JP2004226740A - Wide angle lens - Google Patents
Wide angle lens Download PDFInfo
- Publication number
- JP2004226740A JP2004226740A JP2003015161A JP2003015161A JP2004226740A JP 2004226740 A JP2004226740 A JP 2004226740A JP 2003015161 A JP2003015161 A JP 2003015161A JP 2003015161 A JP2003015161 A JP 2003015161A JP 2004226740 A JP2004226740 A JP 2004226740A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- wide
- angle
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、大画角を有する広角レンズに関する。
【0002】
【従来の技術】
従来、通常の射影方式(y=f・tanθ)で包括角2ω=105°を越える超広角レンズの提案は少なく、口径F3.5を上回る大口径超広角レンズの提案は極めて少ない。このような超広角レンズは、例えば本願出願人によって提案されている(特許文献1,2,3参照。)。
【0003】
【特許文献1】
特開平9−113798号公報
【特許文献2】
特開平9−113800号公報
【特許文献3】
特開2001−159732号公報
【0004】
【発明が解決しようとする課題】
上記特許文献1,2には、画角2ω=105.6゜、口径F2.87の超広角レンズが開示されている。しかしこれらの超広角レンズでは、非球面レンズの製造が精研削方式でもガラスモールドによる方法でも困難であり、量産性が低い。しかも画角2ω=105゜程度であり、更なる大画角化を図れば、非球面レンズの製造が更に困難となってしまう。
上記特許文献3には、画角2ω=118.3°、口径F2.89の大口径超広角レンズが開示されている。しかしこの大口径超広角レンズでは、いわゆる光学フィルターを装着することができず、ユーザーメリット上の問題がある。また、コマ収差の波長による残差や像面湾曲などの収差補正上の更なる改善も望まれている。
【0005】
そこで本発明は上記問題点に鑑みてなされたものであり、通常の射影方式(y=f・tanθ)で包括角2ω=107°を越え、更に口径F2.8程度であり、組込み式のフィルターを使用することができ、高性能で近距離収差変動の少ない広角レンズを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は、
物体側から順に、フロントコンバーターとしての作用を持つ前群Gfと、合焦時に移動し正の屈折力を持つ後群Grとを有し、
前記前群Gfは、物体側から順に、発散性レンズ群Gnと、光学フィルターと、収斂性レンズ群Gpとを有し、
前記発散性レンズ群Gnは、少なくとも2枚の負(凹)レンズと1枚の正(凸)レンズとを有し、
前記収斂性レンズ群Gpは、負(凹)レンズと正(凸)レンズとの接合レンズを少なくとも1つ有し、
以下の条件式を満足することを特徴とする広角レンズを提供する。
(1)0.9 < DF/f0 < 6.0
(2)0 < |fF −1/f0 −1| < 0.20
DF :前記光学フィルターの厚みを含む、前記発散性レンズ群Gnの最も像側のレンズ面から前記収斂性レンズ群Gpの最も物体側のレンズ面までの光軸上の距離,
fF :前記前群Gfの焦点距離,
f0 :前記広角レンズ全系の焦点距離.
【0007】
また、さらに望ましくは、
前記後群Grは、物体側から順に、像側に凸面を向けた正レンズLrpと、2つの接合レンズとを有し、
近距離物点への合焦は、前記後群Grのみを物体側に移動させることによって行い、
以下の条件式(3)を満足することが望ましい。
(3)−3.0 < (r2+r1)/(r2−r1) < 0
r1 :前記正レンズLrpの物体側のレンズ面の曲率半径,
r2 :前記正レンズLrpの像側のレンズ面の曲率半径.
【0008】
また、さらに望ましくは、
前記前群Gfにおける前記光学フィルターは、外部から交換可能な組込み式のフィルターであることが望ましい。
【0009】
また、さらに望ましくは、
前記前群Gfにおける前記光学フィルターは、外部から回転可能であることが望ましい。
【0010】
【発明の実施の形態】
写真レンズを含む対物光学系の設計において最も困難なことは、著しい大画角化と同時に大口径化を図ることである。このことは、ザイデル収差を余すところなく補正することに他ならない。このような設計における困難性のため、上述のように通常の射影方式では限界に近い包括角(画角)2ω=107°を越え、口径F2.8に達するレンズの発明提案は非常に少ない。
【0011】
本発明は、上記特許文献3で開示されている基本的な超広角レンズを改良して発展させ、包括角(画角)2ω=107゜以上の大画角を有し、かつ口径F2.8の大口径を有する大口径超広角レンズを実現するものである。そして更に本発明は、常用可能なほど小型で、十分な周辺光量を確保し、かつ高い光学性能を有し、ユーザーメリットを考慮して性能が劣化することなしにフィルターを組み込むための光学的スペースを確保した大口径超広角レンズ、即ち組込み式のフィルターを使用できる大口径超広角レンズを実現するものである。
【0012】
超広角レンズの場合、前玉のレンズ径が巨大になるため、実質上レンズの前方にフィルターを装着することは不可能である。したがって、従来、ターレット型のフィルターを配設する方式か、またはレンズの最も後方にバヨネット方式のフィルターを取り付ける方式が主流であった。しかしながら、これらの方式では、超広角レンズによる撮影において最も効果的な円偏光フィルターおよび偏光フィルターを使用することが不可能である。いわゆる偏光フィルターは、撮影時にフィルターを回転する必要があるため、組み込むことは難しい。これは、超広角レンズが、超望遠レンズなどと異なり、フィルターと該フィルターに付随する金物枠をレンズ外部から抜き差しするためのスペースを確保することが困難であるためである。したがって、超広角レンズにおいて、組込み式のフィルターの使用を実現することは、ユーザーメリットが非常に大きく、望まれている。
【0013】
まず、本発明の広角レンズについて基本的な構造を説明する。本発明の広角レンズは、光学的にはワイドコンバーター+対物レンズという設計思想の下で構成されている。以下の各実施例に係る広角レンズにおいて、コンバーター部分である前群Gfは、略アフォーカルで構成されている。したがって、前群Gfは光学的にはいわゆるアフォーカル・ワイドコンバーターとしての作用を持っている。
【0014】
斯かる前群Gfは、凹群(発散性レンズ群Gnに相当)と凸群(収斂性レンズ群Gpに相当)とに分離され、これら凹群と凸群との間に光学フィルターを挿入するための空間が設けられている。
この構成により、光学フィルターに対する斜光線の入射角度は比較的緩くなる。これにより、光学フィルターとして円偏光フィルターを使用した場合の入射角度誤差(入射角度の違いによる偏光効果の差)の発生を抑えることができる。また、この位置(凹群と凸群との間)は光学フィルターの有効径を最も小さくすることが可能になる。これにより、光学フィルターを挿入するためのスペースを極力小さくすることができる。
【0015】
また後群Grは、光学的にはマスターレンズとしての機能を持つことが可能になり、近距離物点への合焦をこの後群Grによって行うことは近距離収差変動を抑えることにも有利である。
更に、収斂性レンズ群Gpは、基本的に凸凹凸(正・負・正群構成)または凸凸凹(正・正・負群構成)のパワー配置を含むレンズ群を有することが望ましい。また、収斂性レンズ群Gpは、ペッツバール和の適切な設定と、球面収差および倍率色収差の良好な補正を行うため、複数の接合レンズを有することが望ましい。
尚、組込み式フィルターは、いわゆる色フィルターや回転式円偏光フィルターを含む。本発明は、使用者が自在に出し入れ可能な、いわゆる差し込みフィルターの機能を有していることは言うまでもない。
【0016】
次に、本発明の広角レンズの各条件式について説明する。
上記条件式(1)は、発散性レンズ群Gnと収斂性レンズ群Gpとの間に存在する光学フィルターの厚さと、該光学フィルター前後の空気間隔を規定する条件式である。
条件式(1)の上限値を上回ると、広角レンズ全体が大型化してしまうため好ましくない。尚、条件式(1)の上限値を5.0に設定すれば、本発明の効果を最大限に発揮することができる。
また、条件式(1)の下限値を下回ると、フィルターおよび金物枠を、発散性レンズ群Gnと収斂性レンズ群Gpとの間に挿入できず、レンズ外部から抜き差しすることが安易にできなくなる。このため、本発明の広角レンズにおいて円偏光フィルターの回転機構を組み込むことができなくなり、ユーザーメリットを著しく損なうこととなってしまう。尚、条件式(1)の下限値を1.0以上に設定すれば、本発明の効果を最大限に発揮することができる。
【0017】
上記条件式(2)は、ワイドコンバーター部分のパワーをレンズ全系のパワーで規格化するための条件式である。本発明のような極限的な光学系において、理論的な裏づけに基づいてパワー配置を行うことは、無理および無駄なく光学系の高性能化や小型化を図ることを可能にする。このため本発明の広角レンズは、上述のように当初の光学的な骨組み(パワー配置)を構成した時点で、いわゆるレトロフォーカスの前方部分をアフォーカルで構成することにより、アフォーカルコンバータ+マスターレンズとして役割分担を明確にしている。そして、この構成の特徴を生かし、組込み式のフィルターのためのスペースの確保や合焦時の性能の保証を行っている。
したがって、条件式(2)を満足しないということは、即ちワイドコンバーター部分がアフォーカルの条件から著しく逸脱することを意味する。この場合、収差補正のバランスが崩れ、特に近距離収差変動が増加してしまうため好ましくない。尚、条件式(2)の上限値を0.15に設定すれば、良好に収差の補正を行うことができる。また、条件式(2)の上限値を0.1に設定すれば、本発明の効果を最大限に発揮することができる。
【0018】
上記条件式(3)は、後群Gr中の正レンズLrpのqファクター(形状因子)に関する条件式である。この正レンズLrpは、アフォーカルコンバータから射出された光線を受光することに適した形状を有する必要がある。マスターレンズに入射する光線の見かけ上の画角は小さい。このため、正レンズLrpにおける物体側のレンズ面は、主にレンズ系の口径を満たすための光線に対する収差補正が重要になる。また、少ない枚数のレンズでマスターレンズを構成するため、特に口径に対する収差を補正する必要がある。以上から、条件式(3)に示すように、正レンズLrpは、像側に凸面を向けたメニスカス形状から像側のレンズ面の曲率半径が小さい両凸形状の正レンズまでの間の形状を有することが望ましい。
【0019】
条件式(3)の上限値を上回ると、正レンズLrpは、物体側のレンズ面の曲率半径が像側のレンズ面の曲率半径よりも小さい正レンズとなる。このため、主に球面収差の補正を悪化させることとなってしまうため好ましくない。
また、条件式(3)の下限値を下回ると、正レンズLrpは、像側に凸面を向けた強いメニスカスレンズとなる。このため、球面収差の悪化や近距離収差変動の悪化を招くこととなるため好ましくない。
【0020】
【実施例】
以下、添付図面に基づいて本発明の各実施例に係る広角レンズについて説明する。
(実施例1)
図1は、実施例1に係る広角レンズの構成、および各レンズ群の移動軌跡を示す図である。
実施例1に係る広角レンズは、物体側から順に、フロントコンバーターとしての作用を持つ前群Gfと、全体で正の屈折力を有し合焦時に移動する後群Grとから構成されている。
【0021】
前群Gfは、物体側から順に、発散性レンズ群Gnと、光学フィルターF(回転式円偏光フィルター)と、収斂性レンズ群Gpとを有する。
発散性レンズ群Gnは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向け像側のレンズ面が非球面である負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、両凹形状の負レンズL4とを有する。この両凹形状の負レンズL4は、樹脂とガラスの複合からなる複合レンズであり、像側のレンズ面に樹脂が配置されており、この樹脂の像側の面が非球面である。
収斂性レンズ群Gpは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL5と厚肉の両凸形状の正レンズL6との接合からなる接合正レンズと、両凸形状の正レンズL7と像側に凸面を向けた負メニスカスレンズL8との接合からなる接合正レンズと、厚肉の両凸形状の正レンズL9と、両凸形状の正レンズL10と両凹形状の負レンズL11との接合からなる接合負レンズと、開口絞りSとを有する。
【0022】
合焦時に移動する後群Grは、物体側から順に、像側に凸面を向けた正メニスカスレンズLrpと、両凹形状の負レンズL12と両凸形状の正レンズL13との接合からなる接合正レンズと、両凸形状の正レンズL14と物体側に凹面を向けた負メニスカスレンズL15との接合からなる接合負レンズとを有する。
【0023】
本実施例に係る広角レンズにおいて、近距離合焦は、合焦群即ち後群Grのみを物体側へ移動させることによって行われ、撮影距離0.25m(撮影倍率−0.1437倍)まで合焦が可能である。
また本実施例に係る広角レンズは、開口絞りSよりも像側のレンズ群によって合焦を行うことができるため、いわゆるレンズ内モーターによる合焦方式に適する。また、前群Gfをアフォーカルコンバータとして機能させることによって、合焦群Grは独立して収差の補正を行う。したがって、合焦群Grはいわゆる防振レンズ群として使用することができる。またこの他、合焦群Grのみを光軸から外すことで、いわゆるシフトレンズ光学系として使用することもできる。
また、本実施例に係る広角レンズは、イメージサークルを52mmφまで確保することができる。したがって、レンズ全系をシフトやティルトさせることによってシフトレンズ光学系として使用することができる。
【0024】
以下の表1に、本発明の実施例1に係る広角レンズの諸元の値を掲げる。
(全体諸元)において、f0は焦点距離、2ωは画角(包括角)の最大値、FNOはFナンバーをそれぞれ示す。
(レンズデータ)において、面番号は物体側から数えたレンズ面の順番、riは物体側からi番目のレンズ面Riの曲率半径、diはレンズ面Riとレンズ面Ri+1との光軸上の面間隔、νiはレンズ面Riとレンズ面Ri+1との間の媒質のアッベ数、niはレンズ面Riとレンズ面Ri+1との間の媒質のd線(λ=587.56nm)に対する屈折率をそれぞれ示す。さらに、レンズデータ中の非球面には、面番号に星印(★)を付して曲率半径rの欄に後述の近軸曲率半径を示し、κおよび各非球面係数は非球面データ欄に掲載する。また、曲率半径0.0000は平面を示し、BFはバックフォーカスを示す。
【0025】
(非球面データ)において、「E−n」は「×10−n」を示す。諸元表に示す非球面は、光軸から垂直方向の高さyにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)をS(y)、基準の曲率半径をR、円錐係数をκ、n次の非球面係数をCnとするとき、以下の非球面式で表され、0(ゼロ)となる非球面係数は記載を省略してある。
【0026】
【数1】
【0027】
(レンズ間隔データ)において、βは物体と像間の撮影倍率を示し、1−POSは無限遠合焦時を、2−POSはβ=−0.02500(=−1/40)での合焦時を、3−POSはβ=−0.10000での合焦時を、4−POSはβ=−0.14365での合焦時をそれぞれ示し、D0は最も物体側の面から物体までの距離、D23は開口絞りSから合焦レンズ群Grまでの距離、BFはバックフォーカスをそれぞれ示す。
【0028】
ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、その他長さの単位は一般に「mm」が使われる。しかし光学系は、比例拡大または比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
尚、以下の実施例2の諸元値においても、本実施例と同様の符号を用いる。
【0029】
【表1】
【0030】
図2(a),(b)はそれぞれ、実施例1に係る広角レンズの無限遠合焦時、撮影倍率−1/40倍時の諸収差図を示す。
各収差図において、FNOはFナンバー、Aは前述のωと同じ半画角、NAは開口数、H0は像高をそれぞれ示す。尚、非点収差図および歪曲収差図においては、半画角Aまたは像高H0の最大値を示す。また、d,gはそれぞれ、d線(λ=587.56nm),g線(λ=435.84nm)の収差曲線を示す。さらに、非点収差図において、実線はサジタル像面、破線はメリジオナル像面をそれぞれ示す。
尚、以下に示す実施例2の諸収差図において、本実施例と同様の符号を用いる。
【0031】
各収差図より本実施例に係る広角レンズは、無限遠合焦時において諸収差を良好に補正し、撮影倍率−1/40倍時において近距離収差変動を良好に補正していることがわかる。
【0032】
(実施例2)
図3は、実施例2に係る広角レンズの構成、および各レンズ群の移動軌跡を示す図である。
実施例2に係る広角レンズは、物体側から順に、フロントコンバーターとしての作用を持つ前群Gfと、全体で正の屈折力を有し合焦時に移動する後群Grとから構成されている。
【0033】
前群Gfは、物体側から順に、発散性レンズ群Gnと、光学フィルターF(回転式円偏光フィルター)と、収斂性レンズ群Gpとを有する。
発散性レンズ群Gnは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向け像側のレンズ面が非球面である負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、両凹形状の負レンズL4とを有する。この両凹形状の負レンズL4は、樹脂とガラスの複合からなる複合レンズであり、像側のレンズ面に樹脂が配置されており、この樹脂の像側の面が非球面である。
収斂性レンズ群Gpは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL5と厚肉の両凸形状の正レンズL6との接合からなる接合正レンズと、両凸形状の正レンズL7と像面に凸面を向けた負メニスカスレンズL8との接合からなる接合正レンズと、厚肉の両凸形状の正レンズL9と、両凸形状の正レンズL10と両凹形状の負レンズL11との接合からなる接合負レンズと、開口絞りSとを有する。
【0034】
合焦時に移動する後群Grは、物体側から順に、両凸形状の正レンズLrpと、両凹レ形状の負レンズL12と両凸形状の正レンズL13との接合からなる接合負レンズと、両凸形状の正レンズL14と物体側に凹面を向けた負メニスカスレンズL15との接合からなる接合正レンズとを有する。
【0035】
本実施例に係る広角レンズにおいて、近距離合焦は、合焦群即ち後群Grのみを物体側へ移動させることによって行われ、撮影距離0.25m(撮影倍率−0.1437倍)まで合焦が可能である。
また本実施例に係る広角レンズは、開口絞りSよりも像側のレンズ群によって合焦を行うことができるため、いわゆるレンズ内モーターによる合焦方式に適している。また、前群Gfをアフォーカルコンバータとして機能させることによって、合焦群Grは独立して収差の補正を行う。したがって、合焦群Grはいわゆる防振レンズ群として使用できる。またこの他、合焦群Grのみを光軸から外すことで、いわゆるシフトレンズ光学系として使用することもできる。
また、本実施例に係る広角レンズは、イメージサークルを52mmφまで確保することができる。したがって、レンズ全系をシフトやティルトさせることによってシフトレンズ光学系として使用することができる。
以下の表2に、本発明の実施例2に係る広角レンズの諸元の値を掲げる。
【0036】
【表2】
【0037】
図4(a),(b)はそれぞれ、実施例2に係る広角レンズの無限遠合焦時、撮影倍率−1/40倍時の諸収差図を示す。
各収差図より本実施例に係る広角レンズは、無限遠合焦時において諸収差を良好に補正し、撮影倍率−1/40倍時において近距離収差変動を良好に補正していることがわかる。
【0038】
尚、上記実施例に係る広角レンズにおいて、光学フィルターFは回転式円偏光フィルターに限られず、色フィルターなどの各種フィルターを組み込んで使用することができる。
【0039】
【発明の効果】
本発明によれば、通常の射影方式(y=f・tanθ)で包括角2ω=107°を越え、更に口径F2.8程度であり、組込み式のフィルターを使用することができ、高性能で近距離収差変動の少ない広角レンズを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る広角レンズの構成、および各レンズ群の移動軌跡を示す図である。
【図2】(a),(b)はそれぞれ、本発明の実施例1に係る広角レンズの無限遠合焦時、撮影倍率−1/40倍時の諸収差図である。
【図3】本発明の実施例2に係る広角レンズの構成、および各レンズ群の移動軌跡を示す図である。
【図4】(a),(b)はそれぞれ、本発明の実施例2に係る広角レンズの無限遠合焦時、撮影倍率−1/40倍時の諸収差図である。
【符号の説明】
Gf 前群
Gr 後群
Gn 発散性レンズ群
Gp 収斂性レンズ群
F 光学フィルター
S 開口絞り
I 像面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wide-angle lens having a large angle of view.
[0002]
[Prior art]
Heretofore, there have been few proposals for ultra-wide-angle lenses exceeding an inclusive angle of 2ω = 105 ° in a normal projection system (y = f · tan θ), and very few proposals for large-diameter ultra-wide-angle lenses exceeding an aperture of F3.5. Such an ultra-wide-angle lens has been proposed, for example, by the present applicant (see
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 9-113798 [Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 9-113800 [Patent Document 3]
JP 2001-159732 A
[Problems to be solved by the invention]
[0005]
Therefore, the present invention has been made in view of the above-mentioned problems, and has a general projection method (y = f · tan θ) in which the included angle exceeds 2ω = 107 °, the aperture is about F2.8, and the built-in filter is used. It is an object of the present invention to provide a wide-angle lens having high performance and little fluctuation of short-range aberration.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
In order from the object side, a front unit Gf having an action as a front converter, and a rear unit Gr which moves during focusing and has a positive refractive power,
The front group Gf includes, in order from the object side, a divergent lens group Gn, an optical filter, and a convergent lens group Gp.
The divergent lens group Gn has at least two negative (concave) lenses and one positive (convex) lens,
The convergent lens group Gp has at least one cemented lens of a negative (concave) lens and a positive (convex) lens;
A wide-angle lens characterized by satisfying the following conditional expression is provided.
(1) 0.9 <D F / f 0 <6.0
(2) 0 <| f F -1 / f 0 -1 | <0.20
D F : a distance on the optical axis from the most image side lens surface of the divergent lens group Gn to the most object side lens surface of the convergent lens group Gp, including the thickness of the optical filter;
f F : focal length of the front group Gf,
f 0 : focal length of the whole wide-angle lens system.
[0007]
Also, more preferably,
The rear group Gr includes, in order from the object side, a positive lens L rp having a convex surface facing the image side, and two cemented lenses.
Focusing on a short-distance object point is performed by moving only the rear group Gr to the object side,
It is desirable to satisfy the following conditional expressions (3).
(3) -3.0 <(r 2 + r 1) / (r 2 -r 1) <0
r 1 : radius of curvature of the lens surface of the positive lens L rp on the object side,
r 2 : radius of curvature of the lens surface on the image side of the positive lens L rp .
[0008]
Also, more preferably,
It is preferable that the optical filter in the front group Gf is a built-in filter that can be replaced from the outside.
[0009]
Also, more preferably,
The optical filter in the front group Gf is preferably rotatable from outside.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The most difficult thing in designing an objective optical system including a photographic lens is to achieve a remarkable large angle of view and a large diameter. This is nothing less than correcting Seidel aberration thoroughly. Due to the difficulty in such a design, as described above, there are very few proposals for a lens that exceeds an inclusive angle (angle of view) 2ω = 107 °, which is close to the limit, and reaches an aperture of F2.8 in the ordinary projection method.
[0011]
The present invention is an improvement and development of the basic super-wide-angle lens disclosed in
[0012]
In the case of an ultra-wide-angle lens, it is virtually impossible to mount a filter in front of the lens because the diameter of the front lens becomes huge. Therefore, conventionally, a method in which a turret-type filter is provided or a method in which a bayonet-type filter is attached to the rearmost part of a lens has been mainly used. However, in these methods, it is impossible to use a circular polarizing filter and a polarizing filter that are most effective in photographing with an ultra-wide-angle lens. It is difficult to incorporate a so-called polarizing filter because the filter needs to be rotated during photographing. This is because, unlike a super-telephoto lens or the like, it is difficult for an ultra-wide-angle lens to secure a space for inserting and removing a filter and a metal frame attached to the filter from outside the lens. Therefore, realizing the use of a built-in filter in an ultra-wide-angle lens has a great merit for a user, and is desired.
[0013]
First, the basic structure of the wide-angle lens of the present invention will be described. The wide-angle lens of the present invention is optically configured under a design concept of a wide converter + an objective lens. In the wide-angle lens according to each of the following examples, the front group Gf, which is a converter, is substantially afocal. Therefore, the front unit Gf has an optical function as a so-called afocal wide converter.
[0014]
The front group Gf is separated into a concave group (corresponding to a divergent lens group Gn) and a convex group (corresponding to a convergent lens group Gp), and an optical filter is inserted between the concave group and the convex group. There is a space for
With this configuration, the angle of incidence of oblique rays on the optical filter becomes relatively small. Thereby, it is possible to suppress occurrence of an incident angle error (difference in polarization effect due to difference in incident angle) when a circularly polarizing filter is used as an optical filter. This position (between the concave group and the convex group) makes it possible to minimize the effective diameter of the optical filter. Thereby, the space for inserting the optical filter can be minimized.
[0015]
Further, the rear group Gr can optically have a function as a master lens, and focusing on a short-distance object point by using the rear group Gr is also advantageous in suppressing short-range aberration fluctuation. It is.
Further, it is desirable that the convergent lens group Gp basically has a lens group including a convex and concave (positive / negative / positive group configuration) or a convex / concave (positive / positive / negative group configuration) power arrangement. In addition, it is desirable that the convergent lens group Gp has a plurality of cemented lenses in order to appropriately set the Petzval sum and satisfactorily correct spherical aberration and lateral chromatic aberration.
The built-in filter includes a so-called color filter and a rotary circularly polarizing filter. Needless to say, the present invention has a function of a so-called plug-in filter that allows a user to freely put in and out.
[0016]
Next, each conditional expression of the wide-angle lens of the present invention will be described.
The conditional expression (1) is a conditional expression that defines the thickness of the optical filter existing between the divergent lens group Gn and the convergent lens group Gp, and the air gap before and after the optical filter.
Exceeding the upper limit of conditional expression (1) is not preferable because the entire wide-angle lens becomes large. If the upper limit of conditional expression (1) is set to 5.0, the effects of the present invention can be maximized.
If the lower limit of conditional expression (1) is not reached, the filter and the metal frame cannot be inserted between the divergent lens group Gn and the convergent lens group Gp, and it cannot be easily inserted and removed from outside the lens. . For this reason, the rotation mechanism of the circularly polarizing filter cannot be incorporated in the wide-angle lens of the present invention, and the merit of the user is significantly impaired. If the lower limit of conditional expression (1) is set to 1.0 or more, the effects of the present invention can be maximized.
[0017]
The conditional expression (2) is a conditional expression for normalizing the power of the wide converter portion with the power of the entire lens system. Performing power allocation based on theoretical support in an extreme optical system like the present invention makes it possible to achieve high performance and miniaturization of the optical system without difficulty and without waste. For this reason, the wide-angle lens according to the present invention comprises an afocal converter and a master lens by forming the front part of a so-called retrofocus afocal when the initial optical frame (power arrangement) is formed as described above. The division of roles is clarified. By utilizing the features of this configuration, the space for the built-in filter is secured and the performance at the time of focusing is guaranteed.
Therefore, not satisfying the conditional expression (2) means that the wide converter portion deviates significantly from the afocal condition. In this case, the balance of aberration correction is lost, and in particular, the fluctuation of short-range aberration increases, which is not preferable. If the upper limit of conditional expression (2) is set to 0.15, aberrations can be corrected well. If the upper limit of conditional expression (2) is set to 0.1, the effects of the present invention can be maximized.
[0018]
The conditional expression (3) is a conditional expression relating to the q factor (shape factor) of the positive lens L rp in the rear group Gr. This positive lens L rp needs to have a shape suitable for receiving the light beam emitted from the afocal converter. The apparent angle of view of the light beam incident on the master lens is small. For this reason, for the lens surface on the object side of the positive lens L rp , it is important to mainly correct aberrations for light rays to fill the aperture of the lens system. In addition, since a master lens is composed of a small number of lenses, it is necessary to correct aberrations particularly with respect to the aperture. From the above, as shown in conditional expression (3), the positive lens L rp has a shape ranging from a meniscus shape having a convex surface facing the image side to a biconvex positive lens having a small radius of curvature of the lens surface on the image side. It is desirable to have
[0019]
When the value exceeds the upper limit of conditional expression (3), the positive lens L rp becomes a positive lens in which the radius of curvature of the object-side lens surface is smaller than the radius of curvature of the image-side lens surface. For this reason, correction of spherical aberration is mainly deteriorated, which is not preferable.
When the value goes below the lower limit of conditional expression (3), the positive lens L rp becomes a strong meniscus lens having a convex surface facing the image side. For this reason, the spherical aberration and the short-range aberration fluctuation are deteriorated, which is not preferable.
[0020]
【Example】
Hereinafter, a wide-angle lens according to each embodiment of the present invention will be described with reference to the accompanying drawings.
(Example 1)
FIG. 1 is a diagram illustrating a configuration of a wide-angle lens according to a first embodiment and a movement locus of each lens group.
The wide-angle lens according to the first embodiment includes, in order from the object side, a front unit Gf having a function as a front converter, and a rear unit Gr that has a positive refractive power as a whole and moves during focusing.
[0021]
The front group Gf includes, in order from the object side, a divergent lens group Gn, an optical filter F (rotary circularly polarizing filter), and a convergent lens group Gp.
The divergent lens group Gn includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side and an aspheric lens surface on the image side, and It has a positive meniscus lens L3 with a convex surface and a biconcave negative lens L4. The biconcave negative lens L4 is a compound lens made of a composite of resin and glass, in which resin is disposed on the image-side lens surface, and the image-side surface of this resin is aspheric.
The convergent lens group Gp includes, in order from the object side, a cemented positive lens composed of a cemented negative meniscus lens L5 having a convex surface facing the object side and a thick biconvex positive lens L6, and a biconvex positive lens L7 and a positive meniscus lens L8 having a convex surface facing the image side, a cemented positive lens, a thick biconvex positive lens L9, a biconvex positive lens L10, and a biconcave negative lens L11 And an aperture stop S.
[0022]
The rear group Gr that moves during focusing includes, in order from the object, a positive meniscus lens Lrp having a convex surface facing the image side, and a junction formed by joining a biconcave negative lens L12 and a biconvex positive lens L13. It has a positive lens, and a cemented negative lens formed by joining a biconvex positive lens L14 and a negative meniscus lens L15 with a concave surface facing the object side.
[0023]
In the wide-angle lens according to the present embodiment, the short-distance focusing is performed by moving only the focusing group, that is, the rear group Gr to the object side, and focuses to a photographing distance of 0.25 m (photographing magnification -0.1437 times). Scorching is possible.
Further, the wide-angle lens according to the present embodiment can perform focusing by a lens group on the image side of the aperture stop S, and thus is suitable for a focusing method using a so-called in-lens motor. In addition, by causing the front group Gf to function as an afocal converter, the focusing group Gr performs aberration correction independently. Therefore, the focusing group Gr can be used as a so-called anti-vibration lens group. In addition, by removing only the focusing group Gr from the optical axis, it can be used as a so-called shift lens optical system.
In addition, the wide-angle lens according to the present embodiment can secure an image circle up to 52 mmφ. Therefore, by shifting or tilting the entire lens system, it can be used as a shift lens optical system.
[0024]
Table 1 below lists values of specifications of the wide-angle lens according to Example 1 of the present invention.
In (General Data), f 0 is the focal length, 2 [omega is the maximum value of the angle (inclusive angle), FNO denotes a F-number.
In (lens data), the surface number is the order of the lens surface counted from the object side, ri is the radius of curvature of the i-th lens surface Ri from the object side, and di is the surface on the optical axis of the lens surface Ri and the lens surface Ri + 1. The interval, νi, is the Abbe number of the medium between the lens surface Ri and the lens surface Ri + 1, and ni is the refractive index of the medium between the lens surface Ri and the lens surface Ri + 1 with respect to the d line (λ = 587.56 nm). . Further, asterisks (★) are attached to the surface numbers of the aspheric surfaces in the lens data, and paraxial curvature radii described later are shown in the column of the radius of curvature r, and κ and each aspheric surface coefficient are shown in the aspheric surface data column. Post. The radius of curvature 0.0000 indicates a plane, and BF indicates back focus.
[0025]
In (aspherical surface data), “ En ” indicates “× 10 −n ”. The aspherical surface shown in the specification table has a distance (sag amount) along the optical axis direction from the tangent plane of the apex of each aspherical surface at a height y in the vertical direction from the optical axis (sag amount), and a reference radius of curvature. Assuming that R, the conic coefficient is κ, and the nth-order aspherical coefficient is Cn, the aspherical coefficient represented by the following aspherical expression and being 0 (zero) is omitted.
[0026]
(Equation 1)
[0027]
In (lens interval data), β indicates the photographing magnification between the object and the image, 1-POS indicates the focus at infinity, and 2-POS indicates the focus at β = −0.02500 (= −1 / 40). 3-POS indicates focusing at β = −0.10000, 4-POS indicates focusing at β = −0.14365, and D0 indicates the distance from the most object side surface to the object. , D23 indicates the distance from the aperture stop S to the focusing lens group Gr, and BF indicates the back focus.
[0028]
Here, "mm" is generally used as the unit of the focal length f, the radius of curvature r, and other lengths described in all the following specification values. However, the optical system is not limited to this, since the same optical performance can be obtained even if the optical system is proportionally enlarged or reduced.
Note that the same reference numerals as those in the present embodiment are used in the specification values of the second embodiment.
[0029]
[Table 1]
[0030]
FIGS. 2A and 2B are diagrams illustrating various aberrations of the wide-angle lens according to the first embodiment when focused on infinity and at a magnification of −1/40.
In each aberration diagram, FNO represents the F number, A represents the same half angle of view as ω, NA represents the numerical aperture, and H0 represents the image height. In the astigmatism diagram and the distortion diagram, the maximum value of the half angle of view A or the image height H0 is shown. Also, d and g indicate aberration curves of the d-line (λ = 587.56 nm) and the g-line (λ = 435.84 nm), respectively. Further, in the astigmatism diagram, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane.
In the various aberration diagrams of the second embodiment described below, the same reference numerals as in the present embodiment are used.
[0031]
From the aberration diagrams, it can be seen that the wide-angle lens according to the present embodiment satisfactorily corrects various aberrations at the time of focusing on infinity, and satisfactorily corrects short-range aberration fluctuation at a magnification of -1/40. .
[0032]
(Example 2)
FIG. 3 is a diagram illustrating a configuration of a wide-angle lens according to the second embodiment and a movement locus of each lens group.
The wide-angle lens according to the second embodiment includes, in order from the object side, a front unit Gf having an action as a front converter, and a rear unit Gr that has a positive refractive power as a whole and moves during focusing.
[0033]
The front group Gf includes, in order from the object side, a divergent lens group Gn, an optical filter F (rotary circularly polarizing filter), and a convergent lens group Gp.
The divergent lens group Gn includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side and an aspheric lens surface on the image side, and It has a positive meniscus lens L3 with a convex surface and a biconcave negative lens L4. The biconcave negative lens L4 is a compound lens made of a composite of resin and glass, in which resin is disposed on the image-side lens surface, and the image-side surface of this resin is aspheric.
The convergent lens group Gp includes, in order from the object side, a cemented positive lens composed of a cemented negative meniscus lens L5 having a convex surface facing the object side and a thick biconvex positive lens L6, and a biconvex positive lens L7 and a cemented positive lens composed of a negative meniscus lens L8 having a convex surface facing the image surface, a thick biconvex positive lens L9, a biconvex positive lens L10, and a biconcave negative lens L11 And an aperture stop S.
[0034]
Group Gr After moving when focusing, in order from the object side, a positive lens L rp double convex, a cemented negative lens consisting of a junction between the positive lens L13 of a negative lens L12 cemented with a double convex of Ryo凹Re shape And a cemented positive lens formed by joining a biconvex positive lens L14 and a negative meniscus lens L15 having a concave surface facing the object side.
[0035]
In the wide-angle lens according to the present embodiment, the short-distance focusing is performed by moving only the focusing group, that is, the rear group Gr to the object side, and focuses to a photographing distance of 0.25 m (photographing magnification -0.1437 times). Scorching is possible.
Further, the wide-angle lens according to the present embodiment can be focused by a lens group on the image side of the aperture stop S, and thus is suitable for a focusing method using a so-called in-lens motor. In addition, by causing the front group Gf to function as an afocal converter, the focusing group Gr performs aberration correction independently. Therefore, the focusing group Gr can be used as a so-called anti-vibration lens group. In addition, by removing only the focusing group Gr from the optical axis, it can be used as a so-called shift lens optical system.
In addition, the wide-angle lens according to the present embodiment can secure an image circle up to 52 mmφ. Therefore, by shifting or tilting the entire lens system, it can be used as a shift lens optical system.
Table 2 below lists data values of the wide-angle lens according to Example 2 of the present invention.
[0036]
[Table 2]
[0037]
4A and 4B are graphs showing various aberrations of the wide-angle lens according to the second embodiment when focused on infinity and at a magnification of -1/40.
From the aberration diagrams, it can be seen that the wide-angle lens according to the present embodiment satisfactorily corrects various aberrations at the time of focusing on infinity, and satisfactorily corrects short-range aberration fluctuation at a magnification of -1/40. .
[0038]
In the wide-angle lens according to the above-described embodiment, the optical filter F is not limited to a rotary circularly polarizing filter, and various filters such as a color filter can be incorporated and used.
[0039]
【The invention's effect】
According to the present invention, the inclusive angle exceeds 2 ° = 107 ° in the normal projection system (y = f · tan θ), the aperture is about F2.8, and a built-in filter can be used. It is possible to provide a wide-angle lens with little fluctuation of short-range aberration.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a wide-angle lens according to a first embodiment of the present invention and a movement locus of each lens group.
FIGS. 2A and 2B are diagrams illustrating various aberrations of the wide-angle lens according to the first embodiment of the present invention when focused on infinity and at a magnification of −1/40.
FIG. 3 is a diagram illustrating a configuration of a wide-angle lens according to
FIGS. 4A and 4B are graphs showing various aberrations of the wide-angle lens according to
[Explanation of symbols]
Gf Front group Gr Rear group Gn Divergent lens group Gp Convergent lens group F Optical filter S Aperture stop I Image plane
Claims (4)
前記前群Gfは、物体側から順に、発散性レンズ群Gnと、光学フィルターと、収斂性レンズ群Gpとを有し、
前記発散性レンズ群Gnは、少なくとも2枚の負レンズと1枚の正レンズとを有し、
前記収斂性レンズ群Gpは、負レンズと正レンズとの接合レンズを少なくとも1つ有し、
以下の条件式を満足することを特徴とする広角レンズ。
(1)0.9 < DF/f0 < 6.0
(2)0 < |fF −1/f0 −1| < 0.20
DF :前記光学フィルターの厚みを含む、前記発散性レンズ群Gnの最も像側のレンズ面から前記収斂性レンズ群Gpの最も物体側のレンズ面までの光軸上の距離,
fF :前記前群Gfの焦点距離,
f0 :前記広角レンズ全系の焦点距離.In order from the object side, a front unit Gf having an action as a front converter, and a rear unit Gr which moves during focusing and has a positive refractive power,
The front group Gf includes, in order from the object side, a divergent lens group Gn, an optical filter, and a convergent lens group Gp.
The divergent lens group Gn has at least two negative lenses and one positive lens,
The convergent lens group Gp has at least one cemented lens of a negative lens and a positive lens,
A wide-angle lens satisfying the following conditional expressions.
(1) 0.9 <D F / f 0 <6.0
(2) 0 <| f F -1 / f 0 -1 | <0.20
D F : a distance on the optical axis from the most image side lens surface of the divergent lens group Gn to the most object side lens surface of the convergent lens group Gp, including the thickness of the optical filter;
f F : focal length of the front group Gf,
f 0 : focal length of the whole wide-angle lens system.
近距離物点への合焦は、前記後群Grのみを物体側に移動させることによって行い、
以下の条件式を満足することを特徴とする請求項1に記載の広角レンズ。
(3)−3.0 < (r2+r1)/(r2−r1) < 0
r1 :前記正レンズLrpの物体側のレンズ面の曲率半径,
r2 :前記正レンズLrpの像側のレンズ面の曲率半径.The rear group Gr includes, in order from the object side, a positive lens L rp having a convex surface facing the image side, and two cemented lenses.
Focusing on a short-distance object point is performed by moving only the rear group Gr to the object side,
The wide-angle lens according to claim 1, wherein the following conditional expression is satisfied.
(3) -3.0 <(r 2 + r 1) / (r 2 -r 1) <0
r 1 : radius of curvature of the lens surface of the positive lens L rp on the object side,
r 2 : radius of curvature of the lens surface on the image side of the positive lens L rp .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003015161A JP4378960B2 (en) | 2003-01-23 | 2003-01-23 | Wide angle lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003015161A JP4378960B2 (en) | 2003-01-23 | 2003-01-23 | Wide angle lens |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004226740A true JP2004226740A (en) | 2004-08-12 |
JP2004226740A5 JP2004226740A5 (en) | 2006-10-19 |
JP4378960B2 JP4378960B2 (en) | 2009-12-09 |
Family
ID=32902989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003015161A Expired - Fee Related JP4378960B2 (en) | 2003-01-23 | 2003-01-23 | Wide angle lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4378960B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008145586A (en) * | 2006-12-07 | 2008-06-26 | Canon Inc | Optical system and imaging apparatus with the same |
JP2010072276A (en) * | 2008-09-18 | 2010-04-02 | Nikon Corp | Photographic lens, optical instrument with the photographic lens, and manufacturing method |
JP2011059290A (en) * | 2009-09-09 | 2011-03-24 | Konica Minolta Opto Inc | Wide angle lens, imaging optical device and digital equipment |
JP2013054269A (en) * | 2011-09-06 | 2013-03-21 | Canon Inc | Optical system and imaging apparatus having the same |
US8422143B2 (en) | 2010-08-19 | 2013-04-16 | Pentax Ricoh Imaging Company, Ltd. | Retrofocus wide-angle lens system and optical instrument provided with the same |
JP2013205535A (en) * | 2012-03-28 | 2013-10-07 | Canon Inc | Optical system and imaging apparatus including the same |
US8699143B2 (en) | 2009-11-10 | 2014-04-15 | Nikon Corporation | Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens |
US8830592B2 (en) | 2010-06-23 | 2014-09-09 | Nikon Corporation | Zoom lens, imaging apparatus, and method for manufacturing zoom lens |
US9122040B2 (en) | 2012-12-03 | 2015-09-01 | Ricoh Imaging Company, Ltd. | Superwide-angle lens system |
JP2017116762A (en) * | 2015-12-25 | 2017-06-29 | 株式会社タムロン | Optical system and imaging apparatus |
JP2017116763A (en) * | 2015-12-25 | 2017-06-29 | 株式会社タムロン | Optical and imaging apparatus |
US9784954B2 (en) | 2015-01-30 | 2017-10-10 | Samsung Electronics Co., Ltd. | Rear conversion lenses |
-
2003
- 2003-01-23 JP JP2003015161A patent/JP4378960B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008145586A (en) * | 2006-12-07 | 2008-06-26 | Canon Inc | Optical system and imaging apparatus with the same |
US8896941B2 (en) | 2008-09-18 | 2014-11-25 | Nikon Corporation | Image capturing lens, optical apparatus having same, and method for manufacturing image-capturing lens |
JP2010072276A (en) * | 2008-09-18 | 2010-04-02 | Nikon Corp | Photographic lens, optical instrument with the photographic lens, and manufacturing method |
JP2011059290A (en) * | 2009-09-09 | 2011-03-24 | Konica Minolta Opto Inc | Wide angle lens, imaging optical device and digital equipment |
US9164260B2 (en) | 2009-11-10 | 2015-10-20 | Nikon Corporation | Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens |
US8699143B2 (en) | 2009-11-10 | 2014-04-15 | Nikon Corporation | Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens |
US9354430B2 (en) | 2010-06-23 | 2016-05-31 | Nikon Corporation | Zoom lens, imaging apparatus, and method for manufacturing zoom lens |
US8830592B2 (en) | 2010-06-23 | 2014-09-09 | Nikon Corporation | Zoom lens, imaging apparatus, and method for manufacturing zoom lens |
US8422143B2 (en) | 2010-08-19 | 2013-04-16 | Pentax Ricoh Imaging Company, Ltd. | Retrofocus wide-angle lens system and optical instrument provided with the same |
JP2013054269A (en) * | 2011-09-06 | 2013-03-21 | Canon Inc | Optical system and imaging apparatus having the same |
JP2013205535A (en) * | 2012-03-28 | 2013-10-07 | Canon Inc | Optical system and imaging apparatus including the same |
US9625688B2 (en) | 2012-03-28 | 2017-04-18 | Canon Kabushiki Kaisha | Optical system and imaging apparatus including the same |
US9122040B2 (en) | 2012-12-03 | 2015-09-01 | Ricoh Imaging Company, Ltd. | Superwide-angle lens system |
US9784954B2 (en) | 2015-01-30 | 2017-10-10 | Samsung Electronics Co., Ltd. | Rear conversion lenses |
JP2017116762A (en) * | 2015-12-25 | 2017-06-29 | 株式会社タムロン | Optical system and imaging apparatus |
JP2017116763A (en) * | 2015-12-25 | 2017-06-29 | 株式会社タムロン | Optical and imaging apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4378960B2 (en) | 2009-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5115102B2 (en) | Lens system and optical device | |
JP4890090B2 (en) | Zoom lens system | |
JP5714535B2 (en) | Imaging optical system with anti-vibration mechanism | |
JP3769373B2 (en) | Bright wide-angle lens | |
JP3363571B2 (en) | Rear focus zoom lens and imaging system | |
US8699143B2 (en) | Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens | |
US7411745B2 (en) | Large-aperture-ratio internal focusing telephoto lens | |
JP2004085600A (en) | Wide angle zoom lens system | |
JP5358227B2 (en) | Inner zoom type and inner focus type zoom lens | |
JP2007256695A (en) | Zoom lens, imaging apparatus and variable power method | |
JP5428775B2 (en) | Wide angle lens, imaging device, and manufacturing method of wide angle lens | |
JP2004233750A (en) | Zoom lens | |
JPH10246854A (en) | Compact wide-angle lens | |
JP4378960B2 (en) | Wide angle lens | |
JP4505910B2 (en) | Zoom lens and photographing apparatus provided with the lens | |
JP2012220754A (en) | Optical system, imaging apparatus including the same, and method for manufacturing optical system | |
JP4325200B2 (en) | Zoom lens | |
JP2018045097A (en) | Zoom lens | |
JP4862263B2 (en) | Super wide-angle lens and photographing apparatus equipped with the super-wide angle lens | |
JP4929902B2 (en) | Single focus lens and imaging apparatus having the same | |
JP2012230340A (en) | Optical system, imaging apparatus having the same, and manufacturing method of the same | |
JP2018040948A (en) | Zoom lens | |
JP3441958B2 (en) | 3-group zoom lens | |
JP2007094176A (en) | Two-group zoom lens | |
JP3415765B2 (en) | Zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090907 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4378960 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151002 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |