[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004227815A - Pelletisation object and its manufacturing method, and separator for fuel cell - Google Patents

Pelletisation object and its manufacturing method, and separator for fuel cell Download PDF

Info

Publication number
JP2004227815A
JP2004227815A JP2003011404A JP2003011404A JP2004227815A JP 2004227815 A JP2004227815 A JP 2004227815A JP 2003011404 A JP2003011404 A JP 2003011404A JP 2003011404 A JP2003011404 A JP 2003011404A JP 2004227815 A JP2004227815 A JP 2004227815A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
carbon
separator
fuel cell
temperature region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011404A
Other languages
Japanese (ja)
Inventor
Iwao Takeda
巌 竹田
Tsuneji Yoshimura
常治 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Mitech KK
Original Assignee
Toyota Motor Corp
Mitech KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Mitech KK filed Critical Toyota Motor Corp
Priority to JP2003011404A priority Critical patent/JP2004227815A/en
Publication of JP2004227815A publication Critical patent/JP2004227815A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a manufacturing process of a separator for a fuel cell, and form the separator for the fuel cell which is superior in electric and mechanical characteristics. <P>SOLUTION: A carbon mixture containing a carbon material (1) 70 to 95 pts. wt, a thermoplastic resin (2) 5 to 30 pts. wt, and an extender (3) 0.1 to 5 pts. wt is supplied to a heat kneading machine and the carbon mixture is passed through a high-temperature region in which a temperature is higher than that of the melting point of the thermoplastic resin (2), an intermediate-temperature region in which a temperature is higher than that of the softening point of the thermoplastic resin (2), and a low-temperature region in which a temperature is lower than that of the softening point of the thermoplastic resin (2). While continuing kneading, and when this is passed through the high-temperature region, the thermoplastic resin (2) melts and when this is passed through the intermediate-temperature region and the low-temperature region, the thermoplastic resin (2) is gradually solidified and a shaped body is formed. By cutting the shaped body in a desired size, a pelletized material in which the carbon material (1) is dispersed homogeneously can be obtained. When forming the separator for a fuel cell from the pelletized material, a calcining process to carbonize it at a high temperatures is not needed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性炭素材料、バインダ樹脂及び体質顔料を含むペレット化物及びその製法並びにペレット化物から成形される燃料電池用セパレータに属する。
【0002】
【従来の技術】
酸素と水素との電気化学反応により電気エネルギを得る燃料電池は、環境に優しく、使用する原料が無尽蔵に得られるため、石油等に替わる次世代エネルギとして期待されている。特に、排気ガスを大気に放出しない自動車への応用は既に実用段階にある。
【0003】
燃料電池は、水素ガスを水素イオン及び電子に分解する平板状の陰極と、酸素ガス、水素イオン及び電子を反応させて水を生成する平板状の陽極と、陰極板と陽極板との間に配置された陽イオン交換膜等から成る電解質とを備え、陰極、陽極及び電解質により燃料電池ユニットを形成する。燃料電池では、複数の燃料電池ユニットを重ね合わせ必要な電力を得ることができ、導電性を有する平板状のセパレータを燃料電池ユニット間に介在させる。セパレータは、燃料電池ユニット間に電気的に接続され、両主面に形成された流路に各々流れる水素ガスと酸素ガスとを分離する。
【0004】
特許文献1に示す従来のセパレータは、炭化又は黒鉛化可能なフェノール等のバインダ100重量部と、炭素繊維10〜75重量部と、導電性の炭素質粉粒体50〜150重量部とを含む炭素質組成物から形成される。炭素質組成物をアセトン等の有機溶媒と共に混練して、成形金型で厚さ2mm、300mm×300mmのシートを形成した後、窒素ガス雰囲気中2000℃に昇温してバインダ等を炭化焼成又は黒鉛化焼成することによりセパレータを得る。
【0005】
また、特許文献2は、フェノール樹脂に天然黒鉛粉末等の炭素材を2〜60%添加した材料を射出成形により成形した後、この成形品を真空又は不活性ガス雰囲気中、1500℃で炭化焼成して形成される縦100mm×横100mm、厚さ2mmの燃料電池用セパレータを開示する。
【0006】
【特許文献1】
特開平4−214072号公報(特許請求の範囲、実施例)
【特許文献2】
特開2001−143719号公報(特許請求の範囲、実施例)
【0007】
【発明が解決しようとする課題】
前記のように、従来のセパレータは、導電性の炭素材料に対して、比較的多量のフェノール樹脂等のバインダを含み、射出成形工程によりバインダを加熱溶融しながら炭素材料の粒子間を接合して平板状のセパレータを成形する。成形されたセパレータの内部には、硬化した非導電性のバインダが多量に含有されかつ炭素材料とバインダとが完全には均一分散されないため、バインダを焼成してセパレータの電気的特性を向上する必要がある。
【0008】
しかしながら、バインダを完全に炭化及び黒鉛化するには、セパレータを焼成する大規模な設備を使用して真空又は不活性ガスの存在下で、2000℃以上の温度で長時間加熱する必要がある。特許文献1には、1時間に10℃以下の昇温速度で200時間かけてセパレータを焼成することが記載されている。
【0009】
焼成によりセパレータの導電性能を向上するが、焼成により樹脂を炭化及び黒鉛化すると、実際には、セパレータの内部にガスが発生して微細な気孔が多量に形成されるため、導電性能の劇的な向上を期待できない。また、炭素材料とバインダとが十分に均一分散されない場合、大きな気孔又は空洞部が形成され、逆に焼成によってセパレータの導電性能が低下する。燃料電池ユニット間を連結するセパレータの電気伝導性が低下すると、燃料電池の電力変換効率が低下すると共に、セパレータによる発熱量が増大する。
【0010】
セパレータの内部に多量の気孔が形成されて多孔質になると、密度の低下により機械的強度が低下して、耐衝撃性及び耐振性の低いセパレータが形成される。また、ガスが透過し易くなり、燃料ガスの水素と酸素とを完全に分離することができずに内部で反応するおそれがある。更に、従来では、バインダとしてフェノール樹脂を使用すると共に、混練時に有機溶媒を使用するため、加熱により有害ガスが発生して作業環境上好ましくない。
【0011】
そこで本発明は、焼成工程を省略して製造できるペレット化物及びその製法並びに燃料電池用セパレータを提供することを目的とする。
また、電気的特性、機械的特性及びガス分離性に優れた燃料電池用セパレータを形成するペレット化物及びその製法を提供することを目的とする。
更に、有害ガスを排出せずに安全に製造作業を行うことができるペレット化物及びその製法並びに燃料電池用セパレータを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明によるペレット化物は、カーボンブラック、人造黒鉛及び天然黒鉛から選択される1種又は2種以上の微粒状の炭素材料(1)70〜95重量部と、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエステル樹脂、ポリスチレン、ポリビニルブチラール、スチレンアクリル、液晶ポリエステル(LCP)及びポリフェニレンスルフィドから選択される1種又は2種以上の熱可塑性樹脂(2)5〜30重量部と、シリカ、硫酸バリウム、炭酸カルシウム、カオリン、ベントナイト及び水酸化アルミニウムから選択される1種又は2種以上の微粒状の体質顔料(3)0.1〜5重量部とを含む。微粒状の炭素材料(1)と微粒状の体質顔料(3)は、ペレット組織中に均一に分散しかつ熱可塑性樹脂(2)により強固に結合される。
【0013】
5〜30重量部の熱可塑性樹脂(2)は、70〜95重量部の炭素材料(1)に比べて少量のため、高温で炭化する焼成を必要とせずに、所定の電気抵抗率を有するセパレータをペレット化物から形成でき、製造工程を簡略化することができる。また、セパレータが多孔質となる焼成を行わないので、密度が大きく高導電性のセパレータが得られると共に、炭素材料(1)の微細な粒子の間に残存する熱可塑性樹脂(2)により炭素材料(1)間が強固に結合され、セパレータの機械的強度を向上できると共に、ガス分離性、耐振動性及び耐衝撃性に優れたセパレータを隔壁として使用して、酸素含有ガスと水素含有ガスとを完全に気密に分離できる。
【0014】
炭素材料(1)が70重量部未満であると、セパレータの導電性能及び燃料電池の電力変換効率が低下し、セパレータでの発熱量が増大する。95重量部を超えて炭素材料(1)の割合が増加すると、導電性能は向上するが、炭素材料(1)は脆く衝撃に弱いため、成形されるセパレータの機械的強度が低下する。熱可塑性樹脂(2)を5重量部未満とすると、炭素材料(1)粒子間の隙間内に熱可塑性樹脂(2)が浸入しにくくなり、セパレータの機械的強度が低下する。熱可塑性樹脂(2)が30重量部を超えると、機械的強度は向上するが、セパレータの電気抵抗値が増大して、燃料電池の出力が低下する。補強材として作用する体質顔料(3)が0.1重量部未満であると、セパレータの強度が低下し、5重量部を超えるとセパレータの導電性が低下する。
【0015】
本発明による実施の形態では、15mm以下の長さを有する短糸(フィラメント)状の多数の炭素繊維(4)はペレット組織中に均一に分散される。炭素材料(1)の平均粒径は、0.05〜200μm、熱可塑性樹脂(2)の平均粒径は、10〜200μm、体質顔料(3)の平均粒径は、0.01〜10μmである。
【0016】
本発明による燃料電池用セパレータは、前記ペレット化物より板状に成形されかつ比抵抗1×10−3〜10×10−3Ωcm、引張強さ10〜20MPa及び曲げ強度10〜250MPaを有する。
【0017】
本発明によるペレット化物の製法の実施の形態は、熱可塑性樹脂(2)の融点より高い高温域と熱可塑性樹脂(2)の軟化点より低い低温域との間の温度に制御可能な熱混練機を高温域に保持しながら、熱混練機内で微粒状の炭素材料(1)、微粒状の熱可塑性樹脂(2)及び微粒状の体質顔料(3)を含む炭素混合物を混練する工程と、熱混練機の温度を低温域に制御しながら熱可塑性樹脂(2)を凝固させると共に、炭素混合物の成形体を形成する工程と、炭素混合物の成形体をペレット状に形成する工程とを含む。
【0018】
炭素混合物中の熱可塑性樹脂(2)が溶融する高温域に熱混練機を加熱して炭素混合物を混練すると、炭素材料(1)の粒子間に溶融状態の熱可塑性樹脂(2)が浸入して、各成分が極めて均一に分散しかつ混合される。また、十分な混練により、熱可塑性樹脂(2)にせん断による分子配向(molecular orientation)を与え、溶融状態又は固体状態において、線状分子を外力の作用により一定方向に配列させることができる。分子配向により後工程で熱可塑性樹脂(2)の劣化を抑制し、セパレータの機械的性質を改善することができる。また、熱混練機の温度を低温域に制御しながら、連続的な製造ラインで熱可塑性樹脂(2)を凝固させると共に、炭素混合物を成形体に形成した後、ペレット状に形成することができる。従って、各ペレットは、炭素材料(1)、熱可塑性樹脂(2)及び体質顔料(3)が互いにムラ無く均一かつ緻密に分散した構造を備えている。
【0019】
本発明による実施の形態では、高温域で炭素混合物を混練した後、熱可塑性樹脂(2)の軟化点より高い中温域に熱混練機を制御して炭素混合物を更に混練する工程を含む。混練する工程は、噛み合い型二軸ルーダ(ニーダ)の熱混練機により炭素混合物を混練し、炭素混合物の流れに沿って高温域、中温域及び低温域の3温度領域に噛み合い型二軸ルーダの温度を制御する工程を含み、ペレット状に形成する工程は、炭素混合物の成形体を線状に形成する工程と、線状の成形体を所定の長さに切断して、ペレット状に形成する工程とを含む。
【0020】
【発明の実施の形態】
以下、本発明によるペレット化物及びその製法並びにペレット化物を使用する燃料電池用セパレータを図1〜図3について説明する。
【0021】
本発明によるペレット化物は、図3の拡大図に示すように、炭素材料(1)70〜95重量部と、熱可塑性樹脂(2)5〜30重量部と、体質顔料(3)0.1〜5重量部とを含み、好ましくは炭素材料(1)80〜85重量部と、熱可塑性樹脂(2)15〜20重量部と、体質顔料(3)2〜5重量部とを含む。微粒状の炭素材料(1)と微粒状の体質顔料(3)は、ペレット組織中に均一に分散しかつ熱可塑性樹脂(2)により強固に結合される。炭素材料(1)、熱可塑性樹脂(2)及び体質顔料(3)は、各々0.05〜200μm、10〜200μm及び0.01〜10μmの平均粒径を有する。炭素材料(1)の粒径が0.05μm未満であると飛散して取扱いが困難であり、200μmを超えると炭素材料(1)粒子間の間隙が大きくなりペレット化物から形成される燃料電池用セパレータの電気抵抗が大きくなる。粒径が10μm未満の熱可塑性樹脂(2)を形成することは難しく、200μmを超えると熱可塑性樹脂(2)が内部まで完全に溶融されないことがある。体質顔料(3)の粒径が0.01μm未満であると飛散して取扱いが不便であり、10μmを超えると分散が不十分となり機械的強度が低下する。
【0022】
炭素材料(1)は、高導電性を有し、カーボンブラック、人造黒鉛及び天然黒鉛から選択される。例えば、天然ガス、炭化水素ガス等を気相熱分解や不完全燃焼させてカーボンブラックが得られ、無定型炭素を3000℃以上に加熱(黒鉛化)して人造黒鉛が得られる。カーボンブラックに比べ電気抵抗が小さい人造黒鉛及び天然黒鉛を使用することが好ましい。
【0023】
熱可塑性樹脂(2)は、炭素材料(1)の微細粒子間を接合するバインダとして作用し、ペレット化物の成形により得られる燃料電池用セパレータの機械的強度を向上する。本実施の形態では、炭素材料(1)と熱可塑性樹脂(2)との均一分散性を高めて、相反する関係にある高強度かつ低電気抵抗の燃料電池用セパレータを実現する。ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエステル樹脂、ポリスチレン、ポリビニルブチラール、スチレンアクリル、液晶ポリエステル(LCP)及びポリフェニレンスルフィドから選択される熱可塑性樹脂(2)を使用する。
【0024】
体質顔料(3)は、補強材として作用し、シリカ、硫酸バリウム、炭酸カルシウム、カオリン、ベントナイト及び水酸化アルミニウムから選択される。
人造黒鉛(1)80〜85重量部と、液晶ポリエステル(2)15〜20重量部と、シリカ(3)2〜5重量部とを含むペレット化物が最も好ましい。燃料電池用セパレータの衝撃や振動による破壊を防止するため、太さ1〜20μm及び長さ15mm以下、好ましくは0.1〜10mmの短糸(フィラメント)状の多数の炭素繊維(4)をペレット組織中に均一に分散させる。
【0025】
前記ペレット化物を製造する際に、最初に、炭素材料として人造黒鉛(1)と、熱可塑性樹脂(2)として液晶ポリエステル(2)と、体質顔料としてシリカ(3)とを乾式混合機に投入し、撹拌混合して炭素混合物を得る。V型混合機、円筒型混合機、スクリュー混合機、リボン混合機、流動層混合機、エッジランナ、ヘンシェルミキサ、ボールミル等の乾式混合機を使用でき、撹拌速度を200〜1500rpm、好ましくは500〜800rpmとする。しかし、図1に示すように、乾式混合機により撹拌された炭素混合物中の人造黒鉛(1)、液晶ポリエステル(2)及びシリカ(3)は、完全には分散されない。
【0026】
次に、炭素混合物を温度制御可能な熱混練機に投入する。熱混練機として、バンバリーミキサ、二軸ルーダ、熱ロール等を使用できるが、二軸ルーダ、特に噛み合い型二軸ルーダ(ニーダ)が最も好ましい。
【0027】
図示しないが、本実施の形態に使用する二軸ルーダは、熱可塑性樹脂(2)の融点より高い高温域と、熱可塑性樹脂(2)の軟化点より低い低温域との間の温度に制御可能である。二軸ルーダに形成されたシリンダの入口部及び出口部をそれぞれ高温域及び低温域に設定し、シリンダの中間部を熱可塑性樹脂(2)の軟化点より高い中温域に設定する。シリンダの入口部、中間部及び出口部の順に炭素混合物を混練しながら通過させると同時に、流れに沿って炭素混合物を連続的に高温域、中温域及び低温域の3温度領域に制御する。高温域、中温域及び低温域の温度範囲は各々150〜400℃、100〜300℃及び50〜200℃である。
【0028】
高温域の温度に保持された二軸ルーダのシリンダ入口部を炭素混合物が通過すると、炭素混合物中の液晶ポリエステル(2)が溶融する。このとき、人造黒鉛(1)粒子間に液晶ポリエステル(2)が浸入し、混練との相乗効果により、図2に示すように人造黒鉛(1)が分散する。本発明では、バインダとして有害な物質を使用せずかつ有機溶媒を添加して混練しないため、加熱しても炭素混合物から有害なガスを発生せずに良好な作業環境を維持できる。
【0029】
炭素混合物が高温域を通過した後、溶融状態の液晶ポリエステル(2)が中温域に制御されたシリンダの中間部を通過すると、液晶ポリエステル(2)の粘性が徐々に増加し、液晶ポリエステル(2)をバインダとして人造黒鉛(1)の微細粒子が互いに結合する。この間も混練を激しく続けることにより、人造黒鉛(1)と液晶ポリエステル(2)との分散が行われる。更に、低温域の温度に設定されたシリンダの出口部付近に炭素混合物を通過させると、液晶ポリエステル(2)が凝固して、人造黒鉛(1)及びシリカ(3)と共に一体化して成形体となる。
【0030】
混練しながら成形体を線状に形成して、二軸ルーダから押し出しながら所定の長さに切断することにより、本発明によるペレット化物が形成される。ペレット化物形成には、二軸ルーダに連結されたペレタイザ、カッティング機、ホットカッティング機等が使用される。図3の拡大断面図に示すように、形成されたペレット化物は、凝固した液晶ポリエステル(2)中に人造黒鉛(1)、シリカ(3)及び炭素繊維(4)が均一分散された状態となる。
【0031】
このペレット化物を射出成形機に充填して成形すると、本発明による燃料電池用セパレータが得られる。本セパレータは、比抵抗1×10−3〜10×10−3Ωcm、引張強さ10〜20MPa及び曲げ強度10〜250MPaの物理特性を有し、電力変換効率が高く燃料電池を小型化できると共に、耐衝撃性及び耐振動性に優れる。従来のセパレータの製法では、バインダ樹脂を多く含みかつ各物質が均一に分散されないため、樹脂を炭化及び黒鉛化して導電性能の向上を図る焼成工程を必要としたが、本発明では、炭素材料に比べて熱可塑性樹脂(2)の含有量が少なく、溶融した熱可塑性樹脂(2)を十分に混練するため、炭素材料(1)と熱可塑性樹脂(2)との分散性が極めて高い。このため、約2000℃の高温で長時間加熱する焼成工程を必要とせずに十分な電気的及び機械的特性を得ることができる。
【0032】
【実施例】
本発明によるペレット化物及び燃料電池用セパレータの実施例を以下に説明する。
[実施例1]
平均粒径0.1μmのカーボンブラック(1)70重量部と、平均粒径50μmのポリ塩化ビニル(2)30重量部と、平均粒径1μmの硫酸バリウム(3)10重量部と、太さ6μm及び長さ6mmの炭素繊維(4)1重量部とを秤量して円筒型混合機に投入し、200rpmで30分間撹拌混合して炭素混合物を得た。次に、シリンダ入口部付近を200℃の高温域に設定し、シリンダ中間部を150℃の中温域に設定し、シリンダ出口部(ダイス直径3mm)を80℃の低温域に設定した二軸ルーダに、炭素混合物を投入し混練して成形体を得た。得られた成形体をペレタイザにより直径3mm及び長さ5mmのペレット状に切断してペレット化物を形成し、ペレット化物を射出成形して、比抵抗2×10−3Ωcm、引張強さ150MPa及び曲げ強度200MPaの物理特性を有する縦275mm×横225mm×厚さ1mmの燃料電池用セパレータを得た。
【0033】
[実施例2]
平均粒径100μmの人造黒鉛(1)90重量部と、平均粒径90μmの液晶ポリエステル(2)10重量部と、平均粒径0.02μmシリカ(3)2重量部と、太さ2μm及び長さ9mmの炭素繊維(4)6重量部とを秤量してヘンシェルミキサに投入し、1100rpmで5分間撹拌混合して炭素混合物を得た。次に、シリンダ入口部付近を300℃の高温域に設定し、シリンダ中間部を240℃の中温域に設定し、シリンダ出口部(ダイスの直径が3mm)を190℃の低温域に設定した二軸ルーダに、炭素混合物を投入し混練して成形体を得た。得られた成形体をペレタイザにより直径3mm及び長さ5mmのペレット状に切断してペレット化物を形成し、ペレット化物を射出成形して、比抵抗7×10−3Ωcm、引張強さ40Mpa及び曲げ強度70MPaの物理特性を有する縦275mm×横225mm×厚さ1mmの燃料電池用セパレータを得た。
【0034】
電解膜を挟んで陰極及び陽極の各外側に、実施例1及び2により得られたセパレータをそれぞれ設置して燃料電池ユニットを形成した。これらの燃料電池ユニットを550個積層した燃料電池を自動車に搭載してそれぞれ稼動させた結果、一定の電力が長時間異常なく得られ、本実施例による燃料電池用セパレータを十分に自動車に応用できることが確認できた。
【0035】
【発明の効果】
前記のように、本発明は、焼成工程を必要としないため、燃料電池用セパレータの製造工程を簡略化でき、製造時間の短縮化及び製造コストの低減を図ることができる。また、本発明によるペレット化物により形成されたセパレータは、高導電性の炭素材料が均一に分散されているため、電力変換効率、機械的特性及びガス不透過性に優れ、小型化可能な信頼性の高い燃料電池を得ることができる。
【図面の簡単な説明】
【図1】熱混練機投入前の炭素混合物を示す拡大図
【図2】熱可塑性樹脂が溶融した状態を示す炭素混合物の拡大図
【図3】本発明によるペレット化物の内部断面を示す拡大図
【符号の説明】
(1)・・炭素材料(人造黒鉛、カーボンブラック)、 (2)・・熱可塑性樹脂(液晶ポリエステル、ポリ塩化ビニル)、 (3)・・体質顔料(シリカ、硫酸バリウム)、 (4)・・炭素繊維、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pelletized product containing a conductive carbon material, a binder resin and an extender, a method for producing the same, and a fuel cell separator formed from the pelletized product.
[0002]
[Prior art]
A fuel cell that obtains electric energy by an electrochemical reaction between oxygen and hydrogen is environmentally friendly and has inexhaustible raw materials to be used. Therefore, it is expected as a next-generation energy alternative to petroleum and the like. In particular, application to automobiles that do not emit exhaust gas to the atmosphere is already in the practical stage.
[0003]
Fuel cells have a flat cathode that decomposes hydrogen gas into hydrogen ions and electrons, a flat anode that reacts oxygen gas, hydrogen ions and electrons to produce water, and a cathode plate and an anode plate. An electrolyte comprising a cation exchange membrane and the like arranged, a fuel cell unit is formed by the cathode, anode and electrolyte. In a fuel cell, a plurality of fuel cell units can be overlapped to obtain necessary power, and a conductive flat separator is interposed between the fuel cell units. The separator is electrically connected between the fuel cell units and separates hydrogen gas and oxygen gas flowing through flow paths formed on both main surfaces.
[0004]
The conventional separator disclosed in Patent Literature 1 includes 100 parts by weight of a binder such as phenol that can be carbonized or graphitized, 10 to 75 parts by weight of carbon fibers, and 50 to 150 parts by weight of conductive carbonaceous particles. It is formed from a carbonaceous composition. The carbonaceous composition is kneaded with an organic solvent such as acetone, and a sheet having a thickness of 2 mm and a size of 300 mm × 300 mm is formed in a molding die. Then, the temperature is raised to 2000 ° C. in a nitrogen gas atmosphere to bake the binder or the like. A separator is obtained by graphitizing and firing.
[0005]
Patent Document 2 discloses that after injection molding of a material obtained by adding 2 to 60% of a carbon material such as natural graphite powder to a phenol resin, the molded product is carbonized and fired at 1500 ° C. in a vacuum or an inert gas atmosphere. A fuel cell separator having a length of 100 mm, a width of 100 mm, and a thickness of 2 mm is disclosed.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 4-214072 (Claims, Examples)
[Patent Document 2]
JP 2001-143719 A (Claims, Examples)
[0007]
[Problems to be solved by the invention]
As described above, the conventional separator includes a relatively large amount of a binder such as a phenol resin for the conductive carbon material, and joins the particles of the carbon material while heating and melting the binder by an injection molding process. A flat separator is formed. Since the inside of the molded separator contains a large amount of the hardened non-conductive binder and the carbon material and the binder are not completely and uniformly dispersed, it is necessary to improve the electrical characteristics of the separator by firing the binder. There is.
[0008]
However, in order to completely carbonize and graphitize the binder, it is necessary to heat the separator at a temperature of 2000 ° C. or more for a long time in a vacuum or in the presence of an inert gas using a large-scale facility for firing the separator. Patent Document 1 describes that a separator is fired at a temperature rising rate of 10 ° C. or less per hour for 200 hours.
[0009]
The firing improves the conductivity of the separator. However, when the resin is carbonized and graphitized by firing, gas is generated inside the separator and a large amount of fine pores are formed. No improvement can be expected. Further, if the carbon material and the binder are not sufficiently uniformly dispersed, large pores or voids are formed, and conversely, the sintering deteriorates the conductive performance of the separator. When the electrical conductivity of the separator connecting the fuel cell units decreases, the power conversion efficiency of the fuel cell decreases and the amount of heat generated by the separator increases.
[0010]
When a large amount of pores are formed inside the separator to make it porous, the mechanical strength is reduced due to the decrease in density, and a separator having low impact resistance and vibration resistance is formed. Further, the gas easily permeates, and there is a possibility that hydrogen and oxygen of the fuel gas cannot be completely separated and react inside. Further, conventionally, a phenol resin is used as a binder and an organic solvent is used at the time of kneading, so that a harmful gas is generated by heating, which is not preferable in a working environment.
[0011]
Accordingly, an object of the present invention is to provide a pelletized product which can be produced without a firing step, a method for producing the same, and a fuel cell separator.
Another object of the present invention is to provide a pelletized product for forming a fuel cell separator having excellent electrical characteristics, mechanical characteristics and gas separation properties, and a method for producing the same.
It is still another object of the present invention to provide a pelletized product which can be safely manufactured without emitting harmful gas, a method for producing the same, and a fuel cell separator.
[0012]
[Means for Solving the Problems]
The pelletized product according to the present invention comprises 70 to 95 parts by weight of one or more kinds of finely divided carbon materials (1) selected from carbon black, artificial graphite and natural graphite, polyvinyl acetate, polymethyl methacrylate, One or more thermoplastic resins selected from polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polycarbonate, polyester resin, polystyrene, polyvinyl butyral, styrene acryl, liquid crystal polyester (LCP) and polyphenylene sulfide (2) 5 to 30 parts by weight, and 0.1 to 5 parts by weight of one or more kinds of fine particulate extender (3) selected from silica, barium sulfate, calcium carbonate, kaolin, bentonite and aluminum hydroxide Including. The fine-grained carbon material (1) and the fine-grained extender (3) are uniformly dispersed in the pellet structure and are firmly bound by the thermoplastic resin (2).
[0013]
Since 5 to 30 parts by weight of the thermoplastic resin (2) is smaller than 70 to 95 parts by weight of the carbon material (1), the thermoplastic resin (2) does not require firing at a high temperature and has a predetermined electric resistivity. The separator can be formed from pelletized material, and the manufacturing process can be simplified. Further, since the separator is not fired so as to be porous, a separator having a high density and high conductivity can be obtained, and the thermoplastic resin (2) remaining between the fine particles of the carbon material (1) allows the carbon material to be removed. (1) The space is firmly bonded, the mechanical strength of the separator can be improved, and a separator having excellent gas separation properties, vibration resistance and impact resistance is used as a partition wall, and the oxygen-containing gas and the hydrogen-containing gas are separated. Can be completely airtightly separated.
[0014]
If the carbon material (1) is less than 70 parts by weight, the conductive performance of the separator and the power conversion efficiency of the fuel cell decrease, and the calorific value of the separator increases. When the proportion of the carbon material (1) is increased beyond 95 parts by weight, the conductive performance is improved, but the mechanical strength of the formed separator is reduced because the carbon material (1) is brittle and vulnerable to impact. If the amount of the thermoplastic resin (2) is less than 5 parts by weight, the thermoplastic resin (2) does not easily enter the gaps between the particles of the carbon material (1), and the mechanical strength of the separator decreases. If the thermoplastic resin (2) exceeds 30 parts by weight, the mechanical strength is improved, but the electrical resistance of the separator is increased and the output of the fuel cell is reduced. If the extender pigment (3) acting as a reinforcing material is less than 0.1 part by weight, the strength of the separator is reduced, and if it exceeds 5 parts by weight, the conductivity of the separator is reduced.
[0015]
In the embodiment according to the present invention, a number of carbon fibers (4) in the form of short filaments having a length of 15 mm or less are uniformly dispersed in the pellet structure. The average particle diameter of the carbon material (1) is 0.05 to 200 μm, the average particle diameter of the thermoplastic resin (2) is 10 to 200 μm, and the average particle diameter of the extender (3) is 0.01 to 10 μm. is there.
[0016]
The fuel cell separator according to the present invention is formed into a plate shape from the pelletized product, and has a specific resistance of 1 × 10 −3 to 10 × 10 −3 Ωcm, a tensile strength of 10 to 20 MPa, and a bending strength of 10 to 250 MPa.
[0017]
An embodiment of the method for producing a pelletized product according to the present invention is a heat kneading controllable to a temperature between a high temperature range higher than the melting point of the thermoplastic resin (2) and a low temperature range lower than the softening point of the thermoplastic resin (2). Kneading a carbon mixture containing a fine-grained carbon material (1), a fine-grained thermoplastic resin (2) and a fine-grained extender (3) in a heat kneader while maintaining the machine in a high-temperature range; The method includes the steps of solidifying the thermoplastic resin (2) while controlling the temperature of the heat kneader to a low temperature range, forming a molded body of the carbon mixture, and forming the molded body of the carbon mixture into pellets.
[0018]
When the carbon mixture is kneaded by heating the heat kneader in a high temperature region where the thermoplastic resin (2) in the carbon mixture melts, the molten thermoplastic resin (2) infiltrates between the particles of the carbon material (1). Thus, the components are very uniformly dispersed and mixed. Further, by sufficient kneading, the thermoplastic resin (2) is given a molecular orientation by shearing, and in a molten state or a solid state, linear molecules can be arranged in a certain direction by the action of an external force. The molecular orientation can suppress the deterioration of the thermoplastic resin (2) in a later step and improve the mechanical properties of the separator. In addition, while controlling the temperature of the heat kneading machine in a low temperature range, the thermoplastic resin (2) is solidified in a continuous production line, and the carbon mixture is formed into a molded body, and then formed into a pellet. . Therefore, each pellet has a structure in which the carbon material (1), the thermoplastic resin (2), and the extender (3) are uniformly and densely dispersed without unevenness.
[0019]
The embodiment according to the present invention includes a step of kneading the carbon mixture in a high temperature range and then further kneading the carbon mixture by controlling a heat kneader in a middle temperature range higher than the softening point of the thermoplastic resin (2). In the kneading step, the carbon mixture is kneaded by a heat kneader of an intermeshing type twin-screw rudder (kneader), and the intermeshing type twin-screw rudder is moved along a flow of the carbon mixture into three temperature regions of a high temperature region, a medium temperature region and a low temperature region. Including the step of controlling the temperature, the step of forming into a pellet, the step of forming the molded body of the carbon mixture into a linear shape, and cutting the linear molded body into a predetermined length to form a pellet shape And a step.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a pelletized product according to the present invention, a method for producing the same, and a fuel cell separator using the pelletized product will be described with reference to FIGS.
[0021]
As shown in the enlarged view of FIG. 3, the pelletized product according to the present invention contains 70 to 95 parts by weight of the carbon material (1), 5 to 30 parts by weight of the thermoplastic resin (2), and 0.1% of the extender pigment (3). To 5 parts by weight, preferably 80 to 85 parts by weight of the carbon material (1), 15 to 20 parts by weight of the thermoplastic resin (2), and 2 to 5 parts by weight of the extender (3). The fine-grained carbon material (1) and the fine-grained extender (3) are uniformly dispersed in the pellet structure and are firmly bound by the thermoplastic resin (2). The carbon material (1), the thermoplastic resin (2), and the extender (3) have average particle sizes of 0.05 to 200 μm, 10 to 200 μm, and 0.01 to 10 μm, respectively. If the particle size of the carbon material (1) is less than 0.05 μm, it is scattered and difficult to handle, and if it exceeds 200 μm, the gap between the particles of the carbon material (1) becomes large and the fuel cell is formed from pellets. The electrical resistance of the separator increases. It is difficult to form a thermoplastic resin (2) having a particle size of less than 10 μm, and if it exceeds 200 μm, the thermoplastic resin (2) may not be completely melted inside. If the particle size of the extender (3) is less than 0.01 μm, it is scattered and handling is inconvenient. If it exceeds 10 μm, dispersion is insufficient and mechanical strength is reduced.
[0022]
The carbon material (1) has high conductivity and is selected from carbon black, artificial graphite and natural graphite. For example, natural gas, hydrocarbon gas, or the like is subjected to gas phase pyrolysis or incomplete combustion to obtain carbon black, and amorphous carbon is heated (graphitized) to 3000 ° C. or higher to obtain artificial graphite. It is preferable to use artificial graphite and natural graphite, which have lower electric resistance than carbon black.
[0023]
The thermoplastic resin (2) acts as a binder for joining the fine particles of the carbon material (1), and improves the mechanical strength of the fuel cell separator obtained by molding the pelletized product. In the present embodiment, the uniform dispersibility of the carbon material (1) and the thermoplastic resin (2) is enhanced to realize a fuel cell separator having a high strength and a low electric resistance in a contradictory relationship. Thermoplastic resin selected from polyvinyl acetate, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polycarbonate, polyester resin, polystyrene, polyvinyl butyral, styrene acrylic, liquid crystal polyester (LCP) and polyphenylene sulfide ( Use 2).
[0024]
The extender (3) acts as a reinforcing material and is selected from silica, barium sulfate, calcium carbonate, kaolin, bentonite and aluminum hydroxide.
Most preferred is a pelletized product containing 80 to 85 parts by weight of the artificial graphite (1), 15 to 20 parts by weight of the liquid crystal polyester (2), and 2 to 5 parts by weight of the silica (3). In order to prevent the fuel cell separator from being broken by impact or vibration, a large number of short filament (filament) carbon fibers (4) having a thickness of 1 to 20 μm and a length of 15 mm or less, preferably 0.1 to 10 mm are pelletized. Disperse evenly throughout the tissue.
[0025]
In producing the pelletized product, first, artificial graphite (1) as a carbon material, liquid crystal polyester (2) as a thermoplastic resin (2), and silica (3) as an extender are charged into a dry mixer. Then, the mixture is stirred and mixed to obtain a carbon mixture. Dry mixers such as a V-type mixer, a cylindrical mixer, a screw mixer, a ribbon mixer, a fluidized-bed mixer, an edge runner, a Henschel mixer, and a ball mill can be used, and the stirring speed is 200 to 1500 rpm, preferably 500 to 800 rpm. And However, as shown in FIG. 1, the artificial graphite (1), the liquid crystal polyester (2), and the silica (3) in the carbon mixture stirred by the dry mixer are not completely dispersed.
[0026]
Next, the carbon mixture is charged into a heat kneader capable of controlling the temperature. As the heat kneader, a Banbury mixer, a twin-screw ruder, a hot roll or the like can be used, but a twin-screw ruder, particularly a meshing twin-screw ruder (kneader) is most preferable.
[0027]
Although not shown, the biaxial rudder used in the present embodiment controls the temperature between a high temperature range higher than the melting point of the thermoplastic resin (2) and a low temperature range lower than the softening point of the thermoplastic resin (2). It is possible. The inlet and outlet of the cylinder formed on the two-axis rudder are set to a high temperature range and a low temperature range, respectively, and the middle portion of the cylinder is set to a middle temperature range higher than the softening point of the thermoplastic resin (2). The carbon mixture is kneaded and passed in the order of the inlet, the middle and the outlet of the cylinder, and at the same time, the carbon mixture is continuously controlled along the flow into three temperature ranges of a high temperature range, a medium temperature range and a low temperature range. The high, middle and low temperature ranges are 150-400 ° C, 100-300 ° C and 50-200 ° C, respectively.
[0028]
When the carbon mixture passes through the cylinder inlet of the biaxial ruder maintained at a high temperature range, the liquid crystal polyester (2) in the carbon mixture melts. At this time, the liquid crystal polyester (2) penetrates between the artificial graphite (1) particles, and the artificial graphite (1) is dispersed as shown in FIG. 2 due to a synergistic effect with kneading. In the present invention, a harmful substance is not used as a binder and an organic solvent is not added and kneaded, so that even when heated, a harmful gas is not generated from the carbon mixture, and a favorable working environment can be maintained.
[0029]
After the carbon mixture passes through the high temperature range, when the liquid crystal polyester (2) in the molten state passes through the middle portion of the cylinder controlled at the medium temperature range, the viscosity of the liquid crystal polyester (2) gradually increases, and the liquid crystal polyester (2) increases. ) Is used as a binder to bind the fine particles of the artificial graphite (1) to each other. By continuing the kneading vigorously during this time, the artificial graphite (1) and the liquid crystal polyester (2) are dispersed. Further, when the carbon mixture is passed near the outlet of the cylinder set to a temperature in a low temperature range, the liquid crystal polyester (2) solidifies and is integrated with the artificial graphite (1) and silica (3) to form a molded body. Become.
[0030]
The molded product is formed into a linear shape while kneading, and cut into a predetermined length while being extruded from a biaxial ruder, thereby forming a pelletized product according to the present invention. A pelletizer, a cutting machine, a hot cutting machine, or the like connected to a twin-screw rudder is used for forming a pelletized product. As shown in the enlarged cross-sectional view of FIG. 3, the formed pelletized product is in a state where artificial graphite (1), silica (3), and carbon fiber (4) are uniformly dispersed in solidified liquid crystal polyester (2). Become.
[0031]
When the pelletized product is filled into an injection molding machine and molded, a fuel cell separator according to the present invention is obtained. This separator has physical properties of specific resistance of 1 × 10 −3 to 10 × 10 −3 Ωcm, tensile strength of 10 to 20 MPa and bending strength of 10 to 250 MPa, and has high power conversion efficiency and can reduce the size of a fuel cell. Excellent in shock resistance and vibration resistance. In the conventional method for producing a separator, a baking step for improving the conductive performance by carbonizing and graphitizing the resin was required because the binder resin contained a large amount and each substance was not uniformly dispersed. As compared with the case where the content of the thermoplastic resin (2) is small and the molten thermoplastic resin (2) is sufficiently kneaded, the dispersibility of the carbon material (1) and the thermoplastic resin (2) is extremely high. For this reason, sufficient electrical and mechanical characteristics can be obtained without requiring a firing step of heating at a high temperature of about 2000 ° C. for a long time.
[0032]
【Example】
Examples of the pelletized product and the fuel cell separator according to the present invention will be described below.
[Example 1]
70 parts by weight of carbon black (1) having an average particle size of 0.1 μm, 30 parts by weight of polyvinyl chloride (2) having an average particle size of 50 μm, 10 parts by weight of barium sulfate (3) having an average particle size of 1 μm, 6 μm and 1 part by weight of a carbon fiber (4) having a length of 6 mm were weighed and charged into a cylindrical mixer, followed by stirring and mixing at 200 rpm for 30 minutes to obtain a carbon mixture. Next, a twin-screw router in which the vicinity of the cylinder inlet is set to a high temperature region of 200 ° C., the middle portion of the cylinder is set to a medium temperature region of 150 ° C., and the cylinder outlet portion (die diameter: 3 mm) is set to a low temperature region of 80 ° C. And a carbon mixture was charged and kneaded to obtain a molded body. The obtained molded body is cut into a pellet having a diameter of 3 mm and a length of 5 mm by a pelletizer to form a pellet, and the pellet is injection-molded, and has a specific resistance of 2 × 10 −3 Ωcm, a tensile strength of 150 MPa, and a bending strength. A fuel cell separator having a physical property of a strength of 200 MPa and a length of 275 mm × width 225 mm × thickness 1 mm was obtained.
[0033]
[Example 2]
90 parts by weight of artificial graphite (1) having an average particle size of 100 μm, 10 parts by weight of a liquid crystal polyester (2) having an average particle size of 90 μm, 2 parts by weight of silica (3) having an average particle size of 0.02 μm, thickness of 2 μm and length 6 parts by weight of a carbon fiber (4) having a thickness of 9 mm was weighed and charged into a Henschel mixer, and stirred and mixed at 1100 rpm for 5 minutes to obtain a carbon mixture. Next, the vicinity of the cylinder inlet was set to a high temperature range of 300 ° C., the middle of the cylinder was set to a medium temperature range of 240 ° C., and the cylinder outlet (diameter of the die was 3 mm) was set to a low temperature range of 190 ° C. The carbon mixture was charged into the shaft ruder and kneaded to obtain a molded body. The obtained molded body is cut into a pellet having a diameter of 3 mm and a length of 5 mm by a pelletizer to form a pelletized product. The pelletized product is injection-molded, and has a specific resistance of 7 × 10 −3 Ωcm, a tensile strength of 40 Mpa and a bending strength. A fuel cell separator having a physical property of a strength of 70 MPa and a length of 275 mm × width 225 mm × thickness 1 mm was obtained.
[0034]
The fuel cell unit was formed by installing the separators obtained in Examples 1 and 2 outside each of the cathode and the anode with the electrolyte membrane interposed therebetween. As a result of mounting and operating each of the 550 fuel cell units having these 550 fuel cell units mounted on an automobile, constant power can be obtained without abnormality for a long time, and the fuel cell separator according to the present embodiment can be sufficiently applied to automobiles. Was confirmed.
[0035]
【The invention's effect】
As described above, since the present invention does not require a firing step, the manufacturing steps of the fuel cell separator can be simplified, the manufacturing time can be reduced, and the manufacturing cost can be reduced. In addition, the separator formed by the pelletized product according to the present invention is excellent in power conversion efficiency, mechanical properties and gas impermeability because a highly conductive carbon material is uniformly dispersed, and is reliable in miniaturization. And a fuel cell with a high level of
[Brief description of the drawings]
FIG. 1 is an enlarged view showing a carbon mixture before being put into a heat kneader. FIG. 2 is an enlarged view of a carbon mixture showing a state where a thermoplastic resin is melted. FIG. 3 is an enlarged view showing an internal cross section of a pelletized product according to the present invention. [Explanation of symbols]
(1) Carbon material (artificial graphite, carbon black), (2) Thermoplastic resin (liquid crystal polyester, polyvinyl chloride), (3) Body pigment (silica, barium sulfate), (4) ·Carbon fiber,

Claims (8)

カーボンブラック、人造黒鉛及び天然黒鉛から選択される1種又は2種以上の微粒状の炭素材料70〜95重量部と、
ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエステル樹脂、ポリスチレン、ポリビニルブチラール、スチレンアクリル、液晶ポリエステル(LCP)及びポリフェニレンスルフィドから選択される1種又は2種以上の熱可塑性樹脂5〜30重量部と、
シリカ、硫酸バリウム、炭酸カルシウム、カオリン、ベントナイト及び水酸化アルミニウムから選択される1種又は2種以上の微粒状の体質顔料0.1〜5重量部とを含み、
微粒状の炭素材料と微粒状の体質顔料は、ペレット組織中に均一に分散しかつ熱可塑性樹脂により強固に結合されることを特徴とするペレット化物。
Carbon black, 70 to 95 parts by weight of one or more fine carbon materials selected from artificial graphite and natural graphite,
One or two selected from polyvinyl acetate, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polycarbonate, polyester resin, polystyrene, polyvinyl butyral, styrene acrylic, liquid crystal polyester (LCP) and polyphenylene sulfide 5 to 30 parts by weight of at least one kind of thermoplastic resin,
Silica, barium sulfate, calcium carbonate, kaolin, bentonite, and 0.1 to 5 parts by weight of one or more kinds of fine particulate extender pigments selected from aluminum hydroxide,
A pelletized material characterized in that the finely divided carbon material and the finely divided extender are uniformly dispersed in a pellet structure and are firmly bound by a thermoplastic resin.
15mm以下の長さを有する短糸(フィラメント)状の多数の炭素繊維をペレット組織中に均一に分散した請求項1に記載のペレット化物。2. The pelletized product according to claim 1, wherein a large number of short fiber (filament) carbon fibers having a length of 15 mm or less are uniformly dispersed in a pellet structure. 3. 炭素材料の平均粒径は、0.05〜200μm、熱可塑性樹脂の平均粒径は、10〜200μm、体質顔料の平均粒径は、0.01〜10μmである請求項1又は2に記載のペレット化物。The average particle size of the carbon material is 0.05 to 200 μm, the average particle size of the thermoplastic resin is 10 to 200 μm, and the average particle size of the extender is 0.01 to 10 μm. Pelletized material. 請求項1〜3の何れか1項に記載のペレット化物より板状に成形されかつ比抵抗1×10−3〜10×10−3Ωcm、引張強さ10〜20MPa及び曲げ強度10〜250MPaを有することを特徴とする燃料電池用セパレータ。A pellet is formed from the pelletized product according to any one of claims 1 to 3 and has a specific resistance of 1 × 10 −3 to 10 × 10 −3 Ωcm, a tensile strength of 10 to 20 MPa and a bending strength of 10 to 250 MPa. A separator for a fuel cell, comprising: 熱可塑性樹脂の融点より高い高温域と熱可塑性樹脂の軟化点より低い低温域との間の温度に制御可能な熱混練機を高温域に保持しながら、熱混練機内で微粒状の炭素材料、微粒状の熱可塑性樹脂及び微粒状の体質顔料を含む炭素混合物を混練する工程と、
熱混練機の温度を低温域に制御しながら熱可塑性樹脂を凝固させると共に、炭素混合物の成形体を形成する工程と、
炭素混合物の成形体をペレット状に形成する工程とを含むことを特徴とするペレット化物の製法。
While keeping the heat kneader controllable at a high temperature range between a high temperature region higher than the melting point of the thermoplastic resin and a low temperature region lower than the softening point of the thermoplastic resin, a fine-grained carbon material in the heat kneader, A step of kneading a carbon mixture containing a fine-grained thermoplastic resin and a fine-grained extender,
A step of solidifying the thermoplastic resin while controlling the temperature of the heat kneader to a low temperature range, and forming a molded body of the carbon mixture,
Forming a compact of the carbon mixture into a pellet.
高温域で炭素混合物を混練した後、熱可塑性樹脂の軟化点より高い中温域に熱混練機を制御して炭素混合物を更に混練する工程を含む請求項5に記載のペレット化物の製法。The method for producing a pelletized product according to claim 5, further comprising a step of kneading the carbon mixture in a high temperature range, and further kneading the carbon mixture by controlling a heat kneader in a middle temperature range higher than the softening point of the thermoplastic resin. 混練する工程は、噛み合い型二軸ルーダの熱混練機により炭素混合物を混練し、炭素混合物の流れに沿って高温域、中温域及び低温域の3温度領域に噛み合い型二軸ルーダの温度を制御する工程を含む請求項6に記載のペレット化物の製法。In the kneading process, the carbon mixture is kneaded by a heat kneader of an interlocking twin-screw rudder, and the temperature of the interlocking twin-screw rudder is controlled along a flow of the carbon mixture into three temperature ranges of a high temperature region, a medium temperature region and a low temperature region. The method for producing a pelletized product according to claim 6, comprising a step of carrying out. ペレット状に形成する工程は、炭素混合物の成形体を線状に形成する工程と、線状の成形体を所定の長さに切断して、ペレット状に形成する工程とを含む請求項5〜7の何れか1項に記載のペレット化物の製法。The step of forming into a pellet form includes a step of forming a formed body of the carbon mixture into a linear form, and a step of cutting the linear formed body into a predetermined length to form a pellet form. 8. The method for producing a pelletized product according to any one of items 7 to 7.
JP2003011404A 2003-01-20 2003-01-20 Pelletisation object and its manufacturing method, and separator for fuel cell Pending JP2004227815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011404A JP2004227815A (en) 2003-01-20 2003-01-20 Pelletisation object and its manufacturing method, and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011404A JP2004227815A (en) 2003-01-20 2003-01-20 Pelletisation object and its manufacturing method, and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2004227815A true JP2004227815A (en) 2004-08-12

Family

ID=32900318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011404A Pending JP2004227815A (en) 2003-01-20 2003-01-20 Pelletisation object and its manufacturing method, and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2004227815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525982A (en) * 2004-12-29 2008-07-17 ユーティーシー パワー コーポレイション Fuel cell separator plate assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525982A (en) * 2004-12-29 2008-07-17 ユーティーシー パワー コーポレイション Fuel cell separator plate assembly

Similar Documents

Publication Publication Date Title
EP1324411A2 (en) Composite material for fuel cell separator molding and production method thereof, and fuel cell separator which uses the composite material and production method thereof
CA2413146C (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
CN103620828A (en) Battery having electrode structure including metal fiber and preparation method of electrode structure
KR20030022126A (en) Nanocomposite for fuel cell bipolar plate
WO2003079472A2 (en) Electroconductive curable resin composition, cured product thereof and process for producing the same
WO2002093670A1 (en) Separator for solid state polymer type fuel cell and method for producing the same
JP2012025164A (en) Conductive structure, process for producing the same, and separator for fuel cell
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
KR20180135344A (en) The control of carbon materials structure on bipolar plate for fuel cell and its manufacturing method
CN110890506B (en) Heat-conducting composite diaphragm for battery and application thereof
KR100834057B1 (en) Material for preparing fuel cell separator, fuel cell separator and fuel cell
JP2001122677A (en) Method for manufacturing separator for fuel battery
JP5224860B2 (en) Fuel cell separator and method for producing the same
JP4523829B2 (en) Carbon nanofiber / phenolic resin composite carbonized material, conductive resin composition, electrode for secondary battery, carbon material for electric double layer capacitor polarizable electrode, electric double layer capacitor polarizable electrode
JP4889962B2 (en) Conductive structure, method for producing the same, and separator for fuel cell
JP2004227815A (en) Pelletisation object and its manufacturing method, and separator for fuel cell
JP2003253127A (en) Electroconductive composition and its molded article
Jia et al. Anisotropic electro‐driven phase change materials inspired by biological structure
KR100533104B1 (en) Mixed powder material for separators of fuel cell
JP2003257446A (en) Composite material for molding fuel cell separator, manufacturing method therefor, and fuel cell separator by use of composite material
KR100577608B1 (en) Mixed powder material for separators of fuel cell
JP2001236966A (en) Fuel cell separator and fuel cell
CN1957495B (en) Electrically conducting resin composition for fuel cell separator and fuel cell separator
JP2002100377A (en) Separator for fuel cell and fuel cell
KR101041034B1 (en) Composition for bipolar plate of fuel cell, manufacturing method thereof, and bipolar plate and fuel cell comprising the same