[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004232106A - Carbon-containing fiber - Google Patents

Carbon-containing fiber Download PDF

Info

Publication number
JP2004232106A
JP2004232106A JP2003019855A JP2003019855A JP2004232106A JP 2004232106 A JP2004232106 A JP 2004232106A JP 2003019855 A JP2003019855 A JP 2003019855A JP 2003019855 A JP2003019855 A JP 2003019855A JP 2004232106 A JP2004232106 A JP 2004232106A
Authority
JP
Japan
Prior art keywords
fiber
charcoal
strength
yarn
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019855A
Other languages
Japanese (ja)
Inventor
Hideo Ueda
秀夫 上田
Hiroshi Kajiyama
宏史 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2003019855A priority Critical patent/JP2004232106A/en
Publication of JP2004232106A publication Critical patent/JP2004232106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon-containing fiber which comprises a biodegradable polymer and has a blood flow-promoting effect. <P>SOLUTION: This carbon-containing fiber is characterized by dispersing carbon powder satisfying the following values in a fiber composed of a biodegradable polymer. A porosity ε: ≥0.56. A tensile breaking strength δt: ≥3,600 Pa. A particle size: ≤5 μm. A content: 3 to 7 wt. %. The biodegradable polymer is preferably polylactate having a relative viscosity [ηrel] of 2.5 to 3.8 and an L-isomer rate of ≥95%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性である炭含有合成繊維に関するものである。
【0002】
【従来技術】
木炭、特にウバメガシを原料として高温で炭化させた備長炭は、古来より燃料として用いられてきた。しかし、近年、燃料以外にも種々の用途が提案されている。
【0003】
例えば、特開2001−348723号公報には、炭微粉末を繊維中に配合させ、吸湿性及び帯電防止効果を付与させた合成繊維及びこれを用いた綿状物並びにこれを内包してなる縫製体が開示されている。
【0004】
しかしながら、該公報は、吸湿性及び帯電防止効果を付与することを目的とするものであり、我々が目的とする生分解性合成繊維で血流促進効果を目的としているものではない。
【0005】
又、特開2002−249923号公報には、生分解性合成繊維に木炭微粒子を含有させることにより消臭、遠赤外線放射、マイナスイオン効果の機能を併せ持つ合成繊維が記載されている。
【0006】
これもまた、微粉砕した木炭微粒子を生分解性合成繊維中に配合させる方法は本発明と類似しているが、我々が目的としている血流促進効果のことは全く触れられていない。
【0007】
【特許文献1】
特開2001−348723号公報
【特許文献2】
特開2002−249923号公報
【0008】
【発明が解決しようとする課題】
本発明は、微粉砕した炭パウダーを繊維中に練り込むことにより、今までになかった血流促進効果を得ることを可能にし、安定的に生産できる生分解性合成繊維を目的とする。
【0009】
【課題を解決しようとする手段】
本発明の第一は、生分解性ポリマー中に、下記の値を満足する炭パウダーが分散されていることを特徴とする炭含有繊維である。
空隙率 ε≧0.56
引張破断強度 δt(Pa)≦3600
【0010】
本発明の第二は、生分解性ポリマーがポリ乳酸繊維あることを特徴とする上記記載の繊維である。
【0011】
本発明の第三は、炭パウダーの粒径が5μm以下で含有率が3〜7重量%であることを特徴とする上記記載の繊維である。
【0012】
本発明の第四は、使用するポリ乳酸の相対粘度〔ηrel〕が2.5〜3.8、L体の比率が95%以上であることを特徴とする上記記載の繊維である。
【0013】
本発明の第五は、繊維引張強度が1.3〜2.2cN/dtexであることを特徴とする上記記載の繊維である。
【0014】
本発明の第六は、炭パウダーが備長炭であることを特徴とする上記記載の繊維である。
【0015】
【発明の実施の形態】
本発明に使用出来る炭パウダーは、以下に記す特性値を有していなければならない。
空隙率 ε≧0.56
引張破断強度 δt(Pa)≦3600
【0016】
ここで、空隙率とは、粉体粒子を球形と仮定した場合、粒子が配列した場合の空間率である。引張破断強度とは、炭パウダーを圧縮して形成された粉体層を引っ張り、粉体層が分裂破断に至る時の最大強度である。空隙率が0.56より小さいと、粉体の凝集性が強くなり、均一分散性に欠け、ポリマー濾過圧上昇が大きくなり、紡糸、延伸操業性が著しく悪くなり、得られる糸の強度も低くなる。
又、引張破断強度が3600より大きいと、空隙率が上記範囲より小さくなるため、粉体の凝集性が強くなり、均一分散性に欠け、紡糸、延伸操業性が悪化し、糸の強度低下をまねく。
【0017】
本発明に使用出来る炭パウダーは、ホソカワミクロン(株)社製 アルピネ カウンタージェットミルによって備長炭から作られる。製造条件として重要なことは、原料備長炭を吹き付ける空気圧力と空気量である。空気圧力は0.59MPa、空気量は0.72m/分程度の条件下で炭パウダーが作られる。更に得られた炭パウダーを分級機にて5μm以下に分級されて得られた炭パウダーが本発明に使用することが出来る。
【0018】
本発明の炭パウダーの粒径は、好ましくは5μm以下であり、更に好ましくは2μm以下である。粒径を5μm以下におさえる事により、紡糸延伸操業性が向上するとともに、得られる繊維の物性も優れるので好ましい。粒径は、レーザー粒度分析計によって測定したものである。
【0019】
炭パウダーは、ポリマー中に好ましくは3〜7重量%配合し、更に好ましくは4〜6重量%配合する。炭パウダーの配合量が3〜7重量%では、血流促進効果が充分であり、又、紡糸操業性も良好であり、糸の強度も十分である。
【0020】
本発明に使用する炭パウダーは、好ましくは備長炭である。備長炭は、微細な複雑に入り組んだ多孔質構造により、吸臭消臭効果、調湿効果、保温蓄熱効果が認められている。
【0021】
本発明に使用される生分解性ポリマーは、生分解性脂肪族ポリエステルが好ましい。例えばポリ乳酸やポリグリコール酸のようなポリ(α−ヒドロキシ酸)、又はこれらを主たる繰り返し単位とする共重合である。特に好ましい生分解性脂肪族ポリエステルとしては、ポリ乳酸又は乳酸単位を主成分とする共重合物が挙げられる。
【0022】
好ましくは、相対粘度〔ηrel〕が2.5〜3.8の範囲であるポリ乳酸ポリマーを使用することにより十分な初期強力が得られ、又製織性も良好で、洗濯時の加水分解による強力低下も少なく好ましい。更に好ましくは、相対粘度〔ηrel〕が2.7から3.0である。
【0023】
本発明に用いるポリ乳酸は、L−乳酸、D−乳酸或いは乳酸の2量体であるL−ラクチド、D−ラクチドあるいはメゾラクチドを原料とするものであるが、結晶性を有するポリ乳酸を用いることで糸の結晶性を上げ強度を上げる事ができる。
L−乳酸を主たる繰り返し単位とした方が製造コストが安く好ましい。ポリ乳酸のL−体の比率は95%以上であることが好ましい。更に好ましくは、98%以上である。
【0024】
ポリ乳酸繊維は、残留モノマー量が多ければ空気中の湿気で加水分解が発生し、糸の強度の低下が速やかに進む。従ってポリ乳酸繊維の残留モノマーは少なくする事が必要であり、繊維中の残留モノマー量が0.8wt%以下であれば空気中での加水分解を抑えられ好ましい。更に好ましくは、0.5wt%以下であり、特に好ましくは0.2wt%以下である。本発明に言うモノマーとは後述するGPC分析により算出される分子量1000以下の成分である。
【0025】
本発明の繊維の単糸繊度は、好ましくは2dtex以上である。単糸繊度が2dtex以上であると、炭パウダーを所定の量配合することができる。繊維形態は、フィラメントからなる生糸及び加工糸やスパンボンド、短繊維からなる不織布や紡績糸及び詰め綿が好ましい。マルチフィラメン糸と紡績糸を同時に使用することも可能であるが、発塵性を特に注意する場合は、マルチフィラメント糸を使用した方が好ましい。
【0026】
一般に熱可塑性樹脂に無機粒子を混合すると引張強度は低下し、更に炭パウダーは多孔質で吸湿作用が有りポリエステルに混練りすると得られる繊維の引張強度は著しく低下する。本発明の繊維は、空隙率 ε≧0.56、引張破断強度 δt(Pa)≦3600の炭パウダーを使用することにより、引張強度は1.3〜2.2cN/dtex以下であり、繊維の製造上、後加工上、製品使用時に於いても何ら問題は無い。
【0027】
炭パウダーは、例えば溶融紡糸時にポリ乳酸繊維と一緒に紡糸口金から吐出される。本発明の繊維を製造するに当っては、まず、ポリ乳酸樹脂中に、微粉砕処理を施した炭パウダーを10〜25重量%含有させたマスターチップを製造し、これとポリ乳酸樹脂ペレットとを溶融混合し、全体としてポリ乳酸繊維中に炭パウダーは、血流促進効果が十分であり紡糸延撚操業性が良好であり繊維強度も十分である3〜7重量%が好ましく、より好ましくは4〜6重量%となるようにする。
【0028】
溶融紡糸は特別の配慮をすることなく通常の方法、又は直接延伸法で紡糸できる。又、糸の断面は、丸断面、三角断面、四角断面、多角断面、偏平断面、中空断面等、多種多様な形状を利用することができる。
【0029】
【発明の効果】
本発明の生分解性炭含有合成繊維は、炭パウダーを含有しているため、血流促進効果が得られる。本発明の目的は、該炭含有繊維を単独で、或いは他の繊維と共に併用しても達成できる。
【0030】
又、本発明の主たる目的ではないが、炭が本来的に有する種々の優れた作用、例えば吸湿性、化学物質の吸着作用、遠赤外線放射による保温作用、マイナスイオンの発生作用等が同時に発揮できるものである。
【0031】
【実施例】
以下実施例によって本発明を詳細に説明する。但し、本発明はここに挙げられているものに限定されるものではない。最初に、炭パウダー物性、ポリマー物性の分析方法を紹介する。
【0032】
炭パウダーの空隙率、引張り破断強度は、ホソカワミクロン社製アグロボットにて測定した。
【0033】
(相対粘度ηrel)
フェノール/テトラクロロエタン=60/40(容量比)の混合溶媒に試料を1g/dLの濃度になるよう溶解し、20℃でウベローデ粘度管を用いて相対粘度を測定した。
【0034】
(L−体の比率)
ポリ乳酸樹脂を加水分解させ、メタノール性水酸化ナトリウム溶液1.0Nを溶媒として高速液体クロマトグラフィー(HPLC:島津製作所製 LC10AD型)使用してL−体の比率を求めた。
【0035】
実施例1〜3
備長炭をホソカワミクロン(株)社製 アルピネ カウンタージェットミルにより粒径5μm以下に微粉砕した後、アグロボットにより、初期設定荷重50kg、最大圧縮応力1.0MPaの条件で測定した結果、炭パウダーの空隙率が0.589、引張破断強度が3415Paであった。
【0036】
L−体比率が98.8%、相対粘度が2.83のポリ乳酸樹脂に対して、備長炭の含有量が10重量%となるように、前項記載の微粉砕した備長炭を配合し、日本製鋼社製 ベント付二軸混練機にて溶融混合してマスターチップ(i)を製造した。その後、このマスターチップとL−体比率が98.8%、相対粘度が2.83のポリ乳酸樹を、備長炭の含有量が4.0、5.0、7.0重量%となるようにチップ同士にて混合チップ(ii)とした。
【0037】
混合チップ(ii)を水分率100ppm以下に乾燥し、紡糸温度230℃、巻取速度1200m/分にて紡糸し、その後、伸度が32%になるように延伸倍率とポリマー吐出量を調整し、延伸速度700m/分で、ローラー温度85℃、プレートヒーター温度150℃で延伸し、84dtex/24フィラメントの糸を得た。
【0038】
上記により得られた延伸糸を丸編し、両手両足に長さ70cmの丸編布を装着し、オメガウエーブ社製 レーザー血流計 オメガフローFLO−C1HPを用いて、人工気象室内で室温27±0.2℃、湿度55±3%の条件で血流量増加率を求めた。
【0039】
比較例1
混練チップ(ii)に備長炭を混合していないL−体比率が98.8%、相対粘度が2.83のポリ乳酸樹脂に変更し、紡糸温度を230℃に変更し、糸の伸度が32%になるように延伸倍率とポリマー吐出量を変更して実施例1記載の工程で実施した。実施例1と同条件にて血流量測定を実施し使用した糸の強度、延伸操業性の結果を表1に記す。
【0040】
【表1】

Figure 2004232106
【0041】
炭パウダー含有率とは、血流量測定に使用した編布の炭パウダー量を算出し、それを百分率で表したものである。糸の強度測定は、JIS L−1013に準じ、(株)島津製作所製のAGS−1KNG オートグラフ引張試験機を用い、試料長20cm、定速引張速度20cm/分の条件で測定し、試料が伸長破断したときの強力の値から繊維強度を算出した。延伸操業性は、糸巻量510gにて糸切れ無く巻き上がった本数を百分率で表したものである。表1に記す通り、ポリ乳酸単独糸に比べ、備長炭を混合している繊維は、血流促進効果は非常に優れ、又、備長炭の含有量に比例して血流促進効果は増大した。糸の強度は、炭パウダーを混合すれば低下するが後加工通過性に問題なく、紡糸延伸操業性も良好である。
【0042】
比較例2
備長炭をホソカワミクロン社製 アルピネ カウンタージェットミルにより実施例1と異なる条件にて微粉砕した後、アグロボットにより、初期設定荷重50kg、最大圧縮応力1.0MPaの条件で測定した結果、炭パウダーの空隙率が0.50、引張破断強度が3700Paであった。その炭パウダーを使用する以外、実施例1記載の工程で実施した。結果を表2に記す。
【0043】
【表2】
Figure 2004232106
【0044】
比較例2は炭パウダーの均一分散性が悪いため、血流促進効果もあまり良くない。しかも、紡糸中の濾過圧の著しい上昇が見られ、紡糸、延伸性が悪化し得られた糸の強度も低いものであった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to carbon-containing synthetic fibers that are biodegradable.
[0002]
[Prior art]
Charcoal, especially Bincho charcoal made from Ubamegashi as a raw material and carbonized at a high temperature, has been used as a fuel since ancient times. However, in recent years, various uses other than fuel have been proposed.
[0003]
For example, Japanese Patent Application Laid-Open No. 2001-348723 discloses a synthetic fiber in which fine carbon powder is blended in a fiber to impart a hygroscopicity and an antistatic effect, a cotton-like material using the same, and a sewing including the same. The body is disclosed.
[0004]
However, the publication is intended to impart a hygroscopic property and an antistatic effect, and is not a biodegradable synthetic fiber aimed at by us, which aims at a blood flow promoting effect.
[0005]
JP-A-2002-249923 describes a synthetic fiber having functions of deodorization, far-infrared radiation, and negative ion effect by adding charcoal fine particles to a biodegradable synthetic fiber.
[0006]
Again, the method of incorporating finely ground charcoal microparticles into biodegradable synthetic fibers is similar to the present invention, but does not mention the blood flow promoting effect that we are aiming for.
[0007]
[Patent Document 1]
JP 2001-348723 A [Patent Document 2]
JP 2002-249923 A
[Problems to be solved by the invention]
An object of the present invention is to provide a biodegradable synthetic fiber that can obtain a blood flow promoting effect that has never been achieved by kneading finely ground charcoal powder into fiber and that can be stably produced.
[0009]
[Means to solve the problem]
The first aspect of the present invention is a charcoal-containing fiber characterized in that charcoal powder satisfying the following values is dispersed in a biodegradable polymer.
Porosity ε ≧ 0.56
Tensile breaking strength δt (Pa) ≦ 3600
[0010]
A second aspect of the present invention is the fiber as described above, wherein the biodegradable polymer is a polylactic acid fiber.
[0011]
A third aspect of the present invention is the fiber as described above, wherein the particle size of the charcoal powder is 5 µm or less and the content is 3 to 7% by weight.
[0012]
A fourth aspect of the present invention is the fiber as described above, wherein the relative viscosity [ηrel] of the polylactic acid used is 2.5 to 3.8, and the ratio of L-form is 95% or more.
[0013]
A fifth aspect of the present invention is the fiber as described above, wherein the fiber tensile strength is 1.3 to 2.2 cN / dtex.
[0014]
A sixth aspect of the present invention is the fiber as described above, wherein the charcoal powder is Bincho charcoal.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The charcoal powder that can be used in the present invention must have the following characteristic values.
Porosity ε ≧ 0.56
Tensile breaking strength δt (Pa) ≦ 3600
[0016]
Here, the porosity is a porosity when the particles are arranged assuming that the powder particles are spherical. The tensile strength at break is the maximum strength when the powder layer formed by compressing the coal powder is pulled and the powder layer is split. When the porosity is smaller than 0.56, the cohesiveness of the powder becomes strong, the uniform dispersibility is lacking, the polymer filtration pressure rises greatly, the spinning and drawing operability become extremely poor, and the strength of the obtained yarn is also low. Become.
On the other hand, if the tensile strength at break is greater than 3600, the porosity is smaller than the above range, so that the cohesiveness of the powder becomes stronger, the uniform dispersibility is lacking, the spinning and drawing operability deteriorates, and the strength of the yarn decreases. Mimic
[0017]
The charcoal powder that can be used in the present invention is made from Bincho charcoal by Alpine counter jet mill manufactured by Hosokawa Micron Corporation. What is important as the production conditions is the air pressure and the amount of air for blowing the raw material bincho charcoal. Charcoal powder is produced under the conditions of an air pressure of 0.59 MPa and an air amount of about 0.72 m 3 / min. Further, the obtained charcoal powder is classified into 5 μm or less by a classifier, and the obtained charcoal powder can be used in the present invention.
[0018]
The particle size of the coal powder of the present invention is preferably 5 μm or less, more preferably 2 μm or less. By controlling the particle diameter to 5 μm or less, the spinning and drawing operability is improved, and the physical properties of the obtained fiber are also excellent. The particle size is measured by a laser particle size analyzer.
[0019]
The charcoal powder is preferably blended in the polymer in an amount of 3 to 7% by weight, more preferably 4 to 6% by weight. When the blending amount of the charcoal powder is 3 to 7% by weight, the effect of promoting blood flow is sufficient, the spinning operability is good, and the strength of the yarn is sufficient.
[0020]
The charcoal powder used in the present invention is preferably Bincho charcoal. Bincho charcoal is recognized for its odor-absorbing and deodorizing effect, humidity control effect, and heat-retaining heat storage effect due to its fine and complicated intricate porous structure.
[0021]
The biodegradable polymer used in the present invention is preferably a biodegradable aliphatic polyester. For example, poly (α-hydroxy acids) such as polylactic acid and polyglycolic acid, or copolymers containing these as main repeating units. Particularly preferred biodegradable aliphatic polyesters include polylactic acid or copolymers containing lactic acid units as a main component.
[0022]
Preferably, by using a polylactic acid polymer having a relative viscosity [ηrel] in the range of 2.5 to 3.8, a sufficient initial strength is obtained, the weaving property is good, and the strength due to hydrolysis during washing is good. It is preferable because the decrease is small. More preferably, the relative viscosity [ηrel] is from 2.7 to 3.0.
[0023]
The polylactic acid used in the present invention is made from L-lactic acid, D-lactic acid or L-lactide, D-lactide or mesolactide which is a dimer of lactic acid as a raw material. This increases the crystallinity of the yarn and increases the strength.
It is preferable to use L-lactic acid as a main repeating unit because the production cost is low. The ratio of the L-form of polylactic acid is preferably 95% or more. More preferably, it is 98% or more.
[0024]
If the amount of residual monomer is large, hydrolysis of the polylactic acid fiber occurs due to moisture in the air, and the strength of the yarn is rapidly reduced. Therefore, it is necessary to reduce the residual monomer in the polylactic acid fiber. When the residual monomer content in the fiber is 0.8 wt% or less, hydrolysis in the air is preferably suppressed. More preferably, it is at most 0.5 wt%, particularly preferably at most 0.2 wt%. The monomer referred to in the present invention is a component having a molecular weight of 1000 or less calculated by GPC analysis described later.
[0025]
The single yarn fineness of the fiber of the present invention is preferably 2 dtex or more. When the single yarn fineness is 2 dtex or more, a predetermined amount of charcoal powder can be blended. The fiber form is preferably a raw or processed yarn or spunbond consisting of filaments, a nonwoven fabric, spun yarn or wadding made of short fibers. Although it is possible to use a multifilament yarn and a spun yarn at the same time, it is preferable to use a multifilament yarn when special attention is paid to dust generation.
[0026]
In general, when inorganic particles are mixed with a thermoplastic resin, the tensile strength decreases, and furthermore, charcoal powder is porous and has a moisture absorbing effect, and when kneaded with polyester, the tensile strength of the obtained fiber is significantly reduced. The fiber of the present invention has a tensile strength of 1.3 to 2.2 cN / dtex or less by using a carbon powder having a porosity ε ≧ 0.56 and a tensile breaking strength δt (Pa) ≦ 3600. There is no problem in production, post-processing, and product use.
[0027]
The charcoal powder is discharged from the spinneret together with the polylactic acid fiber during, for example, melt spinning. In producing the fiber of the present invention, first, a master chip containing 10 to 25% by weight of finely pulverized charcoal powder in a polylactic acid resin is manufactured, and this is mixed with a polylactic acid resin pellet. The carbon powder in the polylactic acid fiber as a whole is preferably 3 to 7% by weight, more preferably having a sufficient blood flow promoting effect, good spinning and twisting operability, and sufficient fiber strength. It should be 4 to 6% by weight.
[0028]
Melt spinning can be spun by a conventional method or a direct drawing method without special consideration. Further, various cross-sections such as a round cross section, a triangular cross section, a square cross section, a polygonal cross section, a flat cross section, and a hollow cross section can be used as the cross section of the yarn.
[0029]
【The invention's effect】
Since the biodegradable carbon-containing synthetic fiber of the present invention contains charcoal powder, a blood flow promoting effect can be obtained. The object of the present invention can be achieved by using the carbon-containing fiber alone or in combination with other fibers.
[0030]
In addition, although not the main object of the present invention, various excellent functions inherent to charcoal, such as hygroscopicity, adsorption of chemical substances, warming by far-infrared radiation, generation of negative ions, etc. can be simultaneously exhibited. Things.
[0031]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to those listed here. First, the analysis methods for the properties of charcoal powder and polymer are introduced.
[0032]
The porosity and tensile strength at break of the charcoal powder were measured with an Agrobot manufactured by Hosokawa Micron Corporation.
[0033]
(Relative viscosity ηrel)
A sample was dissolved in a mixed solvent of phenol / tetrachloroethane = 60/40 (volume ratio) to a concentration of 1 g / dL, and the relative viscosity was measured at 20 ° C. using an Ubbelohde viscosity tube.
[0034]
(L-form ratio)
The polylactic acid resin was hydrolyzed, and the ratio of L-form was determined using high-performance liquid chromatography (HPLC: LC10AD type manufactured by Shimadzu Corporation) using 1.0 N methanolic sodium hydroxide solution as a solvent.
[0035]
Examples 1-3
Bincho charcoal was finely pulverized to a particle size of 5 μm or less using an Alpine counter jet mill manufactured by Hosokawa Micron Co., Ltd., and measured with an ag robot under the conditions of an initial set load of 50 kg and a maximum compressive stress of 1.0 MPa. Rate was 0.589 and tensile strength at break was 3415 Pa.
[0036]
An L-body ratio of 98.8% and a relative viscosity of 2.83 are blended with the finely pulverized Bincho charcoal described in the preceding paragraph, so that the content of Bincho charcoal is 10% by weight, A master chip (i) was produced by melting and mixing with a twin screw kneader equipped with a vent manufactured by Nippon Steel Corporation. Thereafter, a polylactic acid tree having an L-body ratio of 98.8% and a relative viscosity of 2.83 was prepared so that the content of Bincho charcoal was 4.0, 5.0, and 7.0% by weight. The mixed chips were mixed chips (ii).
[0037]
The mixed chip (ii) is dried to a moisture content of 100 ppm or less, spun at a spinning temperature of 230 ° C. and a take-up speed of 1200 m / min, and then the draw ratio and the amount of polymer discharged are adjusted so that the elongation becomes 32%. The film was drawn at a roller speed of 85 ° C. and a plate heater temperature of 150 ° C. at a drawing speed of 700 m / min to obtain a yarn of 84 dtex / 24 filaments.
[0038]
The drawn yarn obtained in the above was circularly knitted, a circular knitted cloth having a length of 70 cm was attached to both hands and feet, and a laser blood flowmeter OMEGA FLOW-C1HP manufactured by Omega Wave Co., Ltd. was used. The rate of increase in blood flow was determined under the conditions of 0.2 ° C. and 55 ± 3% humidity.
[0039]
Comparative Example 1
The kneading chips (ii) were not mixed with Bincho charcoal, and the polylactic acid resin having an L-body ratio of 98.8% and a relative viscosity of 2.83 was changed. The spinning temperature was changed to 230 ° C, and the elongation of the yarn was changed. Was changed by changing the stretching ratio and the amount of discharged polymer so as to be 32%. The blood flow rate was measured under the same conditions as in Example 1, and the results of the strength of the yarn and the drawability were shown in Table 1.
[0040]
[Table 1]
Figure 2004232106
[0041]
The charcoal powder content is obtained by calculating the amount of charcoal powder of the knitted fabric used for blood flow measurement and expressing it in percentage. The strength of the yarn was measured according to JIS L-1013 using an AGS-1KNG autograph tensile tester manufactured by Shimadzu Corporation under the conditions of a sample length of 20 cm and a constant-speed tensile speed of 20 cm / min. Fiber strength was calculated from the value of the strength at the time of elongation breaking. The drawing operability is the percentage of the number of yarns wound without breaking the yarn at a winding amount of 510 g. As shown in Table 1, the fiber mixed with Bincho charcoal has a very excellent blood flow promoting effect, and the blood flow promoting effect is increased in proportion to the content of Bincho charcoal, as compared with the polylactic acid alone yarn. . The yarn strength is reduced by mixing the charcoal powder, but there is no problem in the post-processability and the spinning and drawing operability is good.
[0042]
Comparative Example 2
Bincho charcoal was finely pulverized by a Hosokawa Micron Alpine counter jet mill under conditions different from those of Example 1, and measured by an Agrobot under the conditions of an initial set load of 50 kg and a maximum compressive stress of 1.0 MPa. Rate was 0.50 and tensile strength at break was 3700 Pa. The procedure was as described in Example 1, except that the charcoal powder was used. The results are shown in Table 2.
[0043]
[Table 2]
Figure 2004232106
[0044]
In Comparative Example 2, the effect of promoting the blood flow is not so good because the uniform dispersibility of the charcoal powder is poor. In addition, a remarkable increase in the filtration pressure during spinning was observed, and the spinning and stretching properties were deteriorated, and the strength of the obtained yarn was low.

Claims (6)

生分解性ポリマーからなる繊維中に、下記の値を満足する炭パウダーが分散されていることを特徴とする炭含有繊維。
空隙率 ε≧0.56
引張破断強度 δt(Pa)≦3600
A charcoal-containing fiber, wherein charcoal powder satisfying the following values is dispersed in a fiber made of a biodegradable polymer.
Porosity ε ≧ 0.56
Tensile breaking strength δt (Pa) ≦ 3600
生分解性ポリマーがポリ乳酸である請求項1記載の繊維。The fiber according to claim 1, wherein the biodegradable polymer is polylactic acid. 炭パウダーの粒径が5μm以下で含有率が3〜7重量%である請求項1〜2いずれかに記載の繊維。The fiber according to any one of claims 1 to 2, wherein the particle size of the charcoal powder is 5 µm or less and the content is 3 to 7% by weight. 使用するポリ乳酸が、相対粘度〔ηrel〕が2.5〜3.8、L体の比率が95%以上である請求項2〜3いずれかに記載の繊維。The fiber according to any one of claims 2 to 3, wherein the polylactic acid used has a relative viscosity [ηrel] of 2.5 to 3.8 and an L-form ratio of 95% or more. 繊維の引張強度が1.3〜2.2cN/dtexである請求項1〜4いずれかに記載の繊維。The fiber according to any one of claims 1 to 4, wherein the fiber has a tensile strength of 1.3 to 2.2 cN / dtex. 炭パウダーが備長炭である請求項1〜5いずれかに記載の繊維。The fiber according to any one of claims 1 to 5, wherein the charcoal powder is Bincho charcoal.
JP2003019855A 2003-01-29 2003-01-29 Carbon-containing fiber Pending JP2004232106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019855A JP2004232106A (en) 2003-01-29 2003-01-29 Carbon-containing fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019855A JP2004232106A (en) 2003-01-29 2003-01-29 Carbon-containing fiber

Publications (1)

Publication Number Publication Date
JP2004232106A true JP2004232106A (en) 2004-08-19

Family

ID=32949635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019855A Pending JP2004232106A (en) 2003-01-29 2003-01-29 Carbon-containing fiber

Country Status (1)

Country Link
JP (1) JP2004232106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044785A1 (en) * 2006-10-13 2008-04-17 Therath Medico, Inc. Material for improvement of cerebral blood flow, and use thereof
JPWO2020040283A1 (en) * 2018-08-24 2021-08-10 株式会社クラレ Polyamide composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044785A1 (en) * 2006-10-13 2008-04-17 Therath Medico, Inc. Material for improvement of cerebral blood flow, and use thereof
JPWO2020040283A1 (en) * 2018-08-24 2021-08-10 株式会社クラレ Polyamide composition

Similar Documents

Publication Publication Date Title
He et al. Fabrication of drug‐loaded electrospun aligned fibrous threads for suture applications
WO2014006463A1 (en) Thermo-regulated fiber and preparation method thereof
Costa et al. Electrospinning of PCL/natural rubber blends
JP2007186830A (en) Polyester fiber
CN107109710B (en) Method for preparing functional yarn with deodorization and rapid sweat absorption
CN113279144A (en) Environment-friendly degradable non-woven fabric and preparation method thereof
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
JP2004232106A (en) Carbon-containing fiber
JP2013087392A (en) Biodegradable polyester-based nanofiber and method of producing the same
JP4661266B2 (en) Synthetic fiber and fiber structure comprising the same
EP3006610A1 (en) Organic resin non-crimped staple fiber
JP4256243B2 (en) Polylactic acid-based hydrophilic fiber
JP2004036026A (en) Charcoal-containing fiber
JP2012241150A (en) Polymer alloy including polylactic acid resin and polyethylene terephthalate resin, and method of manufacturing the same
JP4946253B2 (en) Powder comprising ultrafine fibers and method for producing the same
JP2010065325A (en) Polylactic acid nanofiber
KR100544780B1 (en) Antibacterial sea-island polyester composite filament and precipitation thereof
JP3806320B2 (en) Method for producing polytrimethylene terephthalate short fiber
JP2004083651A (en) Hygroscopic polyester composition and polyester fiber
JP2007056411A (en) Heat-storage hydrophilic fiber
JP2011162888A (en) Polyester blended yarn and polyester fabric
JP4595714B2 (en) Method for producing blend type composite fiber
JP2004360091A (en) Antimicrobial polyester yarn and method for producing the same
JP2004149998A (en) Ligneous charcoal-kneaded synthetic fiber and method for producing the same
US20230304192A1 (en) Prodegradation in nonwovens

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050124