soot and limestone powder was 97% or more.
[0031]
Example 3 The same procedure as in Example 1 was followed, except that the inorganic powder added to the silica dust was silica powder having an average particle size of about 30 μm. As the powder of silica stone, natural silica stone that had been ground in advance by a ball mill to an average particle size of about 30 μm was used. The average particle size of the silica stone was measured in the same manner as in Example 1.
[0032]
Also in Example 3, it was possible to continue the filtration for a long period without any problem even for 14 consecutive days.
[0033]
Example 4 The same procedure as in Example 1 was followed except that the inorganic powder to be added to the coal ash dust was a coal ash having an average particle size of about 15 μm. As the coal ash powder, one generated at a thermal power plant employing a high-temperature combustion method of pulverized coal was used.
[0034]
Also in Example 4, it was possible to continue filtration for a long period without any problem even for 14 consecutive days.
[0035]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained. The efficiency and workability of the water washing and desalting of soot and dust, which had conventionally been difficult to continuously operate with high efficiency of water washing and desalting and solid-liquid separation equipment, have been greatly improved.
In the examples and comparative examples, examples of soot and dust generated by incineration of municipal solid waste were shown. is not.

Claims (2)

可燃性廃棄物の焼却により発生したばいじんに、平均粒径10〜200μmの無機粉体を混合し、これに水を添加してスラリーとなした後固液分離することを特徴とする、ばいじんの水洗脱塩方法。The soot and dust generated by incineration of combustible waste is mixed with an inorganic powder having an average particle size of 10 to 200 μm, and water is added thereto to form a slurry, followed by solid-liquid separation. Washing and desalting method. 可燃性廃棄物の焼却により発生したばいじんに混合される無機粉体が、可燃性廃棄物の焼却で発生した主灰および/またはセメント構成材料粉末であることを特徴とする請求項1記載のばいじんの水洗脱塩方法。2. The dust according to claim 1, wherein the inorganic powder mixed with the soot and dust generated by incineration of combustible waste is main ash and / or cement constituent material powder generated by incineration of combustible waste. Washing desalination method.
JP2003156186A 2003-06-02 2003-06-02 Method for washing/desalting incineration ash Pending JP2004358288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156186A JP2004358288A (en) 2003-06-02 2003-06-02 Method for washing/desalting incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156186A JP2004358288A (en) 2003-06-02 2003-06-02 Method for washing/desalting incineration ash

Publications (1)

Publication Number Publication Date
JP2004358288A true JP2004358288A (en) 2004-12-24

Family

ID=34050347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156186A Pending JP2004358288A (en) 2003-06-02 2003-06-02 Method for washing/desalting incineration ash

Country Status (1)

Country Link
JP (1) JP2004358288A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297316A (en) * 2005-04-22 2006-11-02 Ube Ind Ltd Method and apparatus for wet pulverization of incinerated ash
KR100642271B1 (en) 2004-12-29 2006-11-03 현대건설주식회사 Method and system for removing chlorine compounds in flooring
US7799236B2 (en) 2005-08-30 2010-09-21 Lg Chem, Ltd. Gathering method and apparatus of powder separated soluble component
JP2021133322A (en) * 2020-02-27 2021-09-13 三菱マテリアル株式会社 Method for desalination cleaning of chlorine-containing ash
CN113620670A (en) * 2021-09-08 2021-11-09 山东省科学院能源研究所 System and method for preparing baking-free bricks and co-producing potassium chloride by using biomass power plant ash

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642271B1 (en) 2004-12-29 2006-11-03 현대건설주식회사 Method and system for removing chlorine compounds in flooring
JP2006297316A (en) * 2005-04-22 2006-11-02 Ube Ind Ltd Method and apparatus for wet pulverization of incinerated ash
US7799236B2 (en) 2005-08-30 2010-09-21 Lg Chem, Ltd. Gathering method and apparatus of powder separated soluble component
JP2021133322A (en) * 2020-02-27 2021-09-13 三菱マテリアル株式会社 Method for desalination cleaning of chlorine-containing ash
JP7392913B2 (en) 2020-02-27 2023-12-06 三菱マテリアル株式会社 Demineralization cleaning method for chlorine-containing ash
CN113620670A (en) * 2021-09-08 2021-11-09 山东省科学院能源研究所 System and method for preparing baking-free bricks and co-producing potassium chloride by using biomass power plant ash

Similar Documents

Publication Publication Date Title
CN106082646B (en) Method for preparing glass sand by synergistic melting of electroplating sludge and domestic waste incineration fly ash
CN101773924B (en) Cooperatively preprocessing method of solid waste incineration flying ash cement kiln of returned effluent
JP4438329B2 (en) Method for treating waste containing organic matter
CN101357368B (en) Stabilization treatment method of heavy metals in waste incineration ash
CN101255991B (en) Method for innocent treatment of garbage flying ash
JP3368372B2 (en) Method for converting incinerated ash into cement raw material
JP2010013304A (en) Method for regenerating gypsum from gypsum board waste material
JP4960600B2 (en) Waste gypsum treatment method
JP2014152070A (en) Method for making good use of waste gypsum board
JP2004358288A (en) Method for washing/desalting incineration ash
JP2004041895A (en) Treatment method for incineration ash
CN108679628B (en) System and method for disposing overhaul slag of aluminum electrolysis cell by cement kiln bypass incineration
JP4515214B2 (en) Method for processing molten slag.
JP2007069185A (en) Method for washing inorganic matter
JP4095929B2 (en) Chloride bypass dust washing filtration method and washing filtration treatment system
JP3551960B2 (en) Treatment of soil contaminated with organic matter
JPH105800A (en) Dehydration treating material for sludge and dehydration treatment
JP7474212B2 (en) Incineration fly ash treatment method
JP2003238221A (en) Method of producing artificial aggregate
JP2014114190A (en) Phosphate fertilizer and production method thereof
JP4348046B2 (en) Treatment method of kiln exhaust gas dust
JP2004167350A (en) Processing method of incineration ash
JP3007605B2 (en) Method and apparatus for producing gypsum from fly ash
JP3242674B2 (en) Mud and mud waste treatment equipment
CN201082325Y (en) Garbage flying ash innocent treatment system