[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004344908A - Metal pipe for mechanical pipe-expanding work - Google Patents

Metal pipe for mechanical pipe-expanding work Download PDF

Info

Publication number
JP2004344908A
JP2004344908A JP2003143075A JP2003143075A JP2004344908A JP 2004344908 A JP2004344908 A JP 2004344908A JP 2003143075 A JP2003143075 A JP 2003143075A JP 2003143075 A JP2003143075 A JP 2003143075A JP 2004344908 A JP2004344908 A JP 2004344908A
Authority
JP
Japan
Prior art keywords
pipe
mechanical
expansion
metal
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143075A
Other languages
Japanese (ja)
Inventor
Yuji Hashimoto
裕二 橋本
Osamu Sonobe
治 園部
Takao Iguchi
貴朗 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003143075A priority Critical patent/JP2004344908A/en
Publication of JP2004344908A publication Critical patent/JP2004344908A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal pipe for mechanical pipe-expanding work with excellent workability, which can be easily formed even if a pipe-expanding rate is large. <P>SOLUTION: The metal pipe for the mechanical pipe-expanding work is expanded to a prescribed outer diameter by a segment pipe-expanding tool 2 arranged in a pipe 1. The pipe is made of a material having an r value of ≥ 2.0 in the pipe circumferential direction. It has a surface irregularities composed of 5-100 stripes per 100 μm of the length in the pipe circumferential direction at least on the pipe inner face at a portion to be expanded. The surface roughness Ra on the inner face is 0.10-1.0 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メカニカル拡管加工用金属管に関する。
【0002】
【従来の技術】
自動車部品等の製品に関連する分野では、鋼管等の金属管を拡管加工により成形した製品がマフラーシェルや触媒ケースなどに使用されている。その加工法として、ハイドロフォーミング法あるいはメカニカル拡管法が用いられている(例えば非特許文献1参照)。ハイドロフォーミング法は、金型内に金属管を装着し、管内に液を導入して内圧をかけ拡管する方式であるが、設備が大掛かりとなりコストが高い。メカニカル拡管法は、図1に示すように、複数枚の断面円弧状セグメント2aを円環状に配列して放射状に進退させるように構成したセグメント拡管工具2により、金属管1の円周方向の数箇所を半径方向に押し広げる方式であり、設備は比較的簡素なもので足りる。しかし、メカニカル拡管法では、工具と金属管材料(以下、単に“材料”ともいう。)間の摩擦により工具接触部の管円周方向の変形が拘束されるため、材料が管円周方向に均一変形し難く、セパレート部2bに変形が集中して割れが発生し易いことから、大きな拡管率を得ることが難しかった。
【0003】
【非特許文献1】
日本塑性加工学会編「チューブフォーミング」p.65−90,コロナ社,1992.10
【0004】
【発明が解決しようとする課題】
上記のように、メカニカル拡管法では、大きな拡管率を得ることが難しいという課題が残されていた。本発明は、この課題を解決し、拡管率を大きくしても難なく成形しうる加工性に優れたメカニカル拡管加工用金属管を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成した本発明は、管内に配したセグメント拡管工具により所定の外径に拡管加工されるメカニカル拡管加工用金属管であって、管円周方向のr値が2.0 以上の材料からなり、少なくとも被拡管部分の管内面に管円周方向長さ100 μm あたり5〜100 本のすじからなる表面凹凸形態を有し、かつ、同内面(=前記少なくとも被拡管部分の管内面)の表面粗さがRa(=平均粗さ)で0.10〜1.0 μm であることを特徴とするメカニカル拡管加工用金属管である。
【0006】
【発明の実施の形態】
本発明のメカニカル拡管加工用金属管すなわち本発明管は、図1に示したようなメカニカル拡管法に則り、管1内に配したセグメント拡管工具2により所定の外径に拡管加工される金属管であって、管材料のr値、管の表面凹凸形態および表面粗さが上記本発明範囲内にあるものである。金属管としては、鋼管、アルミニウム管、銅管などが挙げられる。鋼管としては、鋼板を管状に成形し突合せ部を溶接してなる電縫鋼管や、ビレットを穿孔・延伸圧延してなるシームレス鋼管などのいずれであってもよい。鋼管の鋼種は、炭素鋼、ステンレス鋼等々のいずれであってもよい。
【0007】
本発明にいう“すじ”とは、管軸方向に伸びた深さ0.5 μm 以上の凹部を指す。また、r値は、板の引張試験において、歪比=(試験片板幅方向の歪)/(試験片板厚方向の歪)で定義される量である。電縫鋼管等のような、帯板から造管される金属管の場合は、造管前の帯板についての管円周方向に対応する方向(通常は帯板の板幅方向がこれに該当する。)の引張試験データからr値を評価しうる。一方、シームレス鋼管等のような、帯板でないものから造管される金属管の場合は、フラットニング後、C方向引張試験片を採取して測定することによりr値を評価しうる。
【0008】
本発明範囲を上記のように限定した理由を以下に説明する。
本発明者らは、前記目的を達成するために、管材料の管円周方向のr値、管内面に形成したすじの本数密度(管円周方向長さ100 μm あたりのすじ本数)および管内面の表面粗さRaを種々違えた鋼管を材料に用いて、図1に示したメカニカル拡管法により図2に示す形状に成形する拡管加工実験を行なって限界拡管率を測定した。これらの鋼管は、いずれも電縫鋼管であって、鋼種:SUS436J1L 、管サイズ:外径114.3mm ×肉厚1.5 mm×長さ500mm のものである。この実験では、被加工部分の管内面に潤滑剤として鉱物油を0.2 g/m塗油した。
【0009】
限界拡管率は、図2に示すように、加工途中で材料に割れが生じたときの外径すなわち拡管限界外径dと加工前外径d0 (この実験では114.3mm )との差の拡管限界外径dに対する比を百分率で表すものとした。
この実験のデータから、図3〜図5に特性図を示すような知見が得られた。すなわち、図3より、限界拡管率はr値<2.0 の範囲ではr値の増大に伴い増大し、r値≧2.0 の範囲ではその増大傾向が頭打ちとなる。すなわち、r値を2.0 以上とすることによりr値変域内での最大拡管率近くまで拡管しうるが、r値が2.0 未満ではそれが叶わず大きな拡管率を得るのは困難である。よってr値は2.0 以上とした。
【0010】
また、図4、図5より、すじの本数密度が5〜100 本の範囲および表面粗さRaが0.10〜1.0 μm の範囲で限界拡管率が大きい。この理由は、おそらく、これらの範囲においてセグメント拡管工具と材料間の摩擦係数が小さくなり、材料が比較的均一に管円周方向に変形するようになるためである。よって、すじの本数密度は5〜100 本とし、表面粗さRaは0.10〜1.0 μm とした。
【0011】
材料の管円周方向のr値を2.0 以上にする方法としては、帯板から造管される金属管の場合、例えば、素材成分、冷間圧延時の圧下率、焼鈍温度を調整するなどの方法が挙げられる。一方、帯板でないものから造管される金属管の場合、例えば、温間域で縮径圧延としごき圧延を行うなどの方法が挙げられる。
金属管の表面にすじを導入する方法としては、帯板から造管される金属管の場合、例えば、造管用の帯板の製造工程に含まれる圧延工程のなかで、ロール面にすじを設けた圧延ロールで最終段またはスキンパス調質圧延などを実施することにより帯板にすじを転写する。一方、帯板でないものから造管される金属管の場合、例えば、すじを付けたマンドレルでしごき圧延するなどの方法が挙げられる。
【0012】
金属管の表面粗さを調整する方法としては、帯板から造管される金属管の場合、例えば、造管用の帯板の製造工程に含まれる圧延工程のなかで、ロール面の表面粗さを調整した圧延ロールで仕上圧延することにより帯板に表面粗さを転写する。一方、帯板でないものから造管される金属管の場合、例えば、表面粗さを調整したマンドレルでしごき圧延することにより管内面に表面粗さを転写するなどの方法が挙げられる。
【0013】
【実施例】
板厚1.5 mmのJIS SUS436J1L 相当鋼板を管状に幅曲げ成形しその曲げ端(突合せ端)を高周波抵抗溶接して外径114.3mm の鋼管を製造した。このとき、造管前の鋼板について、管円周方向のr値、すじの本数および表面粗さRaを表1に示す種々の値に設定した。r値は、鋼板の製造工程のなかで特に冷間圧延時の圧下率と焼鈍温度を制御することにより表1の値に調整した。すじは、すじを設けたスキンパスロールで調質圧延することにより導入した。表面粗さRaは、ロールの表面粗さを調整した圧延ロールで転写させることにより調整した。
【0014】
上記製造した鋼管を、図1に示したメカニカル拡管法により、拡管率が30%になるように拡管加工し、割れの有無を調べた。セグメント2aの材質はSKD11 とし、拡管加工に際し、潤滑剤として鉱物油を鋼管内面に0.2 g/m塗布した。
その結果、表1に示すように、本発明の範囲外の鋼管(比較例)では割れが発生したのに対し、本発明の範囲内の鋼管(発明例)では、割れが生じることなく拡管加工が可能であり、所定形状の成形品が得られた。
【0015】
【表1】

Figure 2004344908
【0016】
【発明の効果】
かくして本発明によれば、メカニカル拡管法による成形可能範囲を従来よりも拡管率の大きい側に拡大することができ、厳しい拡管率を要する成形品でも難なく製造できるようになるという優れた効果を奏する。
【図面の簡単な説明】
【図1】メカニカル拡管法の概要を示す模式図である。
【図2】拡管加工実験における最終成形形状および限界拡管率の定義を示す模式図である。
【図3】限界拡管率と管材料の管円周方向のr値との関係を示す特性図である。
【図4】限界拡管率と管内面に形成したすじの本数との関係を示す特性図である。
【図5】限界拡管率と管内面の表面粗さRaとの関係を示す特性図である。
【符号の説明】
1 管(金属管)
2 セグメント拡管工具
2a セグメント
2b セパレート部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal pipe for mechanical pipe expansion.
[0002]
[Prior art]
In the field related to products such as automobile parts, products formed by expanding a metal pipe such as a steel pipe by an expanding process are used for a muffler shell, a catalyst case, and the like. As the processing method, a hydroforming method or a mechanical expansion method is used (for example, see Non-Patent Document 1). The hydroforming method is a method in which a metal pipe is mounted in a mold, a liquid is introduced into the pipe, and internal pressure is applied to expand the pipe. However, the equipment is large and the cost is high. As shown in FIG. 1, the mechanical pipe expansion method uses a segment pipe expansion tool 2 configured to arrange a plurality of circular arc-shaped segments 2 a in an annular shape so as to advance and retreat radially. This is a method of expanding the location in the radial direction, and relatively simple equipment is sufficient. However, in the mechanical pipe expansion method, the friction between the tool and the metal pipe material (hereinafter, also simply referred to as “material”) restricts the deformation of the tool contact portion in the pipe circumferential direction. Since it is difficult to deform uniformly and the deformation is concentrated on the separate portion 2b and cracks are easily generated, it is difficult to obtain a large pipe expansion ratio.
[0003]
[Non-patent document 1]
The Japan Society for Technology of Plasticity “Tube Forming” p. 65-90, Corona, 1992.10.
[0004]
[Problems to be solved by the invention]
As described above, the mechanical expansion method has a problem that it is difficult to obtain a large expansion ratio. An object of the present invention is to solve this problem and to provide a metal pipe for mechanical pipe expansion which is excellent in workability and can be formed without difficulty even if the pipe expansion rate is increased.
[0005]
[Means for Solving the Problems]
The present invention, which has achieved the above object, is a metal pipe for mechanical pipe expansion to be expanded to a predetermined outer diameter by a segment expansion tool disposed in the pipe, and has a material having an r value in the pipe circumferential direction of 2.0 or more. And at least the inner surface of the portion to be expanded has a surface unevenness composed of 5 to 100 stripes per 100 μm in the circumferential direction of the tube, and the inner surface (= the inner surface of the tube at least at the portion to be expanded) Is a metal pipe for mechanical pipe expansion processing, wherein the surface roughness of the metal pipe is Ra (= average roughness) of 0.10 to 1.0 μm.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The metal pipe for mechanical expansion processing of the present invention, that is, the pipe of the present invention, is a metal pipe expanded to a predetermined outer diameter by a segment expansion tool 2 arranged in the pipe 1 in accordance with the mechanical expansion method as shown in FIG. Wherein the r-value of the tube material, the surface unevenness of the tube, and the surface roughness are within the range of the present invention. Examples of the metal tube include a steel tube, an aluminum tube, and a copper tube. The steel pipe may be any of an electric resistance welded steel pipe formed by forming a steel plate into a tubular shape and welding a butt portion, and a seamless steel pipe formed by piercing and elongating and rolling a billet. The steel type of the steel pipe may be any of carbon steel, stainless steel and the like.
[0007]
The “streak” in the present invention refers to a concave portion having a depth of 0.5 μm or more and extending in the tube axis direction. The r value is an amount defined by a strain ratio = (strain in the width direction of the test piece) / (strain in the thickness direction of the test piece) in the tensile test of the sheet. In the case of a metal pipe made from a strip, such as an ERW pipe, the direction corresponding to the pipe circumferential direction of the strip before pipe formation (usually the width direction of the strip corresponds to this direction). ) Can be evaluated from the tensile test data. On the other hand, in the case of a metal pipe made of a non-strip plate, such as a seamless steel pipe, the r value can be evaluated by collecting and measuring a C-direction tensile test piece after flattening.
[0008]
The reason for limiting the scope of the present invention as described above will be described below.
In order to achieve the above object, the present inventors have determined the r value of the tube material in the circumferential direction of the tube, the density of the streaks formed on the inner surface of the tube (the number of streaks per 100 μm in the circumferential direction of the tube) and the number of streaks. A steel pipe having various surface roughnesses Ra was used as a material, and a pipe expansion experiment was performed to form the shape shown in FIG. 2 by the mechanical pipe expansion method shown in FIG. 1 to measure a critical pipe expansion rate. Each of these steel pipes is an electric resistance welded steel pipe having a steel type: SUS436J1L, a pipe size: an outer diameter of 114.3 mm, a wall thickness of 1.5 mm, and a length of 500 mm. In this experiment, 0.2 g / m 2 of mineral oil was applied as a lubricant to the inner surface of the tube at the portion to be processed.
[0009]
As shown in FIG. 2, the critical pipe expansion rate is a pipe expansion of a difference between the outer diameter when a crack occurs in the material during processing, that is, the difference between the maximum pipe outer diameter d and the outer diameter d0 before processing (114.3 mm in this experiment). The ratio to the critical outer diameter d was expressed as a percentage.
From the data of this experiment, findings such as those shown in the characteristic diagrams in FIGS. 3 to 5 were obtained. That is, from FIG. 3, the critical expansion ratio increases with the increase of the r value in the range of r value <2.0, and the increasing tendency reaches a plateau in the range of r value ≧ 2.0. That is, by setting the r-value to 2.0 or more, the tube can be expanded to near the maximum expansion ratio in the r-value variation region. However, when the r-value is less than 2.0, this is not achieved, and it is difficult to obtain a large expansion ratio. is there. Therefore, the r value was set to 2.0 or more.
[0010]
4 and 5, the critical expansion ratio is large when the number density of streaks is in the range of 5 to 100 and the surface roughness Ra is in the range of 0.10 to 1.0 μm. The reason for this is probably that in these ranges the coefficient of friction between the segment expansion tool and the material will be low and the material will deform relatively uniformly in the circumferential direction of the tube. Therefore, the number density of the streaks was 5 to 100, and the surface roughness Ra was 0.10 to 1.0 μm.
[0011]
As a method for increasing the r value of the material in the pipe circumferential direction to 2.0 or more, in the case of a metal tube formed from a strip, for example, the material component, the rolling reduction during cold rolling, and the annealing temperature are adjusted. And the like. On the other hand, in the case of a metal tube formed from a non-strip plate, for example, a method of performing diameter reduction rolling and ironing rolling in a warm region may be mentioned.
As a method of introducing streaks on the surface of the metal tube, in the case of a metal tube formed from a strip, for example, in the rolling process included in the manufacturing process of the strip for forming a tube, to provide a streak on the roll surface The stripes are transferred to the strip by performing the final stage or skin pass temper rolling with the rolling rolls. On the other hand, in the case of a metal pipe formed from a material other than a strip, for example, a method of ironing and rolling with a mandrel having a streak may be used.
[0012]
As a method of adjusting the surface roughness of the metal pipe, in the case of a metal pipe formed from a strip, for example, in the rolling process included in the manufacturing process of the strip for pipe forming, the surface roughness of the roll surface The surface roughness is transferred to the band plate by finish rolling with the rolls adjusted to. On the other hand, in the case of a metal pipe formed from a non-strip plate, for example, a method of transferring the surface roughness to the inner surface of the pipe by ironing and rolling with a mandrel whose surface roughness has been adjusted may be mentioned.
[0013]
【Example】
A 1.5 mm-thick JIS SUS436J1L-equivalent steel sheet was formed into a tubular shape by bending in width, and its bent end (butt end) was subjected to high frequency resistance welding to produce a steel pipe having an outer diameter of 114.3 mm. At this time, for the steel sheet before pipe making, the r value in the pipe circumferential direction, the number of streaks, and the surface roughness Ra were set to various values shown in Table 1. The r-value was adjusted to the value shown in Table 1 by controlling the rolling reduction and the annealing temperature during the cold rolling in the manufacturing process of the steel sheet. The streaks were introduced by temper rolling with a skin pass roll provided with streaks. The surface roughness Ra was adjusted by transferring with a roll having adjusted surface roughness of the roll.
[0014]
The manufactured steel pipe was expanded by the mechanical expansion method shown in FIG. 1 so that the expansion ratio became 30%, and the presence or absence of cracks was examined. The material of the segment 2a was SKD11, and 0.2 g / m 2 of a mineral oil was applied as a lubricant to the inner surface of the steel pipe during pipe expansion.
As a result, as shown in Table 1, cracks occurred in steel pipes outside the scope of the present invention (comparative example), whereas pipes in the scope of the present invention (inventive examples) did not crack without expanding And a molded article having a predetermined shape was obtained.
[0015]
[Table 1]
Figure 2004344908
[0016]
【The invention's effect】
Thus, according to the present invention, the formable range by the mechanical pipe expansion method can be expanded to the side where the pipe expansion ratio is larger than before, and there is an excellent effect that a molded product requiring a strict pipe expansion rate can be manufactured without difficulty. .
[Brief description of the drawings]
FIG. 1 is a schematic view showing an outline of a mechanical pipe expansion method.
FIG. 2 is a schematic diagram showing definitions of a final molded shape and a critical pipe expansion ratio in a pipe expansion processing experiment.
FIG. 3 is a characteristic diagram showing a relationship between a critical pipe expansion rate and an r value of a pipe material in a pipe circumferential direction.
FIG. 4 is a characteristic diagram showing a relationship between a critical pipe expansion rate and the number of streaks formed on the inner surface of the pipe.
FIG. 5 is a characteristic diagram showing a relationship between a critical pipe expansion rate and a surface roughness Ra of a pipe inner surface.
[Explanation of symbols]
1 tube (metal tube)
2 segment pipe expansion tool 2a segment 2b separate part

Claims (1)

管内に配したセグメント拡管工具により所定の外径に拡管加工されるメカニカル拡管加工用金属管であって、管円周方向のr値が2.0 以上の材料からなり、少なくとも被拡管部分の管内面に管円周方向長さ100 μm あたり5〜100 本のすじからなる表面凹凸形態を有し、かつ、同内面の表面粗さがRaで0.10〜1.0μm であることを特徴とするメカニカル拡管加工用金属管。A metal pipe for mechanical pipe expansion to be expanded to a predetermined outer diameter by a segment expansion tool arranged in the pipe, the pipe being made of a material having an r value of 2.0 or more in a pipe circumferential direction, and having at least a pipe inside a pipe to be expanded. The surface is characterized by having a surface irregularity form of 5 to 100 stripes per 100 μm in the circumferential direction of the tube, and the inner surface has a surface roughness Ra of 0.10 to 1.0 μm. Metal pipe for mechanical pipe expansion.
JP2003143075A 2003-05-21 2003-05-21 Metal pipe for mechanical pipe-expanding work Pending JP2004344908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143075A JP2004344908A (en) 2003-05-21 2003-05-21 Metal pipe for mechanical pipe-expanding work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143075A JP2004344908A (en) 2003-05-21 2003-05-21 Metal pipe for mechanical pipe-expanding work

Publications (1)

Publication Number Publication Date
JP2004344908A true JP2004344908A (en) 2004-12-09

Family

ID=33530957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143075A Pending JP2004344908A (en) 2003-05-21 2003-05-21 Metal pipe for mechanical pipe-expanding work

Country Status (1)

Country Link
JP (1) JP2004344908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130764A (en) * 2006-11-20 2008-06-05 Sharp Corp Printed wiring board manufacturing apparatus, printed wiring board, printed wiring board manufacturing method, and electronic apparatus
CN102581151A (en) * 2012-02-24 2012-07-18 佛山市澜石宇航星不锈钢有限公司 Pipe expanding machine of titanium alloy thin-wall welded pipe
CN106216538A (en) * 2016-08-04 2016-12-14 中南大学 A kind of major diameter ring mechanical expansion equipment
CN114406007A (en) * 2022-04-01 2022-04-29 承德建龙特殊钢有限公司 Seamless steel pipe tracking production system one by one

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130764A (en) * 2006-11-20 2008-06-05 Sharp Corp Printed wiring board manufacturing apparatus, printed wiring board, printed wiring board manufacturing method, and electronic apparatus
CN102581151A (en) * 2012-02-24 2012-07-18 佛山市澜石宇航星不锈钢有限公司 Pipe expanding machine of titanium alloy thin-wall welded pipe
CN106216538A (en) * 2016-08-04 2016-12-14 中南大学 A kind of major diameter ring mechanical expansion equipment
CN106216538B (en) * 2016-08-04 2017-12-15 中南大学 A kind of major diameter ring mechanical expansion equipment
CN114406007A (en) * 2022-04-01 2022-04-29 承德建龙特殊钢有限公司 Seamless steel pipe tracking production system one by one
CN114406007B (en) * 2022-04-01 2022-06-03 承德建龙特殊钢有限公司 Seamless steel pipe tracking production system one by one

Similar Documents

Publication Publication Date Title
CN102836895B (en) A kind of manufacture method of special-shaped seamless steel pipe
JP2003311317A (en) Manufacturing method of seamless pipe
WO2005068098A9 (en) Method for producing seamless pipe
SU1749267A1 (en) Method of fabricating corrugated steel patch
JP4557006B2 (en) Plug, tube expansion method using plug, metal tube manufacturing method, and metal tube
JP2012170977A (en) Method of manufacturing steel pipe
TW200821057A (en) Method of manufacturing ultrathin wall metallic tube by cold working method
CN100493762C (en) Mold, manufacturing method of stepped metal pipe, and stepped metal pipe
EP2883627B1 (en) Method of producing steel pipe
JP2004344908A (en) Metal pipe for mechanical pipe-expanding work
RU2722939C1 (en) Method of making complex profile axisymmetric parts
RU2461436C1 (en) Method of producing variable cross-section thin-wall shells
JP2006247664A (en) Cold bending method of steel tube
JP4687498B2 (en) Manufacturing method of hot electrical resistance welded steel pipe
RU2341348C2 (en) Method for manufacture of single-corrugation bellows
JP2014166649A (en) Method for manufacturing seamless steel pipe
RU2068326C1 (en) Multilayer metal pipe manufacture method
JPH06269842A (en) Method for drawing coiled steel pipe
JP2820524B2 (en) Bending roll
RU2786705C1 (en) Method for processing random pipe sections
CN110405091B (en) Method for determining wall thickness of core rod for hot expanding of steel pipe
JP3716763B2 (en) Mandrel mill rolling method for seamless steel pipe
JP5336802B2 (en) Seamless aluminum alloy tube manufacturing method
RU2696120C1 (en) Method of t-joint manufacturing
JP2006272451A (en) Metal bend having sectional shape for component, and its manufacturing method