[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004346795A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004346795A
JP2004346795A JP2003143208A JP2003143208A JP2004346795A JP 2004346795 A JP2004346795 A JP 2004346795A JP 2003143208 A JP2003143208 A JP 2003143208A JP 2003143208 A JP2003143208 A JP 2003143208A JP 2004346795 A JP2004346795 A JP 2004346795A
Authority
JP
Japan
Prior art keywords
purge
exhaust gas
storage catalyst
nox storage
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143208A
Other languages
Japanese (ja)
Inventor
嘉則 ▲高▼橋
Yoshinori Takahashi
Yoshihisa Takeda
好央 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003143208A priority Critical patent/JP2004346795A/en
Publication of JP2004346795A publication Critical patent/JP2004346795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of suppressing worsening of fuel economy and sufficiently recovering NOx purifying performance by efficiently purging sulfur in a short time while preventing the thermal degradation of a catalyst. <P>SOLUTION: This exhaust emission control device for the internal combustion engine has an NOx storage catalyst 16 interposed in an exhaust pipe 7 to absorb NOx in exhaust gas in a lean gas state with high oxygen concentration while releasing/reducing the NOx in a rich gas state with low oxygen concentration and high reducing agent concentration. The exhaust emission control device is provided with a passage changeover means comprising pipelines 7a-7d, rotary valves 22a, 22b, and the like capable of changing an exhaust gas passage with respect to the NOx storage catalyst 16 over to normal or reverse flow; a start timing determining means for determining the start timing of sulfur purge control for desorbing SOx poisoning the NOx storage catalyst 16; and an electronic control unit 30 for operating the passage changeover means to make exhaust gas flow backward to the NOx storage catalyst 16 when the start timing determining means determines the start timing of sulfur purge control. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、排気通路にNOx吸蔵触媒を介装した内燃機関の排気浄化装置に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
近年、内燃機関をリーン空燃比で運転して燃費等の向上を図るようにした希薄燃焼内燃機関が実用化されている。この希薄燃焼内燃機関では、リーン空燃比で運転すると、三元触媒がその浄化特性から排気ガス中の窒素酸化物(NOx)を充分に浄化できないという問題があり、最近では、リーン空燃比で運転中に排気ガス中のNOxを吸蔵し、ストイキ又はリッチ空燃比で運転中に吸蔵されたNOxを放出・還元するNOx吸蔵(型)触媒が採用されている。
【0003】
このNOx吸蔵触媒は、内燃機関の酸素の過剰状態(リーンガス状態)で排気ガス中のNOxを硝酸塩(X−NO)として吸蔵し、吸蔵したNOxを還元剤である一酸化炭素(CO)等の過剰状態(リッチガス状態)で放出して窒素(N)に還元させる特性(同時に炭酸塩X−COが生成される)を有した触媒である。ところで、燃料中には硫黄(S)成分が含まれており、このS成分は前記リーンガス状態で酸素と反応して硫黄酸化物(SOx)となり、このSOxが硫酸塩としてNOxと同様にNOx吸蔵触媒に吸蔵される。
【0004】
このようにNOx吸蔵触媒に硫黄成分が吸蔵されてしまうと、NOxを吸蔵しなくなるためNOx吸蔵触媒の性能が低下し、その硫黄成分比率が高くなるとNOx吸蔵触媒として機能しなくなる。依って、NOx吸蔵触媒の性能を維持させるためには、定期的に吸蔵(被毒)したSOxを脱離させる(Sパージ)必要がある。
【0005】
Sパージは、高温のリッチガス条件下で成立するといわれている。しかし、機関燃焼だけで高温のリッチガス条件下にするのは困難であるため、排気管への燃料噴射(軽油添加)を行い、NOx吸蔵触媒上で燃焼反応を起こさせ、その反応熱でNOx吸蔵触媒を昇温させるのが現実的である。
【0006】
ここで、本発明者等がNOx吸蔵触媒のS被毒状態を詳細に調査した結果、Sは排気ガス中のSOx濃度(使用燃料中のS分濃度)に関係なく、図4に示すように、NOx吸蔵触媒上の排気ガス上流に多く蓄積することが判明した。尚、図4の(a)は短時間S被毒させ、図4の(b)は長時間S被毒させて、それぞれNOx吸蔵触媒を上流側から6等分し、各々に含まれるS濃度の定量分析を行ったものである。一方、高温リッチ化のアシストとして軽油添加による触媒反応熱を利用すると、図5に示すように、上流より下流の方が温度が上昇する傾向にあることが判明した。
【0007】
従って、NOx吸蔵触媒を熱劣化させない程度の温度になるよう軽油添加でSパージすると、上流側のS分が十分に取り除けず、この上流側のS分を取り除けるよう温度制御すると、下流側が過昇温し、熱劣化する可能性が高くなるという問題点があった。
【0008】
そこで、本発明者等は、Sパージ時にNOx吸蔵触媒に対する排気ガス流路を前後反転させる(正,逆流切り替える)ことで、Sパージを効率的に行えることに着目した。
【0009】
尚、触媒に対する排気ガス流路を前後反転させる技術が、特許文献1に開示されているが、これは、パティキュレートフィルタを通過する排気ガスの流れを所定の条件下で逆転させてパティキュレートフィルタの壁の両面に微粒子を分散させて捕集させるもので、Sパージ時には排気ガスの流れを逆転させないものである。従って、特許文献1のものは、触媒の温度分布に応じたSパージ制御ではないので、Sパージを効率的に行えないのである。
【0010】
【特許文献1】
特開2002−97926号公報
【0011】
そこで、本発明の目的は、触媒の熱劣化を防止しつつ短時間で効率的にSパージを行え、NOxの浄化性能の十分な回復と燃費悪化の抑制が図れる内燃機関の排気浄化装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するための、本発明の請求項1に係る内燃機関の排気浄化装置は、排気通路にNOx吸蔵触媒を介装した内燃機関の排気浄化装置において、
前記NOx吸蔵触媒に対する排気ガス流路を正,逆流切替可能な流路切替手段と、
前記NOx吸蔵触媒が被毒したSOxを脱離するSパージ制御の開始時期を判定する開始時期判定手段と、
前記開始時期判定手段がSパージ制御の開始時期であることを判定した時に前記流路切替手段を作動させてNOx吸蔵触媒に対し排気ガスを逆流させる制御手段と、
を備えたことを特徴とする。これにより、熱劣化を防止しつつ短時間で効率的にSパージを行える。
【0013】
本発明の請求項2に係る内燃機関の排気浄化装置は、前記制御手段は、機関の運転状態がSパージ可能な運転状態であるか否かを判定するSパージ可能判定手段を備え、前記開始時期判定手段がSパージ制御の開始時期であることを判定し、且つ前記Sパージ可能判定手段がSパージ可能であると判定した場合に、前記流路切替制御手段により前記流路切替手段を作動させてNOx吸蔵触媒に対し排気ガスを逆流させることを特徴とする。これにより、Sパージ可能な運転状態か否かを判定し、Sパージ可能な運転状態にある場合のみSパージ制御を実施するので、無駄なリッチ運転を行なうことがなくなり、燃費の悪化を抑制できると共に、適正且つ確実に硫酸塩を脱離させることができる。
【0014】
本発明の請求項3に係る内燃機関の排気浄化装置は、前記制御手段は、Sパージ制御の実施中において前記Sパージ可能判定手段が、Sパージ不可能であると判定した場合に、当該Sパージ制御を中断して排気ガス流路を正流に切り替えると共に、Sパージ制御の中断中に機関の運転状態がSパージ可能な運転状態に復帰したことを判定した場合に、Sパージ制御を再開させて排気ガス流路を逆流に切り替えることを特徴とする。これにより、無駄なリッチ運転を行なうことがなくなり、燃費の悪化、排ガス性状の悪化を抑制できる。
【0015】
本発明の請求項4に係る内燃機関の排気浄化装置は、前記制御手段は、目標とするSパージ量を設定する目標Sパージ量設定手段を備えており、Sパージ制御が中断されてその後Sパージ制御を再開する際に、Sパージ制御が中断された時点におけるSパージ量を当該目標Sパージ量設定手段により設定された目標Sパージ量から差し引いた値を新たな目標Sパージ量として設定することを特徴とする。これにより、無駄なく迅速なSパージ制御が行なえ、燃費悪化がより一層抑制される。
【0016】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気浄化装置を実施例により図面を用いて詳細に説明する。
【0017】
[実施例]
図1は本発明の内燃機関の排気浄化装置を圧縮着火式内燃機関(ディーゼルエンジン)に適用した概略構成図、図2は同じく流路切替部の作用説明図、図3は同じくSパージ制御のフローチャートである。
【0018】
図1に示すように、機関本体1の各気筒には、吸気管2及び吸気マニホールド3を介して図示しないエアクリーナからの吸入空気が供給されると共にコモンレール4及び燃料噴射弁5を介して図示しない燃料ポンプからの燃料が供給される。前記燃料噴射弁5はその噴射量及び噴射時期が後述する電子制御ユニット(ECU)30により制御される電子制御式のもので、図面上の配線は煩雑化を避けるため省略する。一方、機関本体1の各気筒から排出される排気ガスは、排気通路としての排気マニホールド6及び排気管7を介して大気に放出される。
【0019】
前記吸気管2と排気管7との間にはターボチャージャ8が設けられ、排気ガスで回転されるタービンと一体回転するコンプレッサにより吸入空気が加圧されて機関本体1の各気筒に供給されるようになっている。この際、吸気管2に介装したインタークーラ9で前記加圧空気が冷却されて機関本体1の各気筒への充填効率が高められるようにもなっている。
【0020】
前記吸気管2には、ターボチャージャ8の上流に位置して吸入空気量を検出するためのエアーフローセンサ10が設けられると共に、インタークーラ9の下流に位置して吸気絞り弁11が設けられる。エアーフローセンサ10の出力信号は前記ECU30に入力されると共に、吸気絞り弁11は図示しないアクチュエータを介して前記ECU30により開閉制御される。
【0021】
また、前記吸気マニホールド3と排気マニホールド6とはEGR(排気還流)通路12で結ばれ、前記ECU30によりアクチュエータ13を介して開閉制御されるEGR弁14により、機関運転状態に応じて所定時期に所定量のEGRを行いNOxの発生を可及的に抑制している。EGR通路12にはEGRガスを冷却するEGRクーラ15が介装されている。
【0022】
そして、前記排気管7にNOx吸蔵触媒16が介装される。このNOx吸蔵触媒16は、酸素濃度が高いリーンガス状態で排気ガス中のNOxを吸収する一方酸素濃度が低くHCやCO等の還元剤濃度が高いリッチガス状態によりこのNOxを放出・還元する特性を有する。
【0023】
前記排気管7のNOx吸蔵触媒16上流の管路7aとNOx吸蔵触媒16下流の管路7bとの間には流路切替手段としてのロータリバルブ22a,22b及び管路7c,7dが設けられ、前記NOx吸蔵触媒16に対する排気ガス流路を正,逆流切替可能になっている。
【0024】
つまり、前記ロータリバルブ22a,22bはNOx吸蔵触媒16に対し排気ガスを逆流させる制御手段としてのECU30により制御され、図2に示すように、後述するSパージ制御時以外の時は機関本体1からの排気ガスは管路7a→NOx吸蔵触媒16→管路7bと流れ(図2の(a)参照)、Sパージ制御時は管路7c→管路7d→NOx吸蔵触媒16→管路7a→管路7dと流れる(図2の(b)参照)ように切替制御されるようになっている。
【0025】
前記ロータリバルブ22a直前とロータリバルブ22b直後の排気管7には排気ガスの温度を検出するための温度センサ(触媒前後温度センサ)17a,17bが設けられると共に、ロータリバルブ22b直後の排気管7には排気ガス中の酸素濃度を検出するための酸素センサ(触媒出口酸素センサ)18が設けられ、これらセンサ17a,17b,18の出力信号はECU30に入力されている。
【0026】
また、排気管7には、ターボチャージャ8の下流に位置して排気絞り弁19と排気ガス中の酸素濃度を検出するための酸素センサ(機関出口酸素センサ)20が下流側に向かって順に設けられ、前記排気絞り弁19は図示しないアクチュエータを介してECU30により開閉制御されると共に前記酸素センサ20の出力信号はECU30に入力されている。
【0027】
また、前記NOx吸蔵触媒16の上流でかつ酸素センサ20の下流に位置した排気管7には、ECU30によりその噴射量及び噴射時期が制御される燃料噴射弁21が設けられる。
【0028】
前記ECU30は、マイクロコンピュータ(CPU)、メモリ及び入出力信号処理回路としてのインタフェイスとで構成される。ECU30の入力側には、上述のエアーフローセンサ10、温度センサ17a,17b、酸素センサ18,20が接続されると共に、図示しない機関回転数を検出するための回転センサや車両の速度を検出するための車速センサ並びにアクセルペダルの開度を検出するためのアクセル開度センサ等がそれぞれ接続されており、これら各センサ等からの機関運転情報が入力される。一方、ECU30の出力側には、上述の燃料噴射弁5,21、吸気絞り弁11、EGR弁14、排気絞り弁19、ロータリバルブ22a,22b等が接続されている。
【0029】
そして、ECU30は、上述した各センサ等からの機関運転情報に基づいて燃料噴射弁5の噴射量及び噴射時期を制御すると共に、EGR弁14を機関運転状態に応じて開閉制御してPMやNOxの発生を可及的に抑制している。
【0030】
また、ECU30は、筒内燃焼だけで排気ガスのリッチ化を行うと、特に高負荷域はスモークの発生やトルク変動などの多くの課題があるので、燃料噴射弁21を開閉制御して当該燃料噴射弁21より排気管7に燃料(軽油)を噴射(添加)することで、排気ガスのリッチ化を行いNOx吸蔵触媒16によるNOxの浄化を図っている。
【0031】
また、ECU30は、前記NOx吸蔵触媒16が被毒したSOxを脱離するために、その被毒量(以下、S蓄積量という)が所定の値に達したら(Sパージ制御の開始時期を判定する判定手段)、前記燃料噴射弁21から燃料を噴射してリッチガス状態とすると共に、前記ロータリバルブ22a,22bを切り替えてNOx吸蔵触媒16に対し排気ガスを逆流させてSパージ制御を行うようになっている。
【0032】
前記Sパージ制御を図3のフローチャートにより詳細に説明する。
先ず、ステップP1で機関本体1の燃料消費量の積算値から算出したS蓄積量がSパージを開始する所定量に達したか否かを判断し(開始時期判定手段)、可であれば、ステップP2で前記S蓄積量に応じてSパージ目標量を設定する(目標Sパージ量設定手段)。一方、否であれば、ステップP3で燃料消費量の積算値からのS蓄積量の算出を続行する。
【0033】
前記ステップP2の後は、ステップP4で機関本体1の運転状態(トルク、回転、車速、アクセル開度、排気温度(触媒前後温度センサ17a,17bにより検出)、λ(空気過剰率で、機関出口酸素センサ20により検出)等)が排気温度(NOx吸蔵触媒16の温度)を上げられる高負荷域等のSパージ可能な運転状態か否かを判断し(Sパージ可能判定手段)、可であれば、ステップP5で排気温度(NOx吸蔵触媒16の温度)とλとから決まる添加量マップに基づいて排気管7への目標燃料(軽油)添加量を算出する。一方、否であれば、Sパージ可能な運転状態になるまで待つ。
【0034】
前記ステップP5の後は、ステップP6で燃料噴射弁21より燃料噴射(軽油添加)を開始して酸素濃度が低く還元剤濃度が高いリッチガス状態に移行すると共にし、ロータリバルブ22a,22bを切り替えてNOx吸蔵触媒16に対し排気ガスを逆流させるべく流路切替を行い、次いで、ステップP7で触媒出口酸素センサ18からの信号により排気ガスがリッチ状態(リッチガス状態)か否かを判断する。
【0035】
前記ステップP7で可であれば、ステップP8で、機関本体1の運転状態(トルク、回転、車速、アクセル開度)により、Sパージ運転の継続が可能か否かを判断する。前記ステップP7で否であれば、ステップP9で前記燃料噴射弁21からの燃料噴射量を補正(増量)する。
【0036】
この間、Sパージ量が保存される。このSパージ量は、触媒前後温度センサ17a,17bで検出した排気温度から推定(算出)されるNOx吸蔵触媒16の温度により決定されるSOx脱離量マップに基づいて算出される。この保存されたSパージ量は、本Sパージ制御が前記ステップP8で中断された後再び実施された時にSパージ目標量から差し引かれるようになっている。
【0037】
前記ステップP8で可であれば、ステップP10で前記設定したSパージ目標量が達成されるまで本Sパージ制御を続行し、Sパージ目標量が達成されたらステップP12でロータリバルブ22a,22bを切り替えてNOx吸蔵触媒16に対し排気ガスを正(順)流させるべく排気ガス流路を元に戻して本Sパージ制御を終了する。
【0038】
一方、前記ステップP8で否であれば、ステップP11で燃料噴射弁21からの燃料噴射を停止すると共にロータリバルブ22a,22bを切り替えてNOx吸蔵触媒16に対し排気ガスを正(順)流させるべく排気ガス流路を元に戻して、ステップP4に戻りSパージ可能な運転状態になるまで待つ。
【0039】
このようにして本実施例では、Sパージ制御時にロータリバルブ22a,22bを切り替えてNOx吸蔵触媒16に対し排気ガスを逆流させるべく流路切替を行なうようにしたので、NOx吸蔵触媒16内のS分布と温度分布に応じた効率的なSパージを行える。つまり、軽油添加による反応熱がS堆積量の多い部分に流れ、Sパージの進行が早くなる。また、必要以上の温度上昇を避けることができるため、NOx吸蔵触媒16の熱による劣化の進行を最小限にとどめることが可能となる。これらの結果、NOxの浄化性能の回復を十分に図ることができると共に燃費悪化を抑制することができる。
【0040】
また、Sパージ制御が中断された時にSパージ量を保存しておき、再度Sパージ制御を行うときに前記保存したSパージ量をSパージ目標量から差し引くようにしたので、無駄なく迅速なSパージ制御が行え、燃費悪化がより一層抑制される。
【0041】
尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で、各種変更が可能であることはいうまでもない。例えば、流路切替手段としては種々の構造のものが考えられる。また、本発明の内燃機関の排気浄化装置を火花点火式内燃機関(ガソリンエンジン)にも適用することができる。この場合、排気ガスのリッチ化は筒内燃焼で行うことが可能である。
【0042】
【発明の効果】
以上説明したように請求項1の発明によれば、排気通路にNOx吸蔵触媒を介装した内燃機関の排気浄化装置において、前記NOx吸蔵触媒に対する排気ガス流路を正,逆流切替可能な流路切替手段と、前記NOx吸蔵触媒が被毒したSOxを脱離するSパージ制御の開始時期を判定する開始時期判定手段と、前記開始時期判定手段がSパージ制御の開始時期であることを判定した時に前記流路切替手段を作動させてNOx吸蔵触媒に対し排気ガスを逆流させる制御手段と、を備えたので、熱劣化を防止しつつ短時間で効率的にSパージを行え、NOxの浄化性能の回復を十分に図ることができると共に燃費悪化を抑制することができる。
【0043】
請求項2の発明によれば、前記制御手段は、機関の運転状態がSパージ可能な運転状態であるか否かを判定するSパージ可能判定手段を備え、前記開始時期判定手段がSパージ制御の開始時期であることを判定し、且つ前記Sパージ可能判定手段がSパージ可能であると判定した場合に、前記流路切替制御手段により前記流路切替手段を作動させてNOx吸蔵触媒に対し排気ガスを逆流させるので、Sパージ可能な運転状態か否かを判定し、Sパージ可能な運転状態にある場合のみSパージ制御を実施するので、無駄なリッチ運転を行なうことがなくなり、燃費の悪化を抑制できると共に、適正且つ確実に硫酸塩を脱離させることができる。
【0044】
請求項3の発明によれば、前記制御手段は、Sパージ制御の実施中において前記Sパージ可能判定手段が、Sパージ不可能であると判定した場合に、当該Sパージ制御を中断して排気ガス流路を正流に切り替えると共に、Sパージ制御の中断中に機関の運転状態がSパージ可能な運転状態に復帰したことを判定した場合に、Sパージ制御を再開させて排気ガス流路を逆流に切り替えるので、無駄なリッチ運転を行なうことがなくなり、燃費の悪化、排ガス性状の悪化を抑制できる。
【0045】
請求項4の発明によれば、前記制御手段は、目標とするSパージ量を設定する目標Sパージ量設定手段を備えており、Sパージ制御が中断されてその後Sパージ制御を再開する際に、Sパージ制御が中断された時点におけるSパージ量を当該目標Sパージ量設定手段により設定された目標Sパージ量から差し引いた値を新たな目標Sパージ量として設定するので、無駄なく迅速なSパージ制御が行なえ、燃費悪化がより一層抑制される。
【図面の簡単な説明】
【図1】本発明の内燃機関の排気浄化装置を圧縮着火式内燃機関(ディーゼルエンジン)に適用した概略構成図である。
【図2】同じく流路切替部の作用説明図である。
【図3】同じくSパージ制御のフローチャートである。
【図4】S被毒後の触媒内硫黄分布を示すグラフである。
【図5】軽油添加時の触媒内温度分布を示すグラフである。
【符号の説明】
1 機関本体、2 吸気管、3 吸気マニホールド、4 コモンレール、5 燃料噴射弁、6 排気マニホールド、7 排気管、7a〜7d 管路、8 ターボチャージャ、9 インタークーラ、10 エアーフローセンサ、11 吸気絞り弁、12 EGR通路、13 アクチュエータ、14 EGR弁、15 EGRクーラ、16 NOx吸蔵触媒、17a,17b 温度センサ、18 酸素センサ(触媒出口酸素センサ)、19 排気絞り弁、20 酸素センサ(機関出口酸素センサ)、21 燃料噴射弁、22a,22b ロータリバルブ、30 電子制御ユニット(ECU)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust purification device for an internal combustion engine in which a NOx storage catalyst is interposed in an exhaust passage.
[0002]
[Prior Art and Problems to be Solved by the Invention]
2. Description of the Related Art In recent years, lean-burn internal combustion engines in which the internal combustion engine is operated at a lean air-fuel ratio to improve fuel efficiency and the like have been put to practical use. This lean-burn internal combustion engine has a problem in that when operated at a lean air-fuel ratio, the three-way catalyst cannot sufficiently purify nitrogen oxides (NOx) in exhaust gas due to its purification characteristics. A NOx storage (type) catalyst that stores NOx in exhaust gas therein and releases and reduces NOx stored during operation at a stoichiometric or rich air-fuel ratio is employed.
[0003]
The NOx storage catalyst, NOx in exhaust gas in an excess oxygen state of the internal combustion engine (lean state) occluded as nitrate (X-NO 3), occluded NOx with a reducing agent carbon monoxide (CO), etc. This is a catalyst having the property of releasing in an excess state (rich gas state) and reducing it to nitrogen (N 2 ) (carbonate X-CO 3 is generated at the same time). By the way, the fuel contains a sulfur (S) component, and the S component reacts with oxygen in the lean gas state to form a sulfur oxide (SOx), and this SOx is stored as a sulfate in the form of NOx as well as NOx. Occluded by the catalyst.
[0004]
When the sulfur component is occluded in the NOx storage catalyst in this manner, the NOx is not stored, so that the performance of the NOx storage catalyst is reduced. When the sulfur component ratio is increased, the NOx storage catalyst does not function as a NOx storage catalyst. Therefore, in order to maintain the performance of the NOx storage catalyst, it is necessary to periodically release (S purge) the stored (poisoned) SOx.
[0005]
It is said that the S purge is established under a high temperature rich gas condition. However, since it is difficult to achieve high-temperature rich gas conditions only by engine combustion, fuel injection (addition of light oil) to the exhaust pipe is performed to cause a combustion reaction on the NOx storage catalyst, and the reaction heat causes NOx storage. It is realistic to raise the temperature of the catalyst.
[0006]
Here, as a result of a detailed investigation of the state of S poisoning of the NOx storage catalyst by the present inventors, S was determined as shown in FIG. 4 irrespective of the SOx concentration in the exhaust gas (S concentration in the used fuel). It was found that a large amount was accumulated upstream of the exhaust gas on the NOx storage catalyst. 4 (a) is a short-time S poisoning, and FIG. 4 (b) is a long-time S poisoning. The NOx storage catalyst is divided into six equal parts from the upstream side, and the S concentration contained in each is divided. Was subjected to quantitative analysis. On the other hand, it has been found that when the heat of catalytic reaction due to the addition of light oil is used as an assist in enriching at a high temperature, the temperature tends to increase more in the downstream than in the upstream as shown in FIG.
[0007]
Therefore, if S purge is performed by adding light oil so that the temperature of the NOx storage catalyst is not deteriorated by heat, the upstream S component cannot be sufficiently removed. If the temperature is controlled so that the upstream S component can be removed, the downstream side is excessively heated. There is a problem that the possibility of heat deterioration due to heating increases.
[0008]
Therefore, the present inventors have paid attention to the fact that the S purge can be performed efficiently by reversing the exhaust gas flow path for the NOx storage catalyst (forward / backward switching) during the S purge.
[0009]
A technique for reversing the exhaust gas flow path with respect to the catalyst is disclosed in Japanese Patent Application Laid-Open Publication No. H11-163873, which reverses the flow of exhaust gas passing through the particulate filter under a predetermined condition. The fine particles are dispersed and collected on both surfaces of the wall, and do not reverse the flow of the exhaust gas during the S purge. Therefore, the technique disclosed in Patent Document 1 does not perform the S purge control according to the temperature distribution of the catalyst, so that the S purge cannot be performed efficiently.
[0010]
[Patent Document 1]
JP 2002-97926 A
Therefore, an object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can efficiently perform S purge in a short time while preventing thermal deterioration of a catalyst, thereby sufficiently recovering NOx purification performance and suppressing deterioration of fuel efficiency. Is to do.
[0012]
[Means for Solving the Problems]
To achieve the above object, an exhaust gas purification device for an internal combustion engine according to claim 1 of the present invention is an exhaust gas purification device for an internal combustion engine in which a NOx storage catalyst is interposed in an exhaust passage.
Flow path switching means capable of switching an exhaust gas flow path for the NOx storage catalyst between forward and reverse flow;
Start time determination means for determining a start time of S purge control for desorbing poisoned SOx by the NOx storage catalyst;
Control means for operating the flow path switching means to cause the exhaust gas to flow backward to the NOx storage catalyst when the start time determination means determines that it is the start time of the S purge control;
It is characterized by having. Thus, the S purge can be efficiently performed in a short time while preventing thermal deterioration.
[0013]
The exhaust gas purifying apparatus for an internal combustion engine according to claim 2 of the present invention, wherein the control means includes an S purge possibility determining means for determining whether or not the operating state of the engine is an operating state capable of performing the S purge. When the timing determining means determines that it is the start time of the S purge control, and the S purge possibility determining means determines that the S purge is possible, the flow switching means is operated by the flow switching control means. The exhaust gas is caused to flow back to the NOx storage catalyst. Thus, it is determined whether or not the operating state allows the S purge, and the S purge control is performed only in the operating state where the S purge can be performed. Therefore, unnecessary rich operation is not performed, and deterioration of fuel efficiency can be suppressed. At the same time, the sulfate can be properly and reliably eliminated.
[0014]
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 3 of the present invention, when the S purge possibility determining means determines that the S purge is not possible during the execution of the S purge control, The purge control is interrupted to switch the exhaust gas flow path to the normal flow, and the S purge control is restarted when it is determined that the operation state of the engine has returned to the operation state in which the S purge can be performed during the suspension of the S purge control. Then, the exhaust gas flow path is switched to the reverse flow. As a result, useless rich operation is not performed, and deterioration of fuel efficiency and deterioration of exhaust gas properties can be suppressed.
[0015]
According to a fourth aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine, the control unit includes a target S purge amount setting unit that sets a target S purge amount. When the purge control is restarted, a value obtained by subtracting the S purge amount at the time when the S purge control is interrupted from the target S purge amount set by the target S purge amount setting means is set as a new target S purge amount. It is characterized by the following. As a result, the S purge control can be performed quickly without waste, and deterioration of fuel efficiency is further suppressed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described in detail with reference to the drawings by using embodiments.
[0017]
[Example]
FIG. 1 is a schematic configuration diagram in which an exhaust gas purification device for an internal combustion engine of the present invention is applied to a compression ignition type internal combustion engine (diesel engine), FIG. 2 is an explanatory diagram of the operation of a flow path switching unit, and FIG. It is a flowchart.
[0018]
As shown in FIG. 1, each cylinder of the engine body 1 is supplied with intake air from an air cleaner (not shown) via an intake pipe 2 and an intake manifold 3, and is not shown via a common rail 4 and a fuel injection valve 5. Fuel is supplied from a fuel pump. The fuel injection valve 5 is of an electronic control type whose injection amount and injection timing are controlled by an electronic control unit (ECU) 30, which will be described later. Wiring in the drawing is omitted to avoid complication. On the other hand, the exhaust gas discharged from each cylinder of the engine body 1 is discharged to the atmosphere via an exhaust manifold 6 as an exhaust passage and an exhaust pipe 7.
[0019]
A turbocharger 8 is provided between the intake pipe 2 and the exhaust pipe 7, and the intake air is pressurized by a compressor that rotates integrally with a turbine rotated by the exhaust gas and supplied to each cylinder of the engine body 1. It has become. At this time, the pressurized air is cooled by the intercooler 9 interposed in the intake pipe 2, so that the efficiency of charging each cylinder of the engine body 1 is increased.
[0020]
The intake pipe 2 is provided with an air flow sensor 10 located upstream of the turbocharger 8 for detecting the amount of intake air, and an intake throttle valve 11 located downstream of the intercooler 9. The output signal of the airflow sensor 10 is input to the ECU 30, and the opening and closing of the intake throttle valve 11 is controlled by the ECU 30 via an actuator (not shown).
[0021]
The intake manifold 3 and the exhaust manifold 6 are connected by an EGR (exhaust gas recirculation) passage 12, and are controlled at predetermined times by an EGR valve 14 controlled to be opened and closed by an actuator 13 by the ECU 30 according to an engine operating state. A fixed amount of EGR is performed to suppress the generation of NOx as much as possible. The EGR passage 12 is provided with an EGR cooler 15 for cooling the EGR gas.
[0022]
Then, a NOx storage catalyst 16 is interposed in the exhaust pipe 7. The NOx storage catalyst 16 has a characteristic of absorbing NOx in exhaust gas in a lean gas state having a high oxygen concentration, and releasing and reducing this NOx in a rich gas state having a low oxygen concentration and a high concentration of a reducing agent such as HC or CO. .
[0023]
Rotary valves 22a and 22b and flow paths 7c and 7d as flow switching means are provided between the flow path 7a of the exhaust pipe 7 upstream of the NOx storage catalyst 16 and the flow path 7b downstream of the NOx storage catalyst 16. The exhaust gas passage for the NOx storage catalyst 16 can be switched between forward and reverse flows.
[0024]
In other words, the rotary valves 22a and 22b are controlled by the ECU 30 as control means for causing the exhaust gas to flow backward to the NOx storage catalyst 16, and as shown in FIG. The exhaust gas flows through the pipe 7a → the NOx storage catalyst 16 → the pipe 7b (see FIG. 2A). During the S purge control, the pipe 7c → the pipe 7d → the NOx storage catalyst 16 → the pipe 7a → The switching is controlled so as to flow through the pipe 7d (see FIG. 2B).
[0025]
The exhaust pipe 7 immediately before the rotary valve 22a and the exhaust pipe 7 immediately after the rotary valve 22b are provided with temperature sensors (catalyst front and rear temperature sensors) 17a and 17b for detecting the temperature of the exhaust gas. Is provided with an oxygen sensor (catalyst outlet oxygen sensor) 18 for detecting the oxygen concentration in the exhaust gas. The output signals of these sensors 17a, 17b, 18 are input to the ECU 30.
[0026]
The exhaust pipe 7 is provided with an exhaust throttle valve 19 and an oxygen sensor (engine outlet oxygen sensor) 20 for detecting the oxygen concentration in the exhaust gas which are located downstream of the turbocharger 8 in order toward the downstream side. The exhaust throttle valve 19 is controlled to open and close by an ECU 30 via an actuator (not shown), and an output signal of the oxygen sensor 20 is input to the ECU 30.
[0027]
Further, a fuel injection valve 21 whose injection amount and injection timing are controlled by the ECU 30 is provided in the exhaust pipe 7 located upstream of the NOx storage catalyst 16 and downstream of the oxygen sensor 20.
[0028]
The ECU 30 includes a microcomputer (CPU), a memory, and an interface as an input / output signal processing circuit. The input side of the ECU 30 is connected to the air flow sensor 10, the temperature sensors 17a and 17b, and the oxygen sensors 18 and 20, and detects a rotation sensor (not shown) for detecting an engine speed and a vehicle speed. A vehicle speed sensor, an accelerator opening sensor for detecting an accelerator pedal opening, and the like are connected to each other, and engine operation information from these sensors and the like is input. On the other hand, the fuel injection valves 5 and 21, the intake throttle valve 11, the EGR valve 14, the exhaust throttle valve 19, the rotary valves 22a and 22b, and the like are connected to the output side of the ECU 30.
[0029]
The ECU 30 controls the injection amount and the injection timing of the fuel injection valve 5 based on the engine operation information from the above-described sensors and the like, and controls the opening and closing of the EGR valve 14 according to the engine operation state to control the PM and NOx. Is suppressed as much as possible.
[0030]
Further, when the exhaust gas is enriched only by in-cylinder combustion, the ECU 30 controls the opening and closing of the fuel injection valve 21 by controlling the opening and closing of the fuel injection valve 21 because there are many problems such as generation of smoke and torque fluctuation particularly in a high load region. By injecting (adding) fuel (light oil) from the injection valve 21 to the exhaust pipe 7, the exhaust gas is enriched, and the NOx storage catalyst 16 purifies NOx.
[0031]
Further, in order to desorb the SOx poisoned by the NOx storage catalyst 16, the ECU 30 determines when the poisoning amount (hereinafter referred to as the S accumulation amount) reaches a predetermined value (determines the start time of the S purge control). The fuel injection valve 21 injects fuel to make a rich gas state, and switches the rotary valves 22a and 22b to cause exhaust gas to flow back to the NOx storage catalyst 16 to perform S purge control. Has become.
[0032]
The S purge control will be described in detail with reference to the flowchart of FIG.
First, in step P1, it is determined whether or not the S accumulation amount calculated from the integrated value of the fuel consumption amount of the engine body 1 has reached a predetermined amount for starting the S purge (start timing determination means). In step P2, an S purge target amount is set according to the S accumulation amount (target S purge amount setting means). On the other hand, if NO, the calculation of the S accumulation amount from the integrated value of the fuel consumption amount is continued in Step P3.
[0033]
After step P2, at step P4, the operating state of the engine body 1 (torque, rotation, vehicle speed, accelerator opening, exhaust temperature (detected by the catalyst front-rear temperature sensors 17a, 17b), λ (excess air ratio, engine outlet It is determined whether or not the operating state is such that the exhaust gas temperature (the temperature of the NOx storage catalyst 16) can be increased, such as in a high load region, where S purging is possible (S purging possible determining means). For example, in step P5, the target fuel (light oil) addition amount to the exhaust pipe 7 is calculated based on the addition amount map determined by the exhaust temperature (the temperature of the NOx storage catalyst 16) and λ. On the other hand, if the answer is NO, the process waits until the operation state in which S purge can be performed.
[0034]
After step P5, fuel injection (light oil addition) is started from the fuel injection valve 21 in step P6 to shift to a rich gas state in which the oxygen concentration is low and the reducing agent concentration is high, and the rotary valves 22a and 22b are switched. The flow path is switched so that the exhaust gas flows backward to the NOx storage catalyst 16, and then, in step P7, it is determined whether or not the exhaust gas is in a rich state (rich gas state) based on a signal from the catalyst outlet oxygen sensor 18.
[0035]
If it is possible in step P7, it is determined in step P8 whether the S purge operation can be continued based on the operating state (torque, rotation, vehicle speed, accelerator opening) of the engine body 1. If NO in step P7, the amount of fuel injection from the fuel injection valve 21 is corrected (increased) in step P9.
[0036]
During this time, the S purge amount is stored. This S purge amount is calculated based on a SOx desorption amount map determined by the temperature of the NOx storage catalyst 16 estimated (calculated) from the exhaust gas temperature detected by the before and after catalyst temperature sensors 17a and 17b. The stored S purge amount is deducted from the S purge target amount when the present S purge control is re-executed after the interruption in step P8.
[0037]
If it is possible in the step P8, the S purge control is continued until the set S purge target amount is achieved in the step P10. When the S purge target amount is achieved, the rotary valves 22a and 22b are switched in the step P12. Then, the exhaust gas flow path is returned to the normal (forward) flow of the exhaust gas to the NOx storage catalyst 16, and the S purge control ends.
[0038]
On the other hand, if NO in step P8, the fuel injection from the fuel injection valve 21 is stopped in step P11, and the rotary valves 22a and 22b are switched to allow the exhaust gas to flow forward (forward) to the NOx storage catalyst 16. The exhaust gas flow path is returned to its original state, and the process returns to step P4 and waits until an operation state in which S purge can be performed.
[0039]
As described above, in the present embodiment, when the S purge control is performed, the rotary valves 22 a and 22 b are switched to switch the flow path so that the exhaust gas flows back to the NOx storage catalyst 16. Efficient S purge according to the distribution and the temperature distribution can be performed. That is, the reaction heat due to the addition of light oil flows to the portion where the amount of S deposited is large, and the progress of the S purge is accelerated. Further, since the temperature rise more than necessary can be avoided, it is possible to minimize the progress of the deterioration of the NOx storage catalyst 16 due to heat. As a result, it is possible to sufficiently recover the NOx purification performance and to suppress deterioration in fuel efficiency.
[0040]
Further, when the S purge control is interrupted, the S purge amount is stored, and when the S purge control is performed again, the stored S purge amount is subtracted from the S purge target amount. Purge control can be performed, and fuel economy deterioration is further suppressed.
[0041]
It is needless to say that the present invention is not limited to the above embodiments, and various changes can be made without departing from the scope of the present invention. For example, the channel switching means may have various structures. Further, the exhaust gas purification device for an internal combustion engine of the present invention can be applied to a spark ignition type internal combustion engine (gasoline engine). In this case, the exhaust gas can be enriched by in-cylinder combustion.
[0042]
【The invention's effect】
As described above, according to the first aspect of the present invention, in an exhaust gas purification apparatus for an internal combustion engine in which a NOx storage catalyst is provided in an exhaust passage, a flow path for switching the exhaust gas flow path for the NOx storage catalyst between forward and reverse flows. Switching means, start time determining means for determining the start time of S purge control for desorbing SOx poisoned by the NOx storage catalyst, and determining that the start time determining means is the start time of S purge control. Control means for activating the flow path switching means to cause the exhaust gas to flow back to the NOx storage catalyst, so that the S purge can be efficiently performed in a short time while preventing thermal deterioration, and the NOx purification performance Can be sufficiently recovered, and deterioration of fuel efficiency can be suppressed.
[0043]
According to the second aspect of the present invention, the control unit includes an S purge possibility determination unit that determines whether the operation state of the engine is an operation state in which the S purge is possible. Is determined to be a start time, and when the S purge possibility determination means determines that the S purge is possible, the flow path switching means is operated by the flow path switching control means so that the NOx storage catalyst is controlled. Since the exhaust gas is caused to flow backward, it is determined whether or not the operating state allows the S purge, and the S purge control is performed only in the operating state where the S purge can be performed. The deterioration can be suppressed, and the sulfate can be properly and reliably desorbed.
[0044]
According to the third aspect of the present invention, when the S purge possibility determination means determines that the S purge is not possible during the execution of the S purge control, the control means suspends the S purge control and exhausts the gas. The gas flow path is switched to the normal flow, and when it is determined that the operation state of the engine has returned to the operation state in which the S purge can be performed during the suspension of the S purge control, the S purge control is restarted to change the exhaust gas flow path. Since the flow is switched to the reverse flow, useless rich operation is not performed, and deterioration in fuel efficiency and deterioration in exhaust gas properties can be suppressed.
[0045]
According to the invention of claim 4, the control means includes a target S purge amount setting means for setting a target S purge amount. When the S purge control is interrupted and the S purge control is thereafter resumed, , The value obtained by subtracting the S purge amount at the time point when the S purge control is interrupted from the target S purge amount set by the target S purge amount setting means is set as a new target S purge amount, so that the S Purge control can be performed, and fuel consumption deterioration is further suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram in which an exhaust gas purification device for an internal combustion engine of the present invention is applied to a compression ignition type internal combustion engine (diesel engine).
FIG. 2 is an explanatory diagram of an operation of a flow path switching unit.
FIG. 3 is a flowchart of S purge control.
FIG. 4 is a graph showing a sulfur distribution in a catalyst after sulfur poisoning.
FIG. 5 is a graph showing a temperature distribution in a catalyst when gas oil is added.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine main body, 2 intake pipes, 3 intake manifolds, 4 common rails, 5 fuel injection valves, 6 exhaust manifolds, 7 exhaust pipes, 7a to 7d pipes, 8 turbochargers, 9 intercoolers, 10 air flow sensors, 11 intake throttles Valve, 12 EGR passage, 13 actuator, 14 EGR valve, 15 EGR cooler, 16 NOx storage catalyst, 17a, 17b temperature sensor, 18 oxygen sensor (catalyst outlet oxygen sensor), 19 exhaust throttle valve, 20 oxygen sensor (engine outlet oxygen) Sensor), 21 fuel injection valve, 22a, 22b rotary valve, 30 electronic control unit (ECU)

Claims (4)

排気通路に、酸素濃度が高いリーンガス状態で排気ガス中のNOxを吸収する一方酸素濃度が低く還元剤濃度が高いリッチガス状態によりこのNOxを放出・還元するNOx吸蔵触媒を介装した内燃機関の排気浄化装置において、
前記NOx吸蔵触媒に対する排気ガス流路を正,逆流切替可能な流路切替手段と、
前記NOx吸蔵触媒が被毒したSOxを脱離するSパージ制御の開始時期を判定する開始時期判定手段と、
前記開始時期判定手段がSパージ制御の開始時期であることを判定した時に前記流路切替手段を作動させてNOx吸蔵触媒に対し排気ガスを逆流させる制御手段と、
を備えたことを特徴とする内燃機関の排気浄化装置。
The exhaust gas of the internal combustion engine is provided with an NOx storage catalyst in the exhaust passage, in which a NOx in the exhaust gas is absorbed in a lean gas state with a high oxygen concentration while releasing and reducing this NOx in a rich gas state with a low oxygen concentration and a high reducing agent concentration. In the purification device,
Flow path switching means capable of switching an exhaust gas flow path for the NOx storage catalyst between forward and reverse flow;
Start time determination means for determining a start time of S purge control for desorbing poisoned SOx by the NOx storage catalyst;
Control means for operating the flow path switching means to cause the exhaust gas to flow backward to the NOx storage catalyst when the start time determination means determines that it is the start time of the S purge control;
An exhaust gas purification device for an internal combustion engine, comprising:
前記制御手段は、機関の運転状態がSパージ可能な運転状態であるか否かを判定するSパージ可能判定手段を備え、前記開始時期判定手段がSパージ制御の開始時期であることを判定し、且つ前記Sパージ可能判定手段がSパージ可能であると判定した場合に、前記流路切替制御手段により前記流路切替手段を作動させてNOx吸蔵触媒に対し排気ガスを逆流させることを特徴とする請求項1記載の内燃機関の排気浄化装置。The control means includes an S purge possibility determining means for determining whether or not the operating state of the engine is an operating state in which the S purge can be performed, and the start time determining means determines that the start time of the S purge control has been reached. And, when the S purge possibility determining means determines that the S purge is possible, the flow path switching means is operated by the flow path switching control means to cause the exhaust gas to flow backward to the NOx storage catalyst. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1. 前記制御手段は、Sパージ制御の実施中において前記Sパージ可能判定手段が、Sパージ不可能であると判定した場合に、当該Sパージ制御を中断して排気ガス流路を正流に切り替えると共に、Sパージ制御の中断中に機関の運転状態がSパージ可能な運転状態に復帰したことを判定した場合に、Sパージ制御を再開させて排気ガス流路を逆流に切り替えることを特徴とする請求項2記載の内燃機関の排気浄化装置。The control means interrupts the S purge control and switches the exhaust gas flow path to a normal flow when the S purge possibility determination means determines that the S purge is not possible during the execution of the S purge control. When it is determined that the operation state of the engine has returned to the operation state in which the S purge can be performed while the S purge control is suspended, the S purge control is restarted to switch the exhaust gas flow path to the reverse flow. Item 3. An exhaust gas purification device for an internal combustion engine according to Item 2. 前記制御手段は、目標とするSパージ量を設定する目標Sパージ量設定手段を備えており、Sパージ制御が中断されてその後Sパージ制御を再開する際に、Sパージ制御が中断された時点におけるSパージ量を当該目標Sパージ量設定手段により設定された目標Sパージ量から差し引いた値を新たな目標Sパージ量として設定することを特徴とする請求項3記載の内燃機関の排気浄化装置。The control means includes a target S purge amount setting means for setting a target S purge amount. When the S purge control is interrupted and the S purge control is resumed thereafter, the time when the S purge control is interrupted is set. 4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein a value obtained by subtracting the S purge amount from the target S purge amount set by the target S purge amount setting means is set as a new target S purge amount. .
JP2003143208A 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine Pending JP2004346795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143208A JP2004346795A (en) 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143208A JP2004346795A (en) 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004346795A true JP2004346795A (en) 2004-12-09

Family

ID=33531058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143208A Pending JP2004346795A (en) 2003-05-21 2003-05-21 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004346795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086252A1 (en) * 2006-01-27 2007-08-02 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086252A1 (en) * 2006-01-27 2007-08-02 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system

Similar Documents

Publication Publication Date Title
US6502391B1 (en) Exhaust emission control device of internal combustion engine
JP5037263B2 (en) Control device for internal combustion engine
JP3277881B2 (en) Exhaust gas purification device for internal combustion engine
JP2010127179A (en) Exhaust emission control device for internal combustion engine
JP4309908B2 (en) Exhaust gas purification device for internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
JP2007239493A (en) Internal combustion engine with supercharger
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP5039367B2 (en) Exhaust gas purification device for internal combustion engine
JP2002188430A (en) Exhaust gas purifying device of internal combustion engine
JP2009052408A (en) Exhaust emission control device of internal combustion engine
JP2005155500A (en) Exhaust gas control apparatus for internal combustion engine
JP2008128212A (en) Exhaust emission control device of internal combustion engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JP2004346795A (en) Exhaust emission control device for internal combustion engine
JP2004346793A (en) Exhaust emission control device for internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JP2010112313A (en) Exhaust emission control device of internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2010229916A (en) Exhaust emission control device of internal combustion engine
JP4899955B2 (en) Control device for internal combustion engine
JP4233144B2 (en) Exhaust gas purification device for turbocharged engine and control method thereof
JP3807209B2 (en) Operation control device for internal combustion engine
JP5379733B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050826

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081023

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512