[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004232891A - Vapor compression type refrigerating machine - Google Patents

Vapor compression type refrigerating machine Download PDF

Info

Publication number
JP2004232891A
JP2004232891A JP2003019038A JP2003019038A JP2004232891A JP 2004232891 A JP2004232891 A JP 2004232891A JP 2003019038 A JP2003019038 A JP 2003019038A JP 2003019038 A JP2003019038 A JP 2003019038A JP 2004232891 A JP2004232891 A JP 2004232891A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant pipe
pipe connected
radiator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003019038A
Other languages
Japanese (ja)
Inventor
Makoto Yoshino
誠 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003019038A priority Critical patent/JP2004232891A/en
Priority to US10/765,758 priority patent/US7753413B2/en
Priority to DE102004004027A priority patent/DE102004004027A1/en
Publication of JP2004232891A publication Critical patent/JP2004232891A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of piping and the number of joints joining the piping in a vapor compression type refrigerating machine. <P>SOLUTION: Refrigerant piping connected to an intake side of a compressor 1 and the refrigerant piping connected to an outlet side of the compressor 1 are integrated, the refrigerant piping connected to an inflow port side of a radiator 2 and the refrigerant piping connected to an outflow port side of the radiator 2 are integrated, and the refrigerant piping connected to the inflow port side of a decompressor 3 and the refrigerant piping connected to the outflow port side of a temperature sensing part are integrated. Thus, the number of the piping and the number of joints joining the piping can be reduced. Accordingly, an assembling man-hour for assembling the refrigerant piping can be reduced, and as the arrangement of the piping is simplified, the mountability of the vapor compression type refrigerating machine (an air conditioner) on a vehicle can be improved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は蒸気圧縮式冷凍機に関するもので、車両用の蒸気圧縮式冷凍機(車両用空調装置)に適用して有効である。
【0002】
【従来の技術】
従来の蒸気圧縮式冷凍機では、圧縮機の吸入側に接続されるゴム製の冷媒配管と圧縮機の吐出側に接続されるゴム製の冷媒配管とを二重円筒状として一体化している(例えば、特許文献1参照)。
【0003】
また、圧縮機、凝縮器及び蒸発器に至る高圧冷媒通路の低圧冷媒通路とを一体化している発明もある(例えば、特許文献2参照)。
【0004】
【特許文献1】
特許第2595578号公報
【0005】
【特許文献2】
特開2001−277842号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1に記載の発明では、圧縮機に接続される配管のみが一体化されているので、配管本数及び配管を繋ぐ継ぎ手の個数を更に低減することが難しい。
【0007】
また、特許文献2に記載の発明では、高圧媒通路と低圧通路とを一体化しているので、蒸発器を流出した冷媒は、凝縮器を経由して圧縮機に戻らざるを得ない。このため、低圧通路の長さが凝縮器の分だけ長くなるので、冷媒の圧力損失が大きくなり、圧縮機の消費動力が増大するおそれが高い。
【0008】
本発明は、上記点に鑑み、第1には、従来と異なる新規な蒸気圧縮式冷凍機を提供し、第2には、配管本数及び配管を繋ぐ継ぎ手の個数を更に低減することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、冷媒を吸入圧縮する圧縮機(1)、高圧冷媒を冷却する放熱器(2)、冷媒を減圧する減圧手段(3)、及び低圧冷媒を蒸発させる蒸発器(4)を有し、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、圧縮機(1)の吸入側に接続される冷媒配管と圧縮機(1)の吐出側に接続される冷媒配管とが一体化され、さらに、放熱器(2)の流入口側に接続される冷媒配管と放熱器(2)の流出口側に接続される冷媒配管とが一体化されていることを特徴とする。
【0010】
これにより、配管本数及び配管を繋ぐ継ぎ手の個数を特許文献1に比べて低減することができる。
【0011】
したがって、冷媒配管を組み付けるための組み付け工数を削減することができるとともに、配管の取り回しが簡素になるので、蒸気圧縮式冷凍機の車両への搭載性を向上させることができる。
【0012】
請求項2に記載の発明では、減圧手段(3)は、蒸発器(4)の出口側の冷媒過熱度に基づいて絞り開度を調節する可変絞り部と冷媒過熱度を検出する感温部とが一体化された温度式膨脹弁であり、さらに、減圧手段(3)の流入口側に接続される冷媒配管と感温部の流出口側に接続される冷媒配管とが一体化されていることを特徴とするものである。
【0013】
請求項3に記載の発明では、圧縮機(1)の吐出側に接続される冷媒配管と放熱器(2)の流入口側に接続される冷媒配管とを接続し、かつ、放熱器(2)の流出口側に接続される冷媒配管と減圧手段(3)の流入口側に接続される冷媒配管とを接続し、かつ、感温部の流出口側に接続される冷媒配管と圧縮機(1)の吸入側に接続される冷媒配管とを接続する中間継手(8)を有することを特徴とする。
【0014】
これにより、特許文献2に記載の発明と異なり、蒸発器(4)から流出した低圧冷媒が放熱器(2)を経由することなく圧縮機(1)に戻ってくる。したがって、低圧通路の長さを特許文献2に記載の発明より短くすることができるので、冷媒の圧力損失を小さくすることができ、圧縮機(1)の消費動力が増大することを防止できる。
【0015】
請求項4に記載の発明では、蒸発器(4)は、第1、2蒸発器(4a、4b)にて構成され、減圧手段(3)は、第1蒸発器(4a)用の第1減圧手段(3a)と第2蒸発器(4b)用の第2減圧手段(3b)とから構成されており、さらに、放熱器(2)の流出口側に接続される冷媒配管と第1減圧手段(3a)の流入口側に接続される冷媒配管とを接続し、かつ、放熱器(2)の流出口側に接続される冷媒配管と第2減圧手段(3b)の流入口側に接続される冷媒配管とを接続し、かつ、第1減圧手段(3a)の感温部の流出口側に接続される冷媒配管と圧縮機(1)の吸入側に接続される冷媒配管とを接続し、かつ、第2減圧手段(3b)の感温部の流出口側に接続される冷媒配管と圧縮機(1)の吸入側に接続される冷媒配管とを接続する第2の中間継手(9)を有することを特徴とするものである。
【0016】
請求項5に記載の発明では、2種類の冷媒配管が一体化された配管は、押し出し加工又は引き抜き加工にて一体成形されて一体化されていることを特徴とするものである。
【0017】
請求項6に記載の発明では、中間継手(8)から放熱器(2)に至る配管長さは、中間継手(8)から減圧手段(3)に至る配管長さより短いことを特徴とする。
【0018】
これにより、放熱器(2)から流出した冷媒と放熱器(2)に流入する冷媒との間の熱交換を抑制できるので、蒸発器(4)に流入する冷媒のエンタルピが増大して蒸発器(4)の吸熱能力が低下してしまうことを抑制できる。
【0019】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0020】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る蒸気圧縮式冷凍機を車両用空調装置に適用したものであって、図1は、車両用空調装置の模式図である。
【0021】
図1中、圧縮機1は冷媒を吸入圧縮するもので、本実施形態では、走行用のエンジンに組み付けられてエンジンから動力を得て稼動する。放熱器2は圧縮機1から吐出された高圧冷媒と室外空気とを熱交換して高圧冷媒を冷却する高圧側熱交換器である。
【0022】
なお、本実施形態では、高圧冷媒の圧力を冷媒の臨界圧力未満としているので、放熱器2にて冷媒は、気相冷媒から液相冷媒に相変化しながらそのエンタルピを低下させる。
【0023】
また、減圧器3は高圧冷媒を減圧する減圧手段であり、本実施形態では、蒸発器4の出口側の冷媒過熱度に基づいて絞り開度を調節する可変絞り部と冷媒過熱度を検出する感温部とが一体化された温度式膨脹弁を採用している。
【0024】
なお、蒸発器4は低圧の液相冷媒を蒸発させる低圧側熱交換器であり、本実施形態では、室内に吹き出す空気から吸熱して冷媒を蒸発させることにより室内に吹き出す空気を冷却し、その吸熱した熱を放熱器2にて室外に放熱しているが、これとは逆に、室外空気から吸熱してその吸熱した熱を室内に吹き出す空気中に放熱することにより室内を暖房してもよい。
【0025】
そして、圧縮機1の吸入側に接続される冷媒配管と圧縮機1の吐出側に接続される冷媒配管とが一体化されて圧縮機配管5が構成され、放熱器2の流入口側に接続される冷媒配管と放熱器2の流出口側に接続される冷媒配管とが一体化されて放熱器配管6が構成され、減圧器3の流入口側に接続される冷媒配管と感温部の流出口側に接続される冷媒配管とが一体化されて減圧器配管7が構成されている。
【0026】
なお、放熱器配管6及び減圧器配管7は、図2(a)又は図2(b)に示すように、アルミニウム合金等の金属材に押し出し加工又は引き抜き加工を施して二重円筒状としたものであり、圧縮機配管5はゴム等の可撓性を有する配管材にて二重円筒状としたものである。
【0027】
因みに、圧縮機配管5においては内筒側が圧縮機1の吐出側に接続され、外筒側が圧縮機1の吸入側に接続され、放熱器配管6においては、図3に示すように、内筒側が放熱器2の出口側に接続され、外筒側が放熱器2の流入側に接続され、減圧器配管7においては、図4に示すように、内筒側が減圧器3の流入口側に接続され、外筒側が感温部の流出口側に接続される。
【0028】
また、中間継手8は、圧縮機配管5、放熱器配管6及び減圧器配管7を接続することにより、図5に示すように、圧縮機1の吐出側に接続される冷媒配管と放熱器2の流入口側に接続される冷媒配管とを接続し、かつ、放熱器2の流出口側に接続される冷媒配管と減圧器3の流入口側に接続される冷媒配管とを接続し、かつ、感温部の流出口側に接続される冷媒配管と圧縮機1の吸入側に接続される冷媒配管とを接続する。
【0029】
次に、本実施形態の作用効果を述べる。
【0030】
なお、蒸気圧縮式冷凍機(空調装置)の作動は周知の蒸気圧縮式冷凍機(空調装置)と同じであるので、蒸気圧縮式冷凍機(空調装置)の作動説明は省略する。
【0031】
本実施形態では、圧縮機1の吸入側に接続される冷媒配管と圧縮機1の吐出側に接続される冷媒配管とが一体化され、かつ、放熱器2の流入口側に接続される冷媒配管と放熱器2の流出口側に接続される冷媒配管とが一体化され、かつ、減圧器3の流入口側に接続される冷媒配管と感温部の流出口側に接続される冷媒配管とが一体化されているので、配管本数及び配管を繋ぐ継ぎ手の個数を特許文献1に比べて低減することができる。
【0032】
したがって、冷媒配管を組み付けるための組み付け工数を削減することができるとともに、配管の取り回しが簡素になるので、蒸気圧縮式冷凍機(空調装置)の車両への搭載性を向上させることができる。
【0033】
また、本実施形態では、中間継手8を介して圧縮機配管5、放熱器配管6及び減圧器配管7を接続しているので、特許文献2に記載の発明と異なり、蒸発器4から流出した低圧冷媒が放熱器2を経由することなく圧縮機1に戻ってくる。したがって、低圧通路の長さを特許文献2に記載の発明より短くすることができるので、冷媒の圧力損失を小さくすることができ、圧縮機1の消費動力が増大することを防止できる。
【0034】
ところで、本実施形態では2種類の配管が一体化されているので、この2種類の配管を流れる冷媒間で熱交換してしまうおそれがある。このとき、圧縮機配管5及び減圧器配管7において、低圧冷媒と高圧冷媒との間で熱交換が行われても、その作動は周知の内部熱交換器と同じであるので問題ないが、放熱器配管6で放熱器2から流出した冷媒と放熱器2に流入する冷媒とが熱交換されると、蒸発器4に流入する冷媒のエンタルピが増大して蒸発器4の吸熱能力が低下するおそれがある。
【0035】
そこで、本実施形態では、中間継手8から放熱器2に至る放熱器配管6の長さを中間継手8から減圧器3に至る減圧器配管7の長さより短くして、放熱器配管6で放熱器2から流出した冷媒と放熱器2に流入する冷媒との熱交換量を抑制している。
【0036】
(第2実施形態)
本実施形態は、図6に示すように、2つの蒸発器、つまり前席用蒸発器4a及び後席用蒸発器4bを有する空調装置に本発明を適用したものである。
【0037】
そして、本実施形態では、前席用蒸発器4a用の第1減圧器3a及び後席用蒸発器4b用の第2減圧器3bを設けるとともに、図7に示すような、放熱器2の流出口側に接続される冷媒配管と第1減圧器3aの流入口側に接続される冷媒配管とを接続し、かつ、放熱器2の流出口側に接続される冷媒配管と第2減圧器3bの流入口側に接続される冷媒配管とを接続し、かつ、第1減圧器3aの感温部の流出口側に接続される冷媒配管と圧縮機1の吸入側に接続される冷媒配管とを接続し、かつ、第2減圧器3bの感温部の流出口側に接続される冷媒配管と圧縮機1の吸入側に接続される冷媒配管とを接続する第2の中間継手9を設けたものである。
【0038】
(第3実施形態)
上述の実施形態では、圧縮機配管5、放熱器配管6及び減圧器配管7を二重円筒状としたが、本発明は、図8に示すように、2つの配管を並列に並べて一体化したものである。
【0039】
なお、一体化に当たっては、押し出し加工又は引き抜き加工は勿論のこと、両者を別体として製造した後、溶接、ろう付け又は結束バンド等の機械的的手段により一体化してもよい。
【0040】
(その他の実施形態)
上述の実施形態では、圧縮機配管5をゴムにて構成することにより可撓性を発揮させたが、本発明はこれに限定されるものではなく、例えば圧縮機配管5の内筒及び外筒を蛇腹状のベーローズとして可撓性を発揮させてもよい。なお、この場合、圧縮機配管5の内筒及び外筒を金属としてもよい。
【0041】
また、上述の実施形態では、減圧器3として蒸発器4の出口側の冷媒過熱度に基づいて絞り開度を調節する可変絞り部と冷媒過熱度を検出する感温部とが一体化された温度式膨脹弁を採用したが、本発明はこれに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る車両用空調装置の模式図である。
【図2】本発明の第1実施形態に係る冷媒配管の断面図である。
【図3】本発明の実施形態に係る冷媒配管の接続部を示す説明図である。
【図4】本発明の実施形態に係る冷媒配管の接続部を示す説明図である。
【図5】本発明の実施形態に係る中間継手の説明図である。
【図6】本発明の第2実施形態に係る車両用空調装置の模式図である。
【図7】本発明の第2実施形態に係る中間継手の説明図である。
【図8】本発明の第3実施形態に係る冷媒配管の断面図である。
【符号の説明】
1…圧縮機、2…放熱器、3…減圧器、4…蒸発器、5…圧縮機配管、
6…放熱器配管、7…減圧器配管、8…中間継手。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vapor compression refrigerator, and is effective when applied to a vapor compression refrigerator (vehicle air conditioner) for a vehicle.
[0002]
[Prior art]
In a conventional vapor compression refrigerator, a rubber refrigerant pipe connected to the suction side of the compressor and a rubber refrigerant pipe connected to the discharge side of the compressor are integrated as a double cylinder ( For example, see Patent Document 1).
[0003]
There is also an invention in which a high-pressure refrigerant passage leading to a compressor, a condenser and an evaporator is integrated with a low-pressure refrigerant passage (for example, see Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent No. 2595578 [0005]
[Patent Document 2]
JP 2001-277842 A
[Problems to be solved by the invention]
However, in the invention described in Patent Literature 1, since only the pipes connected to the compressor are integrated, it is difficult to further reduce the number of pipes and the number of joints connecting the pipes.
[0007]
Further, in the invention described in Patent Document 2, since the high-pressure medium passage and the low-pressure passage are integrated, the refrigerant flowing out of the evaporator must return to the compressor via the condenser. For this reason, the length of the low-pressure passage is increased by the length of the condenser, so that the pressure loss of the refrigerant is increased and the power consumption of the compressor is likely to increase.
[0008]
In view of the above points, the present invention firstly provides a new vapor compression refrigerator different from the conventional one, and secondly, aims to further reduce the number of pipes and the number of joints connecting the pipes. I do.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a compressor (1) that sucks and compresses a refrigerant, a radiator (2) that cools a high-pressure refrigerant, and a decompression unit ( 3) a vapor compression refrigerator having an evaporator (4) for evaporating a low-pressure refrigerant and transferring low-temperature heat to a high-temperature refrigerant, wherein the refrigerant is connected to a suction side of the compressor (1). The pipe and the refrigerant pipe connected to the discharge side of the compressor (1) are integrated, and further, the refrigerant pipe connected to the inlet side of the radiator (2) and the refrigerant pipe connected to the outlet side of the radiator (2). The refrigerant pipe to be connected is integrated.
[0010]
Thereby, the number of pipes and the number of joints connecting the pipes can be reduced as compared with Patent Document 1.
[0011]
Therefore, the number of assembling steps for assembling the refrigerant pipes can be reduced, and the piping arrangement can be simplified, so that the mountability of the vapor compression refrigerator to the vehicle can be improved.
[0012]
According to the second aspect of the present invention, the pressure reducing means (3) includes a variable throttle unit that adjusts the throttle opening based on the refrigerant superheat degree at the outlet side of the evaporator (4) and a temperature sensing unit that detects the refrigerant superheat degree. And a refrigerant pipe connected to the inflow side of the pressure reducing means (3) and a refrigerant pipe connected to the outflow side of the temperature sensing part are integrated. It is characterized by having.
[0013]
In the invention according to claim 3, the refrigerant pipe connected to the discharge side of the compressor (1) is connected to the refrigerant pipe connected to the inflow side of the radiator (2), and the radiator (2) is connected. ), A refrigerant pipe connected to the refrigerant pipe connected to the inlet side of the pressure-reducing means (3) and a refrigerant pipe connected to the outlet side of the temperature-sensitive part, and a compressor. (1) An intermediate joint (8) for connecting to a refrigerant pipe connected to the suction side.
[0014]
Thus, unlike the invention described in Patent Document 2, the low-pressure refrigerant flowing out of the evaporator (4) returns to the compressor (1) without passing through the radiator (2). Therefore, the length of the low-pressure passage can be made shorter than that of the invention described in Patent Document 2, so that the pressure loss of the refrigerant can be reduced, and the power consumption of the compressor (1) can be prevented from increasing.
[0015]
According to the fourth aspect of the present invention, the evaporator (4) is composed of first and second evaporators (4a, 4b), and the pressure reducing means (3) is a first evaporator (4a) for the first evaporator (4a). It comprises a pressure reducing means (3a) and a second pressure reducing means (3b) for the second evaporator (4b), and further comprises a refrigerant pipe connected to the outlet side of the radiator (2) and a first pressure reducing means. The refrigerant pipe connected to the inlet side of the means (3a) is connected to the refrigerant pipe connected to the outlet side of the radiator (2), and the refrigerant pipe connected to the inlet side of the second decompression means (3b). And the refrigerant pipe connected to the outlet side of the temperature sensing part of the first pressure reducing means (3a) and the refrigerant pipe connected to the suction side of the compressor (1). In addition, the refrigerant pipe connected to the outlet of the temperature sensing part of the second pressure reducing means (3b) is connected to the refrigerant pipe connected to the suction side of the compressor (1). It is characterized in that it has a second intermediate joint (9) to.
[0016]
The invention according to claim 5 is characterized in that the pipe in which the two types of refrigerant pipes are integrated is integrally formed by extrusion or drawing.
[0017]
The invention according to claim 6 is characterized in that a pipe length from the intermediate joint (8) to the radiator (2) is shorter than a pipe length from the intermediate joint (8) to the pressure reducing means (3).
[0018]
Thus, heat exchange between the refrigerant flowing out of the radiator (2) and the refrigerant flowing into the radiator (2) can be suppressed, so that the enthalpy of the refrigerant flowing into the evaporator (4) increases, and It is possible to suppress the endothermic ability of (4) from decreasing.
[0019]
Incidentally, reference numerals in parentheses of the above-mentioned units are examples showing the correspondence with specific units described in the embodiments described later.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In this embodiment, a vapor compression refrigerator according to the present invention is applied to a vehicle air conditioner, and FIG. 1 is a schematic diagram of a vehicle air conditioner.
[0021]
In FIG. 1, a compressor 1 sucks and compresses a refrigerant. In the present embodiment, the compressor 1 is mounted on a traveling engine and operates by receiving power from the engine. The radiator 2 is a high-pressure heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the compressor 1 and outdoor air to cool the high-pressure refrigerant.
[0022]
In this embodiment, since the pressure of the high-pressure refrigerant is lower than the critical pressure of the refrigerant, the radiator 2 lowers the enthalpy of the refrigerant while changing its phase from a gas-phase refrigerant to a liquid-phase refrigerant.
[0023]
Further, the decompressor 3 is a decompression means for decompressing the high-pressure refrigerant. In the present embodiment, the depressurizer 3 detects a variable throttle portion for adjusting the throttle opening based on the refrigerant superheat degree on the outlet side of the evaporator 4 and detects the refrigerant superheat degree. It employs a temperature-type expansion valve integrated with a temperature sensing part.
[0024]
The evaporator 4 is a low-pressure side heat exchanger that evaporates a low-pressure liquid-phase refrigerant. In this embodiment, the evaporator 4 absorbs heat from the air that blows into the room and evaporates the refrigerant to cool the air that blows into the room. The absorbed heat is radiated to the outside of the room by the radiator 2. On the contrary, even if the room is heated by absorbing the heat from the outdoor air and radiating the absorbed heat to the air blown into the room. Good.
[0025]
A refrigerant pipe connected to the suction side of the compressor 1 and a refrigerant pipe connected to the discharge side of the compressor 1 are integrated to form a compressor pipe 5, which is connected to the inflow side of the radiator 2. And a refrigerant pipe connected to the outlet side of the radiator 2 are integrated to form a radiator pipe 6. The refrigerant pipe connected to the inlet side of the pressure reducer 3 and the refrigerant pipe The refrigerant pipe connected to the outlet side is integrated with the pressure reducing pipe 7.
[0026]
As shown in FIG. 2A or 2B, the radiator pipe 6 and the pressure reducer pipe 7 are formed into a double cylindrical shape by extruding or drawing a metal material such as an aluminum alloy. The compressor pipe 5 has a double cylindrical shape made of a flexible pipe material such as rubber.
[0027]
Incidentally, in the compressor pipe 5, the inner cylinder side is connected to the discharge side of the compressor 1, the outer cylinder side is connected to the suction side of the compressor 1, and in the radiator pipe 6, as shown in FIG. 4 is connected to the outlet side of the radiator 2, the outer cylinder side is connected to the inflow side of the radiator 2, and in the pressure reducer pipe 7, the inner cylinder side is connected to the inlet side of the pressure reducer 3 as shown in FIG. The outer cylinder side is connected to the outlet side of the temperature sensing part.
[0028]
The intermediate joint 8 connects the compressor pipe 5, the radiator pipe 6, and the decompressor pipe 7 to connect the refrigerant pipe connected to the discharge side of the compressor 1 and the radiator 2 as shown in FIG. And a refrigerant pipe connected to the outlet side of the radiator 2 and a refrigerant pipe connected to the inlet side of the pressure reducer 3, and The refrigerant pipe connected to the outlet side of the temperature sensing part and the refrigerant pipe connected to the suction side of the compressor 1 are connected.
[0029]
Next, the operation and effect of the present embodiment will be described.
[0030]
The operation of the vapor compression refrigerator (air conditioner) is the same as that of the well-known vapor compression refrigerator (air conditioner), and the description of the operation of the vapor compression refrigerator (air conditioner) will be omitted.
[0031]
In the present embodiment, the refrigerant pipe connected to the suction side of the compressor 1 and the refrigerant pipe connected to the discharge side of the compressor 1 are integrated, and the refrigerant connected to the inflow side of the radiator 2 The pipe and the refrigerant pipe connected to the outlet side of the radiator 2 are integrated, and the refrigerant pipe connected to the inlet side of the pressure reducer 3 and the refrigerant pipe connected to the outlet side of the temperature sensing unit. Are integrated, the number of pipes and the number of joints connecting the pipes can be reduced as compared with Patent Document 1.
[0032]
Therefore, the number of assembling steps for assembling the refrigerant pipes can be reduced, and the piping arrangement can be simplified, so that the mountability of the vapor compression refrigerator (air conditioner) on the vehicle can be improved.
[0033]
Further, in the present embodiment, since the compressor pipe 5, the radiator pipe 6, and the pressure reducer pipe 7 are connected via the intermediate joint 8, unlike the invention described in Patent Literature 2, it flows out of the evaporator 4. The low-pressure refrigerant returns to the compressor 1 without passing through the radiator 2. Therefore, since the length of the low-pressure passage can be made shorter than that of the invention described in Patent Document 2, the pressure loss of the refrigerant can be reduced, and the power consumption of the compressor 1 can be prevented from increasing.
[0034]
By the way, in this embodiment, since two types of pipes are integrated, there is a possibility that heat exchange may occur between the refrigerant flowing through these two types of pipes. At this time, even if heat is exchanged between the low-pressure refrigerant and the high-pressure refrigerant in the compressor pipe 5 and the decompressor pipe 7, the operation is the same as that of the well-known internal heat exchanger. When the refrigerant flowing out of the radiator 2 and the refrigerant flowing into the radiator 2 exchange heat in the heat pipe 6, the enthalpy of the refrigerant flowing into the evaporator 4 increases, and the heat absorbing ability of the evaporator 4 may decrease. There is.
[0035]
Therefore, in the present embodiment, the length of the radiator pipe 6 from the intermediate joint 8 to the radiator 2 is made shorter than the length of the pressure reducer pipe 7 from the intermediate joint 8 to the pressure reducer 3, and the heat is radiated by the radiator pipe 6. The amount of heat exchange between the refrigerant flowing out of the vessel 2 and the refrigerant flowing into the radiator 2 is suppressed.
[0036]
(2nd Embodiment)
In the present embodiment, as shown in FIG. 6, the present invention is applied to an air conditioner having two evaporators, that is, a front seat evaporator 4a and a rear seat evaporator 4b.
[0037]
In this embodiment, a first decompressor 3a for the front seat evaporator 4a and a second decompressor 3b for the rear seat evaporator 4b are provided, and the flow of the radiator 2 as shown in FIG. The refrigerant pipe connected to the outlet side and the refrigerant pipe connected to the inlet side of the first decompressor 3a, and the refrigerant pipe connected to the outlet side of the radiator 2 and the second decompressor 3b And a refrigerant pipe connected to the outlet side of the temperature-sensitive part of the first decompressor 3a and a refrigerant pipe connected to the suction side of the compressor 1. And a second intermediate joint 9 for connecting a refrigerant pipe connected to the outlet side of the temperature sensing part of the second decompressor 3b and a refrigerant pipe connected to the suction side of the compressor 1. It is a thing.
[0038]
(Third embodiment)
In the above-described embodiment, the compressor pipe 5, the radiator pipe 6, and the pressure reducer pipe 7 have a double cylindrical shape. However, in the present invention, as shown in FIG. 8, two pipes are arranged in parallel and integrated. Things.
[0039]
In the integration, not only the extrusion process or the drawing process, but also the two may be manufactured separately and then integrated by mechanical means such as welding, brazing, or a binding band.
[0040]
(Other embodiments)
In the above embodiment, the compressor pipe 5 is made of rubber to exhibit flexibility. However, the present invention is not limited to this. For example, the inner pipe and the outer pipe of the compressor pipe 5 may be used. May be made bellows-like to exhibit flexibility. In this case, the inner cylinder and the outer cylinder of the compressor pipe 5 may be made of metal.
[0041]
Further, in the above-described embodiment, as the depressurizer 3, the variable throttle unit for adjusting the throttle opening based on the refrigerant superheat degree at the outlet side of the evaporator 4 and the temperature sensing unit for detecting the refrigerant superheat degree are integrated. Although a temperature type expansion valve is employed, the present invention is not limited to this.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a vehicle air conditioner according to a first embodiment of the present invention.
FIG. 2 is a sectional view of a refrigerant pipe according to the first embodiment of the present invention.
FIG. 3 is an explanatory view showing a connection portion of a refrigerant pipe according to the embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a connection portion of a refrigerant pipe according to the embodiment of the present invention.
FIG. 5 is an explanatory diagram of an intermediate joint according to the embodiment of the present invention.
FIG. 6 is a schematic diagram of a vehicle air conditioner according to a second embodiment of the present invention.
FIG. 7 is an explanatory diagram of an intermediate joint according to a second embodiment of the present invention.
FIG. 8 is a sectional view of a refrigerant pipe according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... compressor, 2 ... radiator, 3 ... decompressor, 4 ... evaporator, 5 ... compressor piping,
6: radiator pipe, 7: pressure reducer pipe, 8: intermediate joint.

Claims (6)

冷媒を吸入圧縮する圧縮機(1)、高圧冷媒を冷却する放熱器(2)、冷媒を減圧する減圧手段(3)、及び低圧冷媒を蒸発させる蒸発器(4)を有し、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
前記圧縮機(1)の吸入側に接続される冷媒配管と前記圧縮機(1)の吐出側に接続される冷媒配管とが一体化され、
さらに、前記放熱器(2)の流入口側に接続される冷媒配管と前記放熱器(2)の流出口側に接続される冷媒配管とが一体化されていることを特徴とする蒸気圧縮式冷凍機。
It has a compressor (1) for sucking and compressing the refrigerant, a radiator (2) for cooling the high-pressure refrigerant, a pressure reducing means (3) for depressurizing the refrigerant, and an evaporator (4) for evaporating the low-pressure refrigerant. A vapor compression refrigerator for transferring heat to a high temperature side,
A refrigerant pipe connected to a suction side of the compressor (1) and a refrigerant pipe connected to a discharge side of the compressor (1) are integrated;
Furthermore, a refrigerant pipe connected to the inlet of the radiator (2) and a refrigerant pipe connected to the outlet of the radiator (2) are integrated with each other. refrigerator.
前記減圧手段(3)は、前記蒸発器(4)の出口側の冷媒過熱度に基づいて絞り開度を調節する可変絞り部と前記冷媒過熱度を検出する感温部とが一体化された温度式膨脹弁であり、
さらに、前記減圧手段(3)の流入口側に接続される冷媒配管と前記感温部の流出口側に接続される冷媒配管とが一体化されていることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。
In the pressure reducing means (3), a variable throttle portion for adjusting the throttle opening based on the refrigerant superheat degree on the outlet side of the evaporator (4) and a temperature sensing portion for detecting the refrigerant superheat degree are integrated. A thermal expansion valve,
The refrigerant pipe connected to the inlet side of the decompression means (3) and the refrigerant pipe connected to the outlet side of the temperature sensing part are integrated with each other. Steam compression refrigerator.
前記圧縮機(1)の吐出側に接続される冷媒配管と前記放熱器(2)の流入口側に接続される冷媒配管とを接続し、かつ、前記放熱器(2)の流出口側に接続される冷媒配管と前記減圧手段(3)の流入口側に接続される冷媒配管とを接続し、かつ、前記感温部の流出口側に接続される冷媒配管と前記圧縮機(1)の吸入側に接続される冷媒配管とを接続する中間継手(8)を有することを特徴とする請求項2に記載の蒸気圧縮式冷凍機。A refrigerant pipe connected to the discharge side of the compressor (1) and a refrigerant pipe connected to the inlet side of the radiator (2) are connected to the outlet side of the radiator (2). A refrigerant pipe connected to a refrigerant pipe connected to an inlet side of the decompression means (3), and a refrigerant pipe connected to an outlet side of the temperature sensing part; and the compressor (1). The vapor compression refrigerator according to claim 2, further comprising an intermediate joint (8) for connecting a refrigerant pipe connected to a suction side of the refrigerator. 前記蒸発器(4)は、第1、2蒸発器(4a、4b)にて構成され、
前記減圧手段(3)は、前記第1蒸発器(4a)用の第1減圧手段(3a)と前記第2蒸発器(4b)用の第2減圧手段(3b)とから構成されており、
さらに、前記放熱器(2)の流出口側に接続される冷媒配管と前記第1減圧手段(3a)の流入口側に接続される冷媒配管とを接続し、かつ、前記放熱器(2)の流出口側に接続される冷媒配管と前記第2減圧手段(3b)の流入口側に接続される冷媒配管とを接続し、かつ、第1減圧手段(3a)の前記感温部の流出口側に接続される冷媒配管と前記圧縮機(1)の吸入側に接続される冷媒配管とを接続し、かつ、第2減圧手段(3b)の前記感温部の流出口側に接続される冷媒配管と前記圧縮機(1)の吸入側に接続される冷媒配管とを接続する第2の中間継手(9)を有することを特徴とする請求項3に記載の蒸気圧縮式冷凍機。
The evaporator (4) includes first and second evaporators (4a, 4b),
The decompression means (3) comprises a first decompression means (3a) for the first evaporator (4a) and a second decompression means (3b) for the second evaporator (4b),
Further, a refrigerant pipe connected to an outlet of the radiator (2) is connected to a refrigerant pipe connected to an inlet of the first decompression means (3a), and the radiator (2) And a refrigerant pipe connected to the inlet side of the second pressure reducing means (3b), and connected to a refrigerant pipe connected to the inlet side of the second pressure reducing means (3b). The refrigerant pipe connected to the outlet side is connected to the refrigerant pipe connected to the suction side of the compressor (1), and is connected to the outlet side of the temperature sensing part of the second pressure reducing means (3b). 4. The vapor compression refrigerator according to claim 3, further comprising a second intermediate joint (9) connecting a refrigerant pipe connected to the refrigerant pipe and a refrigerant pipe connected to a suction side of the compressor (1). 5.
前記2種類の冷媒配管が一体化された配管は、押し出し加工又は引き抜き加工にて一体成形されて一体化されていることを特徴とする請求項1ないし4のいずれか1つに記載の蒸気圧縮式冷凍機。The vapor compression according to any one of claims 1 to 4, wherein the pipe in which the two types of refrigerant pipes are integrated is integrally formed by extrusion or drawing. Type refrigerator. 前記中間継手(8)から前記放熱器(2)に至る配管長さは、前記中間継手(8)から前記減圧手段(3)に至る配管長さより短いことを特徴とする請求項2ないし5のいずれか1つに記載の蒸気圧縮式冷凍機。The pipe length from the intermediate joint (8) to the radiator (2) is shorter than the pipe length from the intermediate joint (8) to the pressure reducing means (3). A vapor compression refrigerator according to any one of the preceding claims.
JP2003019038A 2003-01-28 2003-01-28 Vapor compression type refrigerating machine Withdrawn JP2004232891A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003019038A JP2004232891A (en) 2003-01-28 2003-01-28 Vapor compression type refrigerating machine
US10/765,758 US7753413B2 (en) 2003-01-28 2004-01-26 Vapour-compression type refrigerating machine and double pipe structure and double pipe joint structure preferably used therefor
DE102004004027A DE102004004027A1 (en) 2003-01-28 2004-01-27 Double connector structure for connecting duplex tubes used in e.g. vehicle air conditioner, has coupling member which elastically deforms so that duplex tubes can be connected, when any one duplex tube approaches the other duplex tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019038A JP2004232891A (en) 2003-01-28 2003-01-28 Vapor compression type refrigerating machine

Publications (1)

Publication Number Publication Date
JP2004232891A true JP2004232891A (en) 2004-08-19

Family

ID=32949023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019038A Withdrawn JP2004232891A (en) 2003-01-28 2003-01-28 Vapor compression type refrigerating machine

Country Status (1)

Country Link
JP (1) JP2004232891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036503A (en) * 2007-07-09 2009-02-19 Panasonic Corp Refrigerating cycle device and air conditioner having this refrigerating cycle device
JP2009145032A (en) * 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036503A (en) * 2007-07-09 2009-02-19 Panasonic Corp Refrigerating cycle device and air conditioner having this refrigerating cycle device
JP2009145032A (en) * 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same

Similar Documents

Publication Publication Date Title
JP4114471B2 (en) Refrigeration cycle equipment
US7320229B2 (en) Ejector refrigeration cycle
MXPA00008667A (en) Combined evaporator/accumulator/suction line heat exchanger.
US20060096314A1 (en) Double-wall pipe and refrigerant cycle device using the same
US20070251265A1 (en) Piping structure with inner heat exchanger and refrigeration cycle device having the same
JPH03164664A (en) Refrigeration system
EP1803593B1 (en) Air conditioning systems for vehicles
US20190345937A1 (en) Refrigerant pipe and refrigeration cycle device
US20190337359A1 (en) Refrigeration cycle device
JPH11142007A (en) Refrigerating cycle
JP5812997B2 (en) Condenser with refrigeration cycle and supercooling section
JP2001001754A (en) Air conditioner for vehicle
JP4323619B2 (en) Air conditioner for vehicles
JP3961188B2 (en) Air conditioner for automobile
KR100549063B1 (en) Refrigerator
JP2003148814A (en) Refrigerating machine
JP5540816B2 (en) Evaporator unit
KR101544882B1 (en) Cooling system of air conditioner for vehicle
JP2010127498A (en) Refrigerating cycle device
JP2004232891A (en) Vapor compression type refrigerating machine
JP4356146B2 (en) Refrigeration equipment
JP4352327B2 (en) Ejector cycle
JP2004306686A (en) Air conditioner for vehicle
KR101544878B1 (en) Cooling system of air conditioner for vehicle
JP2005009808A (en) Heat exchanger for air conditioner

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404