[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004233114A - Antigen separator, and method and instrument for measuring antigen by using the same - Google Patents

Antigen separator, and method and instrument for measuring antigen by using the same Download PDF

Info

Publication number
JP2004233114A
JP2004233114A JP2003019752A JP2003019752A JP2004233114A JP 2004233114 A JP2004233114 A JP 2004233114A JP 2003019752 A JP2003019752 A JP 2003019752A JP 2003019752 A JP2003019752 A JP 2003019752A JP 2004233114 A JP2004233114 A JP 2004233114A
Authority
JP
Japan
Prior art keywords
antigen
sample fluid
reaction
image
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003019752A
Other languages
Japanese (ja)
Other versions
JP4171974B2 (en
Inventor
Naohiro Noda
直広 野田
Katsuji Yokoyama
勝治 横山
Yoshiharu Tanaka
良春 田中
Hideo Shimizu
秀雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003019752A priority Critical patent/JP4171974B2/en
Publication of JP2004233114A publication Critical patent/JP2004233114A/en
Application granted granted Critical
Publication of JP4171974B2 publication Critical patent/JP4171974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antigen separator for eliminating a problem of foreign matter clogging in antigen separation and securing the amount of treated fluid meeting the need, and to perform the shortening of antigen measurement time and high-accuracy measurement by performing image measurement on antigens separated by using the separator. <P>SOLUTION: This antigen separator is equipped with a specimen inlet 1 for a specimen fluid including antigens, a reaction part 3 used for separating the antigens by antigen/antibody reaction and made by disposing a plurality of antibody beads 2 on a bottom surface of a micro-channel having a rectangular cross-section through which the specimen fluid flows, a specimen-liquid inlet path 4 for causing the inlet to communicate with the reaction part, and an exhaust path 5 for the specimen fluid. The inlet path 4 is substantially equipped with a difference 4a in flow path level from the reaction part so that it is equipped with an antigen condensing function in the vicinity of the bottom surface, and/or, the reaction part 3 is equipped with an electric field generating means 30 for attracting the antigens by an electric attracting force to the bottom surface side where the antibody beads are disposed. An image measuring instrument is provided above the reaction part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、試料中の細菌や生体内蛋白質等の抗原の分離装置並びにこれを利用した抗原の計測方法及び装置に関する。分離・計測対象としては、抗原抗体反応を利用して計測可能なすべての物が含まれ、細菌や放線菌などの原核生物、酵母やカビなどの真核生物、下等藻類、ウイルスなどの微生物や、動植物由来の培養細胞及びスギやヒノキなどの花粉などの細胞が含まれる。また、免疫分析,内分泌撹乱性物質(環境ホルモン)の検出,アトピー性皮膚炎の原因物質特性なども対象となる。対象試料としては、気体試料に比べて液体試料の場合の方が多いが、例えば気中に浮遊する細菌やカビなどの気体試料の抗原の計測も含まれる。本発明の利用分野としては、医療,食品製造,上下水道,環境分析などがある。
【0002】
【従来の技術】
例えば、試料中の微生物や動植物等の組織細胞などの検出は、滅菌状態の確認や、細胞の生存状態の異常等を検出する上で、産業上極めて重要な技術である。
【0003】
従来、被験面上に存在する肉眼では観察することのできない細菌等の微生物を観察および計数するには、培養法、すなわち寒天などで賦形した固形の平板培地を被験面に押し当てることにより、被験面上の微生物を寒天平板培地上に転写し、該微生物をそのまま平板培地上で適当な環境のもとで培養することにより出現するコロニーを肉眼または実体顕微鏡等で見定めながら計測する方法が一般的に利用されている。
【0004】
前記培養法は、計測所要時間が諸準備を含めて48〜72時間もかかる欠点があるので、近年では、抗原抗体反応を利用し、抗原を蛍光試薬により標識して画像計測する方法が開発されている。例えば、フィルタ上に捕集した微生物を適当な染色液と接触させて、発色した菌体数を顕微鏡等で計数することにより、培養を行わずに微生物を検出する。
【0005】
前記画像計測方法によれば、2〜3時間で計測が可能となる。計測所要時間の内訳は、例えば、抗原抗体反応および抗体磁気ビーズと試料液中のゴミとの磁気的分離に約70分,蛍光染色に約30分,顕微鏡観察に約30分で、合計2〜3となる。
【0006】
ところで、前記計測方法における画像解析方法としては、一般に、手動合焦の顕微鏡や撮像装置等を用いた画像解析が行なわれており、高倍率の使用条件下では被写界深度が狭いので合焦に手間取ることも多く、自動合焦や自動解析が望まれている。この観点から、自動合焦を行なって蛍光画像計測を行なう方法に関して、本件出願人によって発明された蛍光画像計測方法が、特願2002−30648号により出願されている。
【0007】
図6は、前記特願2002−30648号に記載された方法を実施する装置の一例を示す。図6に示す装置によれば、標本81に対して励起光を励起用光源80から照射する前に、蛍光画像計測波長帯域で発光するオートフォーカス(AF)用光を、図示のように励起光照射側と同じ側から光源82により照射し、これにより得た画像情報から合焦度を判断し、その度合いに応じて標本81と受光系の少なくとも一方を駆動して合焦点位置を探索し、合焦点位置に達したらAF用光の照射を停止し、その後に光源80から標本81に励起光を照射して蛍光画像計測を行なうことができる。本装置によれば、透過光を利用しないので、メンブレンフィルタ表面に補足した標本の計測も可能となる。
【0008】
AF用光源82としては、発光ダイオードや半導体レーザが好適である。AF用光照射時の標本の画像は、対物レンズ85,ダイクロイックミラー83,蛍光受光側フィルタ84および結像レンズ86を介して、撮像素子87で捉える。撮像素子としてはCCDカメラ用素子やCMOSカメラ用素子が好適である。撮像素子87で得た画像は演算部88に送り、ここでコントラストの評価を行なう。コントラストの評価は、例えば隣り合う画素間の輝度差として算出し、コントラストが最大になる位置を合焦点位置とする、一般的なAF手法により行なう。
【0009】
なお、図6において、89はステージ移動機構、91は励起光の集光レンズ、92はフィルタ、93は蛍光フィルタブロックを示す。また、前記コントラストの評価を行なうための合焦用マーカーとしては、図6には図示しないが、標本を保持するスライドガラスの表面に模様(マーク)をつけるか、もしくは標本のろ過捕捉用のメンブレンフィルタの表面に模様(マーク)をつける方法を採用している(詳細は、前記特願2002−30648号参照)。上記方法によれば、要素数の少ないシンプルな構成で、励起光の照射によって標本が消光し検知不能とすることなく、かつ、メンブレンフィルタ表面に補足した標本やコントラストが不鮮明な標本についてもオートフォーカス(AF)が可能となる。
【0010】
また、前記蛍光画像計測方法においては、試料の性状に関わらず蛍光性夾雑物の影響を排除し、測定精度の向上を図ることが望ましく、この観点から、本件出願人によって発明された生細胞の計数方法および装置が、特願2002−148884号により出願されている。
【0011】
前記特願2002−148884号に記載された画像計測装置は、生細胞の蛍光標識後の画像情報と蛍光標識前の画像情報との差に基づき画像計測を行ない、夾雑物の蛍光誤差を除去する機能を備えるものであって、前記出願においては三種類の方法を開示している。
【0012】
即ち、第一の方法は、試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識することにより、前記生細胞の数を測定する生細胞の計数方法および装置において、生細胞を蛍光標識する前に、試料の蛍光画像(第一画像)を取得し、前記生細胞を蛍光標識した後に、試料の蛍光画像(第二画像)を取得し、前記第一画像中と第二画像中の輝点数の差(B−A)を求めることとする。さらに前記とは異なる方法としては、前記第一画像と第二画像との差分画像を求め、この差分画像中の輝点数を求める第二の方法か、もしくは、前記第二画像中の輝点の内、その位置が、前記第一画像中の各輝点に付随する不感領域に含まれない輝点数を求める第三の方法である(詳細は、前記特願2002−148884号参照)。
【0013】
図7は、一例として、第一画像と第二画像との間で差分画像を求めることを利用する前記第二の方法に係る細菌数の計測方法を示す図である。
【0014】
手順としては、例えば、試料液に含まれる細菌を、ろ過によってメンブレンフィルタ上に捕捉する。次に、細菌を捕捉したメンブレンフィルタの蛍光標識前の蛍光画像(図7の中央部に示す第一画像96)を取得する。続いて、メンブレンフィルタ上に蛍光標識試薬を添加し、細菌を蛍光標識する。その後、再びメンブレンフィルタの蛍光画像(図7の左側に示す第二画像97)を取得する。そして、前記第二画像97と第一画像96とにより、図7の右側に示す差分画像98を求める。
【0015】
差分画像98中に存在する輝点が蛍光標識によって現れた輝点であり、これを細菌数として計数することにより、夾雑物の蛍光誤差を除去することができる。
【0016】
ところで、上記のように改良された蛍光画像計測方法に対しても、さらに簡便に短時間で、高精度の計測ができるような改良が求められている。また、計測対象によっては、微量の試料で計測を可能とすることが望まれる。このような観点から、微量試料をマイクロチップ内で抗原抗体反応をさせて計測する免疫分析装置と方法が、特許文献1により知られている。
【0017】
図8は、特許文献1に記載された免疫分析装置の斜視図を示す。図8に示す免疫分析装置は、特許文献1の記載によれば、反応固相としての直径1mm以下の固体微粒子102とともに、この固体微粒子102の径よりも大きい断面積を有するマイクロチャンネル反応槽部103と、前記固体微粒子102の径よりも小さい断面積を有するマイクロチャンネル分離部104とを備え、抗原および標識抗体を別々に前記反応槽部103へと導く導入部もしくはマイクロチャンネル流入部105,106を有している免疫分析マイクロチップを構成し、これを用いて分析する。
【0018】
図8において、第二抗体としての標識抗体の反応槽部103への導入のためのマイクロチャンネル流入部106とともに、第一抗体の導入のためのマイクロチャンネル流入部107、並びにバッファー液や洗浄液の導入のためのマイクロチャンネル流入部108を備えており、各々のマイクロチャンネル流入部105,106,107,108の端部には、抗原、標識抗体(第二抗体)、第一抗体、そして洗浄液の注入穴部105A,106A,107A,108Aが設けられてもいる。また、図8の例では、マイクロチャンネル分離部104の端部には、廃液部104Aが設けられている。
【0019】
固体微粒子102は、免疫抗原−抗体反応のための反応固相としての役割を果たすものであって、たとえばガラスビーズ、あるいはポリスチレン等の高分子ビーズ等が用いられる。この固体微粒子102は、直径が1mm以下、たとえば15〜85μmのもの用いられる。
【0020】
上記免疫分析マイクロチップによって、微量の試料等の使用によって、簡便に短い反応時間で免疫分析が可能となる。免疫分析の方法としては、反応固相としての固体微粒子102をマイクロチャンネル反応槽部103に導入し、導入部もしくはマイクロチャンネル流入部105,106より導入した抗原および標識抗体、さらに必要によりマイクロチャンネル流入部107より導入した抗体の固体微粒子102上での反応を行い、未反応物をマイクロチャンネル分離部104で分離し、光熱変換分析や蛍光分析等により分析することを可能としている。
【0021】
【特許文献1】
特開2001−4628号公報(第3−4頁、図1)
【0022】
【発明が解決しようとする課題】
ところで、上記特許文献1に記載された発明においても、主に測定対象物の分離装置に関わり、下記のような問題点がある。
【0023】
特許文献1の装置の場合、具体的には、上記特許文献1に記載されたように、「マイクロチャンネル反応槽部103の大きさは、半球状の穴部とした場合には、たとえばその半径が100μm以上、より好ましくは150μm以上とし、また、マイクロチャンネル分離部104は、たとえば、深さが10μm以下、幅10μm以下とされる。このようにすることによって、反応固相としての固体微粒子102は、マイクロチャンネル分離部104に流入することはなく、せき止められることになる。そして未反応物だけが、マイクロチャンネル分離部104に流入して分離される。また、必要に応じて、固体微粒子102から脱着された反応生成物のみが分離される。」
上記特許文献1に記載のように、特許文献1の分離装置は、「せき止め方式」であるため、試料液中に「ゴミ」がある場合、前記10μm以下に絞られた部分に、ゴミが詰まりやすく、測定不能となる問題がある。
【0024】
また、測定対象試料が比較的均質な場合には、極微量の試料により、高精度の検出が可能であるが、測定対象試料として、例えば、単位体積当りに含まれる細菌の数が少ない試料液であって、その液中の分布が均等でないような場合には、測定する液体の処理量は、ある程度の量必要であり、処理量が少なすぎると、測定精度の低下をもたらすか、もしくは測定が実質的に不可能となる。
【0025】
この発明は、上記の点に鑑みてなされたもので、この発明の課題は、試料流体中の抗原の分離の際に、マイクロチャンネル内に液中のゴミが詰まることがなく、かつ、分離が簡便にして短時間ででき、流体の処理量も必要に応じて確保可能な抗原の分離装置を提供し、さらにこの分離装置を用いて、簡便にして短時間かつ高精度な計測が可能な抗原の計測方法及び装置を提供することにある。
【0026】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、細菌や生体内蛋白質等の抗原を含む試料流体の導入口と、前記試料流体が流れる矩形状断面を有するマイクロチャンネル内の底面に複数個の抗体担持体を配設し、抗原・抗体反応により前記抗原を分離する反応部と、前記試料流体の導入口と反応部とを連通する前記マイクロチャンネル状の試料流体の導入路と、前記反応部から試料流体を排出する排出路とを備える抗原の分離装置において、前記導入路は、前記底面に垂直な方向の流体の流れのベクトルを生じて、前記試料流体中の抗原の分散濃度を前記底面近傍で局所的に高くする(抗原濃縮機能を備える)ように、前記反応部と流路段差を実質的に備えるものとする(請求項1の発明)。
【0027】
本発明における「矩形状断面」とは、底辺と対向する一辺が平行をなす多角形状断面のことであり、台形あるいは6角形などの断面形状を含むものとする。
【0028】
抗原・抗体反応により抗原を分離するためには、抗体担持体(例えば、抗体ビーズ)付近に抗原を濃縮する必要がある。抗体ビーズから例えば、20〜30μm程度、好ましくは、従来装置のように10μm程度に濃縮する必要がある。上記分離装置によれば、従来のように試料液の流路をせき止めもしくは絞ることなく、液中の固形物を濃縮し、反応部において特定の抗原のみを抗体ビーズにより捕獲分離して、残りのゴミを反応部から排出できるので、ゴミ詰まりの問題が解消でき、かつ簡便にして短時間に抗原が分離できる。また、例えば10分で10mL程度の処理量も確保できるので、種々のニーズに対応できる。詳細は後述する。
【0029】
前記請求項1の発明の抗原濃縮機能は、下記請求項2の発明のようにしても達成できる。即ち、請求項1に記載の分離装置において、前記抗原濃縮機能を備える導入路は、前記流路段差を実質的に備えるものに代えて、試料流体と空気又は水等の流体とを同一水平面内で同時に導入するものとし、前記底面と垂直方向の空気,水等の流体層と試料流体層との層分離により、前記抗原濃縮機能を備える構成とする。処理流体の流速が充分小さいので、速度,粘度,密度,有効直径で決まるレイノルズ数は、前記層分離が可能な条件となり、簡単な構成で濃縮できる。詳細は後述する。
【0030】
さらに、前記請求項1の発明の抗原濃縮機能は、下記請求項3の発明のようにしても達成できる。即ち、細菌や生体内蛋白質等の抗原を含む試料流体の導入口と、前記試料流体が流れる矩形状断面を有するマイクロチャンネル内の底面に複数個の抗体担持体を配設し、抗原・抗体反応により前記抗原を分離する反応部と、前記試料流体の導入口と反応部とを連通する前記マイクロチャンネル状の試料流体の導入路と、前記反応部から試料流体を排出する排出路とを備える抗原の分離装置において、前記反応部は、抗原を、前記抗体担持体が配設された底面側に、電気的吸引力により吸引するための電場発生手段を備えるものとする。
【0031】
抗原は、自然状態において、負に帯電しているので、前記抗体担持体が配設された底面側を正極とし、対向面を負極とした電場を発生することにより、抗原は抗体担持体の側に吸引されて濃縮される。なお、前記電場は、交番電界によって形成することもできる。
【0032】
さらにまた、下記請求項4の発明によれば、前記濃縮機能はさらに向上する。即ち、前記請求項3に記載の分離装置において、前記導入路は、前記請求項1または2のいずれか1項に記載の抗原濃縮機能を備えるものとする。
【0033】
また、前記請求項1ないし4のいずれか1項に記載の分離装置において、前記導入路は、前記導入口と反応部との間に、前記試料流体に蛍光染色試薬を注入するための注入口を備えるものとする(請求項5の発明)。これにより、後述するように、蛍光画像観察により、抗原を計測することができるようになる。
【0034】
さらにまた、前記請求項1ないし5のいずれか1項に記載の分離装置において、分離装置本体は、前記試料流体の導入口,導入路,反応部および排出路等の流路を含む部材と、光透過性の蓋部材とを貼り合せた構成とする(請求項6の発明)。分離装置は、試料液や蛍光染色試薬等を導入するための配管,シール装置,制御弁などの種々の周辺機器を含むが、分離装置本体を、上記請求項6の発明のように構成することにより、分離装置本体をチップ化でき、量産性の向上とコストの低減化が図れる。上記チップは、使い捨てとすることができるので、装置の機動性およびメンテナンス性も向上する。
【0035】
また、試料液が多種類の抗原を含み、これらを同時に分離するためには、下記請求項7の発明が好ましい。即ち、前記請求項1ないし6のいずれか1項に記載の分離装置において、前記反応部を複数備え、各反応部はそれぞれ多種類の抗体を固定した抗体担持体もしくは各反応部毎に異なる抗体を固定した抗体担持体を有し、前記導入路は、前記各反応部を直列もしくは並列に試料流体が流れるように構成して、多種類の抗原を含む試料流体内の各抗原を個別に分離する構成とする。上記のように、反応部を複数設けたマルチチップとすることにより、多様性が高くかつ低コストの計測が可能となる。詳細は後述する。
【0036】
次に、前記分離装置を利用した抗原の計測装置としては、下記請求項8ないし11の発明が好ましい。即ち、請求項5に記載の抗原の分離装置を用いる抗原の計測装置であって、前記分離装置は、分離された抗原の蛍光画像情報に基づき画像計測を行なう画像計測装置を備えるものとする(請求項8の発明)。これにより、従来2〜3時間かかった計測時間は、磁気的分離操作がないこともあり、大幅に短縮され、25〜30分となる。
【0037】
また、請求項8の発明の実施態様としては、下記請求項9〜11の発明が好ましい。即ち、請求項8に記載の抗原の計測装置において、前記画像計測装置は、合焦用マーカーを有し、計測対象の抗原に対してオートフォーカスする合焦手段を備えるものとする(請求項9の発明)。この作用効果は、前述のとおりである。
【0038】
さらに、請求項9に記載の抗原の計測装置において、前記合焦用マーカーは、前記反応部の底面に配設した複数個の抗体担持体とする(請求項10の発明)。抗体担持体として、例えば、ポリスチレンビーズを用いた場合、前記底面に配列したビーズは、合焦用マーカーとして機能させることができるので、あらためて、マーカーを設ける必要がない。
【0039】
さらにまた、前記請求項8ないし10のいずれか1項に記載の抗原の計測装置において、前記画像計測装置は、前記抗原の蛍光標識後の画像情報と蛍光標識前の画像情報との差に基づき画像計測を行ない、夾雑物の蛍光誤差を除去する演算機能を備えるものとする(請求項11の発明)。この作用効果は、前述のとおりである。
【0040】
次に、抗原の計測方法としては、下記請求項12または13の発明が好ましい。即ち、請求項8ないし10のいずれか1項に記載の抗原の計測装置を用いた抗原の計測方法であって、下記の工程を含むこととする(請求項12の発明)。
1)前記抗原の分離装置の前記反応部へ、抗原を含む試料流体を、所定流量速度で通流する工程。
2)前記反応部において、電場を印加もしくは印加せずに抗原を濃縮し、抗原・抗体反応により抗原を抗体担持体に吸着する工程。
3)前記試料流体に蛍光試薬を注入して抗原を蛍光標識する工程。
4)洗浄液を通流して、前記蛍光試薬を洗浄する工程。
5)蛍光画像装置により抗原の画像計測を行なう工程。
【0041】
なお、上記3)の工程において、試料流体が気体の場合には、前記蛍光染色試薬は、ミスト状にして注入することが望ましい。
【0042】
また、前記請求項11に記載の抗原の計測装置を用いた抗原の計測方法であって、前記請求項12に記載の工程に加えて、請求項12に記載の3)の工程に係る蛍光標識する工程の前段においても画像計測を行い、請求項12に記載の5)の工程に係る画像計測による画像情報と、前記蛍光標識前段の画像情報との差に基づき、抗原の画像計測を行なう(請求項13の発明)。
【0043】
【発明の実施の形態】
本発明の実施例に関し、液体試料中の菌の計測例について、図1〜5に基づいて以下に述べる。まず、抗原の分離装置について述べる。
【0044】
図1は、請求項1,3および4の発明に関わる抗原の分離装置本体の概念的模式図である。また、図2は抗原の計測装置の模式的構成図であり、分離装置本体の具体的構成の斜視断面図を合わせて示す。図2(a)には本体下部の部材と蓋部材とを分解した斜視断面図を示し、図2(b)には組み立てた状態の斜視断面図を示す。
【0045】
図1および図2において、1は試料液の導入口、2は例えばポリスチレン製の抗体ビーズ、3は反応部、4は試料液の導入路、5は試料液の排出路、6は蛍光染色試薬の注入口、7は前記導入口,導入路,反応部および排出路等を含む試料液の流路を示す。また、図1において30は電場発生手段であり、図2において8は成型部材、9は蓋部材、10は蛍光染色試薬、20は画像計測装置を示す。
【0046】
図1に基づき、抗原の分離動作について説明する。導入口1から導入路4に導入された試料液は、抗原としての例えば菌1aとゴミ1bとを含むものとする。この試料液が反応部3に導入される過程で、導入路4の流路段差4aの部分で、矢印Vで示すような垂直方向の流れのベクトルを受けて、試料液中の菌1aは、ゴミ1bと共に反応部3の下方に濃縮される。反応部3のチャンネルの深さは、例えば、100μmとし、長さは3000μmである。また、濃縮される部分の深さ(図示h)は、例えば20μmである。
【0047】
上記濃縮により、抗体ビーズ2に菌1aに、抗原抗体反応によって容易に捕獲され、ゴミ1bのみが排出路5から排出されて、抗原としての菌1aが、試料液およびゴミから容易に分離される。また、濃縮される部分以外の流路は、試料液が円滑に流れることができるので、前記処理量を必要に応じて確保できる。
【0048】
なお、前記流路段差4aは、導入路4が直角に曲がる段差を図示しているが、デッドスペースをなくして滑らかな曲線で導入路4と反応部3とを接続してもよく、垂直方向の流れのベクトルを受けるような実質的な段差を備える流路構成であれば、種々の形状をとり得る。また、図1においては、排出路5にも段差を設けた例を示すが、この段差は省略することができる。
【0049】
また、前述のように、上記流路段差4aの他に、前記抗体ビーズが配設された底面側を正極とし、対向面を負極とした電場を、電場発生手段30により発生することにより、自然状態で負に帯電した抗原としての菌1aを、抗体ビーズ2の側に吸引し濃縮できる。なお、電場発生用の電源電圧は、例えば10数Vである。
【0050】
次に、図2に基づき、抗原の分離装置本体の構成および蛍光画像計測との関連について述べる。先に、分離装置本体の構成について、図3をも参照して述べる。図3は分離装置本体のみに着目した断面斜視分解図(a図),断面斜視図(b図)および断面図(c図)である。
【0051】
分離装置本体は、前述のように、前記試料液の導入口1,導入路4,反応部3および排出路5等の流路7を含む樹脂一体成型部材8と、ガラスもしくは光透過性樹脂製の蓋部材9とを接着した構成とする。なお、図2においては、導入路4に、蛍光染色試薬10の注入口6を設けた例を示す。また、蓋部材9には、排出路5の段差部の一部を塞ぐ突出部9aを設けた例を示すが、排出路5の段差を省略した場合には、前記突出部9aは不要である。
【0052】
次に、図2に基づき、抗原の計測手順について説明する。図2において、画像計測装置20は、前記図6に示したものと同様の装置であって、抗体ビーズ2に捕獲された抗原としての菌1aが、例えばガラス製の蓋部材9を介して観察できるように配設される。計測手順の具体例に関しては後述するとして、電場を印加する例に関して、まず基本的な手順について述べる。
【0053】
まず、反応部3へ、抗原としての菌1aを含む試料液を所定流量速度で導入した後、電場を印加して抗原を濃縮し、抗原・抗体反応により菌1aを抗体ビーズ2に吸着する。続いて、蛍光染色試薬10を注入して抗原を蛍光標識する。その後、洗浄液を通流して、前記蛍光染色試薬を洗浄した後、画像計測装置20により、画像計測を行ない、菌の計数が可能となる。画像計測の際、反応部に空気を導入して試料液を排出してもよいが、液を満たした状態で計測することができる。また蛍光出力は、菌の体積濃度の増大とともに比例的に増大するので、予め標準濃度で検量したデータに基づき、菌の体積濃度の計数も可能である。
【0054】
なお、ゴミなどの夾雑物の蛍光出力誤差を防止するためには、前述のように、蛍光標識する工程の前段においても画像計測を行い、蛍光標識前後の画像情報の差に基づき、抗原の画像計測を行なうことが望ましい。また、測定に当っては抗原へオートフォーカスすることが望ましいが、この具体的な方法に関しては後述する。
【0055】
次に、蛍光標識を行なって画像計測を行なう方法の具体例について述べる。具体的な蛍光試薬としては、例えば、微生物一般を対象とする場合は、蛍光性核酸塩基類似体、核酸を染色する蛍光染色剤、タンパク質を染色する染色液、タンパク質などの構造解析に用いられる環境性蛍光プローブ、細胞膜や膜電位の解析に用いられる染色液、蛍光抗体の標識に用いられる染色液などが、また好気性細菌を対象とする場合は細胞の呼吸によって発色する染色液などが、さらに真核微生物を対象とする場合はミトコンドリアを染色する染色液、ゴルジ体を染色する染色液、小胞体を染色する染色液、細胞内エステラーゼと反応する染色液及びその修飾化合物などが、また高等動物細胞を対象とする場合は骨組織の観察に用いられる染色液、神経細胞トレーサである染色液などが適用できる。これらにより染色することにより、蛍光顕微鏡で蛍光画像が観察できる。
【0056】
次に、前述のような方法で蛍光染色した微生物および細胞等の抗原の蛍光観察像を得る実施例について以下に述べる。即ち、分離した微生物および細胞等の抗原にエステラーゼ活性によって蛍光化する試薬、例えばカルボキシフルオレセインジアセテート(以下CFDAと略す)を反応させる。CFDAで蛍光染色された抗原の蛍光画像を取得する際は、まずマーカーとしての抗体ビーズ上にCFDAの蛍光波長光(例えば500〜550nm)を発するオートフォーカス用光を照射する。
【0057】
顕微鏡の焦点深度は、例えば約10μm程度であり、抗体ビーズおよびビーズに捕獲された抗原は、それぞれ、例えば約1μm程度であるので、マーカーとしての抗体ビーズに合焦させれば、実質的に抗原にも合焦させたこととなる。従って、抗体ビーズに合焦させ後、フォーカスされた抗原計測面にCFDAを励起できる波長(例えば450〜500nm)の光を照射して抗原の蛍光画像を取得する。得られた蛍光画像から、微生物および細胞等の抗原を認識、検出することができる。
【0058】
次に、図4について述べる。図4は請求項2の発明に関わり、例えば、空気層と試料液層との層分離により、前記抗原濃縮する場合の概念的説明図である。(a)図は平面模式図、(b)図は層分離状態の説明図である。図4において、1は試料液の導入口、11は空気の導入口を示し、試料液と空気とを同一水平面内で同時に導入して、導入路4を経て反応部3に通流する。これにより、(b)図に示すように、空気層40aと試料液層40bとに層分離し、この状態で反応部3に通流することにより、結果的に抗原の濃縮が実現した状態で抗原抗体反応が行われることとなる。なお、図4において、5は排出口、6は蛍光染色試薬の注入口を示す。
【0059】
前述のような層分離の最適状態は、試料液の通流状態が層流を維持する臨界レイノルズ数以下の条件を満足することを要件として、空気と試料液の流量比によって定まる。この最適条件は、予備実験により、最適な濃縮状態を得る観点から決められる。
【0060】
次に、図5について述べる。図5は、請求項7の発明に関わり、多種類の抗原を含む試料流体内の各抗原を個別に分離する場合の構成の概念的説明図である。(a)図は4個の反応部を直列に構成する場合の模式図、(b)図は並列に構成する場合の模式図である。図5において、1は試料流体の導入口、4は試料流体の導入路、5は試料流体の排出口、6は蛍光染色試薬の注入口を示す。4個の反応部は、それぞれ、3a〜3dで示す。
【0061】
前記各反応部3a〜3dは、それぞれ多種類の抗体を固定したビーズもしくは各反応部毎に異なる抗体を固定したビーズを備える。上記構成により、直列構成および並列構成のいずれの場合においても、多種類の抗原を含む試料流体内の各抗原を個別に分離することができる。但し、試料流体の各反応部への分配の均等性を考慮すると、直列構成の方が計測精度上好ましく、また構造もシンプルである。
【0062】
【発明の効果】
上記のとおり、この発明によれば、細菌や生体内蛋白質等の抗原を含む試料流体の導入口と、前記試料流体が流れる矩形状断面を有するマイクロチャンネル内の底面に複数個の抗体担持体を配設し、抗原・抗体反応により前記抗原を分離する反応部と、前記試料流体の導入口と反応部とを連通する前記マイクロチャンネル状の試料流体の導入路と、前記反応部から試料流体を排出する排出路とを備える抗原の分離装置において、前記導入路は、前記底面に垂直な方向の流体の流れのベクトルを生じて、前記試料流体中の抗原の分散濃度を前記底面近傍で局所的に高くする(抗原濃縮機能を備える)ように、前記反応部と流路段差を実質的に備えるか、もしくは空気層と試料流体との層分離による抗原濃縮機能を備え、および/または、前記反応部は、抗原を、前記抗体担持体が配設された底面側に、電気的吸引力により吸引するための電場発生手段を備えるものとしたので、
抗原の分離の際のゴミ詰まりの問題を解消し、分離が簡便にして短時間ででき、さらに流体の処理量も必要に応じて確保可能な抗原の分離装置が提供できる。
【0063】
また、上記分離装置により分離された抗原の蛍光画像情報に基づき画像計測を行なうことにより、従来2〜3時間かかった抗原の計測時間は、25〜30分に短縮され、簡便にして短時間かつ高精度な計測が可能となる。
【0064】
さらに、前述のように、分離装置を成型樹脂で1チップ化し、また反応部を複数設けてマルチチップ化することにより、多様性が高くかつ低コストの計測が実現できる。
【図面の簡単な説明】
【図1】本発明の抗原の分離装置本体の実施例の概念的模式図
【図2】本発明の抗原の計測装置の実施例の模式的構成図
【図3】本発明の抗原の分離装置本体の断面斜視分解図,断面斜視図および断面図
【図4】本発明に関わり、空気層と試料液層との層分離により抗原濃縮する場合の概念的説明図
【図5】本発明に関わり、多種類の抗原を含む試料流体内の各抗原を個別に分離する場合の構成の概念的説明図
【図6】特願2002−30648号に記載されたオートフォーカスを行なう蛍光画像計測装置の構成の一例を示す図
【図7】差分画像による細菌数の計測方法を示す図
【図8】特許文献1に記載された免疫分析装置の斜視図
【符号の説明】
1:導入口、1a:菌、1b:ゴミ、2:抗体ビーズ、3,3a〜3d:反応部、4:導入路、4a:段差部、5:排出路、6:蛍光染色試薬の注入口、7:流路、8:成型部材、9:蓋部材、10:蛍光染色試薬、11:空気の導入口、20:画像計測装置、30:電場発生手段。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for separating antigens such as bacteria and in-vivo proteins in a sample, and a method and apparatus for measuring an antigen using the apparatus. Objects to be separated and measured include all substances that can be measured using antigen-antibody reactions, such as prokaryotes such as bacteria and actinomycetes, eukaryotes such as yeasts and molds, and microorganisms such as lower algae and viruses. And cultured cells derived from animals and plants and cells such as pollen such as cedar and cypress. In addition, immunoanalysis, detection of endocrine disrupting substances (environmental hormones), characteristics of causative substances of atopic dermatitis, etc. are also targeted. The target sample is more often a liquid sample than a gas sample, but also includes, for example, measurement of antigens of a gas sample such as bacteria and fungi floating in the air. The fields of application of the present invention include medicine, food production, water and sewage, environmental analysis, and the like.
[0002]
[Prior art]
For example, detection of microorganisms, tissue cells such as animals and plants in a sample, and the like is an industrially important technique for confirming a sterilized state and detecting abnormalities in the survival state of cells.
[0003]
Conventionally, in order to observe and count microorganisms such as bacteria that cannot be observed with the naked eye present on the test surface, a culture method, that is, pressing a solid plate medium formed on agar or the like against the test surface, A method is generally used in which a microorganism on the test surface is transferred onto an agar plate medium, and the microorganism is cultured as it is on a plate medium under an appropriate environment, and the colonies that appear are measured with the naked eye or a stereoscopic microscope while measuring the colony. Has been used in many ways.
[0004]
The culture method has a drawback that the measurement time is 48 to 72 hours including various preparations. In recent years, a method for measuring an image by labeling an antigen with a fluorescent reagent using an antigen-antibody reaction has been developed. ing. For example, a microorganism collected on a filter is brought into contact with an appropriate staining solution, and the number of colored cells is counted with a microscope or the like, thereby detecting the microorganism without culturing.
[0005]
According to the image measurement method, measurement can be performed in two to three hours. The time required for the measurement is, for example, about 70 minutes for antigen-antibody reaction and magnetic separation of antibody magnetic beads from dust in the sample solution, about 30 minutes for fluorescent staining, and about 30 minutes for microscopic observation. It becomes 3.
[0006]
By the way, as an image analysis method in the measurement method, image analysis is generally performed using a manually focused microscope or an imaging device, and the depth of field is narrow under high-magnification use conditions. In many cases, automatic focusing and automatic analysis are desired. From this viewpoint, a fluorescent image measurement method invented by the present applicant has been filed in Japanese Patent Application No. 2002-30648 regarding a method of performing fluorescent image measurement by performing automatic focusing.
[0007]
FIG. 6 shows an example of an apparatus for performing the method described in Japanese Patent Application No. 2002-30648. According to the apparatus shown in FIG. 6, before the sample 81 is irradiated with the excitation light from the excitation light source 80, the autofocus (AF) light emitted in the fluorescence image measurement wavelength band is changed to the excitation light as shown in the drawing. Irradiation by the light source 82 from the same side as the irradiation side, the degree of focusing is determined from the image information obtained thereby, and at least one of the sample 81 and the light receiving system is driven in accordance with the degree to search for the focal point position. When the focus position is reached, the irradiation of the AF light is stopped, and thereafter, the excitation light is irradiated from the light source 80 to the sample 81, so that the fluorescence image measurement can be performed. According to this apparatus, since the transmitted light is not used, it is possible to measure a sample captured on the surface of the membrane filter.
[0008]
As the AF light source 82, a light emitting diode or a semiconductor laser is preferable. The image of the specimen at the time of the AF light irradiation is captured by the image sensor 87 via the objective lens 85, the dichroic mirror 83, the fluorescent light receiving side filter 84, and the imaging lens 86. As the imaging element, a CCD camera element and a CMOS camera element are preferable. The image obtained by the image sensor 87 is sent to the arithmetic unit 88, where the contrast is evaluated. The evaluation of the contrast is performed by a general AF method, for example, calculating as a luminance difference between adjacent pixels and setting a position where the contrast becomes maximum as a focal point position.
[0009]
In FIG. 6, 89 denotes a stage moving mechanism, 91 denotes a condenser lens for excitation light, 92 denotes a filter, and 93 denotes a fluorescent filter block. Although not shown in FIG. 6, a focusing marker for evaluating the contrast is provided with a pattern (mark) on the surface of a slide glass holding a sample, or a membrane for filtering and capturing the sample. A method of providing a pattern (mark) on the surface of the filter is employed (for details, refer to the aforementioned Japanese Patent Application No. 2002-30648). According to the above method, a simple configuration with a small number of elements does not cause the sample to be quenched by irradiation with excitation light, making it undetectable, and also autofocus even for a sample supplemented on the surface of the membrane filter or a sample whose contrast is unclear. (AF) becomes possible.
[0010]
Further, in the fluorescence image measurement method, it is desirable to eliminate the influence of fluorescent impurities regardless of the properties of the sample, and to improve the measurement accuracy. From this viewpoint, the live cells of the present invention invented by the present applicant are desirable. A counting method and apparatus have been filed in Japanese Patent Application No. 2002-148888.
[0011]
The image measurement device described in Japanese Patent Application No. 2002-148888 performs image measurement based on the difference between the image information of the living cells after the fluorescent labeling and the image information before the fluorescent labeling, and removes the fluorescence error of foreign substances. It has functions, and the above application discloses three methods.
[0012]
That is, the first method is to label living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, and to count the number of living cells in a method and apparatus for counting living cells. Before performing the method, a fluorescent image (first image) of the sample is obtained, and after the living cells are fluorescently labeled, a fluorescent image (second image) of the sample is obtained. The difference (B-A) in the number of bright points is determined. Further, as a method different from the above, a second method of obtaining a difference image between the first image and the second image and calculating the number of bright points in the difference image, or a method of calculating the number of bright points in the second image Of these, the third method is to determine the number of bright spots whose positions are not included in the dead area associated with each bright spot in the first image (for details, see Japanese Patent Application No. 2002-148888).
[0013]
FIG. 7 is a diagram illustrating, as an example, a method for counting the number of bacteria according to the second method, which utilizes obtaining a difference image between a first image and a second image.
[0014]
As a procedure, for example, bacteria contained in the sample solution are captured on a membrane filter by filtration. Next, a fluorescence image (first image 96 shown in the center of FIG. 7) of the membrane filter capturing the bacteria before fluorescence labeling is obtained. Subsequently, a fluorescent labeling reagent is added onto the membrane filter, and the bacteria are fluorescently labeled. Thereafter, a fluorescence image of the membrane filter (the second image 97 shown on the left side of FIG. 7) is acquired again. Then, a difference image 98 shown on the right side of FIG. 7 is obtained from the second image 97 and the first image 96.
[0015]
The bright spots present in the difference image 98 are the bright spots appearing by the fluorescent labels, and by counting them as the number of bacteria, it is possible to remove the fluorescent error of the foreign matter.
[0016]
By the way, there is also a need for an improved fluorescence image measurement method as described above so that measurement can be performed more easily, in a short time, and with high accuracy. Further, depending on the measurement target, it is desired that measurement can be performed with a small amount of sample. From such a viewpoint, an immunoanalyzer and a method for measuring a small amount of a sample by causing an antigen-antibody reaction in a microchip are known from Patent Document 1.
[0017]
FIG. 8 is a perspective view of the immunological analyzer described in Patent Document 1. According to the description of Patent Document 1, the immunoassay apparatus shown in FIG. 8 has solid microparticles 102 having a diameter of 1 mm or less as a reaction solid phase, and a microchannel reactor having a cross-sectional area larger than the diameter of the solid microparticles 102. 103 and a microchannel separation section 104 having a cross-sectional area smaller than the diameter of the solid fine particles 102, and an introduction section or microchannel inflow sections 105 and 106 for separately leading the antigen and the labeled antibody to the reaction tank section 103. An immunoassay microchip having the above is constructed and analyzed using this.
[0018]
In FIG. 8, a microchannel inflow portion 106 for introducing a first antibody together with a microchannel inflow portion 106 for introducing a labeled antibody as a second antibody into a reaction tank portion 103, and introduction of a buffer solution and a washing solution And microchannel inlets 105, 106, 107, and 108. At the end of each of the microchannel inlets 105, 106, 107, and 108, an antigen, a labeled antibody (second antibody), a first antibody, and a washing solution are injected. Holes 105A, 106A, 107A and 108A are also provided. In the example of FIG. 8, a waste liquid part 104A is provided at an end of the microchannel separation part 104.
[0019]
The solid fine particles 102 serve as a reaction solid phase for an immune antigen-antibody reaction. For example, glass beads or polymer beads such as polystyrene are used. The solid fine particles 102 have a diameter of 1 mm or less, for example, 15 to 85 μm.
[0020]
With the use of the above-described immunoassay microchip, immunoassay can be easily performed with a short reaction time by using a small amount of a sample. As an immunoassay method, the solid fine particles 102 as a reaction solid phase are introduced into the microchannel reaction tank 103, and the antigen and the labeled antibody introduced from the introduction section or the microchannel inflow sections 105 and 106, and if necessary, the microchannel inflow. The antibody introduced from the section 107 is reacted on the solid fine particles 102, and the unreacted substance is separated by the microchannel separation section 104, and can be analyzed by photothermal conversion analysis, fluorescence analysis, or the like.
[0021]
[Patent Document 1]
JP 2001-4628 A (page 3-4, FIG. 1)
[0022]
[Problems to be solved by the invention]
By the way, the invention described in Patent Document 1 also relates to a device for separating an object to be measured, and has the following problems.
[0023]
In the case of the apparatus of Patent Literature 1, specifically, as described in Patent Literature 1, "the size of the microchannel Is 100 μm or more, more preferably 150 μm or more, and the microchannel separation portion 104 is, for example, 10 μm or less in depth and 10 μm or less in width. Does not flow into the microchannel separation unit 104 and is blocked, and only unreacted substances flow into the microchannel separation unit 104 and are separated. Only the reaction products desorbed from are separated. "
As described in Patent Literature 1, the separation device of Patent Literature 1 uses a “dam” method. Therefore, when there is “dust” in the sample liquid, the dust condensed in the portion narrowed to 10 μm or less. There is a problem that measurement is not easy.
[0024]
In addition, when the sample to be measured is relatively homogeneous, highly accurate detection is possible with a very small amount of sample, but as the sample to be measured, for example, a sample solution in which the number of bacteria contained per unit volume is small However, when the distribution in the liquid is not uniform, the amount of the liquid to be measured needs to be a certain amount, and if the amount of the liquid is too small, the measurement accuracy is reduced or the measurement is not performed. Becomes virtually impossible.
[0025]
The present invention has been made in view of the above points, and an object of the present invention is to prevent the separation of antigens in a sample fluid without the clogging of the microchannel with dust in the liquid, and to achieve the separation. Provide an antigen separation device that can be made simple and in a short time and a fluid throughput can be secured as needed. Further, an antigen that can be easily, quickly and accurately measured using this separation device To provide a measuring method and apparatus.
[0026]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an inlet for a sample fluid containing an antigen such as a bacterium or an in vivo protein, and a plurality of antibodies on a bottom surface in a microchannel having a rectangular cross section through which the sample fluid flows. A carrier is disposed, a reaction section for separating the antigen by an antigen-antibody reaction, a microchannel-shaped sample fluid introduction path communicating between the sample fluid inlet and the reaction section, A discharge path for discharging a sample fluid, wherein the introduction path generates a vector of fluid flow in a direction perpendicular to the bottom surface, and reduces the dispersion concentration of the antigen in the sample fluid near the bottom surface. The reaction section and the flow path step are substantially provided so as to locally increase the pressure (provide an antigen concentration function) (the invention of claim 1).
[0027]
The “rectangular cross section” in the present invention is a polygonal cross section in which one side opposite to the bottom side is parallel, and includes a cross section such as a trapezoid or a hexagon.
[0028]
In order to separate an antigen by an antigen-antibody reaction, it is necessary to concentrate the antigen near an antibody carrier (for example, an antibody bead). For example, it is necessary to concentrate from antibody beads to about 20 to 30 μm, preferably to about 10 μm as in a conventional apparatus. According to the above-described separation apparatus, the solid matter in the liquid is concentrated without damming or restricting the flow path of the sample liquid as in the related art, and only the specific antigen is captured and separated by the antibody beads in the reaction part, and the remaining part is separated. Since dust can be discharged from the reaction section, the problem of dust clogging can be solved, and antigen can be separated easily and in a short time. Further, for example, a processing amount of about 10 mL can be secured in 10 minutes, so that various needs can be met. Details will be described later.
[0029]
The antigen concentrating function of the first aspect of the present invention can also be achieved as in the second aspect of the present invention. That is, in the separation device according to claim 1, the introduction path having the antigen concentrating function is configured such that the sample fluid and the fluid such as air or water are in the same horizontal plane, instead of the introduction path substantially having the flow path step. At the same time, and has a configuration in which the antigen concentration function is provided by layer separation of a fluid layer of air, water or the like perpendicular to the bottom surface and a sample fluid layer. Since the flow velocity of the processing fluid is sufficiently small, the Reynolds number determined by the velocity, viscosity, density, and effective diameter is a condition under which the above-mentioned layer separation is possible, and can be concentrated with a simple structure. Details will be described later.
[0030]
Further, the antigen concentrating function of the first aspect of the present invention can also be achieved as in the third aspect of the present invention. That is, a plurality of antibody carriers are disposed on an inlet of a sample fluid containing an antigen such as a bacterium or an in-vivo protein, and a bottom surface in a microchannel having a rectangular cross section through which the sample fluid flows. An antigen having a reaction section for separating the antigen according to the above, an introduction path for the microchannel-shaped sample fluid communicating the inlet for the sample fluid and the reaction section, and a discharge path for discharging the sample fluid from the reaction section. In the separation device of (1), the reaction section includes an electric field generating means for sucking the antigen by an electric suction force on the bottom surface side on which the antibody carrier is provided.
[0031]
Since the antigen is negatively charged in its natural state, the bottom surface on which the antibody carrier is disposed is used as a positive electrode, and an electric field is generated using the opposite surface as a negative electrode. Is concentrated by suction. The electric field can be formed by an alternating electric field.
[0032]
Furthermore, according to the fourth aspect of the present invention, the concentration function is further improved. That is, in the separation device according to the third aspect, the introduction path has the antigen concentration function according to any one of the first and second aspects.
[0033]
5. The separation device according to claim 1, wherein the introduction path is an injection port for injecting a fluorescent staining reagent into the sample fluid between the introduction port and the reaction unit. 6. (The invention of claim 5). As a result, as described later, the antigen can be measured by observing the fluorescent image.
[0034]
Furthermore, in the separation apparatus according to any one of claims 1 to 5, the separation apparatus main body includes a member including a flow path such as an inlet, an introduction path, a reaction section, and a discharge path of the sample fluid; The light-transmitting lid member is bonded together (the invention of claim 6). The separation device includes various peripheral devices such as a pipe, a sealing device, and a control valve for introducing a sample solution, a fluorescent staining reagent, and the like, and the separation device main body is configured as in the above-described claim 6. Thereby, the main body of the separation device can be made into a chip, and the productivity can be improved and the cost can be reduced. Since the tip can be disposable, the mobility and maintainability of the device are also improved.
[0035]
Further, in order that the sample solution contains various kinds of antigens and to simultaneously separate them, the invention of the following claim 7 is preferable. That is, the separation device according to any one of claims 1 to 6, further comprising a plurality of the reaction units, wherein each reaction unit is an antibody carrier on which various types of antibodies are fixed or an antibody different for each reaction unit. The introduction channel is configured such that the sample fluid flows in series or in parallel through the respective reaction sections, and separates each antigen in the sample fluid containing various types of antigens. Configuration. As described above, by using a multichip provided with a plurality of reaction units, measurement with high versatility and low cost can be performed. Details will be described later.
[0036]
Next, the following inventions 8 to 11 are preferable as an antigen measuring device using the separation device. That is, an antigen measurement device using the antigen separation device according to claim 5, wherein the separation device includes an image measurement device that performs image measurement based on fluorescence image information of the separated antigen ( The invention of claim 8). As a result, the measurement time, which conventionally required 2 to 3 hours, may be significantly reduced to 25 to 30 minutes because there is no magnetic separation operation.
[0037]
As an embodiment of the invention of claim 8, the following inventions of claims 9 to 11 are preferable. That is, in the antigen measuring device according to claim 8, the image measuring device includes a focusing marker and includes a focusing unit that performs autofocus on the antigen to be measured (claim 9). Invention). This operation and effect are as described above.
[0038]
Furthermore, in the antigen measuring device according to the ninth aspect, the focusing marker is a plurality of antibody carriers disposed on the bottom surface of the reaction part (the tenth aspect). When, for example, polystyrene beads are used as the antibody carrier, the beads arranged on the bottom surface can function as focusing markers, so that it is not necessary to provide markers again.
[0039]
Furthermore, in the antigen measuring device according to any one of claims 8 to 10, the image measuring device is configured to perform a measurement based on a difference between image information after fluorescent labeling of the antigen and image information before fluorescent labeling. It has an arithmetic function for performing image measurement and removing the fluorescence error of the contaminant (the invention of claim 11). This operation and effect are as described above.
[0040]
Next, as a method for measuring an antigen, the invention of the following claim 12 or 13 is preferable. That is, a method for measuring an antigen using the antigen measuring device according to any one of claims 8 to 10 includes the following steps (the invention of claim 12).
1) A step of flowing a sample fluid containing an antigen at a predetermined flow rate to the reaction section of the antigen separation device.
2) a step of concentrating the antigen in the reaction section with or without applying an electric field, and adsorbing the antigen to the antibody carrier by an antigen-antibody reaction;
3) a step of injecting a fluorescent reagent into the sample fluid to fluorescently label an antigen;
4) a step of flowing the washing solution to wash the fluorescent reagent;
5) a step of measuring the image of the antigen using a fluorescent image device;
[0041]
In the step 3), when the sample fluid is a gas, it is preferable that the fluorescent staining reagent is injected in the form of a mist.
[0042]
Also, in the method for measuring an antigen using the antigen measuring device according to the eleventh aspect, the fluorescent label according to the step of the third aspect according to the twelfth aspect in addition to the step of the twelfth aspect. The image measurement is also performed before the step of performing the step (b), and the image measurement of the antigen is performed based on the difference between the image information obtained by the image measurement according to the step (5) according to claim 12 and the image information obtained before the fluorescent label ( The invention of claim 13).
[0043]
BEST MODE FOR CARRYING OUT THE INVENTION
With respect to the embodiment of the present invention, an example of measuring bacteria in a liquid sample will be described below with reference to FIGS. First, an antigen separation device will be described.
[0044]
FIG. 1 is a conceptual schematic diagram of a main body of an antigen separation device according to the first, third and fourth aspects of the present invention. FIG. 2 is a schematic configuration diagram of the antigen measuring device, and also shows a perspective cross-sectional view of a specific configuration of the separation device main body. FIG. 2A is an exploded perspective sectional view of a lower member and a lid member, and FIG. 2B is a perspective sectional view of an assembled state.
[0045]
1 and 2, 1 is an inlet for a sample solution, 2 is an antibody bead made of, for example, polystyrene, 3 is a reaction section, 4 is a sample solution introduction path, 5 is a sample solution discharge path, and 6 is a fluorescent staining reagent. Reference numeral 7 denotes a sample liquid flow path including the inlet, the introduction path, the reaction section, and the discharge path. In FIG. 1, reference numeral 30 denotes an electric field generating means, and in FIG. 2, 8 denotes a molded member, 9 denotes a cover member, 10 denotes a fluorescent staining reagent, and 20 denotes an image measuring device.
[0046]
The operation of separating the antigen will be described with reference to FIG. The sample liquid introduced into the introduction path 4 from the introduction port 1 contains, for example, bacteria 1a and dust 1b as antigens. In the course of the introduction of this sample solution into the reaction section 3, the bacteria 1a in the sample solution receive a vertical flow vector as shown by the arrow V at the flow path step 4a of the introduction path 4, It is concentrated below the reaction section 3 together with the dust 1b. The depth of the channel of the reaction section 3 is, for example, 100 μm, and the length is 3000 μm. The depth (h in the figure) of the portion to be concentrated is, for example, 20 μm.
[0047]
Due to the concentration, the bacteria 1a are easily captured by the antibody beads 2 by the antigen-antibody reaction, only the dust 1b is discharged from the discharge channel 5, and the bacteria 1a as the antigen is easily separated from the sample solution and the dust. . In addition, since the sample liquid can flow smoothly in the flow paths other than the part to be concentrated, the processing amount can be secured as needed.
[0048]
The flow path step 4a shows a step where the introduction path 4 bends at a right angle, but the introduction path 4 and the reaction section 3 may be connected with a smooth curve without dead space, The flow path may have various shapes as long as the flow path has a substantial step to receive the flow vector. FIG. 1 shows an example in which a step is also provided in the discharge path 5, but this step can be omitted.
[0049]
In addition, as described above, in addition to the flow path step 4a, the electric field generating means 30 generates an electric field in which the bottom surface on which the antibody beads are disposed is a positive electrode and the opposing surface is a negative electrode. The bacteria 1a as a negatively charged antigen in the state can be sucked into the antibody beads 2 and concentrated. The power supply voltage for generating an electric field is, for example, several tens of volts.
[0050]
Next, based on FIG. 2, the configuration of the main body of the antigen separation device and the relationship with the fluorescence image measurement will be described. First, the configuration of the separation device main body will be described with reference to FIG. FIG. 3 is a sectional perspective exploded view (a), a sectional perspective view (b), and a sectional view (c) of FIG.
[0051]
As described above, the main body of the separation device is made of a resin-integrated molded member 8 including a flow path 7 such as the sample liquid inlet 1, the inlet 4, the reactor 3, and the outlet 5, and a glass or light-transmissive resin. And the lid member 9 is bonded. FIG. 2 shows an example in which an inlet 6 for a fluorescent staining reagent 10 is provided in the introduction path 4. In addition, an example is shown in which the lid member 9 is provided with a protruding portion 9a for closing a part of the step portion of the discharge path 5, but when the step of the discharge path 5 is omitted, the protruding portion 9a is unnecessary. .
[0052]
Next, the procedure for measuring the antigen will be described with reference to FIG. In FIG. 2, an image measuring device 20 is the same device as that shown in FIG. 6, and the bacteria 1a as an antigen captured by the antibody beads 2 are observed through, for example, a glass lid member 9. It is arranged to be able to. A specific example of the measurement procedure will be described later, and a basic procedure will be described first with respect to an example of applying an electric field.
[0053]
First, a sample solution containing the bacterium 1a as an antigen is introduced into the reaction section 3 at a predetermined flow rate. Then, an electric field is applied to concentrate the antigen, and the bacterium 1a is adsorbed on the antibody beads 2 by an antigen-antibody reaction. Subsequently, a fluorescent staining reagent 10 is injected to fluorescently label the antigen. Then, after flowing the washing solution to wash the fluorescent staining reagent, image measurement is performed by the image measurement device 20 to enable counting of bacteria. At the time of image measurement, air may be introduced into the reaction section to discharge the sample liquid, but measurement can be performed with the liquid filled. Further, since the fluorescence output increases proportionally with the increase in the volume concentration of the bacterium, the volume concentration of the bacterium can be counted based on data calibrated in advance at the standard concentration.
[0054]
In addition, in order to prevent the fluorescence output error of foreign substances such as dust, as described above, image measurement is also performed before the step of fluorescent labeling, and based on the difference between the image information before and after the fluorescent labeling, the image of the antigen is determined. It is desirable to make measurements. In measurement, it is desirable to perform autofocus on the antigen, and this specific method will be described later.
[0055]
Next, a specific example of a method of performing image measurement by performing fluorescent labeling will be described. As a specific fluorescent reagent, for example, when targeting microorganisms in general, a fluorescent nucleobase analog, a fluorescent stain for staining nucleic acid, a staining solution for staining protein, an environment used for structural analysis of proteins, etc. Aqueous fluorescent probes, staining solutions used for analysis of cell membranes and membrane potential, staining solutions used for labeling fluorescent antibodies, and, for aerobic bacteria, staining solutions that develop color by cell respiration, etc. In the case of eukaryotic microorganisms, a stain for mitochondria, a stain for the Golgi apparatus, a stain for the endoplasmic reticulum, a stain for reacting with intracellular esterase, and its modifying compounds, etc. When cells are targeted, a staining solution used for observing bone tissue, a staining solution that is a nerve cell tracer, and the like can be applied. By staining with these, a fluorescent image can be observed with a fluorescent microscope.
[0056]
Next, an example of obtaining a fluorescence observation image of an antigen such as a microorganism and a cell stained with fluorescence by the method described above will be described below. That is, a reagent that fluoresces by esterase activity, for example, carboxyfluorescein diacetate (hereinafter abbreviated as CFDA) is reacted with the separated antigens of microorganisms and cells. When acquiring a fluorescence image of an antigen that has been fluorescently stained with CFDA, first, an antibody bead as a marker is irradiated with autofocus light that emits CFDA fluorescence wavelength light (for example, 500 to 550 nm).
[0057]
The depth of focus of the microscope is, for example, about 10 μm, and the antibody beads and the antigen captured by the beads are, for example, about 1 μm, respectively. Is also in focus. Therefore, after focusing on the antibody beads, the focused antigen measurement surface is irradiated with light having a wavelength (for example, 450 to 500 nm) capable of exciting CFDA to acquire a fluorescent image of the antigen. From the obtained fluorescent images, antigens such as microorganisms and cells can be recognized and detected.
[0058]
Next, FIG. 4 will be described. FIG. 4 relates to the invention of claim 2, and is a conceptual explanatory diagram in a case where the antigen is concentrated by, for example, layer separation of an air layer and a sample liquid layer. (A) is a schematic plan view, and (b) is an explanatory view of a layer separation state. In FIG. 4, reference numeral 1 denotes a sample liquid inlet, and 11 denotes an air inlet. The sample liquid and air are simultaneously introduced in the same horizontal plane, and flow into the reaction unit 3 via the introduction path 4. As a result, as shown in FIG. 3 (b), the air is separated into an air layer 40a and a sample liquid layer 40b, and is passed through the reaction section 3 in this state. An antigen-antibody reaction will be performed. In FIG. 4, reference numeral 5 denotes an outlet, and reference numeral 6 denotes an inlet for a fluorescent staining reagent.
[0059]
The optimum state of the above-mentioned layer separation is determined by the flow rate ratio of the air and the sample liquid on the condition that the flow state of the sample liquid satisfies the condition not more than the critical Reynolds number for maintaining the laminar flow. The optimum conditions are determined by preliminary experiments from the viewpoint of obtaining an optimum concentration state.
[0060]
Next, FIG. 5 will be described. FIG. 5 is a conceptual explanatory diagram of a configuration in the case of individually separating each antigen in a sample fluid containing various types of antigens according to the invention of claim 7. (A) is a schematic diagram when four reaction units are configured in series, and (b) is a schematic diagram when configured in parallel. In FIG. 5, reference numeral 1 denotes a sample fluid inlet, 4 denotes a sample fluid inlet, 5 denotes a sample fluid outlet, and 6 denotes a fluorescent dye reagent inlet. The four reaction parts are indicated by 3a to 3d, respectively.
[0061]
Each of the reaction sections 3a to 3d includes beads on which various types of antibodies are fixed or beads on which different antibodies are fixed for each reaction section. According to the above configuration, in each of the series configuration and the parallel configuration, each antigen in the sample fluid containing various types of antigens can be individually separated. However, in consideration of the uniformity of distribution of the sample fluid to each reaction section, the serial configuration is preferable in terms of measurement accuracy, and the structure is simple.
[0062]
【The invention's effect】
As described above, according to the present invention, a plurality of antibody carriers are provided at the inlet of a sample fluid containing an antigen such as a bacterium or an in vivo protein, and on the bottom surface of a microchannel having a rectangular cross section through which the sample fluid flows. Disposed, a reaction section for separating the antigen by an antigen-antibody reaction, a microchannel-shaped sample fluid introduction path communicating between the sample fluid inlet and the reaction section, and a sample fluid from the reaction section. And a discharge path for discharging the antigen, wherein the introduction path generates a fluid flow vector in a direction perpendicular to the bottom surface, and locally adjusts the dispersion concentration of the antigen in the sample fluid near the bottom surface. The reaction section and the flow path step, or an antigen concentration function by layer separation of an air layer and a sample fluid, and / or Parts are antigen, the antibody bearing member disposed the bottom side, since those having an electric field generating means for attracting by an electric attraction,
It is possible to provide an antigen separation apparatus which can solve the problem of dust clogging at the time of antigen separation, can perform separation easily and in a short time, and can secure a throughput of fluid as needed.
[0063]
In addition, by performing image measurement based on the fluorescence image information of the antigen separated by the separation device, the measurement time of the antigen, which conventionally required 2 to 3 hours, is reduced to 25 to 30 minutes. Highly accurate measurement is possible.
[0064]
Furthermore, as described above, by forming the separation device into one chip with a molding resin and providing a plurality of reaction parts to form a multi-chip, highly versatile and low-cost measurement can be realized.
[Brief description of the drawings]
FIG. 1 is a conceptual schematic diagram of an embodiment of the main body of the antigen separation device of the present invention.
FIG. 2 is a schematic configuration diagram of an embodiment of an antigen measuring device according to the present invention.
FIG. 3 is an exploded cross-sectional perspective view, a cross-sectional perspective view, and a cross-sectional view of the main body of the antigen separation device of the present invention.
FIG. 4 is a conceptual explanatory diagram in the case where antigens are concentrated by layer separation of an air layer and a sample liquid layer according to the present invention.
FIG. 5 is a conceptual explanatory diagram of a configuration in the case where individual antigens in a sample fluid containing various types of antigens are individually separated according to the present invention.
FIG. 6 is a diagram showing an example of a configuration of a fluorescence image measurement device that performs autofocus described in Japanese Patent Application No. 2002-30648.
FIG. 7 is a diagram showing a method for measuring the number of bacteria using a difference image.
FIG. 8 is a perspective view of an immune analyzer described in Patent Document 1.
[Explanation of symbols]
1: inlet, 1a: bacteria, 1b: dust, 2: antibody beads, 3, 3a to 3d: reaction section, 4: introduction path, 4a: stepped section, 5: discharge path, 6: injection port of fluorescent staining reagent , 7: flow path, 8: molded member, 9: lid member, 10: fluorescent staining reagent, 11: air inlet, 20: image measuring device, 30: electric field generating means.

Claims (13)

細菌や生体内蛋白質等の抗原を含む試料流体の導入口と、前記試料流体が流れる矩形状断面を有するマイクロチャンネル内の底面に複数個の抗体担持体を配設し、抗原・抗体反応により前記抗原を分離する反応部と、前記試料流体の導入口と反応部とを連通する前記マイクロチャンネル状の試料流体の導入路と、前記反応部から試料流体を排出する排出路とを備える抗原の分離装置において、前記導入路は、前記底面に垂直な方向の流体の流れのベクトルを生じて、前記試料流体中の抗原の分散濃度を前記底面近傍で局所的に高くする(抗原濃縮機能を備える)ように、前記反応部と流路段差を実質的に備えることを特徴とする抗原の分離装置。A plurality of antibody carriers are disposed on the bottom of a microchannel having a rectangular cross section through which the sample fluid flows, and an inlet for a sample fluid containing antigens such as bacteria and in vivo proteins. Separation of antigen comprising a reaction part for separating antigen, an introduction path for the microchannel-shaped sample fluid communicating the inlet for the sample fluid and the reaction part, and a discharge path for discharging the sample fluid from the reaction part In the apparatus, the introduction path generates a fluid flow vector in a direction perpendicular to the bottom surface, and locally increases the dispersion concentration of the antigen in the sample fluid near the bottom surface (provides an antigen concentration function). As described above, the antigen separation apparatus substantially comprises the reaction section and a flow path step. 請求項1に記載の分離装置において、前記抗原濃縮機能を備える導入路は、前記流路段差を実質的に備えるものに代えて、試料流体と空気又は水等の流体とを同一水平面内で同時に導入するものとし、前記底面と垂直方向の空気,水等の流体層と試料流体層との層分離により、前記抗原濃縮機能を備える構成とすることを特徴とする抗原の分離装置。2. The separation device according to claim 1, wherein the introduction path having the antigen concentrating function includes a sample fluid and a fluid such as air or water simultaneously in the same horizontal plane, instead of the one having the flow path step. An antigen separation apparatus characterized in that the antigen separation function is provided by separating the sample fluid layer from a fluid layer such as air or water perpendicular to the bottom surface. 細菌や生体内蛋白質等の抗原を含む試料流体の導入口と、前記試料流体が流れる矩形状断面を有するマイクロチャンネル内の底面に複数個の抗体担持体を配設し、抗原・抗体反応により前記抗原を分離する反応部と、前記試料流体の導入口と反応部とを連通する前記マイクロチャンネル状の試料流体の導入路と、前記反応部から試料流体を排出する排出路とを備える抗原の分離装置において、前記反応部は、抗原を、前記抗体担持体が配設された底面側に、電気的吸引力により吸引するための電場発生手段を備えることを特徴とする抗原の分離装置。A plurality of antibody carriers are disposed on the bottom of a microchannel having a rectangular cross section through which the sample fluid flows, and an inlet for a sample fluid containing antigens such as bacteria and in vivo proteins. Separation of antigen comprising a reaction part for separating antigen, an introduction path for the microchannel-shaped sample fluid communicating the inlet for the sample fluid and the reaction part, and a discharge path for discharging the sample fluid from the reaction part In the apparatus, the reaction unit may include an electric field generating means for suctioning the antigen by an electric suction force on a bottom surface on which the antibody carrier is provided. 請求項3に記載の分離装置において、前記導入路は、前記請求項1または2のいずれか1項に記載の抗原濃縮機能を備えることを特徴とする抗原の分離装置。The antigen separation device according to claim 3, wherein the introduction path has the antigen concentration function according to any one of Claims 1 and 2. 請求項1ないし4のいずれか1項に記載の分離装置において、前記導入路は、前記導入口と反応部との間に、前記試料流体に蛍光染色試薬を注入するための注入口を備えることを特徴とする抗原の分離装置。5. The separation device according to claim 1, wherein the introduction path includes an inlet for injecting a fluorescent staining reagent into the sample fluid, between the inlet and the reaction unit. 6. A device for separating an antigen, comprising: 請求項1ないし5のいずれか1項に記載の分離装置において、分離装置本体は、前記試料流体の導入口,導入路,反応部および排出路等の流路を含む部材と、光透過性の蓋部材とを貼り合せた構成とすることを特徴とする抗原の分離装置。The separation device according to any one of claims 1 to 5, wherein the separation device main body includes a member including flow paths such as an inlet, an introduction path, a reaction section, and a discharge path of the sample fluid; An antigen separation device, which is configured to be bonded to a lid member. 請求項1ないし6のいずれか1項に記載の分離装置において、前記反応部を複数備え、各反応部はそれぞれ多種類の抗体を固定した抗体担持体もしくは各反応部毎に異なる抗体を固定した抗体担持体を有し、前記導入路は、前記各反応部を直列もしくは並列に試料流体が流れるように構成して、多種類の抗原を含む試料流体内の各抗原を個別に分離する構成とすることを特徴とする抗原の分離装置。The separation apparatus according to any one of claims 1 to 6, further comprising a plurality of the reaction units, wherein each reaction unit has an antibody carrier on which various types of antibodies are fixed or a different antibody fixed for each reaction unit. Having an antibody carrier, the introduction path is configured such that the sample fluid flows in series or in parallel with each of the reaction sections, and each antigen in the sample fluid containing various types of antigens is separately separated; and An antigen separation device, comprising: 請求項5に記載の抗原の分離装置を用いる抗原の計測装置であって、前記分離装置は、分離された抗原の蛍光画像情報に基づき画像計測を行なう画像計測装置を備えることを特徴とする抗原の計測装置。An antigen measurement device using the antigen separation device according to claim 5, wherein the separation device includes an image measurement device that performs image measurement based on fluorescence image information of the separated antigen. Measuring device. 請求項8に記載の抗原の計測装置において、前記画像計測装置は、合焦用マーカーを有し、計測対象の抗原に対してオートフォーカスする合焦手段を備えることを特徴とする抗原の計測装置。9. The antigen measurement device according to claim 8, wherein the image measurement device has a focusing marker, and includes a focusing unit that performs autofocus on an antigen to be measured. . 請求項9に記載の抗原の計測装置において、前記合焦用マーカーは、前記反応部の底面に配設した複数個の抗体担持体とすることを特徴とする抗原の計測装置。10. The antigen measuring device according to claim 9, wherein the focusing marker is a plurality of antibody carriers disposed on a bottom surface of the reaction section. 請求項8ないし10のいずれか1項に記載の抗原の計測装置において、前記画像計測装置は、前記抗原の蛍光標識後の画像情報と蛍光標識前の画像情報との差に基づき画像計測を行ない、夾雑物の蛍光誤差を除去する演算機能を備えるものとすることを特徴とする抗原の計測装置。The antigen measuring device according to any one of claims 8 to 10, wherein the image measuring device performs image measurement based on a difference between image information after fluorescent labeling of the antigen and image information before fluorescent labeling. An antigen measuring apparatus, which has an arithmetic function for removing fluorescence errors of impurities. 請求項8ないし10のいずれか1項に記載の抗原の計測装置を用いた抗原の計測方法であって、下記の工程を含むことを特徴とする抗原の計測方法。
1)前記抗原の分離装置の前記反応部へ、抗原を含む試料流体を、所定流量速度で通流する工程。
2)前記反応部において、電場を印加もしくは印加せずに抗原濃縮し、抗原・抗体反応により抗原を抗体担持体に吸着する工程。
3)前記試料流体に蛍光試薬を注入して抗原を蛍光標識する工程。
4)洗浄液を通流して、前記蛍光試薬を洗浄する工程。
5)蛍光画像装置により抗原の画像計測を行なう工程。
An antigen measuring method using the antigen measuring device according to any one of claims 8 to 10, wherein the method includes the following steps.
1) A step of flowing a sample fluid containing an antigen at a predetermined flow rate to the reaction section of the antigen separation device.
2) a step of concentrating the antigen in the reaction section with or without applying an electric field, and adsorbing the antigen to the antibody carrier by an antigen-antibody reaction;
3) a step of injecting a fluorescent reagent into the sample fluid to fluorescently label an antigen;
4) a step of flowing the washing solution to wash the fluorescent reagent;
5) a step of measuring the image of the antigen using a fluorescent image device;
請求項11に記載の抗原の計測装置を用いた抗原の計測方法であって、前記請求項12に記載の工程に加えて、請求項12に記載の3)の工程に係る蛍光標識する工程の前段においても画像計測を行い、請求項12に記載の5)の工程に係る画像計測による画像情報と、前記蛍光標識前段の画像情報との差に基づき、抗原の画像計測を行なうことを特徴とする抗原の計測方法。A method for measuring an antigen using the apparatus for measuring an antigen according to claim 11, wherein the step of fluorescently labeling according to the step of 3) according to claim 12 in addition to the step of claim 12. The image measurement is also performed in the former stage, and the image measurement of the antigen is performed based on the difference between the image information obtained by the image measurement in the step (5) according to claim 12 and the image information obtained in the former stage of the fluorescent labeling. Method for measuring the amount of antigen.
JP2003019752A 2003-01-29 2003-01-29 Antigen separation apparatus and antigen measurement method and apparatus using the same Expired - Fee Related JP4171974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019752A JP4171974B2 (en) 2003-01-29 2003-01-29 Antigen separation apparatus and antigen measurement method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019752A JP4171974B2 (en) 2003-01-29 2003-01-29 Antigen separation apparatus and antigen measurement method and apparatus using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008114794A Division JP4840398B2 (en) 2008-04-25 2008-04-25 Antigen separation apparatus and antigen measurement method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004233114A true JP2004233114A (en) 2004-08-19
JP4171974B2 JP4171974B2 (en) 2008-10-29

Family

ID=32949549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019752A Expired - Fee Related JP4171974B2 (en) 2003-01-29 2003-01-29 Antigen separation apparatus and antigen measurement method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP4171974B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058642A (en) * 2004-08-20 2006-03-02 Nikon Corp Automatic focus detecting apparatus and microscopic system equipped with the same
JP2007089566A (en) * 2005-08-30 2007-04-12 Tokyo Univ Of Agriculture & Technology Microorganism separating device
WO2008090760A1 (en) * 2007-01-26 2008-07-31 Konica Minolta Medical & Graphic, Inc. Fluorescent detector, microchip and examination system
WO2009123359A1 (en) * 2008-04-02 2009-10-08 Canon Kabushiki Kaisha Scanning imaging device
WO2020177065A1 (en) * 2019-03-05 2020-09-10 大连理工大学 General-purpose fluorescent fluidic photochemical microreactor and manufacturing method therefor by 3d printing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058642A (en) * 2004-08-20 2006-03-02 Nikon Corp Automatic focus detecting apparatus and microscopic system equipped with the same
US7843634B2 (en) 2004-08-20 2010-11-30 Nikon Corporation Automatic focus detection device and microscope system having the same
JP4599941B2 (en) * 2004-08-20 2010-12-15 株式会社ニコン Automatic focus detection apparatus and microscope system including the same
JP2007089566A (en) * 2005-08-30 2007-04-12 Tokyo Univ Of Agriculture & Technology Microorganism separating device
WO2008090760A1 (en) * 2007-01-26 2008-07-31 Konica Minolta Medical & Graphic, Inc. Fluorescent detector, microchip and examination system
WO2009123359A1 (en) * 2008-04-02 2009-10-08 Canon Kabushiki Kaisha Scanning imaging device
JP2009250671A (en) * 2008-04-02 2009-10-29 Canon Inc Scanning imaging device
US8716641B2 (en) 2008-04-02 2014-05-06 Canon Kabushiki Kaisha Scanning imaging device for imaging target on a substrate
WO2020177065A1 (en) * 2019-03-05 2020-09-10 大连理工大学 General-purpose fluorescent fluidic photochemical microreactor and manufacturing method therefor by 3d printing
US11872556B2 (en) 2019-03-05 2024-01-16 Dalian University Of Technology General-purpose fluorescent fluid photochemical microreactor and manufacturing method therefor by 3D printing

Also Published As

Publication number Publication date
JP4171974B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
US20220055034A1 (en) High-throughput particle capture and analysis
US9734577B2 (en) Analysis and sorting of objects in flow
US8771933B2 (en) Continuous-flow deformability-based cell separation
US7764821B2 (en) Methods and algorithms for cell enumeration in a low-cost cytometer
SE531233C2 (en) Apparatus and method for detecting fluorescently labeled biological components
JP2011510292A (en) Method and apparatus for analyzing particles in a liquid sample
WO2005090983A2 (en) Membrane assay system including preloaded particles
WO2002042411A1 (en) Apparatus for microscopic observation of long-term culture of single cell
JP2008501999A (en) Optical fluid microscope
EP1735618A2 (en) System and method for integrating fluids and reagents in self-contained cartridges containing particle and membrane sensor elements
WO2021084814A1 (en) Minute particle collection method, microchip for aliquoting minute particles, minute particle collection device, production method for emulsion, and emulsion
CN114556084A (en) Cell analysis device system and cell analysis method
JP2005245317A (en) Measuring instrument for microorganism and measuring method
JP4565017B2 (en) Microbiological testing device and microbiological testing chip
JP4840398B2 (en) Antigen separation apparatus and antigen measurement method and apparatus using the same
JP4171974B2 (en) Antigen separation apparatus and antigen measurement method and apparatus using the same
US20130310270A1 (en) Holographic Imaging for Analyzing Molecules
KR102418963B1 (en) Apparatus and method for microparticle analysis
US20240310375A1 (en) Bioparticle analysis method and reagent kit for bioparticle analysis
JP2011059131A (en) Proteinomics instrument of protein production plant using immunoanalytical method and cell culture
JP2007147539A (en) Immunoassay method, protein analyzer, and micro flow cell for immunoassay
WO2022251314A1 (en) Systems and methods for non-destructive isolation, concentration, and detection for unbiased characterization of nano- and bio-particles
WO2009128009A1 (en) Flow-through biosensor
Mutch et al. A Quantitative Microscopy Technique for Determining the Number of Specific Proteins in Cellular Compartments
Schiro Sensitive Optical and Microfluidic Systems for Cellular Analyses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees